1
|
Ghézali G, Ribot J, Curry N, Pillet LE, Boutet-Porretta F, Mozheiko D, Calvo CF, Ezan P, Perfettini I, Lecoin L, Janel S, Zapata J, Escartin C, Etienne-Manneville S, Kaminski CF, Rouach N. Connexin 30 locally controls actin cytoskeleton and mechanical remodeling in motile astrocytes. Glia 2024; 72:1915-1929. [PMID: 38982826 DOI: 10.1002/glia.24590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/04/2024] [Accepted: 06/25/2024] [Indexed: 07/11/2024]
Abstract
During brain maturation, astrocytes establish complex morphologies unveiling intense structural plasticity. Connexin 30 (Cx30), a gap-junction channel-forming protein expressed postnatally, dynamically regulates during development astrocyte morphological properties by controlling ramification and extension of fine processes. However, the underlying mechanisms remain unexplored. Here, we found in vitro that Cx30 interacts with the actin cytoskeleton in astrocytes and inhibits its structural reorganization and dynamics during cell migration. This translates into an alteration of local physical surface properties, as assessed by correlative imaging using stimulated emission depletion (STED) super resolution imaging and atomic force microscopy (AFM). Specifically, Cx30 impaired astrocyte cell surface topology and cortical stiffness in motile astrocytes. As Cx30 alters actin organization, dynamics, and membrane physical properties, we assessed whether it controls astrocyte migration. We found that Cx30 reduced persistence and directionality of migrating astrocytes. Altogether, these data reveal Cx30 as a brake for astrocyte structural and mechanical plasticity.
Collapse
Affiliation(s)
- Grégory Ghézali
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Labex Memolife, Université PSL, Paris, France
- Doctoral School N° 158, Sorbonne Université, Paris, France
| | - Jérôme Ribot
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Labex Memolife, Université PSL, Paris, France
| | - Nathan Curry
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Laure-Elise Pillet
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Labex Memolife, Université PSL, Paris, France
- Doctoral School N°562, Université Paris Cité, Paris, France
| | - Flora Boutet-Porretta
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Labex Memolife, Université PSL, Paris, France
- Doctoral School N° 158, Sorbonne Université, Paris, France
| | - Daria Mozheiko
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Labex Memolife, Université PSL, Paris, France
- Doctoral School N° 158, Sorbonne Université, Paris, France
| | - Charles-Félix Calvo
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Labex Memolife, Université PSL, Paris, France
| | - Pascal Ezan
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Labex Memolife, Université PSL, Paris, France
| | - Isabelle Perfettini
- Institut Pasteur, Université de Paris, CNRS, Cell Polarity, Migration and Cancer Unit, Paris, France
| | - Laure Lecoin
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Labex Memolife, Université PSL, Paris, France
| | - Sébastien Janel
- Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Jonathan Zapata
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Labex Memolife, Université PSL, Paris, France
| | - Carole Escartin
- Université Paris-Saclay, CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodégénératives, Fontenay-aux-Roses, France
| | | | - Clemens F Kaminski
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Nathalie Rouach
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Labex Memolife, Université PSL, Paris, France
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| |
Collapse
|
2
|
Nitsch A, Marthaler P, Qarqash S, Bemmann M, Bekeschus S, Wassilew GI, Haralambiev L. Cold Physical Plasma Reduces Motility of Various Bone Sarcoma Cells While Remodeling the Cytoskeleton. In Vivo 2024; 38:1571-1578. [PMID: 38936915 PMCID: PMC11215588 DOI: 10.21873/invivo.13607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/25/2024] [Accepted: 04/08/2024] [Indexed: 06/29/2024]
Abstract
BACKGROUND/AIM Cold physical plasma (CPP) has emerged as an effective therapy in oncology by inducing cytotoxic effects in various cancer cells, including chondrosarcoma (CS), Ewing's sarcoma (ES), and osteosarcoma (OS). The current study investigated the impact of CPP on cell motility in CS (CAL-78), ES (A673), and OS (U2-OS) cell lines, focusing on the actin cytoskeleton. MATERIALS AND METHODS The CASY Cell Counter and Analyzer was used to study cell proliferation and determine the optimal concentrations of fetal calf serum to maintain viability without stimulation of cell proliferation. CellTiter-BlueCell viability assay was used to determine the effects of CPP on the viability of bone sarcoma cells. The Radius assay was used to determine cell migration. Staining for Deoxyribonuclease I, G-actin, and F-actin was used to assay for the effects on the cytoskeleton. RESULTS Reductions in cell viability and motility were observed across all cell lines following CPP treatment. CPP induced changes in the actin cytoskeleton, leading to decreased cell motility. CONCLUSION CPP effectively reduces the motility of bone sarcoma cells by altering the actin cytoskeleton. These findings underscore CPP's potential as a therapeutic tool for bone sarcomas and highlight the need for further research in this area.
