1
|
Bastami M, Hosseini R. The codon optimised gene produces an active human basic fibroblastic growth factor in rice cell suspension culture. Growth Factors 2024; 42:171-187. [PMID: 39485262 DOI: 10.1080/08977194.2024.2423747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 10/23/2024] [Indexed: 11/03/2024]
Abstract
The coding sequence of human basic fibroblast growth factor (hbFGF) was optimised for expression in rice. An expression cassette was constructed by fusing the PCR-amplified RAmy3D promoter, along with its 5'UTR, 3'UTR, and terminator sequences, to the codon-optimised hbFGF sequence. This cassette was inserted into the pCAMBIA1304 shuttle vector, which also contained the RAmy3D signal peptide. Agrobacterium tumefaciens strain LBA 4404 was used to transform rice callus. Among the transformed lines, the callus expressing the highest level of bFGF (38.1 mg/kg fresh weight) was identified via ELISA and selected for establishing a cell suspension culture. Expression and secretion of the recombinant bFGF into the culture medium were observed three days after incubating the transgenic rice cells in sucrose-free medium. The presence of recombinant bFGF was confirmed through Western blot and SDS-PAGE analyses. Furthermore, the rice-derived bFGF effectively stimulated the proliferation of NIH/3T3 cells, demonstrating a comparable biological activity to that of commercial bFGF.
Collapse
Affiliation(s)
- Meysam Bastami
- Department of Biotechnology, Faculty of Agriculture and Natural Resources, Imam Khomeini International University, Qazvin, Iran
| | - Ramin Hosseini
- Department of Biotechnology, Faculty of Agriculture and Natural Resources, Imam Khomeini International University, Qazvin, Iran
| |
Collapse
|
2
|
Kwon HJ, Jung HY, Choi SY, Hwang IK, Kim DW, Shin MJ. Protective effect of Tat fused HPCA protein on neuronal cell death caused by ischemic injury. Heliyon 2024; 10:e23488. [PMID: 38192804 PMCID: PMC10772100 DOI: 10.1016/j.heliyon.2023.e23488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 01/10/2024] Open
Abstract
Background Bain ischemia is a disease that occurs for various reasons, induces reactive oxygen species (ROS), and causes fatal damage to the nervous system. Protective effect of HPCA on ischemic injury has not been extensively studied despite its significance in regulating calcium homeostasis and promoting neuronal survival in CA1 region of the brain. Objective We investigate the role of HPCA in ischemic injury using a cell-permeable Tat peptide fused HPCA protein (Tat-HPCA). Methods Western blot analysis determined the penetration of Tat-HPCA into HT-22 cells and apoptotic signaling pathways. 5-CFDA, AM, DCF-DA, and TUNEL staining confirmed intracellular ROS production and DNA damage. The intracellular Ca2+ was measured in primary cultured neurons treated with H2O2. Protective effects were examined using immunohistochemistry and cognitive function tests by passive avoidance test and 8-arm radial maze test. Results Tat-HPCA effectively penetrated into HT-22 cells and inhibited H2O2-induced apoptosis, oxidative stress, and DNA fragmentation. It also effectively inhibited phosphorylation of JNK and regulated the activation of Caspase, Bax, Bcl-2, and PARP, leading to inhibition of apoptosis. Moreover, Ca2+ concentration decreased in cells treated with Tat-HPCA in primary cultured neurons. In an animal model of ischemia, Tat-HPCA effectively penetrated the hippocampus, inhibited cell death, and regulated activities of astrocytes and microglia. Additionally, Cognitive function tests show that Tat-HPCA improves neurobehavioral outcomes after cerebral ischemic injury. Conclusion These results suggest that Tat-HPCA might have potential as a therapeutic agent for treating oxidative stress-related diseases induced by ischemic injury, including ischemia.
