1
|
Zhang H, Zhao L, Brodský J, Migliaccio L, Gablech I, Neužil P, You M. Proteomics-on-a-Chip - Microfluidics meets proteomics. Biosens Bioelectron 2025; 273:117122. [PMID: 39813764 DOI: 10.1016/j.bios.2024.117122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 12/30/2024] [Indexed: 01/18/2025]
Abstract
Proteomics provides an understanding of biological systems by enabling the detailed study of protein expression profiles, which is crucial for early disease diagnosis. Microfluidic-based proteomics enhances this field by integrating complex proteome analysis into compact and efficient systems. This review focuses on developing microfluidic chip structures for proteomics, covering on-chip sample pretreatment, protein extraction, purification, and identification in recent years. Furthermore, our work aims to inspire researchers to select proper methodologies in designing novel, efficient assays for proteomics applications by analyzing trends and innovations in this field.
Collapse
Affiliation(s)
- Haoqing Zhang
- The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, PR China; TFX Group-Xi'an Jiaotong University Institute of Life Health, Xi'an 710049, PR China
| | - Lei Zhao
- The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Jan Brodský
- Department of Microelectronics, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technická 3058/10, 616 00, Brno, Czech Republic
| | - Ludovico Migliaccio
- Department of Microelectronics, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technická 3058/10, 616 00, Brno, Czech Republic
| | - Imrich Gablech
- Department of Microelectronics, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technická 3058/10, 616 00, Brno, Czech Republic
| | - Pavel Neužil
- Ministry of Education Key Laboratory of Micro and Nano Systems for Aerospace, School of Mechanical Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi, 710072, PR China.
| | - Minli You
- The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, PR China; TFX Group-Xi'an Jiaotong University Institute of Life Health, Xi'an 710049, PR China.
| |
Collapse
|
2
|
Lenzen P, Hoch T, Condado-Morales I, Jacquat RPB, Frigerio R, Garlipp J, Torrini F, Gori A, Capasso Palmiero U, Boyman O, Arosio P. One-Step Immunoassay for Biomarker Quantification in Complex Mixtures Based on Phase-Separated Antifouling Coacervates. Anal Chem 2025; 97:4906-4914. [PMID: 40013662 PMCID: PMC11912134 DOI: 10.1021/acs.analchem.4c04661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 02/03/2025] [Accepted: 02/11/2025] [Indexed: 02/28/2025]
Abstract
We develop and present a one-pot sandwich immunoassay (termed oneSTEP) to detect target biomolecules in complex biological fluids based on programmable zwitterionic polymer coacervates. We design these coacervates to selectively recruit target analytes with ultralow nonspecific adsorption. We show that dynamic compartmentalization combined with local target enrichment delivers a rapid and wash-free sandwich immunoassay with high specificity and a high signal-to-noise ratio. The fluorescence-based readout is performed using standard microscopy methods and flow cytometry. We demonstrate the capabilities of the oneSTEP assay by detecting complement component 5 in human serum and the spike protein of severe acute respiratory syndrome coronavirus 2 in artificial saliva with a limit of detection of 300 pM. The results highlight the potential of the oneSTEP sandwich immunoassay as complementary to bead-based approaches in high-throughput screening studies as well as clinical diagnostics.
Collapse
Affiliation(s)
- Philippe
S. Lenzen
- Department
of Chemistry and Applied Biosciences, Swiss
Federal Institute of Technology Zurich, 8093 Zurich, Switzerland
| | - Tobias Hoch
- Department
of Immunology, University Hospital Zurich,
University of Zurich, 8091 Zurich, Switzerland
| | - Itzel Condado-Morales
- Department
of Chemistry and Applied Biosciences, Swiss
Federal Institute of Technology Zurich, 8093 Zurich, Switzerland
| | - Raphaël P. B. Jacquat
- Department
of Chemistry and Applied Biosciences, Swiss
Federal Institute of Technology Zurich, 8093 Zurich, Switzerland
| | - Roberto Frigerio
- Department
of Chemistry and Applied Biosciences, Swiss
Federal Institute of Technology Zurich, 8093 Zurich, Switzerland
- Consiglio
Nazionale delle Ricerche, Istituto di Scienze e Tecnologie Chimiche
“Giulio Natta” (SCITEC), 20133 Milan, Italy
| | - Jonathan Garlipp
- Department
of Chemistry and Applied Biosciences, Swiss
Federal Institute of Technology Zurich, 8093 Zurich, Switzerland
| | - Francesca Torrini
- Department
of Chemistry and Applied Biosciences, Swiss
Federal Institute of Technology Zurich, 8093 Zurich, Switzerland
| | - Alessandro Gori
- Consiglio
Nazionale delle Ricerche, Istituto di Scienze e Tecnologie Chimiche
“Giulio Natta” (SCITEC), 20133 Milan, Italy
| | - Umberto Capasso Palmiero
- Department
of Chemistry and Applied Biosciences, Swiss
Federal Institute of Technology Zurich, 8093 Zurich, Switzerland
| | - Onur Boyman
- Department
of Immunology, University Hospital Zurich,
University of Zurich, 8091 Zurich, Switzerland
- Faculty
of Medicine and Faculty of Science, University
of Zurich, 8091 Zurich, Switzerland
| | - Paolo Arosio
- Department
of Chemistry and Applied Biosciences, Swiss
Federal Institute of Technology Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
3
|
Hastings R, Aditham AK, DelRosso N, Suzuki PH, Fordyce PM. Mutations to transcription factor MAX allosterically increase DNA selectivity by altering folding and binding pathways. Nat Commun 2025; 16:636. [PMID: 39805837 PMCID: PMC11729911 DOI: 10.1038/s41467-024-55672-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 12/19/2024] [Indexed: 01/16/2025] Open
Abstract
Understanding how proteins discriminate between preferred and non-preferred ligands ('selectivity') is essential for predicting biological function and a central goal of protein engineering efforts, yet the biophysical mechanisms underpinning selectivity remain poorly understood. Towards this end, we study how variants of the promiscuous transcription factor (TF) MAX (H. sapiens) alter DNA specificity and selectivity, yielding >1700 Kds and >500 rate constants in complex with multiple DNA sequences. Twenty-two of the 240 assayed MAX point mutations enhance selectivity, yet none of these mutations occur at residues that contact nucleotides in published structures. By applying thermodynamic and kinetic models to these results and previous observations for the highly similar yet far more selective TF Pho4 (S. cerevisiae), we find that these mutations enhance selectivity by altering partitioning between or affinity within conformations with different intrinsic selectivity, providing a mechanistic basis for allosteric modulation of ligand selectivity. These results highlight the importance of conformational heterogeneity in determining sequence selectivity and can guide future efforts to engineer selective proteins.
Collapse
Affiliation(s)
- Renee Hastings
- Biophysics Program, Stanford University, Stanford, CA, USA
| | - Arjun K Aditham
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | | | - Peter H Suzuki
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Polly M Fordyce
- Biophysics Program, Stanford University, Stanford, CA, USA.
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA.
- Department of Genetics, Stanford University, Stanford, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
4
|
Pniewska S, Drozd M, Mussida A, Brambilla D, Chiari M, Rastawicki W, Malinowska E. PET Foils Functionalized with Reactive Copolymers as Adaptable Microvolume ELISA Spot Array Platforms for Multiplex Serological Analysis of SARS-CoV-2 Infections. SENSORS (BASEL, SWITZERLAND) 2024; 24:7766. [PMID: 39686303 DOI: 10.3390/s24237766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/15/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024]
Abstract
Microvolume ELISA platforms have become vital in diagnostics for their high-throughput capabilities and minimal sample requirements. High-quality substrates with advanced surface properties are essential for these applications. They enable both efficient biomolecule immobilization and antifouling properties, which are critical for assay sensitivity and specificity. This study presents PET-based microvolume ELISA spot arrays coated with amine- and DBCO-reactive copolymers MCP-2 and Copoly Azide. The platforms were designed for the sensitive and specific detection of specific antibodies such as COVID-19 biomarkers. Supporting robust attachment of the SARS-CoV-2 nucleoprotein (NP), these arrays outperform traditional approaches. It was demonstrated that covalent attachment methods proved more efficient than passive adsorption, together with the reduction of non-specific binding. Analytical performance was verified with classical ELISA and real-time Surface Plasmon Resonance (SPR) analysis. It enables sensitive detection of IgG and IgA antibodies, including IgG subclasses, in human serum. Clinically, the platform achieved 100.0% sensitivity and 92.9% specificity for anti-NP antibody detection in COVID-19-positive and negative samples. Additionally, DNA-directed immobilization extended the platform's utility to multiplex serological measurements. These findings underscore the potential of PET-based microvolume ELISA arrays as scalable, high-throughput diagnostic tools suitable for detecting multiple biomarkers in a single assay and easily integrated into microfluidic devices.