Collapse
Affiliation(s)
- Andreas Nitsch
- Center for Orthopedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, Greifswald, Germany;
| | - Pauline Marthaler
- Center for Orthopedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Sara Qarqash
- Center for Orthopedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Maximilian Bemmann
- Center for Orthopedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Sander Bekeschus
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Greifswald, Germany
- Clinic and Policlinic for Dermatology and Venerology, Rostock University Medical Center, Rostock, Germany
| | - Georgi I Wassilew
- Center for Orthopedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Lyubomir Haralambiev
- Center for Orthopedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
3
|
Ozdil B, Calik-Kocaturk D, Altunayar-Unsalan C, Acikgoz E, Oltulu F, Gorgulu V, Uysal A, Oktem G, Unsalan O, Guler G, Aktug H. Differences and similarities in biophysical and biological characteristics between U87 MG glioblastoma and astrocyte cells. Histochem Cell Biol 2024; 161:43-57. [PMID: 37700206 DOI: 10.1007/s00418-023-02234-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2023] [Indexed: 09/14/2023]
Abstract
Current cancer studies focus on molecular-targeting diagnostics and interactions with surroundings; however, there are still gaps in characterization based on topological differences and elemental composition. Glioblastoma (GBM cells; GBMCs) is an astrocytic aggressive brain tumor. At the molecular level, GBMCs and astrocytes may differ, and cell elemental/topological analysis is critical for identifying potential new cancer targets. Here, we used U87 MG cells for GBMCS. U87 MG cell lines, which are frequently used in glioblastoma research, are an important tool for studying the various features and underlying mechanisms of this aggressive brain tumor. For the first time, atomic force microscopy (AFM), scanning electron microscopy (SEM) accompanied by energy-dispersive X-ray spectroscopy (EDS), and X-ray photoelectron spectroscopy (XPS) are used to report the topology and chemistry of cancer (U87 MG) and healthy (SVG p12) cells. In addition, F-actin staining and cytoskeleton-based gene expression analyses were performed. The degree of gene expression for genes related to the cytoskeleton was similar; however, the intensity of F-actin, anisotropy values, and invasion-related genes were different. Morphologically, GBMCs were longer and narrower while astrocytes were shorter and more disseminated based on AFM. Furthermore, the roughness values of these cells differed slightly between the two call types. In contrast to the rougher astrocyte surfaces in the lamellipodial area, SEM-EDS analysis showed that elongated GBMCs displayed filopodial protrusions. Our investigation provides considerable further insight into rapid cancer cell characterization in terms of a combinatorial spectroscopic and microscopic approach.
Collapse
Affiliation(s)
- Berrin Ozdil
- Department of Histology and Embryology, Faculty of Medicine, Ege University, 35100, Izmir, Turkey
- Department of Histology and Embryology, Faculty of Medicine, Suleyman Demirel University, 32260, Isparta, Turkey
| | | | - Cisem Altunayar-Unsalan
- Central Research Testing and Analysis Laboratory Research and Application Center, Ege University, 35100, Bornova, Izmir, Turkey.
| | - Eda Acikgoz
- Department of Histology and Embryology, Faculty of Medicine, Van Yüzüncü Yıl University, 65080, Van, Turkey
| | - Fatih Oltulu
- Department of Histology and Embryology, Faculty of Medicine, Ege University, 35100, Izmir, Turkey.
| | - Volkan Gorgulu
- Department of Histology and Embryology, Faculty of Medicine, Ege University, 35100, Izmir, Turkey
| | - Aysegul Uysal
- Department of Histology and Embryology, Faculty of Medicine, Ege University, 35100, Izmir, Turkey
| | - Gulperi Oktem
- Department of Histology and Embryology, Faculty of Medicine, Ege University, 35100, Izmir, Turkey
| | - Ozan Unsalan
- Department of Physics, Faculty of Science, Ege University, 35100, Izmir, Turkey
| | - Gunnur Guler
- Department of Physics, Biophysics Laboratory, Izmir Institute of Technology, 35430, Izmir, Turkey
| | - Huseyin Aktug
- Department of Histology and Embryology, Faculty of Medicine, Ege University, 35100, Izmir, Turkey
| |
Collapse
|
4
|
Dai X, Wu J, Lu L, Chen Y. Current Status and Future Trends of Cold Atmospheric Plasma as an Oncotherapy. Biomol Ther (Seoul) 2023; 31:496-514. [PMID: 37641880 PMCID: PMC10468422 DOI: 10.4062/biomolther.2023.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/12/2023] [Accepted: 04/25/2023] [Indexed: 08/31/2023] Open
Abstract
Cold atmospheric plasma (CAP), a redox modulation tool, is capable of inhibiting a wide spectrum of cancers and has thus been proposed as an emerging onco-therapy. However, with incremental successes consecutively reported on the anticancer efficacy of CAP, no consensus has been made on the types of tumours sensitive to CAP due to the different intrinsic characteristics of the cells and the heterogeneous design of CAP devices and their parameter configurations. These factors have substantially hindered the clinical use of CAP as an oncotherapy. It is thus imperative to clarify the tumour types responsive to CAP, the experimental models available for CAP-associated investigations, CAP administration strategies and the mechanisms by which CAP exerts its anticancer effects with the aim of identifying important yet less studied areas to accelerate the process of translating CAP into clinical use and fostering the field of plasma oncology.