Collapse
Affiliation(s)
- Hyun Jung Kwon
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea
| | - Hyo Young Jung
- Department of Veterinary Medicine, Institute of Veterinary Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Soo Young Choi
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea
| | - In Koo Hwang
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea
| | - Min Jea Shin
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea
| |
Collapse
|
3
|
Yeo HJ, Shin MJ, Yoo KY, Jung BH, Eum WS, Choi SY. Tat-CIAPIN1 Prevents Pancreatic β-Cell Death in hIAPP-Induced RINm5F Cells and T2DM Animal Model. Int J Mol Sci 2023; 24:10478. [PMID: 37445656 DOI: 10.3390/ijms241310478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
It is well known that the cytokine-induced apoptosis inhibitor 1 (CIAPIN1) protein plays an important role in biological progresses as an anti-apoptotic protein. Human islet amyloid peptide (hIAPP), known as amylin, is caused to pancreatic β-cell death in type 2 diabetes mellitus (T2DM). However, the function of CIAPIN1 protein on T2DM is not yet well studied. Therefore, we investigated the effects of CIAPIN1 protein on a hIAPP-induced RINm5F cell and T2DM animal model induced by a high-fat diet (HFD) and streptozotocin (STZ). The Tat-CIAPIN1 protein reduced the activation of mitogen-activated protein kinase (MAPK) and regulated the apoptosis-related protein expression levels including COX-2, iNOS, Bcl-2, Bax, and Caspase-3 in hIAPP-induced RINm5F cells. In a T2DM mice model, the Tat-CIAPIN1 protein ameliorated the pathological changes of pancreatic β-cells and reduced the fasting blood glucose, body weight and hemoglobin Alc (HbAlc) levels. In conclusion, the Tat-CIAPIN1 protein showed protective effects against T2DM by protection of β-cells via inhibition of hIAPP toxicity and by regulation of a MAPK signal pathway, suggesting CIAPIN1 protein can be a therapeutic protein drug candidate by beneficial regulation of T2DM.
Collapse
Affiliation(s)
- Hyeon Ji Yeo
- Department of Biomedical Science and Research, Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea
| | - Min Jea Shin
- Department of Biomedical Science and Research, Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea
| | - Ki-Yeon Yoo
- Department of Anatomy, College of Dentistry, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea
| | - Bo Hyun Jung
- Department of Anatomy, College of Dentistry, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea
| | - Won Sik Eum
- Department of Biomedical Science and Research, Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea
| | - Soo Young Choi
- Department of Biomedical Science and Research, Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea
| |
Collapse
|
4
|
Zhang C, Wang X, Sun S, Fu Y, Wu Y, Zhao S, Fan X, Liu E. Fat-1 expression alleviates atherosclerosis in transgenic rabbits. J Cell Mol Med 2022; 26:1306-1314. [PMID: 35040258 PMCID: PMC8831984 DOI: 10.1111/jcmm.17188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/01/2022] [Accepted: 01/05/2022] [Indexed: 11/30/2022] Open
Abstract
Atherosclerosis is the main cause of cardiovascular diseases. The Fat-1 gene can express the n-3 fatty acid desaturase, which converts n-6 polyunsaturated fatty acids (PUFA) to n-3 PUFAs. The role of n-3 PUFAs in atherosclerosis is widely debated. This study explored the effect of n-3 PUFAs on atherosclerosis in rabbits. In this study, atherosclerosis was induced in Fat-1 transgenic rabbits and their littermate (WT) rabbits by feeding a high-cholesterol diet containing 0.3% cholesterol and 3% soybean oil for 16 weeks. Plasma lipid, fatty acid and pathological analyses of atherosclerotic lesions were conducted. Fatty acid composition in the liver and muscle showed that n-3 PUFAs increased and n-6 PUFAs decreased in the Fat-1 group. Plasma high-density lipoprotein cholesterol (HDL-C) levels were significantly increased in the Fat-1 group, and the atherosclerotic lesion area of the aortic arch in Fat-1 transgenic rabbits was significantly reduced. Histological analysis showed that smooth muscle cells (SMCs) in atherosclerotic lesions decreased significantly. In conclusion, n-3 PUFAs improve atherosclerosis in Fat-1 transgenic rabbits, and this process may depend on the increase in plasma HDL-C and the decrease in the amount of SMCs in atherosclerotic plaques.