Collapse
Affiliation(s)
- Sylwia Pniewska
- Department of Medical Diagnostics, Centre for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, 02822 Warsaw, Poland
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, 00664 Warsaw, Poland
| | - Marcin Drozd
- Department of Medical Diagnostics, Centre for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, 02822 Warsaw, Poland
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, 00664 Warsaw, Poland
| | - Alessandro Mussida
- Institute of Chemical and Technological Science "Giulio Natta", National Research Council of Italy, 20131 Milan, Italy
| | - Dario Brambilla
- Institute of Chemical and Technological Science "Giulio Natta", National Research Council of Italy, 20131 Milan, Italy
| | - Marcella Chiari
- Institute of Chemical and Technological Science "Giulio Natta", National Research Council of Italy, 20131 Milan, Italy
| | - Waldemar Rastawicki
- Department of Bacteriology and Biocontamination, National Institute of Public Health NIH-National Research Institute, 00791 Warsaw, Poland
| | - Elżbieta Malinowska
- Department of Medical Diagnostics, Centre for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, 02822 Warsaw, Poland
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, 00664 Warsaw, Poland
| |
Collapse
|
5
|
Cao X, Buryska T, Yang T, Wang J, Fischer P, Streets A, Stavrakis S, deMello A. Towards an active droplet-based microfluidic platform for programmable fluid handling. LAB ON A CHIP 2023; 23:2029-2038. [PMID: 37000567 PMCID: PMC10091362 DOI: 10.1039/d3lc00015j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Droplet-based microfluidic systems have emerged as powerful alternatives to conventional high throughput screening platforms, due to their operational flexibility, high-throughput nature and ability to efficiently process small fluid volumes. However, the challenges associated with performing bespoke operations on user-defined droplets often limit their utility in screening applications that involve complex workflows. To this end, the marriage of droplet- and valve-based microfluidic technologies offers the prospect of balancing the controllability of droplet manipulations and analytical throughput. In this spirit, we present a microfluidic platform that combines the capabilities of integrated microvalve technology with droplet-based sample compartmentalization to realize a highly adaptable programmable fluid handling functionality. The microfluidic device consists of a programmable formulator linked to an automated droplet generation device and storage array. The formulator leverages multiple inputs coupled to a mixing ring to produce combinatorial solution mixtures, with a peristaltic pump enabling titration of reagents into the ring with picoliter resolution. The platform allows for the execution of user-defined reaction protocols within an array of storage chambers by consecutively merging programmable sequences of pL-volume droplets containing specified reagents. The precision in formulating solutions with small differences in concentration is perfectly suited for the accurate estimation of kinetic parameters. The utility of our platform is showcased through the performance of enzymatic kinetic measurements of beta-galactosidase and horseradish peroxidase with fluorogenic substrates. The presented platform provides for a range of automated manipulations and paves the way for a more diverse range of droplet-based biological experiments.
Collapse
Affiliation(s)
- Xiaobao Cao
- Guangzhou Laboratory, Guangzhou International Bio Island, Guangzhou, Guangdong Province, China
- Institute for Chemical and Bioengineering, ETH Zürich, 8093 Zürich, Switzerland.
| | - Tomas Buryska
- Institute for Chemical and Bioengineering, ETH Zürich, 8093 Zürich, Switzerland.
| | - Tianjin Yang
- Institute for Chemical and Bioengineering, ETH Zürich, 8093 Zürich, Switzerland.
- Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Jing Wang
- Institute of Environmental Engineering, ETH Zürich, 8093, Zürich, Switzerland
| | - Peter Fischer
- IFNH Food Process Engineering Group, ETH Zürich, 8092, Zürich, Switzerland
| | - Aaron Streets
- Department of Bioengineering, University of California, Berkeley, California, USA
| | - Stavros Stavrakis
- Institute for Chemical and Bioengineering, ETH Zürich, 8093 Zürich, Switzerland.
| | - Andrew deMello
- Institute for Chemical and Bioengineering, ETH Zürich, 8093 Zürich, Switzerland.
| |
Collapse
|
6
|
Thwala LN, Ndlovu SC, Mpofu KT, Lugongolo MY, Mthunzi-Kufa P. Nanotechnology-Based Diagnostics for Diseases Prevalent in Developing Countries: Current Advances in Point-of-Care Tests. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1247. [PMID: 37049340 PMCID: PMC10096522 DOI: 10.3390/nano13071247] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 06/19/2023]
Abstract
The introduction of point-of-care testing (POCT) has revolutionized medical testing by allowing for simple tests to be conducted near the patient's care point, rather than being confined to a medical laboratory. This has been especially beneficial for developing countries with limited infrastructure, where testing often involves sending specimens off-site and waiting for hours or days for results. However, the development of POCT devices has been challenging, with simplicity, accuracy, and cost-effectiveness being key factors in making these tests feasible. Nanotechnology has played a crucial role in achieving this goal, by not only making the tests possible but also masking their complexity. In this article, recent developments in POCT devices that benefit from nanotechnology are discussed. Microfluidics and lab-on-a-chip technologies are highlighted as major drivers of point-of-care testing, particularly in infectious disease diagnosis. These technologies enable various bioassays to be used at the point of care. The article also addresses the challenges faced by these technological advances and interesting future trends. The benefits of point-of-care testing are significant, especially in developing countries where medical care is shifting towards prevention, early detection, and managing chronic conditions. Infectious disease tests at the point of care in low-income countries can lead to prompt treatment, preventing infections from spreading.
Collapse
Affiliation(s)
- Lungile Nomcebo Thwala
- National Laser Centre, Council for Scientific and Industrial Research, P.O. Box 395, Pretoria 0001, South Africa
| | - Sphumelele Colin Ndlovu
- National Laser Centre, Council for Scientific and Industrial Research, P.O. Box 395, Pretoria 0001, South Africa
| | - Kelvin Tafadzwa Mpofu
- National Laser Centre, Council for Scientific and Industrial Research, P.O. Box 395, Pretoria 0001, South Africa
| | - Masixole Yvonne Lugongolo
- National Laser Centre, Council for Scientific and Industrial Research, P.O. Box 395, Pretoria 0001, South Africa
| | - Patience Mthunzi-Kufa
- National Laser Centre, Council for Scientific and Industrial Research, P.O. Box 395, Pretoria 0001, South Africa
- College of Agriculture, Engineering and Science, School of Chemistry and Physics, University of Kwa-Zulu Natal, University Road, Westville, Durban 3630, South Africa
| |
Collapse
|
7
|
Rutten I, Daems D, Leirs K, Lammertyn J. Highly Sensitive Multiplex Detection of Molecular Biomarkers Using Hybridization Chain Reaction in an Encoded Particle Microfluidic Platform. BIOSENSORS 2023; 13:100. [PMID: 36671935 PMCID: PMC9856145 DOI: 10.3390/bios13010100] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/20/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
In the continuous combat against diseases, there is the need for tools that enable an improved diagnostic efficiency towards higher information density combined with reduced time-to-result and cost. Here, a novel fully integrated microfluidic platform, the Evalution™, is evaluated as a potential solution to this need. Encoded microparticles combined with channel-based microfluidics allow a fast, sensitive and simultaneous detection of several disease-related biomarkers. Since the binary code is represented by physically present holes, 210 different codes can be created that will not be altered by light or chemically induced degradation. Exploiting the unique features of this multiplex platform, hybridization chain reaction (HCR) is explored as a generic approach to reach the desired sensitivity. Compared to a non-amplified reference system, the sensitivity was drastically improved by a factor of 104, down to low fM LOD values. Depending on the HCR duration, the assay can be tuned for sensitivity or total assay time, as desired. The huge potential of this strategy was further demonstrated by the successful detection of a multiplex panel of six different nucleic acid targets including viruses and bacteria. The ability to not only discriminate these two categories but, with the same effort, also virus strains (human adenovirus and human bocavirus), virus subtypes (human adenovirus type B and D) and antibiotic-resistant bacteria (Streptococcus pneumonia), exemplifies the specificity of the developed approach. The effective, yet highly simplified, isothermal and protein-enzyme-free signal amplification tool reaches an LOD ranging from as low as 33 ± 4 to 151 ± 12 fM for the different targets. Moreover, direct detection in a clinically relevant sample matrix was verified, resulting in a detection limit of 309 ± 80 fM, approximating the low fM levels detectable with the gold standard analysis method, PCR, without the drawbacks related to protein enzymes, thermal cycling and elaborate sample preparation steps. The reported strategy can be directly transferred as a generic approach for the sensitive and specific detection of various target molecules in multiplex. In combination with the high-throughput capacity and reduced reagent consumption, the Evalution™ demonstrates immense potential in the next generation of diagnostic tools towards more personalized medicine.