Collapse
Affiliation(s)
- Xiaofeng Dai
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Jiale Wu
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Lianghui Lu
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yuyu Chen
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| |
Collapse
|
5
|
Jung JM, Yoon HK, Kim SY, Yun MR, Kim GH, Lee WJ, Lee MW, Chang SE, Won CH. Anticancer Effect of Cold Atmospheric Plasma in Syngeneic Mouse Models of Melanoma and Colon Cancer. Molecules 2023; 28:molecules28104171. [PMID: 37241912 DOI: 10.3390/molecules28104171] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/18/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Cold atmospheric plasma (CAP) may have applications in treating various types of malignant tumors. This study assessed the anticancer effects of CAP using melanoma and colon cancer cell lines. CAP treatment significantly reduced the in vitro viability of melanoma and colon cancer cell lines and had a negligible effect on the viability of normal human melanocytes. Additionally, CAP and epidermal growth factor receptor (EGFR) inhibitor had an additive anticancer effect in a CAP-resistant melanoma cell line. Reactive oxygen and nitrogen species known to be generated by CAP enhanced the anticancer effects of CAP and EGFR inhibitors. The in vivo anticancer activities of CAP were evaluated by testing its effects against syngeneic tumors induced in mice by melanoma and colon cancer cells. CAP treatment reduced tumor volume and weight in both cancer models, with the extent of tumor reduction dependent on the duration and number of CAP treatments. Histologic examination also revealed the tumoricidal effects of CAP in both tumor models. In conclusion, CAP inhibits the growth of mouse melanoma and colon cancer cell lines in vitro and shows tumoricidal effects against mouse models of melanoma and colon cancer in vivo.
Collapse
Affiliation(s)
- Joon-Min Jung
- Department of Dermatology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Republic of Korea
| | - Hae-Kyeong Yoon
- Asan Institute for Life Sciences, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Republic of Korea
| | - Su-Yeon Kim
- Department of Dermatology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Republic of Korea
| | - Mi-Ra Yun
- Asan Institute for Life Sciences, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Republic of Korea
| | - Gyeong-Hoon Kim
- Department of Dermatology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Republic of Korea
| | - Woo-Jin Lee
- Department of Dermatology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Republic of Korea
| | - Mi-Woo Lee
- Department of Dermatology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Republic of Korea
| | - Sung-Eun Chang
- Department of Dermatology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Republic of Korea
- Asan Institute for Life Sciences, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Republic of Korea
| | - Chong-Hyun Won
- Department of Dermatology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Republic of Korea
- Asan Institute for Life Sciences, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Republic of Korea
| |
Collapse
|
6
|
Selective Effects of Cold Atmospheric Plasma on Bone Sarcoma Cells and Human Osteoblasts. Biomedicines 2023; 11:biomedicines11020601. [PMID: 36831137 PMCID: PMC9952933 DOI: 10.3390/biomedicines11020601] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND The use of cold atmospheric plasma (CAP) in oncology has been intensively investigated over the past 15 years as it inhibits the growth of many tumor cells. It is known that reactive oxidative species (ROS) produced in CAP are responsible for this effect. However, to translate the use of CAP into medical practice, it is essential to know how CAP treatment affects non-malignant cells. Thus, the current in vitro study deals with the effect of CAP on human bone cancer cells and human osteoblasts. Here, identical CAP treatment regimens were applied to the malignant and non-malignant bone cells and their impact was compared. METHODS Two different human bone cancer cell types, U2-OS (osteosarcoma) and A673 (Ewing's sarcoma), and non-malignant primary osteoblasts (HOB) were used. The CAP treatment was performed with the clinically approved kINPen MED. After CAP treatment, growth kinetics and a viability assay were performed. For detecting apoptosis, a caspase-3/7 assay and a TUNEL assay were used. Accumulated ROS was measured in cell culture medium and intracellular. To investigate the influence of CAP on cell motility, a scratch assay was carried out. RESULTS The CAP treatment showed strong inhibition of cell growth and viability in bone cancer cells. Apoptotic processes were enhanced in the malignant cells. Osteoblasts showed a higher potential for ROS resistance in comparison to malignant cells. There was no difference in cell motility between benign and malignant cells following CAP treatment. CONCLUSIONS Osteoblasts show better tolerance to CAP treatment, indicated by less affected viability compared to CAP-treated bone cancer cells. This points toward the selective effect of CAP on sarcoma cells and represents a further step toward the clinical application of CAP.
Collapse
|
7
|
Parashar P, Das MK, Tripathi P, Kataria T, Gupta D, Sarin D, Hazari PP, Tandon V. DMA, a Small Molecule, Increases Median Survival and Reduces Radiation-Induced Xerostomia via the Activation of the ERK1/2 Pathway in Oral Squamous Cell Carcinoma. Cancers (Basel) 2022; 14:cancers14194908. [PMID: 36230831 PMCID: PMC9562201 DOI: 10.3390/cancers14194908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 06/24/2022] [Accepted: 07/09/2022] [Indexed: 11/16/2022] Open
Abstract
Survival, recurrence, and xerostomia are considerable problems in the treatment of oral squamous carcinoma patients. In this study, we investigated the role of DMA (5-(4-methylpiperazin-1-yl)-2-[2′-(3,4-dimethoxyphenyl)5″benzimidazoyl]benzimidazole) as a salivary gland cytoprotectant in a patient-derived xenograft mouse model. A significant increase in saliva secretion was observed in the DMA-treated xenograft compared to radiation alone. Repeated doses of DMA with a high dose of radiation showed a synergistic effect on mice survival and reduced tumor growth. The mean survival rate of tumor-bearing mice was significantly enhanced. The increased number of Ki-67-stained cells in the spleen, intestine, and lungs compared to the tumor suggests DMA ablates the tumor but protects other organs. The expression of aquaporin-5 was restored in tumor-bearing mice injected with DMA before irradiation. The reduced expression of αvβ3 integrin and CD44 in DMA alone and DMA with radiation-treated mice suggests a reduced migration of cells and stemness of cancer cells. DMA along with radiation treatment results in the activation of the Ras/Raf/MEK/ERK pathway in the tumor, leading to apoptosis through caspase upregulation. In conclusion, DMA has strong potential for use as an adjuvant in radiotherapy in OSCC patients.