Collapse
Affiliation(s)
- Chenyang Zhang
- Research Institute of Atherosclerotic Disease, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an, China.,Laboratory Animal Center, Xi'an Jiaotong University Health Science Centre, Xi'an, China
| | - Xiaojing Wang
- Research Institute of Atherosclerotic Disease, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an, China.,Department of Pathology, Xi'an Central Hospital, Xi'an, China
| | - Suping Sun
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Yu Fu
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
| | - Yi Wu
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
| | - Sihai Zhao
- Research Institute of Atherosclerotic Disease, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an, China.,Laboratory Animal Center, Xi'an Jiaotong University Health Science Centre, Xi'an, China
| | - Xinzhong Fan
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Enqi Liu
- Research Institute of Atherosclerotic Disease, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an, China.,Laboratory Animal Center, Xi'an Jiaotong University Health Science Centre, Xi'an, China
| |
Collapse
|
5
|
Lee H, An YH, Kim TK, Ryu J, Park GK, Park MJ, Ko J, Kim H, Choi HS, Hwang NS, Park TH. Enhancement of Wound Healing Efficacy by Increasing the Stability and Skin-Penetrating Property of bFGF Using 30Kc19α-Based Fusion Protein. Adv Biol (Weinh) 2021; 5:e2000176. [PMID: 33724733 PMCID: PMC7996635 DOI: 10.1002/adbi.202000176] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 10/17/2020] [Indexed: 12/19/2022]
Abstract
The instability of recombinant basic fibroblast growth factor (bFGF) is a major disadvantage for its therapeutic use and means frequent applications to cells or tissues are required for sustained effects. Originating from silkworm hemolymph, 30Kc19α is a cell-penetrating protein that also has protein stabilization properties. Herein, it is investigated whether fusing 30Kc19α to bFGF can enhance the stability and skin penetration properties of bFGF, which may consequently increase its therapeutic efficacy. The fusion of 30Kc19α to bFGF protein increases protein stability, as confirmed by ELISA. 30Kc19α-bFGF also retains the biological activity of bFGF as it facilitates the migration and proliferation of fibroblasts and angiogenesis of endothelial cells. It is discovered that 30Kc19α can improve the transdermal delivery of a small molecular fluorophore through the skin of hairless mice. Importantly, it increases the accumulation of bFGF and further facilitates its translocation into the skin through follicular routes. Finally, when applied to a skin wound model in vivo, 30Kc19α-bFGF penetrates the dermis layer effectively, which promotes cell proliferation, tissue granulation, angiogenesis, and tissue remodeling. Consequently, the findings suggest that 30Kc19α improves the therapeutic functionalities of bFGF, and would be useful as a protein stabilizer and/or a delivery vehicle in therapeutic applications.