Collapse
|
8
|
Ashley BK, Hassan U. Digital filtering dissemination for optimizing impedance cytometry signal quality and counting accuracy. Biomed Microdevices 2022; 24:36. [PMID: 36305954 PMCID: PMC9635870 DOI: 10.1007/s10544-022-00636-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2022] [Indexed: 11/29/2022]
Abstract
Improving biosensor performance which utilize impedance cytometry is a highly interested research topic for many clinical and diagnostic settings. During development, a sensor's design and external factors are rigorously optimized, but improvements in signal quality and interpretation are usually still necessary to produce a sensitive and accurate product. A common solution involves digital signal processing after sample analysis, but these methods frequently fall short in providing meaningful signal outcome changes. This shortcoming may arise from a lack of investigative research into selecting and using signal processing functions, as many choices in current sensors are based on either theoretical results or estimated hypotheses. While a ubiquitous condition set is improbable across diverse impedance cytometry designs, there lies a need for a streamlined and rapid analytical method for discovering those conditions for unique sensors. Herein, we present a comprehensive dissemination of digital filtering parameters applied on experimental impedance cytometry data for determining the limits of signal processing on signal quality improvements. Various filter orders, cutoff frequencies, and filter types are applied after data collection for highest achievable noise reduction. After designing and fabricating a microfluidic impedance cytometer, 9 µm polystyrene particles were measured under flow and signal quality improved by 6.09 dB when implementing digital filtering. This approached was then translated to isolated human neutrophils, where similarly, signal quality improved by 7.50 dB compared to its unfiltered original data. By sweeping all filtering conditions and devising a system to evaluate filtering performance both by signal quality and object counting accuracy, this may serve as a framework for future systems to determine their appropriately optimized filtering configuration.
Collapse
Affiliation(s)
- Brandon K Ashley
- Department of Biomedical Engineering, Rutgers, the State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Umer Hassan
- Department of Electrical Engineering, Department of Biomedical Engineering, and Global Health Institute Rutgers, the State University of New Jersey, Piscataway, NJ, 08854, USA.
| |
Collapse
|
9
|
Khosla NK, Lesinski JM, Colombo M, Bezinge L, deMello AJ, Richards DA. Simplifying the complex: accessible microfluidic solutions for contemporary processes within in vitro diagnostics. LAB ON A CHIP 2022; 22:3340-3360. [PMID: 35984715 PMCID: PMC9469643 DOI: 10.1039/d2lc00609j] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/15/2022] [Indexed: 05/02/2023]
Abstract
In vitro diagnostics (IVDs) form the cornerstone of modern medicine. They are routinely employed throughout the entire treatment pathway, from initial diagnosis through to prognosis, treatment planning, and post-treatment surveillance. Given the proven links between high quality diagnostic testing and overall health, ensuring broad access to IVDs has long been a focus of both researchers and medical professionals. Unfortunately, the current diagnostic paradigm relies heavily on centralized laboratories, complex and expensive equipment, and highly trained personnel. It is commonly assumed that this level of complexity is required to achieve the performance necessary for sensitive and specific disease diagnosis, and that making something affordable and accessible entails significant compromises in test performance. However, recent work in the field of microfluidics is challenging this notion. By exploiting the unique features of microfluidic systems, researchers have been able to create progressively simple devices that can perform increasingly complex diagnostic assays. This review details how microfluidic technologies are disrupting the status quo, and facilitating the development of simple, affordable, and accessible integrated IVDs. Importantly, we discuss the advantages and limitations of various approaches, and highlight the remaining challenges within the field.
Collapse
Affiliation(s)
- Nathan K Khosla
- Institute for Chemical and Bioengineering, ETH Zürich, Vladimir Prelog Weg 1, Zürich, 8093, Switzerland.
| | - Jake M Lesinski
- Institute for Chemical and Bioengineering, ETH Zürich, Vladimir Prelog Weg 1, Zürich, 8093, Switzerland.
| | - Monika Colombo
- Institute for Chemical and Bioengineering, ETH Zürich, Vladimir Prelog Weg 1, Zürich, 8093, Switzerland.
| | - Léonard Bezinge
- Institute for Chemical and Bioengineering, ETH Zürich, Vladimir Prelog Weg 1, Zürich, 8093, Switzerland.
| | - Andrew J deMello
- Institute for Chemical and Bioengineering, ETH Zürich, Vladimir Prelog Weg 1, Zürich, 8093, Switzerland.
| | - Daniel A Richards
- Institute for Chemical and Bioengineering, ETH Zürich, Vladimir Prelog Weg 1, Zürich, 8093, Switzerland.
| |
Collapse
|
10
|
Bead Number Effect in a Magnetic-Beads-Based Digital Microfluidic Immunoassay. BIOSENSORS 2022; 12:bios12050340. [PMID: 35624641 PMCID: PMC9138409 DOI: 10.3390/bios12050340] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 11/17/2022]
Abstract
In a biomedical diagnosis with a limited sample volume and low concentration, droplet-based microfluidics, also called digital microfluidics, becomes a very attractive approach. Previously, our group developed a magnetic-beads-based digital microfluidic immunoassay with a bead number of around 100, requiring less than 1 μL of sample volume to achieve a pg/mL level limit of detection (LOD). However, the bead number in each measurement was not the same, causing an unstable coefficient of variation (CV) in the calibration curve. Here, we investigated whether a fixed number of beads in this bead-based digital microfluidic immunoassay could provide more stable results. First, the bead screening chips were developed to extract exactly 100, 49, and 25 magnetic beads with diameters of less than 6 μm. Then, four calibration curves were established. One calibration curve was constructed by using varying bead numbers (50–160) in the process. The other three calibration curves used a fixed number of beads, (100, 49, and 25). The results indicated that the CVs for a fixed number of beads were evidently smaller than the CVs for varying bead numbers, especially in the range of 1 pg/mL to 100 pg/mL, where the CVs for 100 beads were less than 10%. Furthermore, the calculated LOD, based on the composite calibration curves, could be reduced by three orders, from 3.0 pg/mL (for the unfixed bead number) to 0.0287 pg/mL (for 100 beads). However, when the bead numbers were too high (more than 500) or too low (25 or fewer), the bead manipulation for aggregation became more difficult in the magnetic-beads-based digital microfluidic immunoassay chip.
Collapse
|
11
|
Opto-Microfluidic Integration of the Bradford Protein Assay in Lithium Niobate Lab-on-a-Chip. SENSORS 2022; 22:s22031144. [PMID: 35161887 PMCID: PMC8840398 DOI: 10.3390/s22031144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/28/2022] [Accepted: 01/30/2022] [Indexed: 12/04/2022]
Abstract
This paper deals with the quantification of proteins by implementing the Bradford protein assay method in a portable opto-microfluidic platform for protein concentrations lower than 1.4 mg/mL. Absorbance is measured by way of optical waveguides integrated to a cross-junction microfluidic circuit on a single lithium niobate substrate. A new protocol is proposed to perform the protein quantification based on the high correlation of the light absorbance at 595 nm, as commonly used in the Bradford method, with the one achieved at 633 nm with a cheap commercially available diode laser. This protocol demonstrates the possibility to quantify proteins by using nL volumes, 1000 times less than the standard technique such as paper-analytical devices. Moreover, it shows a limit of quantification of at least 0.12 mg/mL, which is four times lower than the last literature, as well as a better accuracy (98%). The protein quantification is obtained either by using one single microfluidic droplet as well by performing statistical analysis over ensembles of several thousands of droplets in less than 1 min. The proposed methodology presents the further advantage that the protein solutions can be reused for other investigations and the same pertains to the opto-microfluidic platform.
Collapse
|
12
|
Iria I, Soares RRG, Brás EJS, Chu V, Gonçalves J, Conde JP. Accurate and rapid microfluidic ELISA to monitor Infliximab titers in patients with inflammatory bowel diseases. Analyst 2022; 147:480-488. [PMID: 35023516 DOI: 10.1039/d1an01810h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Inflammatory bowel disease (IBD) is a term used to describe disorders that involve chronic inflammation in the gastrointestinal tract, affecting more than 6.8 million people worldwide. Biological therapy is used in the most severe cases of IBD where anti-tumour necrosis factor-alpha (TNF-α) antibodies are the first choice for a biological treatment. When administrated to patients, these antibodies interact with TNF-α, usually overexpressed in these diseases, neutralizing its biological activity. Because of the chronic nature of these diseases, a recurring administration of the therapeutic antibodies is required, thus making therapy monitorization essential for the correct management of these diseases. The aim of this work is the development of an enzyme-linked immunosorbent assay (ELISA) microfluidic biosensor to quantify the therapeutic antibodies in IBD patient plasma samples, where the commercial monoclonal antibody Infliximab (IFX) is used as a model target. By providing a faster and more accurate measurement of IFX, the proposed method leads to improved therapy scheduling and a reduced risk of endogenous anti-drug antibodies (ADAs) reducing the efficacy of the treatment. The time needed between sample insertion and result output for the microfluidic ELISA (mELISA) is 24 minutes, drastically shorter than the time required by the conventional ELISA (cELISA). The mELISA presented in this work has a LoD of 0.026 μg mL-1, while commercially available solutions provide a LoD of 0.15 μg mL-1. Results acquired by the mELISA are highly correlated with the results obtained from the cELISA (r = 0.998; R2 = 0.996; p < 0.0001), demonstrating the validity of the microfluidic approach for the quantification of IFX from patient plasma and its potential for use at the point-of-care (POC).