Collapse
Affiliation(s)
- Palak Parashar
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Monoj Kumar Das
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Pragya Tripathi
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Tejinder Kataria
- Division of Radiation Oncology, Medanta―The Medicity, Gurgaon 122001, India
| | - Deepak Gupta
- Division of Radiation Oncology, Medanta―The Medicity, Gurgaon 122001, India
| | - Deepak Sarin
- Head and Neck OncoSurgery, Medanta―The Medicity, Gurgaon 122001, India
| | - Puja Panwar Hazari
- Defence Research and Development Organization, Institute of Nuclear Medicine and Allied Sciences, Delhi 110054, India
| | - Vibha Tandon
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
- Correspondence: ; Tel.: +91-11-26742181
| |
Collapse
|
8
|
Braný D, Dvorská D, Strnádel J, Matáková T, Halašová E, Škovierová H. Effect of Cold Atmospheric Plasma on Epigenetic Changes, DNA Damage, and Possibilities for Its Use in Synergistic Cancer Therapy. Int J Mol Sci 2021; 22:ijms222212252. [PMID: 34830132 PMCID: PMC8617606 DOI: 10.3390/ijms222212252] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/06/2021] [Accepted: 11/11/2021] [Indexed: 12/17/2022] Open
Abstract
Cold atmospheric plasma has great potential for use in modern medicine. It has been used in the clinical treatment of skin diseases and chronic wounds, and in laboratory settings it has shown effects on selective decrease in tumour-cell viability, reduced tumour mass in animal models and stem-cell proliferation. Many researchers are currently focusing on its application to internal structures and the use of plasma-activated liquids in tolerated and effective human treatment. There has also been analysis of plasma's beneficial synergy with standard pharmaceuticals to enhance their effect. Cold atmospheric plasma triggers various responses in tumour cells, and this can result in epigenetic changes in both DNA methylation levels and histone modification. The expression and activity of non-coding RNAs with their many important cell regulatory functions can also be altered by cold atmospheric plasma action. Finally, there is ongoing debate whether plasma-produced radicals can directly affect DNA damage in the nucleus or only initiate apoptosis or other forms of cell death. This article therefore summarises accepted knowledge of cold atmospheric plasma's influence on epigenetic changes, the expression and activity of non-coding RNAs, and DNA damage and its effect in synergistic treatment with routinely used pharmaceuticals.
Collapse
Affiliation(s)
- Dušan Braný
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia; (D.B.); (J.S.); (E.H.); (H.Š.)
| | - Dana Dvorská
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia; (D.B.); (J.S.); (E.H.); (H.Š.)
- Correspondence:
| | - Ján Strnádel
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia; (D.B.); (J.S.); (E.H.); (H.Š.)
| | - Tatiana Matáková
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University, Bratislava, 036 01 Martin, Slovakia;
| | - Erika Halašová
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia; (D.B.); (J.S.); (E.H.); (H.Š.)
| | - Henrieta Škovierová
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia; (D.B.); (J.S.); (E.H.); (H.Š.)
| |
Collapse
|
9
|
Cold Atmospheric Plasma Stimulates Clathrin-Dependent Endocytosis to Repair Oxidised Membrane and Enhance Uptake of Nanomaterial in Glioblastoma Multiforme Cells. Sci Rep 2020; 10:6985. [PMID: 32332819 PMCID: PMC7181794 DOI: 10.1038/s41598-020-63732-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/25/2020] [Indexed: 01/16/2023] Open
Abstract
Cold atmospheric plasma (CAP) enhances uptake and accumulation of nanoparticles and promotes synergistic cytotoxicity against cancer cells. However, the mechanisms are not well understood. In this study, we investigate the enhanced uptake of theranostic nanomaterials by CAP. Numerical modelling of the uptake of gold nanoparticle into U373MG Glioblastoma multiforme (GBM) cells predicts that CAP may introduce a new uptake route. We demonstrate that cell membrane repair pathways play the main role in this stimulated new uptake route, following non-toxic doses of dielectric barrier discharge CAP. CAP treatment induces cellular membrane damage, mainly via lipid peroxidation as a result of reactive oxygen species (ROS) generation. Membranes rich in peroxidised lipids are then trafficked into cells via membrane repairing endocytosis. We confirm that the enhanced uptake of nanomaterials is clathrin-dependent using chemical inhibitors and silencing of gene expression. Therefore, CAP-stimulated membrane repair increases endocytosis and accelerates the uptake of gold nanoparticles into U373MG cells after CAP treatment. We demonstrate the utility of CAP to model membrane oxidative damage in cells and characterise a previously unreported mechanism of membrane repair to trigger nanomaterial uptake. This knowledge will underpin the development of new delivery strategies for theranostic nanoparticles into cancer cells.