Collapse
Affiliation(s)
- Haein Lee
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Young-Hyeon An
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
- BioMAX/N-Bio Institute, Institute of BioEngineering, Seoul National University, 1 Gwanakro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Tae Keun Kim
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Jina Ryu
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - G Kate Park
- Interdisciplinary Program in Bioengineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Mihn Jeong Park
- Interdisciplinary Program in Bioengineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Junghyeon Ko
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Hyunbum Kim
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Hak Soo Choi
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Nathaniel S Hwang
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
- Interdisciplinary Program in Bioengineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
- BioMAX/N-Bio Institute, Institute of BioEngineering, Seoul National University, 1 Gwanakro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Tai Hyun Park
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
- Interdisciplinary Program in Bioengineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
- BioMAX/N-Bio Institute, Institute of BioEngineering, Seoul National University, 1 Gwanakro, Gwanak-gu, Seoul, 08826, Republic of Korea
| |
Collapse
|
6
|
Rahman I, Fang L, Wei Z, Zheng X, Jiazhang L, Huang L, Xu Z. Highly efficient soluble expression and purification of recombinant human basic fibroblast growth factor (hbFGF) by fusion with a new collagen-like protein (Scl2) in Escherichia coli. Prep Biochem Biotechnol 2020; 50:598-606. [PMID: 32027221 DOI: 10.1080/10826068.2020.1721533] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Human basic fibroblast growth factor (hbFGF) is involved in a wide range of biological activities that affect the growth, differentiation, and migration. Due to its wound healing effects and therapy, hbFGF has the potential as therapeutic agent. Therefore, large-scale production of biologically active recombinant hbFGF with low cost is highly desirable. However, the complex structure of hbFGF hinders its high-level expression as the soluble and functional form. In the present study, an efficient, cost-effective, and scalable method for producing recombinant hbFGF was developed. The modified collagen-like protein (Scl2-M) from Streptococcus pyogenes was used as the fusion tag for producing recombinant hbFGF for the first time. After optimization, the expression level of Scl2-M-hbFGF reached approximately 0.85 g/L in the shake flask and 7.7 g/L in a high cell-density fermenter using glycerol as a carbon source. Then, the recombinant Scl2-M-hbFGF was readily purified using one-step acid precipitation and the purified Scl2-M-hbFGF was digested with enterokinase. The digested mixture was further subject to ion-exchange chromatography, and the final high-purity (96%) hbFGF product was prepared by freeze-drying. The recovery rate of the whole purification process attained 55.0%. In addition, the biological activity of recombinant hbFGF was confirmed by using L929 and BALB/c3T3 fibroblasts. Overall, this method has the potential for large scale production of recombinant hbFGF.
Collapse
Affiliation(s)
- Inamur Rahman
- Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China.,Institute of Biological Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China.,Center for Synthetic Biology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Lina Fang
- Hangzhou Zhongmei Huadong Pharmaceutical Co., Ltd, Hangzhou, China
| | - Zhang Wei
- Hangzhou Zhongmei Huadong Pharmaceutical Co., Ltd, Hangzhou, China
| | - Xiaodong Zheng
- Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Lian Jiazhang
- Institute of Biological Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China.,Center for Synthetic Biology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Lei Huang
- Institute of Biological Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China.,Center for Synthetic Biology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Zhinan Xu
- Institute of Biological Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China.,Center for Synthetic Biology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| |
Collapse
|
7
|
Niu J, Xie J, Guo K, Zhang X, Xia F, Zhao X, Song L, Zhuge D, Li X, Zhao Y, Huang Z. Efficient treatment of Parkinson's disease using ultrasonography-guided rhFGF20 proteoliposomes. Drug Deliv 2018; 25:1560-1569. [PMID: 30043675 PMCID: PMC6060384 DOI: 10.1080/10717544.2018.1482972] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 05/25/2018] [Accepted: 05/28/2018] [Indexed: 12/11/2022] Open
Abstract
Fibroblast growth factor-20 (FGF20) is a paracrine member of the FGF family that is preferentially expressed in the substantia nigra pars compacta (SNpc). Previous studies have demonstrated that FGF20 enhances the survival of dopaminergic neurons suggesting the potential use of FGF20 to treat Parkinson's disease (PD). However, the reduced solubility of the bacterial recombinant human FGF20 (rhFGF20) and the absence of efficient strategies to transport rhFGF20 across the blood-brain barrier (BBB) have halted its clinical application. In the present study, we have examined the efficiency of fuzing a small ubiquitin-related modifier (SUMO) to rhFGF20 to enhance its soluble expression and further investigated the efficacy of FUS-guided, rhFGF20-liposome transport across the BBB. We also examined the bioavailability and behavioral improvement in a 6-hydroxydopamine-lesioned rat model of PD following 2 weeks' FUS-liposomal combinatorial treatment. Our results showed that, in contrast with rhFGF20 or LIP-FGF20, the FUS-LIP-rhFGF20 treatment could significantly improve the apomorphine-induced rotations by protecting against the loss of dopaminergic neurons in the SNpc. Our Results suggest that our combinatorial method would help overcome key challenges that hinder the currently available methods for the use of rhFGF20 in PD treatment.