Collapse
Affiliation(s)
- Inês Iria
- Instituto de Engenharia de Sistemas e Computadores - Microsistemas e Nanotecnologias (INESC MN), Rua Alves Redol, 9, 1000-029 Lisbon, Portugal. .,Research Institute for Medicines (iMed ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003, Lisbon, Portugal
| | - Ruben R G Soares
- Instituto de Engenharia de Sistemas e Computadores - Microsistemas e Nanotecnologias (INESC MN), Rua Alves Redol, 9, 1000-029 Lisbon, Portugal. .,IBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001, Lisbon, Portugal
| | - Eduardo J S Brás
- Instituto de Engenharia de Sistemas e Computadores - Microsistemas e Nanotecnologias (INESC MN), Rua Alves Redol, 9, 1000-029 Lisbon, Portugal. .,IBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001, Lisbon, Portugal
| | - Virginia Chu
- Instituto de Engenharia de Sistemas e Computadores - Microsistemas e Nanotecnologias (INESC MN), Rua Alves Redol, 9, 1000-029 Lisbon, Portugal.
| | - João Gonçalves
- Research Institute for Medicines (iMed ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003, Lisbon, Portugal
| | - João P Conde
- Instituto de Engenharia de Sistemas e Computadores - Microsistemas e Nanotecnologias (INESC MN), Rua Alves Redol, 9, 1000-029 Lisbon, Portugal. .,Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001, Lisbon, Portugal.
| |
Collapse
|
13
|
Ashley BK, Hassan U. Point-of-critical-care diagnostics for sepsis enabled by multiplexed micro and nanosensing technologies. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1701. [PMID: 33650293 PMCID: PMC8447248 DOI: 10.1002/wnan.1701] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 12/14/2020] [Accepted: 01/08/2021] [Indexed: 11/12/2022]
Abstract
Sepsis is responsible for the highest economic and mortality burden in critical care settings around the world, prompting the World Health Organization in 2018 to designate it as a global health priority. Despite its high universal prevalence and mortality rate, a disproportionately low amount of sponsored research funding is directed toward diagnosis and treatment of sepsis, when early treatment has been shown to significantly improve survival. Additionally, current technologies and methods are inadequate to provide an accurate and timely diagnosis of septic patients in multiple clinical environments. For improved patient outcomes, a comprehensive immunological evaluation is critical which is comprised of both traditional testing and quantifying recently proposed biomarkers for sepsis. There is an urgent need to develop novel point-of-care, low-cost systems which can accurately stratify patients. These point-of-critical-care sensors should adopt a multiplexed approach utilizing multimodal sensing for heterogenous biomarker detection. For effective multiplexing, the sensors must satisfy criteria including rapid sample to result delivery, low sample volumes for clinical sample sparring, and reduced costs per test. A compendium of currently developed multiplexed micro and nano (M/N)-based diagnostic technologies for potential applications toward sepsis are presented. We have also explored the various biomarkers targeted for sepsis including immune cell morphology changes, circulating proteins, small molecules, and presence of infectious pathogens. An overview of different M/N detection mechanisms are also provided, along with recent advances in related nanotechnologies which have shown improved patient outcomes and perspectives on what future successful technologies may encompass. This article is categorized under: Diagnostic Tools > Biosensing.
Collapse
Affiliation(s)
- Brandon K. Ashley
- Department of Biomedical Engineering, Rutgers, State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Umer Hassan
- Department of Biomedical Engineering, Rutgers, State University of New Jersey, Piscataway, NJ, 08854, USA
- Department of Electrical Engineering, Rutgers, State University of New Jersey, Piscataway, NJ, 08854, USA
- Global Health Institute, Rutgers, State University of New Jersey. Piscataway, NJ, 08854, USA
| |
Collapse
|
14
|
Gong J, Wang Q, Liu B, Zhang H, Gui L. A Novel On-Chip Liquid-Metal-Enabled Microvalve. MICROMACHINES 2021; 12:mi12091051. [PMID: 34577694 PMCID: PMC8467270 DOI: 10.3390/mi12091051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/21/2021] [Accepted: 08/24/2021] [Indexed: 11/16/2022]
Abstract
A room temperature liquid metal-based microvalve has been proposed in this work. The microvalve has the advantages of easy fabrication, high flexibility, and a low leak rate. By designing a posts array in the channel, the liquid metal can be controlled to form a deformable valve boss and block the flow path. Besides, through adjustment of the pressure applied to the liquid metal, the microvalve can perform reliable switching commands. To eliminate the problem that liquid metal is easily oxidized, which causes the microvalve to have poor repeatability, a method of electrochemical cathodic protection has been proposed, which significantly increases the number of open/close switch cycles up to 145. In addition, this microvalve overcomes the shortcomings of the traditional microvalve that requires an alignment process to assemble all the parts. When the valve is closed, no leak rate is detected at ≤320 mbar, and the leak rate is ≤0.043 μL/min at 330 mbar, which indicates it has good tightness. As an application, we also fabricate a chip that can control bubble flow based on this microvalve. Therefore, this microvalve has great prospects in the field of microfluidics.
Collapse
Affiliation(s)
- Jiahao Gong
- Liquid Metal and Cryogenic Biomedical Research Center, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 29 Zhongguancun East Road, Haidian District, Beijing 100019, China; (J.G.); (B.L.); (H.Z.)
- School of Future Technology, University of Chinese Academy of Sciences, 19 Yuquan Road, Shijingshan District, Beijing 100039, China
| | - Qifu Wang
- Department of Mechanical Engineering, Villanova University, 800 Lancaster Avenue, Villanova, PA 19085, USA;
| | - Bingxin Liu
- Liquid Metal and Cryogenic Biomedical Research Center, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 29 Zhongguancun East Road, Haidian District, Beijing 100019, China; (J.G.); (B.L.); (H.Z.)
- School of Future Technology, University of Chinese Academy of Sciences, 19 Yuquan Road, Shijingshan District, Beijing 100039, China
| | - Huimin Zhang
- Liquid Metal and Cryogenic Biomedical Research Center, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 29 Zhongguancun East Road, Haidian District, Beijing 100019, China; (J.G.); (B.L.); (H.Z.)
- School of Future Technology, University of Chinese Academy of Sciences, 19 Yuquan Road, Shijingshan District, Beijing 100039, China
| | - Lin Gui
- Liquid Metal and Cryogenic Biomedical Research Center, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 29 Zhongguancun East Road, Haidian District, Beijing 100019, China; (J.G.); (B.L.); (H.Z.)
- Correspondence: ; Tel.: +86-10-8254-3483
| |
Collapse
|
15
|
Pérez DJ, Patiño EB, Orozco J. Electrochemical Nanobiosensors as Point‐of‐Care Testing Solution to Cytokines Measurement Limitations. ELECTROANAL 2021. [DOI: 10.1002/elan.202100237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- David J. Pérez
- Max Planck Tandem Group in Nanobioengineering University of Antioquia Complejo Ruta N Calle 67, N° 52–20 050010 Medellín Colombia
- Grupo de Bioquímica Estructural de Macromoléculas Chemistry Institute University of Antioquia Lab 1–314 Calle 67, N° 53–108 050010 Medellín Colombia
| | - Edwin B. Patiño
- Grupo de Bioquímica Estructural de Macromoléculas Chemistry Institute University of Antioquia Lab 1–314 Calle 67, N° 53–108 050010 Medellín Colombia
| | - Jahir Orozco
- Max Planck Tandem Group in Nanobioengineering University of Antioquia Complejo Ruta N Calle 67, N° 52–20 050010 Medellín Colombia
| |
Collapse
|
16
|
Elvira KS. Microfluidic technologies for drug discovery and development: friend or foe? Trends Pharmacol Sci 2021; 42:518-526. [PMID: 33994176 DOI: 10.1016/j.tips.2021.04.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 02/07/2023]
Abstract
There is a point in the evolution of every new technology when questions need to be asked regarding its usefulness and impact. Although microfluidic technologies have drastically decreased the scales at which laboratory processes can be performed and have enabled scientific advances that would have otherwise not been possible, it is time to consider whether these technologies are more disruptive than enabling. Here, my aims are to introduce researchers in the broad fields of drug discovery and development to the advantages and disadvantages of microfluidic technologies, to highlight current work showing how microfluidic technologies can be used at different stages in the drug discovery and development process, to discuss how we can transfer academic breakthroughs in the field of microfluidic technologies to industrial environments, and to examine whether microfluidic technologies have the potential to cause a fundamental paradigm shift in the way that drug discovery and development occurs.
Collapse
|
17
|
Moulahoum H, Ghorbanizamani F, Zihnioglu F, Turhan K, Timur S. How should diagnostic kits development adapt quickly in COVID 19-like pandemic models? Pros and cons of sensory platforms used in COVID-19 sensing. Talanta 2021; 222:121534. [PMID: 33167242 PMCID: PMC7423517 DOI: 10.1016/j.talanta.2020.121534] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 08/08/2020] [Indexed: 01/08/2023]
Abstract
As COVID-19 has reached pandemic status and the number of cases continues to grow, widespread availability of diagnostic testing is critical in helping identify and control the emergence of this rapidly spreading and serious illness. However, a lacking in making a quick reaction to the threat and starting early development of diagnostic sensing tools has had an important impact globally. In this regard, here we will review critically the current developed diagnostic tools in response to the COVID-19 pandemic and compare the different types through the discussion of their pros and cons such as nucleic acid detection tests (including PCR and CRISPR), antibody and protein-based diagnosis tests. In addition, potential technologies that are under development such as on-site diagnosis platforms, lateral flow, and portable PCR units are discussed. Data collection and epidemiological analysis could also be an interesting factor to incorporate with the emerging technologies especially with the wide access to smartphones. Lastly, a SWOT analysis and perspectives on how the development of novel sensory platforms should be treated by the different decision-makers are analyzed.