Collapse
|
10
|
Akter M, Jangra A, Choi SA, Choi EH, Han I. Non-Thermal Atmospheric Pressure Bio-Compatible Plasma Stimulates Apoptosis via p38/MAPK Mechanism in U87 Malignant Glioblastoma. Cancers (Basel) 2020; 12:E245. [PMID: 31963881 PMCID: PMC7016658 DOI: 10.3390/cancers12010245] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 11/18/2022] Open
Abstract
Nonthermal plasma is a promising novel therapy for the alteration of biological and clinical functions of cells and tissues, including apoptosis and inhibition of tumor progression. This therapy generates reactive oxygen and nitrogen species (RONS), which play a major role in anticancer effects. Previous research has verified that plasma jets can selectively induce apoptosis in various cancer cells, suggesting that it could be a potentially effective novel therapy in combination with or as an alternative to conventional therapeutic methods. In this study, we determined the effects of nonthermal air soft plasma jets on a U87 MG brain cancer cell line, including the dose- and time-dependent effects and the physicochemical and biological correlation between the RONS cascade and p38/mitogen-activated protein kinase (MAPK) signaling pathway, which contribute to apoptosis. The results indicated that soft plasma jets efficiently inhibit cell proliferation and induce apoptosis in U87 MG cells but have minimal effects on astrocytes. These findings revealed that soft plasma jets produce a potent cytotoxic effect via the initiation of cell cycle arrest and apoptosis. The production of reactive oxygen species (ROS) in cells was tested, and an intracellular ROS scavenger, N-acetyl cysteine (NAC), was examined. Our results suggested that soft plasma jets could potentially be used as an effective approach for anticancer therapy.
Collapse
Affiliation(s)
- Mahmuda Akter
- Department of Plasma Bio-Display, Kwangwoon University, Seoul 01897, Korea; (M.A.); (E.H.C.)
- Plasma Bioscience Research Center, Applied Plasma Medicine Center, Kwangwoon University, Seoul 01897, Korea
| | - Anshika Jangra
- Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 01897, Korea; (A.J.); (S.A.C.)
| | - Seung Ah Choi
- Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 01897, Korea; (A.J.); (S.A.C.)
| | - Eun Ha Choi
- Department of Plasma Bio-Display, Kwangwoon University, Seoul 01897, Korea; (M.A.); (E.H.C.)
- Plasma Bioscience Research Center, Applied Plasma Medicine Center, Kwangwoon University, Seoul 01897, Korea
- Department of Electronic and Biological Physics, Kwangwoon University, Seoul 01897, Korea
| | - Ihn Han
- Department of Plasma Bio-Display, Kwangwoon University, Seoul 01897, Korea; (M.A.); (E.H.C.)
- Plasma Bioscience Research Center, Applied Plasma Medicine Center, Kwangwoon University, Seoul 01897, Korea
| |
Collapse
|
11
|
Zhou R, Wang P, Guo Y, Dai X, Xiao S, Fang Z, Speight R, Thompson EW, Cullen PJ, Ostrikov KK. Prussian blue analogue nanoenzymes mitigate oxidative stress and boost bio-fermentation. NANOSCALE 2019; 11:19497-19505. [PMID: 31553036 DOI: 10.1039/c9nr04951g] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Oxidative stress in cells caused by the accumulation of reactive oxygen species (ROS) is a common cause of cell function degeneration, cell death and various diseases. Efficient, robust and inexpensive nanoparticles (nanoenzymes) capable of scavenging/detoxifying ROS even in harsh environments are attracting strong interest. Prussian blue analogues (PBAs), a prominent group of metalorganic nanoparticles (NPs) with the same cyanometalate structure as the traditional and commonly used Prussian blue (PB), have long been envisaged to mimic enzyme activities for ROS scavenging. However, their biological toxicity, especially potential effects on living beings during practical application, has not yet been fully investigated. Here we reveal the enzyme-like activity of FeCo-PBA NPs, and for the first time investigate the effects of FeCo-PBA on cell viability and growth. We elucidate the effect of the nanoenzyme on the ethanol-production efficacy of a typical model organism, the engineered industrial strain Saccharomyces cerevisiae. We further demonstrate that FeCo-PBA NPs have almost no cytotoxicity on the cells over a broad dosage range (0-100 μg mL-1), while clearly boosting the yeast fermentation efficiency by mitigating oxidative stress. Atmospheric pressure cold plasma (APCP) pretreatment is used as a multifunctional environmental stress produced by the plasma reactive species. While the plasma enhances the cellular uptake of NPs, FeCo-PBA NPs protect the cells from the oxidative stress induced by both the plasma and the fermentation processes. This synergistic effect leads to higher secondary metabolite yields and energy production. Collectively, this study confirms the positive effects of PBA nanoparticles in living cells through ROS scavenging, thus potentially opening new ways to control the cellular machinery in future nano-biotechnology and nano-biomedical applications.
Collapse
Affiliation(s)
- Renwu Zhou
- Institute of Health and Biomedical Innovation, School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology, Brisbane QLD 4000, Australia. and Translational Research Institute, Brisbane, QLD 4102, Australia and School of Chemical and Biomolecular Engineering, The University of Sydney, NSW 2006, Australia
| | - Peiyu Wang
- Institute of Health and Biomedical Innovation, School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology, Brisbane QLD 4000, Australia. and Translational Research Institute, Brisbane, QLD 4102, Australia
| | - Yanru Guo
- Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xiaofeng Dai
- Wuxi School of Medicine, Jiangnan University, 214122, China
| | - Shaoqing Xiao
- Engineering Research Center of IoT Technology Applications (Ministry of Education), Department of Electronic Engineering, Jiangnan University, Wuxi 214122, China
| | - Zhi Fang
- College of Electrical Engineering and Control Science, Nanjing Tech University, Nanjing 210009, China.