Collapse
Affiliation(s)
- Jianlou Niu
- School of Pharmaceutical Sciences & Center for Structural Biology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Junjun Xie
- School of Pharmaceutical Sciences & Center for Structural Biology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Kaiwen Guo
- School of Pharmaceutical Sciences & Center for Structural Biology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaomin Zhang
- School of Pharmaceutical Sciences & Center for Structural Biology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Feng Xia
- School of Pharmaceutical Sciences & Center for Structural Biology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xinyu Zhao
- School of Pharmaceutical Sciences & Center for Structural Biology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lintao Song
- School of Pharmaceutical Sciences & Center for Structural Biology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Deli Zhuge
- School of Pharmaceutical Sciences & Center for Structural Biology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaokun Li
- School of Pharmaceutical Sciences & Center for Structural Biology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yingzheng Zhao
- School of Pharmaceutical Sciences & Center for Structural Biology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhifeng Huang
- School of Pharmaceutical Sciences & Center for Structural Biology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
8
|
Lung endothelial cell-targeted peptide-guided bFGF promotes the regeneration after radiation induced lung injury. Biomaterials 2018; 184:10-19. [DOI: 10.1016/j.biomaterials.2018.08.061] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 08/24/2018] [Accepted: 08/27/2018] [Indexed: 12/11/2022]
|
9
|
Oil Body-Bound Oleosin-rhFGF-10: A Novel Drug Delivery System that Improves Skin Penetration to Accelerate Wound Healing and Hair Growth in Mice. Int J Mol Sci 2017; 18:ijms18102177. [PMID: 29057820 PMCID: PMC5666858 DOI: 10.3390/ijms18102177] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 10/13/2017] [Accepted: 10/15/2017] [Indexed: 01/17/2023] Open
Abstract
Recombinant human fibroblast growth factor 10 (rhFGF-10) is frequently used to treat patients with skin injuries. It can also promote hair growth. However, the effective application of rhFGF-10 is limited because of its poor stability and transdermal absorption. In this study, polymerase chain reaction (PCR) and Southern blotting were used to identify transgenic safflowers carrying a gene encoding an oleosin-rhFGF-10 fusion protein. The size and structural integrity of oleosin-rhFGF-10 in oil bodies extracted from transgenic safflower seeds was characterized by polyacrylamide gel electrophoresis and western blotting. Oil body extracts containing oleosin-rhFGF-10 were topically applied to mouse skin. The absorption of oleosin-rhFGF-10 was studied by immunohistochemistry. Its efficiency in promoting wound healing and hair regeneration were evaluated in full thickness wounds and hair growth assays. We identified a safflower line that carried the transgene and expressed a 45 kDa oleosin-rhFGF-10 protein. Oil body-bound oleosin-rhFGF-10 was absorbed by the skin with higher efficiency and speed compared with prokaryotically-expressed rhFGF-10. Oleosin-rhFGF-10 also enhanced wound closure and promoted hair growth better than rhFGF-10. The application of oleosin-rhFGF-10 in oil bodies promoted its delivery through the skin, providing a basis for improved therapeutic effects in enhancing wound healing and hair growth.