Collapse
Affiliation(s)
- Hichem Moulahoum
- Biochemistry Department, Faculty of Sciences, Ege University, 35100, Bornova, Izmir, Turkey.
| | - Faezeh Ghorbanizamani
- Biochemistry Department, Faculty of Sciences, Ege University, 35100, Bornova, Izmir, Turkey
| | - Figen Zihnioglu
- Biochemistry Department, Faculty of Sciences, Ege University, 35100, Bornova, Izmir, Turkey
| | - Kutsal Turhan
- Department of Thoracic Surgery, Faculty of Medicine, Ege University, 35100, Bornova, Izmir, Turkey
| | - Suna Timur
- Biochemistry Department, Faculty of Sciences, Ege University, 35100, Bornova, Izmir, Turkey; Central Research Test and Analysis Laboratory Application and Research Center, Ege University, 35100, Bornova, Izmir, Turkey.
| |
Collapse
|
18
|
Hwang SH, Gonzalez-Suarez AM, Stybayeva G, Revzin A. Prospects and Opportunities for Microsystems and Microfluidic Devices in the Field of Otorhinolaryngology. Clin Exp Otorhinolaryngol 2020; 14:29-42. [PMID: 32772034 PMCID: PMC7904428 DOI: 10.21053/ceo.2020.00626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 05/27/2020] [Indexed: 12/21/2022] Open
Abstract
Microfluidic systems can be used to control picoliter to microliter volumes in ways not possible with other methods of fluid handling. In recent years, the field of microfluidics has grown rapidly, with microfluidic devices offering possibilities to impact biology and medicine. Microfluidic devices populated with human cells have the potential to mimic the physiological functions of tissues and organs in a three-dimensional microenvironment and enable the study of mechanisms of human diseases, drug discovery and the practice of personalized medicine. In the field of otorhinolaryngology, various types of microfluidic systems have already been introduced to study organ physiology, diagnose diseases, and evaluate therapeutic efficacy. Therefore, microfluidic technologies can be implemented at all levels of otorhinolaryngology. This review is intended to promote understanding of microfluidic properties and introduce the recent literature on application of microfluidic-related devices in the field of otorhinolaryngology.
Collapse
Affiliation(s)
- Se Hwan Hwang
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA.,Department of Otolaryngology-Head and Neck Surgery, Bucheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Bucheon, Korea
| | | | - Gulnaz Stybayeva
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Alexander Revzin
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
19
|
Jammes FC, Maerkl SJ. How single-cell immunology is benefiting from microfluidic technologies. MICROSYSTEMS & NANOENGINEERING 2020; 6:45. [PMID: 34567657 PMCID: PMC8433390 DOI: 10.1038/s41378-020-0140-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/14/2020] [Accepted: 01/25/2020] [Indexed: 05/03/2023]
Abstract
The immune system is a complex network of specialized cells that work in concert to protect against invading pathogens and tissue damage. Imbalances in this network often result in excessive or absent immune responses leading to allergies, autoimmune diseases, and cancer. Many of the mechanisms and their regulation remain poorly understood. Immune cells are highly diverse, and an immune response is the result of a large number of molecular and cellular interactions both in time and space. Conventional bulk methods are often prone to miss important details by returning population-averaged results. There is a need in immunology to measure single cells and to study the dynamic interplay of immune cells with their environment. Advances in the fields of microsystems and microengineering gave rise to the field of microfluidics and its application to biology. Microfluidic systems enable the precise control of small volumes in the femto- to nanoliter range. By controlling device geometries, surface chemistry, and flow behavior, microfluidics can create a precisely defined microenvironment for single-cell studies with spatio-temporal control. These features are highly desirable for single-cell analysis and have made microfluidic devices useful tools for studying complex immune systems. In addition, microfluidic devices can achieve high-throughput measurements, enabling in-depth studies of complex systems. Microfluidics has been used in a large panel of biological applications, ranging from single-cell genomics, cell signaling and dynamics to cell-cell interaction and cell migration studies. In this review, we give an overview of state-of-the-art microfluidic techniques, their application to single-cell immunology, their advantages and drawbacks, and provide an outlook for the future of single-cell technologies in research and medicine.
Collapse
Affiliation(s)
- Fabien C. Jammes
- Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Sebastian J. Maerkl
- Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
20
|
Rho HS, Veltkamp HW, Baptista D, Gardeniers H, Le Gac S, Habibović P. A 3D polydimethylsiloxane microhourglass-shaped channel array made by reflowing photoresist structures for engineering a blood capillary network. Methods 2020; 190:63-71. [PMID: 32247048 DOI: 10.1016/j.ymeth.2020.03.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 03/11/2020] [Accepted: 03/29/2020] [Indexed: 11/16/2022] Open
Abstract
This paper describes an innovative yet straightforward fabrication technique to create three-dimensional microstructures with controllable tapered geometries by combining conventional photolithography and thermal reflow of photoresist. Positive photoresist-based microchannel structures with varying width-to-length ratios were reflowed after their fabrication to generate three-dimensional funnel structures with varying curvatures. A polydimethylsiloxane hourglass-shaped microchannel array was next cast on these photoresist structures, and primary human lung microvascular endothelial cells were cultured in the device to engineer an artificial capillary network. Our work demonstrates that this cost-effective and straightforward fabrication technique has great potential in engineering three-dimensional microstructures for biomedical and biotechnological applications such as blood vessel regeneration strategies, drug screening for vascular diseases, microcolumns for bioseparation, and other fluid dynamic studies at microscale.
Collapse
Affiliation(s)
- Hoon Suk Rho
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, The Netherlands; Mesoscale Chemical Systems Group, MESA+ Institute for Nanotechnology, University of Twente, The Netherlands; Applied Microfluidics for BioEngineering Research Group, TechMed Institute, MESA+ Institute for Nanotechnology, University of Twente, The Netherlands
| | - Henk-Willem Veltkamp
- Integrated Devices and Systems Group, MESA+ Institute for Nanotechnology, University of Twente, The Netherlands
| | - Danielle Baptista
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, The Netherlands
| | - Han Gardeniers
- Mesoscale Chemical Systems Group, MESA+ Institute for Nanotechnology, University of Twente, The Netherlands
| | - Séverine Le Gac
- Applied Microfluidics for BioEngineering Research Group, TechMed Institute, MESA+ Institute for Nanotechnology, University of Twente, The Netherlands
| | - Pamela Habibović
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, The Netherlands.
| |
Collapse
|
21
|
Kaushal S, Nanda SS, Samal S, Yi DK. Strategies for the Development of Metallic‐Nanoparticle‐Based Label‐Free Biosensors and Their Biomedical Applications. Chembiochem 2019; 21:576-600. [DOI: 10.1002/cbic.201900566] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Sandeep Kaushal
- Department of ChemistryMyongji University Myong Ji Road 116 17058 Yongin Republic of Korea
| | - Sitansu Sekhar Nanda
- Department of ChemistryMyongji University Myong Ji Road 116 17058 Yongin Republic of Korea
| | - Shashadhar Samal
- Department of Materials Science and EngineeringGIST 123 Cheomdangwagi-ro Buk-gu 61005 Gwangju Republic of Korea
| | - Dong Kee Yi
- Department of ChemistryMyongji University Myong Ji Road 116 17058 Yongin Republic of Korea
| |
Collapse
|
22
|
Khondakar KR, Dey S, Wuethrich A, Sina AAI, Trau M. Toward Personalized Cancer Treatment: From Diagnostics to Therapy Monitoring in Miniaturized Electrohydrodynamic Systems. Acc Chem Res 2019; 52:2113-2123. [PMID: 31293158 DOI: 10.1021/acs.accounts.9b00192] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Historically, cancer was seen and treated as a single disease. Over the years, this image has shifted, and it is now generally accepted that cancer is a complex and dynamic disease that engages multiple progression pathways in each patient. The shift from treating cancer as single disease to tailoring the therapy based on the individual's characteristic cancer profile promises to improve the clinical outcome and has also given rise to the field of personalized cancer treatment. To advise a suitable therapy plan and adjust personalized treatment, a reliable and fast diagnostic strategy is required. The advances in nanotechnology, microfluidics, and biomarker research have spurred the development of powerful miniaturized diagnostic systems that show high potential for use in personalized cancer treatment. These devices require only minute sample volumes and have the capability to create instant cancer snapshots that could be used as tool for cancer risk indication, early detection, tumor classification, and recurrence. Miniaturized systems can combine a whole sample-to-answer workflow including sample handling, preparation, analysis, and detection. As such, this concept is also often referred to as "lab-on-a-chip". An inherit challenge of monitoring personalized cancer treatment using miniaturized systems is that cancer biomarkers are often only detectable at trace concentrations present in a complex biological sample rich in interfering molecules, necessitating highly specific and sensitive biosensing strategies. To address the need for trace level detection, highly sensitive fluorescence, absorbance, surface-enhanced Raman spectroscopy (SERS), electrochemical, mass spectrometric, and chemiluminescence approaches were developed. To reduce sample matrix interferences, ingenious device modifications including coatings and nanoscopic fluid flow manipulation have been developed. Of the latter, our group has exploited the use of alternating current electrohydrodynamic (ac-EHD) fluid flows as an efficient strategy to reduce nonspecific nontarget biosensor binding and speed-up assay times. ac-EHD provides fluid motion induced by an electric field with the ability to generate surface shear forces in nanometer distance to the biosensing surface (known as nanoshearing phenomenon). This is ideally suited to increase the collision frequency of cancer biomarkers with the biosensing surface and shear off nontarget molecules thereby minimizing nonspecific binding. In this Account, we review recent advancements in miniaturized diagnostic system development with potential use in personalized cancer treatment and monitoring. We focus on integrated microfluidic structures for controlled sample flow manipulation followed by on-device biomarker interrogation. We further highlight the progress in our group, emphasis fundamentals and applications of ac-EHD-enhanced miniaturized systems, and outline promising detection concepts for comprehensive cancer biomarker profiling. The advances are discussed based on the type of cancer biomarkers and cover circulating tumor cells, proteins, extracellular vesicles, and nucleic acids. The potential of miniaturized diagnostic systems for personalized cancer treatment and monitoring is underlined with representative examples including device illustrations. In the final section, we critically discuss the future of personalized diagnostics and what challenges should be addressed to make these devices clinically translatable.