| | - Robert Speight
- Institute of Health and Biomedical Innovation, School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology, Brisbane QLD 4000, Australia.
| | - Erik W Thompson
- Institute of Health and Biomedical Innovation, School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology, Brisbane QLD 4000, Australia. and Translational Research Institute, Brisbane, QLD 4102, Australia
| | - Patrick J Cullen
- School of Chemical and Biomolecular Engineering, The University of Sydney, NSW 2006, Australia
| | - Kostya Ken Ostrikov
- Institute of Health and Biomedical Innovation, School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology, Brisbane QLD 4000, Australia. and Translational Research Institute, Brisbane, QLD 4102, Australia
| |
Collapse
|
12
|
Liu L, Wei Y, Liu J, Wang K, Zhang J, Zhang P, Zhou Y, Li B. Spatial high resolution of actin filament organization by PeakForce atomic force microscopy. Cell Prolif 2019; 53:e12670. [PMID: 31568631 PMCID: PMC6985672 DOI: 10.1111/cpr.12670] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/08/2019] [Accepted: 05/16/2019] [Indexed: 12/12/2022] Open
Abstract
Objectives To investigate the heterogeneous feature of actin filaments (ACFs) associated with the cellular membrane in HeLa and HCT‐116 cells at the nanoscale level. Materials and Methods Fluorescence microscopy coupled with atomic force microscopy (AFM) was used to identify and characterize ACFs of cells. The distribution of ACFs was detected by Fluor‐488‐phalloidin–labelled actin. The morphology of the ACFs was probed by AFM images. The spatial correlation of the microvilli and ACFs was explored with different forces of AFM loading on cells. Results Intricate but ordered structures of the actin cytoskeletons associated with cellular membrane were characterized and revealed. Two different layers of ACFs with distinct structural organizations were directly observed in HCT‐116 and HeLa cells. Bundle‐shaped ACFs protruding the cellular membrane forming the microvilli, and the network ACFs underneath the cellular membrane were resolved with high resolution under near‐physiological conditions. Approximately 14 nm lateral resolution was achieved when imaging single ACF beneath the cellular membrane. On the basis of the observed spatial distribution of the ultrastructure of the ACF organization, a model for this organization of ACFs was proposed. Conclusions We revealed the two layers of the ACF organization in Hela and HCT‐116 cells. The resolved heterogeneous structures at the nanoscale level provide a spatial view of the ACFs, which would contribute to the understanding of the essential biological functions of the actin cytoskeleton.
Collapse
Affiliation(s)
- Lin Liu
- Division of Physical Biology & Bioimaging Centre, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yuhui Wei
- Division of Physical Biology & Bioimaging Centre, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
| | - Jingyuan Liu
- Fourth Military Medical University, Xi'an, China
| | - Kaizhe Wang
- Division of Physical Biology & Bioimaging Centre, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jinjin Zhang
- Division of Physical Biology & Bioimaging Centre, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
| | - Ping Zhang
- Division of Physical Biology & Bioimaging Centre, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yi Zhou
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Bin Li
- Division of Physical Biology & Bioimaging Centre, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
13
|
Starvation effect on the morphology of microvilli in HeLa cells. Biochem Biophys Res Commun 2019; 514:1238-1243. [DOI: 10.1016/j.bbrc.2019.05.073] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 05/09/2019] [Indexed: 01/03/2023]
|
14
|
Bahwini TM, Zhong Y, Gu C, Nasa Z, Oetomo D. Investigating the Mechanical Properties of Biological Brain Cells With Atomic Force Microscopy. J Med Device 2018. [DOI: 10.1115/1.4040995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Characterization of cell mechanical properties plays an important role in disease diagnoses and treatments. This paper uses advanced atomic force microscopy (AFM) to measure the geometrical and mechanical properties of two different human brain normal HNC-2 and cancer U87 MG cells. Based on experimental measurement, it measures the cell deformation and indentation force to characterize cell mechanical properties. A fitting algorithm is developed to generate the force-loading curves from experimental data. An inverse Hertzian method is also established to identify Young's moduli for HNC-2 and U87 MG cells. The results demonstrate that Young's modulus of cancer cells is different from that of normal cells, which can help us to differentiate normal and cancer cells from the biomechanical viewpoint.
Collapse
Affiliation(s)
| | - Yongmin Zhong
- School of Engineering, RMIT University, Melbourne 3083, Australia e-mail:
| | - Chengfan Gu
- Department of Mechanical Engineering, University of Melbourne, Parkville 3010, Australia e-mail:
| | - Zeyad Nasa
- Micro Nano Research Facility, College of Science, Engineering and Health, RMIT, Melbourne 3000, Australia e-mail:
| | - Denny Oetomo
- Department of Mechanical Engineering, University of Melbourne, Parkville 3010, Australia e-mail:
| |
Collapse
|
15
|
Dubuc A, Monsarrat P, Virard F, Merbahi N, Sarrette JP, Laurencin-Dalicieux S, Cousty S. Use of cold-atmospheric plasma in oncology: a concise systematic review. Ther Adv Med Oncol 2018; 10:1758835918786475. [PMID: 30046358 PMCID: PMC6055243 DOI: 10.1177/1758835918786475] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 06/05/2018] [Indexed: 12/15/2022] Open
Abstract
Background: Cold-atmospheric plasma (CAP) is an ionized gas produced at an atmospheric
pressure. The aim of this systematic review is to map the use of CAP in
oncology and the implemented methodologies (cell targets, physical
parameters, direct or indirect therapies). Methods: PubMed, the International Clinical Trials Registry Platform and Google
Scholar were explored until 31 December 2017 for studies regarding the use
of plasma treatment in oncology (in vitro, in vivo,
clinical trials). Results: 190 original articles were included. Plasma jets are the most-used production
systems (72.1%). Helium alone was the most-used gas (35.8%), followed by air
(26.3%) and argon (22.1%). Studies were mostly in vitro
(94.7%) and concerned direct plasma treatments (84.2%). The most targeted
cancer cell lines are human cell lines (87.4%), in particular, in brain
cancer (16.3%). Conclusions: This study highlights the multiplicity of means of production and clinical
applications of the CAP in oncology. While some devices may be used directly
at the bedside, others open the way for the development of new
pharmaceutical products that could be generated at an industrial scale.