Collapse
|
10
|
Zhao Y, Li X, Xu X, He Z, Cui L, Lv X. Lumican alleviates hypertrophic scarring by suppressing integrin-FAK signaling. Biochem Biophys Res Commun 2016; 480:153-159. [PMID: 27693693 DOI: 10.1016/j.bbrc.2016.09.159] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Accepted: 09/28/2016] [Indexed: 01/15/2023]
Abstract
Hypertrophic scarring (HS) is an overcompensation of wound healing that increases the risk of cosmetic disfigurement and functional impairment. No gold standard has been established for the treatment or prevention of HS. Our study aims to elucidate the expression and function of lumican in the pathogenesis of HS as well as the underlying mechanism involved in this procedure. An animal model of HS (rabbit ear) was established, and the Ad-lumican vectors were locally injected. Primary fibroblasts isolated from patients with hypertrophic burn scars were used in vitro. Histological and molecular changes in HS pathogenesis were evaluated. The results showed that lumican is significantly reduced in HS tissues and fibroblasts from HS patients as compared to normal skin or cells. Lumican levels were further suppressed in response to TGF-β stimulation. However, lumican upregulation effectively thinned the scar area and inhibited fibroblast proliferation and the cell cycle. Meanwhile, Ad-lumican administration suppressed the deposition of extracellular matrix, such as collagen and CTGF. Ad-lumican injected animals or fibroblasts presented comparable integrin α2β1 expression while greatly reduced phosphorylation of FAK compared to the negative control. Moreover, Ad-lumican administration largely enhanced the binding of lumican to integrin α2β1 and may thus inhibit the signaling propagation of collagen-integrin α2β1. Overall, the restoration of lumican levels contributed to suppressing the HS progression by inhibiting collagen-integrin α2β1-FAK signaling.
Collapse
Affiliation(s)
- Yuqian Zhao
- Department of Plastic Surgery, Tangdu Hospital, Fourth Military Medical University, Shaan xi, Xi'an 710038, China
| | - Xueyong Li
- Department of Plastic Surgery, Tangdu Hospital, Fourth Military Medical University, Shaan xi, Xi'an 710038, China.
| | - Xiaoli Xu
- Department of Plastic Surgery, Tangdu Hospital, Fourth Military Medical University, Shaan xi, Xi'an 710038, China
| | - Zhi He
- Department of Plastic Surgery, Tangdu Hospital, Fourth Military Medical University, Shaan xi, Xi'an 710038, China
| | - Lei Cui
- Department of Plastic Surgery, Tangdu Hospital, Fourth Military Medical University, Shaan xi, Xi'an 710038, China
| | - Xiaoxing Lv
- Department of Plastic Surgery, Tangdu Hospital, Fourth Military Medical University, Shaan xi, Xi'an 710038, China
| |
Collapse
|
11
|
Shi H, Lin B, Huang Y, Wu J, Zhang H, Lin C, Wang Z, Zhu J, Zhao Y, Fu X, Lou Z, Li X, Xiao J. Basic fibroblast growth factor promotes melanocyte migration via activating PI3K/Akt-Rac1-FAK-JNK and ERK signaling pathways. IUBMB Life 2016; 68:735-47. [DOI: 10.1002/iub.1531] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Accepted: 06/07/2016] [Indexed: 12/18/2022]
Affiliation(s)
- Hongxue Shi
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering; Wenzhou Medical University; Wenzhou China
| | - Beibei Lin
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering; Wenzhou Medical University; Wenzhou China
| | - Yan Huang
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering; Wenzhou Medical University; Wenzhou China
| | - Jiang Wu
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering; Wenzhou Medical University; Wenzhou China
| | - Hongyu Zhang
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering; Wenzhou Medical University; Wenzhou China
| | - Cai Lin
- Wound Healing and Cell Biology Laboratory; Institute of Basic Medical Science, Chinese PLA General Hospital; Beijing China
| | - Zhouguang Wang
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering; Wenzhou Medical University; Wenzhou China
| | - Jingjing Zhu
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering; Wenzhou Medical University; Wenzhou China
| | - Yingzhen Zhao
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering; Wenzhou Medical University; Wenzhou China
| | - Xiaobing Fu