Collapse
Affiliation(s)
- Kamil Reza Khondakar
- Centre for Personalised Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Corner College
and Cooper Roads (Bldg 75), Brisbane, QLD 4072, Australia
| | - Shuvashis Dey
- Centre for Personalised Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Corner College
and Cooper Roads (Bldg 75), Brisbane, QLD 4072, Australia
| | - Alain Wuethrich
- Centre for Personalised Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Corner College
and Cooper Roads (Bldg 75), Brisbane, QLD 4072, Australia
| | - Abu Ali Ibn Sina
- Centre for Personalised Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Corner College
and Cooper Roads (Bldg 75), Brisbane, QLD 4072, Australia
| | - Matt Trau
- Centre for Personalised Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Corner College
and Cooper Roads (Bldg 75), Brisbane, QLD 4072, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
23
|
Migliozzi D, Guibentif T. Assessing the Potential Deployment of Biosensors for Point-of-Care Diagnostics in Developing Countries: Technological, Economic and Regulatory Aspects. BIOSENSORS 2018; 8:E119. [PMID: 30501052 PMCID: PMC6316672 DOI: 10.3390/bios8040119] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 11/16/2018] [Accepted: 11/27/2018] [Indexed: 02/07/2023]
Abstract
Infectious diseases and antimicrobial resistance are major burdens in developing countries, where very specific conditions impede the deployment of established medical infrastructures. Since biosensing devices are nowadays very common in developed countries, particularly in the field of diagnostics, they are at a stage of maturity at which other potential outcomes can be explored, especially on their possibilities for multiplexing and automation to reduce the time-to-results. However, the translation is far from being trivial. In order to understand the factors and barriers that can facilitate or hinder the application of biosensors in resource-limited settings, we analyze the context from several angles. First, the technology of the devices themselves has to be rethought to take into account the specific needs and the available means of these countries. For this, we describe the partition of a biosensor into its functional shells, which define the information flow from the analyte to the end-user, and by following this partition we assess the strengths and weaknesses of biosensing devices in view of their specific technological development and challenging deployment in low-resource environments. Then, we discuss the problem of cost reduction by pointing out transversal factors, such as throughput and cost of mistreatment, that need to be re-considered when analyzing the cost-effectiveness of biosensing devices. Beyond the technical landscape, the compliance with regulations is also a major aspect that is described with its link to the validation of the devices and to the acceptance from the local medical personnel. Finally, to learn from a successful case, we analyze a breakthrough inexpensive biosensor that is showing high potential with respect to many of the described aspects. We conclude by mentioning both some transversal benefits of deploying biosensors in developing countries, and the key factors that can drive such applications.
Collapse
Affiliation(s)
- Daniel Migliozzi
- Laboratory of Microsystems, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.
| | - Thomas Guibentif
- Energy Center, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.
| |
Collapse
|
24
|
Chen H, Chen C, Bai S, Gao Y, Metcalfe G, Cheng W, Zhu Y. Multiplexed detection of cancer biomarkers using a microfluidic platform integrating single bead trapping and acoustic mixing techniques. NANOSCALE 2018; 10:20196-20206. [PMID: 30256377 DOI: 10.1039/c8nr06367b] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
It is critical to reliably and rapidly detect multiple disease biomarkers in tiny liquid samples with high sensitivity to meet the growing demand for point-of-care diagnostics. This paper reports a microfluidic platform integrating magnetic-based single bead trapping in conjunction with acoustic micromixing for simultaneous detection of multiple cancer biomarkers within minutes. Individual beads retained by permalloy (NiFe81/19) microarray were used to capture biomarkers and facilitate the fluorescence identification. A numerical study indicates that the magnetic force keeping a bead in the trap is proportional to the thickness of the permalloy array and the external magnetic field strength, while inversely proportional to the size of the trap. The acoustic microstreaming activated by a piezo transducer was applied to generate fast-switching flow patterns to minimize the diffusion length scales. The flow at various driving frequencies was experimentally tested to achieve the optimal mixing effect. The flow field of the microstreaming was subsequently described by a mathematical model to understand the flow further. Finally, the prostate-specific antigen (PSA) and carcinoembryonic antigen (CEA) were employed as model analytes to demonstrate the capability of the platform for rapid biomarker detection. With the aid of acoustic micromixing, the detection can be finished in 20 minutes. The respective limit of detection of PSA and CEA is 0.028 ng mL-1 (0.8 pM) and 3.1 ng mL-1 (17 pM), which is respectively 1/142 and 1/3 of the cutoff value of PSA and CEA. Our results indicate this platform has great potential for the rapid detection of multiple biomarkers in future point-of-care diagnostics.
Collapse
Affiliation(s)
- Huaying Chen
- School of Mechanical Engineering and Automation, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| | | | | | | | | | | | | |
Collapse
|
25
|
Barbosa AI, Reis NM. A critical insight into the development pipeline of microfluidic immunoassay devices for the sensitive quantitation of protein biomarkers at the point of care. Analyst 2018; 142:858-882. [PMID: 28217778 DOI: 10.1039/c6an02445a] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The latest clinical procedures for the timely and cost-effective diagnosis of chronic and acute clinical conditions, such as cardiovascular diseases, cancer, chronic respiratory diseases, diabetes or sepsis (i.e. the biggest causes of death worldwide), involve the quantitation of specific protein biomarkers released into the blood stream or other physiological fluids (e.g. urine or saliva). The clinical thresholds are usually in the femtomolar to picolomar range, and consequently the measurement of these protein biomarkers heavily relies on highly sophisticated, bulky and automated equipment in centralised pathology laboratories. The first microfluidic devices capable of measuring protein biomarkers in miniaturised immunoassays were presented nearly two decades ago and promised to revolutionise point-of-care (POC) testing by offering unmatched sensitivity and automation in a compact POC format; however, the development and adoption of microfluidic protein biomarker tests has fallen behind expectations. This review presents a detailed critical overview into the pipeline of microfluidic devices developed in the period 2005-2016 capable of measuring protein biomarkers from the pM to fM range in formats compatible with POC testing, with a particular focus on the use of affordable microfluidic materials and compact low-cost signal interrogation. The integration of these two important features (essential unique selling points for the successful microfluidic diagnostic products) has been missed in previous review articles and explain the poor adoption of microfluidic technologies in this field. Most current miniaturised devices compromise either on the affordability, compactness and/or performance of the test, making current tests unsuitable for the POC measurement of protein biomarkers. Seven core technical areas, including (i) the selected strategy for antibody immobilisation, (ii) the surface area and surface-area-to-volume ratio, (iii) surface passivation, (iv) the biological matrix interference, (v) fluid control, (vi) the signal detection modes and (vii) the affordability of the manufacturing process and detection system, were identified as the key to the effective development of a sensitive and affordable microfluidic protein biomarker POC test.
Collapse
Affiliation(s)
- Ana I Barbosa
- Department of Chemical Engineering, Loughborough University, Loughborough, Leicestershire LE11 3TU, UK
| | - Nuno M Reis
- Department of Chemical Engineering, Loughborough University, Loughborough, Leicestershire LE11 3TU, UK and Department of Chemical Engineering, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| |
Collapse
|
26
|
Sinha N, Subedi N, Tel J. Integrating Immunology and Microfluidics for Single Immune Cell Analysis. Front Immunol 2018; 9:2373. [PMID: 30459757 PMCID: PMC6232771 DOI: 10.3389/fimmu.2018.02373] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 09/24/2018] [Indexed: 12/16/2022] Open
Abstract
The field of immunoengineering aims to develop novel therapies and modern vaccines to manipulate and modulate the immune system and applies innovative technologies toward improved understanding of the immune system in health and disease. Microfluidics has proven to be an excellent technology for analytics in biology and chemistry. From simple microsystem chips to complex microfluidic designs, these platforms have witnessed an immense growth over the last decades with frequent emergence of new designs. Microfluidics provides a highly robust and precise tool which led to its widespread application in single-cell analysis of immune cells. Single-cell analysis allows scientists to account for the heterogeneous behavior of immune cells which often gets overshadowed when conventional bulk study methods are used. Application of single-cell analysis using microfluidics has facilitated the identification of several novel functional immune cell subsets, quantification of signaling molecules, and understanding of cellular communication and signaling pathways. Single-cell analysis research in combination with microfluidics has paved the way for the development of novel therapies, point-of-care diagnostics, and even more complex microfluidic platforms that aid in creating in vitro cellular microenvironments for applications in drug and toxicity screening. In this review, we provide a comprehensive overview on the integration of microsystems and microfluidics with immunology and focus on different designs developed to decode single immune cell behavior and cellular communication. We have categorized the microfluidic designs in three specific categories: microfluidic chips with cell traps, valve-based microfluidics, and droplet microfluidics that have facilitated the ongoing research in the field of immunology at single-cell level.