However, its clinical use strongly needs the development of standardized
reliable protocols, to determine the more efficient type of plasma for each
type of cancer, and its combination with conventional treatments.
Collapse
Affiliation(s)
| | - Paul Monsarrat
- Dental Faculty, Paul Sabatier University, CHU
Toulouse, France UMR STROMALab, Université Paul Sabatier, Toulouse,
France
| | - François Virard
- Centre de Recherche en Cancérologie de Lyon,
Université Lyon, Lyon, France
| | - Nofel Merbahi
- LAPLACE, UMR CNRS 5213, Université Paul Sabatier
of Toulouse, France
| | | | - Sara Laurencin-Dalicieux
- Dental Faculty, Paul Sabatier University, CHU
Toulouse, France INSERM U1043, Université Toulouse, Toulouse, France
| | - Sarah Cousty
- Dental Faculty, Paul Sabatier University, CHU
Toulouse, France Lapace F-31062, Université de Toulouse, Toulouse,
France
| |
Collapse
|
16
|
Recek N, Zhou R, Zhou R, Te'o VSJ, Speight RE, Mozetič M, Vesel A, Cvelbar U, Bazaka K, Ostrikov KK. Improved fermentation efficiency of S. cerevisiae by changing glycolytic metabolic pathways with plasma agitation. Sci Rep 2018; 8:8252. [PMID: 29844402 PMCID: PMC5974074 DOI: 10.1038/s41598-018-26227-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 04/18/2018] [Indexed: 12/14/2022] Open
Abstract
Production of ethanol by the yeast Saccharomyces cerevisiae is a process of global importance. In these processes, productivities and yields are pushed to their maximum possible values leading to cellular stress. Transient and lasting enhancements in tolerance and performance have been obtained by genetic engineering, forced evolution, and exposure to moderate levels of chemical and/or physical stimuli, yet the drawbacks of these methods include cost, and multi-step, complex and lengthy treatment protocols. Here, plasma agitation is shown to rapidly induce desirable phenotypic changes in S. cerevisiae after a single treatment, resulting in improved conversion of glucose to ethanol. With a complex environment rich in energetic electrons, highly-reactive chemical species, photons, and gas flow effects, plasma treatment simultaneously mimics exposure to multiple environmental stressors. A single treatment of up to 10 minutes performed using an atmospheric pressure plasma jet was sufficient to induce changes in cell membrane structure, and increased hexokinase 2 activity and secondary metabolite production. These results suggest that plasma treatment is a promising strategy that can contribute to improving metabolic activity in industrial microbial strains, and thus the practicality and economics of industrial fermentations.
Collapse
Affiliation(s)
- Nina Recek
- Science and Engineering Faculty, Queensland University of Technology, Brisbane, QLD 4000, Australia.,Department of Surface Engineering and Optoelectronics, Jožef Stefan Institute, Ljubljana, SI-1000, Slovenia
| | - Renwu Zhou
- Science and Engineering Faculty, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Rusen Zhou
- Science and Engineering Faculty, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | | | - Robert E Speight
- Science and Engineering Faculty, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Miran Mozetič
- Department of Surface Engineering and Optoelectronics, Jožef Stefan Institute, Ljubljana, SI-1000, Slovenia
| | - Alenka Vesel
- Department of Surface Engineering and Optoelectronics, Jožef Stefan Institute, Ljubljana, SI-1000, Slovenia
| | - Uros Cvelbar
- Department of Surface Engineering and Optoelectronics, Jožef Stefan Institute, Ljubljana, SI-1000, Slovenia
| | - Kateryna Bazaka
- Science and Engineering Faculty, Queensland University of Technology, Brisbane, QLD 4000, Australia. .,CSIRO-QUT Joint Sustainable Processes and Devices Laboratory, Commonwealth Scientific and Industrial Research Organisation, P. O. Box 218, Lindfield, NSW 2070, Australia.
| | - Kostya Ken Ostrikov
- Science and Engineering Faculty, Queensland University of Technology, Brisbane, QLD 4000, Australia. .,CSIRO-QUT Joint Sustainable Processes and Devices Laboratory, Commonwealth Scientific and Industrial Research Organisation, P. O. Box 218, Lindfield, NSW 2070, Australia.