- Wound Healing and Cell Biology Laboratory; Institute of Basic Medical Science, Chinese PLA General Hospital; Beijing China
| | - Zhencai Lou
- Department of Otorhinolaryngology; The Affiliated YiWu Hospital, Wenzhou Medical University; Yiwu China
| | - Xiaokun Li
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering; Wenzhou Medical University; Wenzhou China
| | - Jian Xiao
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering; Wenzhou Medical University; Wenzhou China
| |
Collapse
|
12
|
Wang YP, Wei ZY, Zhong XF, Lin CJ, Cai YH, Ma J, Zhang YY, Liu YZ, Xing SC. Stable Expression of Basic Fibroblast Growth Factor in Chloroplasts of Tobacco. Int J Mol Sci 2015; 17:E19. [PMID: 26703590 PMCID: PMC4730266 DOI: 10.3390/ijms17010019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 11/30/2015] [Accepted: 12/15/2015] [Indexed: 12/15/2022] Open
Abstract
Basic fibroblast growth factor (bFGF) is a multifunctional factor in acceleration of cell proliferation, differentiation and transference, and therefore widely used in clinical applications. In this study, expression vector pWX-Nt03 harboring a codon-optimized bFGF gene was constructed and introduced into the tobacco chloroplasts by particle bombardment. After four rounds of selection, bFGF was proved to integrate into the chloroplast genome of regenerated plants and two of four transgenic plants were confirmed to be homoplastomic by PCR and Southern hybridization. ELISA assay indicated that bFGF represented approximately 0.1% of total soluble protein in the leaves of transplastomic tobacco plants. This is the first report of bFGF expression via chloroplast transformation in model plant, providing an additional option for the production of chloroplast-produced therapeutic proteins.
Collapse
Affiliation(s)
- Yun-Peng Wang
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Agro-Biotechnology Research Institute, Jilin Academy of Agricultural Sciences, No. 1363, Shengtai st., Changchun 130033, China.
| | - Zheng-Yi Wei
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Agro-Biotechnology Research Institute, Jilin Academy of Agricultural Sciences, No. 1363, Shengtai st., Changchun 130033, China.
| | - Xiao-Fang Zhong
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Agro-Biotechnology Research Institute, Jilin Academy of Agricultural Sciences, No. 1363, Shengtai st., Changchun 130033, China.
| | - Chun-Jing Lin
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Agro-Biotechnology Research Institute, Jilin Academy of Agricultural Sciences, No. 1363, Shengtai st., Changchun 130033, China.
| | - Yu-Hong Cai
- Institute of Agricultural Quality Standard and Testing Technology, Jilin Academy of Agricultural Sciences, No. 1363, Shengtai st., Changchun 130033, China.
| | - Jian Ma
- Faculty of Agronomy, Jilin Agricultural University, No. 2888, Xincheng st., Changchun 130118, China.
| | - Yu-Ying Zhang
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Agro-Biotechnology Research Institute, Jilin Academy of Agricultural Sciences, No. 1363, Shengtai st., Changchun 130033, China.
- College of Biological Sciences, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing 100094, China.
| | - Yan-Zhi Liu
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Agro-Biotechnology Research Institute, Jilin Academy of Agricultural Sciences, No. 1363, Shengtai st., Changchun 130033, China.
| | - Shao-Chen Xing
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Agro-Biotechnology Research Institute, Jilin Academy of Agricultural Sciences, No. 1363, Shengtai st., Changchun 130033, China.
| |
Collapse
|
13
|
Effects of low doses of Tat-PIM2 protein against hippocampal neuronal cell survival. J Neurol Sci 2015; 358:226-35. [DOI: 10.1016/j.jns.2015.08.1549] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 08/17/2015] [Accepted: 08/31/2015] [Indexed: 02/06/2023]
|
14
|
Kim MJ, Park M, Kim DW, Shin MJ, Son O, Jo HS, Yeo HJ, Cho SB, Park JH, Lee CH, Kim DS, Kwon OS, Kim J, Han KH, Park J, Eum WS, Choi SY. Transduced PEP-1-PON1 proteins regulate microglial activation and dopaminergic neuronal death in a Parkinson's disease model. Biomaterials 2015; 64:45-56. [DOI: 10.1016/j.biomaterials.2015.06.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 06/09/2015] [Accepted: 06/11/2015] [Indexed: 01/01/2023]
|