Collapse
Affiliation(s)
- Nidhi Sinha
- Laboratory of Immunoengineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Nikita Subedi
- Laboratory of Immunoengineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Jurjen Tel
- Laboratory of Immunoengineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
| |
Collapse
|
27
|
Yavas O, Aćimović SS, Garcia-Guirado J, Berthelot J, Dobosz P, Sanz V, Quidant R. Self-Calibrating On-Chip Localized Surface Plasmon Resonance Sensing for Quantitative and Multiplexed Detection of Cancer Markers in Human Serum. ACS Sens 2018; 3:1376-1384. [PMID: 29947221 DOI: 10.1021/acssensors.8b00305] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The need for point-of-care devices able to detect diseases early and monitor their status, out of a lab environment, has stimulated the development of compact biosensing configurations. Whereas localized surface plasmon resonance (LSPR) sensing integrated into a state-of-the-art microfluidic chip stands as a promising approach to meet this demand, its implementation into an operating sensing platform capable of quantitatively detecting a set of molecular biomarkers in an unknown biological sample is only in its infancy. Here, we present an on-chip LSPR sensor capable of performing automatic, quantitative, and multiplexed screening of biomarkers. We demonstrate its versatility by programming it to detect and quantify in human serum four relevant human serum protein markers associated with breast cancer.
Collapse
Affiliation(s)
- Ozlem Yavas
- ICFO-Institut de Ciéncies Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| | - Srdjan S. Aćimović
- ICFO-Institut de Ciéncies Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| | - Jose Garcia-Guirado
- ICFO-Institut de Ciéncies Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| | - Johann Berthelot
- ICFO-Institut de Ciéncies Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| | - Paulina Dobosz
- ICFO-Institut de Ciéncies Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| | - Vanesa Sanz
- ICFO-Institut de Ciéncies Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| | - Romain Quidant
- ICFO-Institut de Ciéncies Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
- ICREA-Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain
| |
Collapse
|
28
|
Lee YS, Bhattacharjee N, Folch A. 3D-printed Quake-style microvalves and micropumps. LAB ON A CHIP 2018; 18:1207-1214. [PMID: 29553156 PMCID: PMC7307877 DOI: 10.1039/c8lc00001h] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Here we demonstrate a 3D-printable microvalve that is transparent, built with a biocompatible resin, and has a simple architecture that can be easily scaled up into large arrays. The open-at-rest valve design is derived from Quake's PDMS valve design. We used a stereolithographic (SL) 3D printer to print a thin (25 or 10 μm-thick) membrane (1200 or 500 μm-diam.) that is pneumatically pressed (∼3-6 psi) over a bowl-shaped seat to close the valve. We used poly(ethylene diacrylate) (MW = 258) (PEG-DA-258) as the resin because it yields transparent cytocompatible prints. Although the flexibility of PEG-DA-258 is inferior to that of other microvalve fabrication materials such as PDMS, the valve benefits from the bowl design and the membrane's high restoring force since it does not need a negative pressure to re-open. We also 3D-printed a micropump by combining three Quake-style valves in series. The micropump only requires positive pressure for its operation and profits from the fast return to the valves' open states. Moreover, we printed a 64-valve array constructed with 500 μm-diam. valves to demonstrate the reliability and scalability of the valves. Overall, we demonstrate the 3D-printing of compact microvalves and micropumps using a process that precludes the need for specialized, time-consuming labor.
Collapse
Affiliation(s)
- Yuan-Sheng Lee
- Department of Mechanical Engineering, University of Washington, USA.
| | | | - Albert Folch
- Department of Bioengineering, University of Washington, USA
| |
Collapse
|
29
|
Craciun AM, Focsan M, Magyari K, Vulpoi A, Pap Z. Surface Plasmon Resonance or Biocompatibility-Key Properties for Determining the Applicability of Noble Metal Nanoparticles. MATERIALS (BASEL, SWITZERLAND) 2017; 10:E836. [PMID: 28773196 PMCID: PMC5551879 DOI: 10.3390/ma10070836] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 07/06/2017] [Accepted: 07/10/2017] [Indexed: 12/12/2022]
Abstract
Metal and in particular noble metal nanoparticles represent a very special class of materials which can be applied as prepared or as composite materials. In most of the cases, two main properties are exploited in a vast number of publications: biocompatibility and surface plasmon resonance (SPR). For instance, these two important properties are exploitable in plasmonic diagnostics, bioactive glasses/glass ceramics and catalysis. The most frequently applied noble metal nanoparticle that is universally applicable in all the previously mentioned research areas is gold, although in the case of bioactive glasses/glass ceramics, silver and copper nanoparticles are more frequently applied. The composite partners/supports/matrix/scaffolds for these nanoparticles can vary depending on the chosen application (biopolymers, semiconductor-based composites: TiO₂, WO₃, Bi₂WO₆, biomaterials: SiO₂ or P₂O₅-based glasses and glass ceramics, polymers: polyvinyl alcohol (PVA), Gelatin, polyethylene glycol (PEG), polylactic acid (PLA), etc.). The scientific works on these materials' applicability and the development of new approaches will be targeted in the present review, focusing in several cases on the functioning mechanism and on the role of the noble metal.
Collapse
Affiliation(s)
- Ana Maria Craciun
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babeș-Bolyai University, 400271 Cluj-Napoca, Romania.
| | - Monica Focsan
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babeș-Bolyai University, 400271 Cluj-Napoca, Romania.
| | - Klara Magyari
- Nanostructured Materials and Bio-Nano-Interfaces Center, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babeș-Bolyai University, 400271 Cluj-Napoca, Romania.
| | - Adriana Vulpoi
- Nanostructured Materials and Bio-Nano-Interfaces Center, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babeș-Bolyai University, 400271 Cluj-Napoca, Romania.
| | - Zsolt Pap
- Nanostructured Materials and Bio-Nano-Interfaces Center, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babeș-Bolyai University, 400271 Cluj-Napoca, Romania.
- Institute of Environmental Science and Technology, University of Szeged, 6720 Szeged, Hungary.
| |
Collapse
|
30
|
Rho HS, Hanke AT, Ottens M, Gardeniers H. A microfluidic device for the batch adsorption of a protein on adsorbent particles. Analyst 2017; 142:3656-3665. [DOI: 10.1039/c7an00917h] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A microfluidic platform or “microfluidic batch adsorption device” is presented, which performs two sets of 9 parallel protein incubations with/without adsorbent particles to achieve an adsorption isotherm of a protein in a single experiment.
Collapse
Affiliation(s)
- Hoon Suk Rho
- Mesoscale Chemical Systems Group
- MESA+ Institute for Nanotechnology
- University of Twente
- The Netherlands
| | - Alexander Thomas Hanke
- BioProcess Engineering group
- Department of Biotechnology
- Faculty of Applied Sciences
- Delft University of Technology
- The Netherlands
| | - Marcel Ottens
- BioProcess Engineering group
- Department of Biotechnology
- Faculty of Applied Sciences
- Delft University of Technology
- The Netherlands
| | - Han Gardeniers
- Mesoscale Chemical Systems Group
- MESA+ Institute for Nanotechnology
- University of Twente
- The Netherlands
| |
Collapse
|
31
|
Ostromohov N, Bercovici M, Kaigala GV. Delivery of minimally dispersed liquid interfaces for sequential surface chemistry. LAB ON A CHIP 2016; 16:3015-23. [PMID: 27354032 DOI: 10.1039/c6lc00473c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
We present a method for sequential delivery of reagents to a reaction site with minimal dispersion of their interfaces. Using segmented flow to encapsulate the reagents as droplets, the dispersion between reagent plugs remains confined in a limited volume, while being transmitted to the reaction surface. In close proximity to the target surface, we use a passive array of microstructures for removal of the oil phase such that the original reagent sequence is reconstructed, and only the aqueous phase reaches the reaction surface. We provide a detailed analysis of the conditions under which the method can be applied and demonstrate maintaining a transition time of 560 ms between reagents transported to a reaction site over a distance of 60 cm. We implemented the method using a vertical microfluidic probe on an open surface, allowing contact-free interaction with biological samples, and demonstrated two examples of assays implemented using the method: measurements of receptor-ligand reaction kinetics and of the fluorescence response of immobilized GFP to local variations in pH. We believe that the method can be useful for studying the dynamic response of cells and proteins to various stimuli, as well as for highly automated multi-step assays.
Collapse
Affiliation(s)
- N Ostromohov
- Faculty of Mechanical Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel. and IBM Research-Zurich, Saeumerstrasse 4, CH-8803 Rueschlikon, Switzerland.
| | - M Bercovici
- Faculty of Mechanical Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel.
| | - G V Kaigala
- IBM Research-Zurich, Saeumerstrasse 4, CH-8803 Rueschlikon, Switzerland.
| |
Collapse
|
32
|
Gfeller D, Bassani-Sternberg M, Schmidt J, Luescher IF. Current tools for predicting cancer-specific T cell immunity. Oncoimmunology 2016; 5:e1177691. [PMID: 27622028 DOI: 10.1080/2162402x.2016.1177691] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 04/06/2016] [Accepted: 04/06/2016] [Indexed: 12/20/2022] Open
Abstract
Tumor exome and RNA sequencing data provide a systematic and unbiased view on cancer-specific expression, over-expression, and mutations of genes, which can be mined for personalized cancer vaccines and other immunotherapies. Of key interest are tumor-specific mutations, because T cells recognizing neoepitopes have the potential to be highly tumoricidal. Here, we review recent developments and technical advances in identifying MHC class I and class II-restricted tumor antigens, especially neoantigen derived MHC ligands, including in silico predictions, immune-peptidome analysis by mass spectrometry, and MHC ligand validation by biochemical methods on T cells.
Collapse
Affiliation(s)
- David Gfeller
- Ludwig Center for Cancer Research, University of Lausanne, Epalinges, Switzerland; Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | | | - Julien Schmidt
- Ludwig Center for Cancer Research, University of Lausanne , Epalinges, Switzerland
| | - Immanuel F Luescher
- Ludwig Center for Cancer Research, University of Lausanne , Epalinges, Switzerland
| |
Collapse
|
33
|
Dias JT, Lama L, Gantelius J, Andersson-Svahn H. Minimizing antibody cross-reactivity in multiplex detection of biomarkers in paper-based point-of-care assays. NANOSCALE 2016; 8:8195-8201. [PMID: 27030365 DOI: 10.1039/c5nr09207h] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Highly multiplexed immunoassays could allow convenient screening of hundreds or thousands of protein biomarkers simultaneously in a clinical sample such as serum or plasma, potentially allowing improved diagnostic accuracy and clinical management of many conditions such as autoimmune disorders, infections, and several cancers. Currently, antibody microarray-based tests are limited in part due to cross reactivity from detection antibody reagents. Here we present a strategy that reduces the cross-reactivity between nanoparticle-bound reporter antibodies through the application of ultrasound energy. By this concept, it was possible to achieve a sensitivity 10(3)-fold (5 pg mL(-1)) lower than when no ultrasound was applied (50 ng mL(-1)) for the simultaneous detection of three different antigens. The detection limits and variability achieved with this technique rival those obtained with other types of multiplex sandwich assays.
Collapse
Affiliation(s)
- J T Dias
- Division of Proteomics and Nanobiotechnology, Science for Life Laboratory, KTH Royal Institute of Technology, Sweden.
| | - L Lama
- Division of Proteomics and Nanobiotechnology, Science for Life Laboratory, KTH Royal Institute of Technology, Sweden.
| | - J Gantelius
- Division of Proteomics and Nanobiotechnology, Science for Life Laboratory, KTH Royal Institute of Technology, Sweden.
| | - H Andersson-Svahn
- Division of Proteomics and Nanobiotechnology, Science for Life Laboratory, KTH Royal Institute of Technology, Sweden.
| |
Collapse
|
34
|
Piraino F, Volpetti F, Watson C, Maerkl SJ. A Digital-Analog Microfluidic Platform for Patient-Centric Multiplexed Biomarker Diagnostics of Ultralow Volume Samples. ACS NANO 2016; 10:1699-710. [PMID: 26741022 DOI: 10.1021/acsnano.5b07939] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Microfluidic diagnostic devices have the potential to transform the practice of medicine. We engineered a multiplexed digital-analog microfluidic platform for the rapid and highly sensitive detection of 3-4 biomarkers in quadruplicate in 16 independent and isolated microfluidic unit cells requiring only a single 5 μL sample. We comprehensively characterized the platform by performing single enzyme and digital immunoassays, achieving single molecule detection and measured as low as ∼10 fM (330 fg/mL) GFP in buffer and ∼12 fM GFP in human serum. We applied our integrated digital detection mechanism to multiplexed detection of 1pM anti-Ebola IgG in human serum and were able to differentiate three common Ebola strains. To ascertain that the device can be applied in environments beyond clinical point-of-care settings, we developed a low-cost, portable hardware system to control and read out the microfluidic device and detected anti-Ebola IgG in ultralow volume whole blood samples to levels of 100 pM in a multiplexed assay format.
Collapse
Affiliation(s)
- Francesco Piraino
- Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne , Lausanne 1015, Switzerland
| | - Francesca Volpetti
- Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne , Lausanne 1015, Switzerland
| | - Craig Watson
- Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne , Lausanne 1015, Switzerland
| | - Sebastian J Maerkl
- Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne , Lausanne 1015, Switzerland
| |
Collapse
|
35
|
Novo P, Dell'Aica M, Janasek D, Zahedi RP. High spatial and temporal resolution cell manipulation techniques in microchannels. Analyst 2016; 141:1888-905. [DOI: 10.1039/c6an00027d] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Reviewing latest developments on lab on chips for enhanced control of cells’ experiments.
Collapse
Affiliation(s)
- Pedro Novo
- Protein Dynamics Group
- Leibniz-Institut für Analytische Wissenschaften – ISAS - e.V
- 44227 Dortmund
- Germany
| | - Margherita Dell'Aica
- Protein Dynamics Group
- Leibniz-Institut für Analytische Wissenschaften – ISAS - e.V
- 44227 Dortmund
- Germany
| | - Dirk Janasek
- Protein Dynamics Group
- Leibniz-Institut für Analytische Wissenschaften – ISAS - e.V
- 44227 Dortmund
- Germany
| | - René P. Zahedi
- Protein Dynamics Group
- Leibniz-Institut für Analytische Wissenschaften – ISAS - e.V
- 44227 Dortmund
- Germany
| |
Collapse
|
36
|
Cao J, Seegmiller J, Hanson NQ, Zaun C, Li D. A microfluidic multiplex proteomic immunoassay device for translational research. Clin Proteomics 2015; 12:28. [PMID: 26692826 PMCID: PMC4676148 DOI: 10.1186/s12014-015-9101-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 11/30/2015] [Indexed: 01/08/2023] Open
Abstract
Objective Microfluidic technology has the potential to miniaturize and automate complex laboratory procedures. The objective of this study was to assess a microfluidic immunoassay device, Simple Plex, which simultaneously measured IL-1β, TNF-α, IL-6, and IL-10 in serum samples. This assessment is important to understanding the potentials of this microfluidic device as a valuable tool in translational research efforts. Methods We studied the operational characteristics of Simple Plex, and compared to other immunoassay systems including bead-based (i.e., Bio-Plex® from Bio-Rad) and planar micro-spot based (i.e., Multi-Array from Meso Scale Discovery) multiplex assays. We determined imprecisions for each of the Simple Plex assays and evaluated the ability of Simple Plex to detect IL-1β, TNF-α, IL-6, and IL-10 in serum samples. Results Simple Plex assays required 25 µL serum, and 1.5 h to run 16 samples per cartridge per instrument. Assay imprecisions, evaluated by measurement of 6 replicates in duplicate from a serum pool using three different cartridges, were less than 10 % for all 4 cytokine protein biomarkers, comparable to the imprecisions of traditional ELISAs. The Simple Plex assays were able to detect 32, 95, 97, and 100 % [i.e., percentages of the results within the respective analytical measurement ranges (AMRs)] of IL-1β, TNF-α, IL-6, and IL-10, respectively, in 66 serum samples. Conclusions Simple Plex is a microfluidic multiplex immunoassay device that offers miniaturized, and automated analysis of protein biomarkers. Microfluidic devices such as Simple Plex represent a promising platform to be used in translational research to measure protein biomarkers in real clinical samples.
Collapse
Affiliation(s)
- Jing Cao
- Department of Laboratory Medicine and Pathology, University of Minnesota, Twin Cities, 420 Delaware Street SE, MMC 609, Minneapolis, MN 55455 USA
| | - Jesse Seegmiller
- Department of Laboratory Medicine and Pathology, University of Minnesota, Twin Cities, 420 Delaware Street SE, MMC 609, Minneapolis, MN 55455 USA
| | - Naomi Q Hanson
- Department of Laboratory Medicine and Pathology, University of Minnesota, Twin Cities, 420 Delaware Street SE, MMC 609, Minneapolis, MN 55455 USA
| | - Christopher Zaun
- Department of Laboratory Medicine and Pathology, University of Minnesota, Twin Cities, 420 Delaware Street SE, MMC 609, Minneapolis, MN 55455 USA
| | - Danni Li
- Department of Laboratory Medicine and Pathology, University of Minnesota, Twin Cities, 420 Delaware Street SE, MMC 609, Minneapolis, MN 55455 USA
| |
Collapse
|