| |
Collapse
|
17
|
Cold Atmospheric Plasma Induces ATP-Dependent Endocytosis of Nanoparticles and Synergistic U373MG Cancer Cell Death. Sci Rep 2018; 8:5298. [PMID: 29593309 PMCID: PMC5871835 DOI: 10.1038/s41598-018-23262-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 02/28/2018] [Indexed: 02/07/2023] Open
Abstract
Gold nanoparticles (AuNP) have potential as both diagnostic and therapeutic vehicles. However, selective targeting and uptake in cancer cells remains challenging. Cold atmospheric plasma (CAP) can be combined with AuNP to achieve synergistic anti-cancer cytotoxicity. To explore synergistic mechanisms, we demonstrate both rate of AuNP uptake and total amount accumulated in U373MG Glioblastoma multiforme (GBM) cells are significantly increased when exposed to 75 kV CAP generated by dielectric barrier discharge. No significant changes in the physical parameters of AuNP were caused by CAP but active transport mechanisms were stimulated in cells. Unlike many other biological effects of CAP, long-lived reactive species were not involved, and plasma-activated liquids did not replicate the effect. Chemical effects induced by direct and indirect exposure to CAP appears the dominant mediator of enhanced uptake. Transient physical alterations of membrane integrity played a minor role. 3D-reconstruction of deconvoluted confocal images confirmed AuNP accumulation in lysosomes and other acidic vesicles, which will be useful for future drug delivery and diagnostic strategies. Toxicity of AuNP significantly increased by 25-fold when combined with CAP. Our data indicate that direct exposure to CAP activates AuNP-dependent cytotoxicity by increasing AuNP endocytosis and trafficking to lysosomes in U373MG cells.
Collapse
|
18
|
Yang Y, Guo J, Zhou X, Liu Z, Wang C, Wang K, Zhang J, Wang Z. A novel cold atmospheric pressure air plasma jet for peri-implantitis treatment: An in vitro study. Dent Mater J 2017; 37:157-166. [PMID: 29176301 DOI: 10.4012/dmj.2017-030] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Peri-implantitis is difficult to treat in clinical settings; this is not only because it is a site-specific infectious disease but also because it impedes osseointegration. In this study, a novel cold atmospheric pressure air plasma jet (CAPAJ) was applied to study the treatment of peri-implantitis in vitro. CAPAJ treated the samples for 2, 4 and 6 min, respectively. To evaluate the titanium surface characteristics, the surface elemental composition (X-ray photoelectron spectroscopy [XPS]), roughness and hydrophilicity were evaluated in each group. Concurrently, the sterilization and osseointegration effect of CAPAJ were also examined. Results revealed that after CAPAJ modification, roughness and hydrophilicity of titanium surfaces were significantly increased. Moreover, XPS results demonstrated that the C1s peak was reduced and N1s and O1s peaks were obviously improved. More importantly, CAPAJ showed favorable sterilization and bone formation effects. CAPAJ seemed a simpler and more efficient strategy for the peri-implantitis treatment.
Collapse
Affiliation(s)
- Yu Yang
- Department of Stomatology, Beijing Chao-Yang Hospital, Capital Medical University
| | | | - Xuan Zhou
- Department of Stomatology, Beijing Chao-Yang Hospital, Capital Medical University
| | - Zhiqiang Liu
- Department of Stomatology, Beijing Chao-Yang Hospital, Capital Medical University
| | - Chenbao Wang
- Department of Stomatology, Beijing Chao-Yang Hospital, Capital Medical University
| | - Kaile Wang
- Academy for Advanced Interdisciplinary Studies, Peking University
| | - Jue Zhang
- College of Engineering, Peking University.,Academy for Advanced Interdisciplinary Studies, Peking University
| | - Zuomin Wang
- Department of Stomatology, Beijing Chao-Yang Hospital, Capital Medical University
| |
Collapse
|
19
|
Yan D, Sherman JH, Keidar M. Cold atmospheric plasma, a novel promising anti-cancer treatment modality. Oncotarget 2017; 8:15977-15995. [PMID: 27845910 PMCID: PMC5362540 DOI: 10.18632/oncotarget.13304] [Citation(s) in RCA: 258] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 10/29/2016] [Indexed: 01/01/2023] Open
Abstract
Over the past decade, cold atmospheric plasma (CAP), a near room temperature ionized gas has shown its promising application in cancer therapy. Two CAP devices, namely dielectric barrier discharge and plasma jet, show significantly anti-cancer capacity over dozens of cancer cell lines in vitro and several subcutaneous xenograft tumors in vivo. In contrast to conventional anti-cancer approaches and drugs, CAP is a selective anti-cancer treatment modality. Thus far establishing the chemical and molecular mechanism of the anti-cancer capacity of CAP is far from complete. In this review, we provide a comprehensive introduction of the basics of CAP, state of the art research in this field, the primary challenges, and future directions to cancer biologists.
Collapse
Affiliation(s)
- Dayun Yan
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC, USA
| | - Jonathan H Sherman
- Department of Neurological Surgery, The George Washington University,Washington, DC, USA
| | - Michael Keidar
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC, USA
| |
Collapse
|
20
|
Selective effects of non-thermal atmospheric plasma on triple-negative breast normal and carcinoma cells through different cell signaling pathways. Sci Rep 2017; 7:7980. [PMID: 28801613 PMCID: PMC5554176 DOI: 10.1038/s41598-017-08792-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 07/19/2017] [Indexed: 12/20/2022] Open
Abstract
Non-thermal atmospheric plasma (NTP) has shown its selective anticancer effects in many types of tumors in vitro and one of the main mechanisms is that the different increase of intracellular ROS in cancer and homologous normal cells. In this study, we report that NTP treatment reduces the proliferation in triple negative breast cancer (TNBC) and normal cell lines. Simultaneously, STAT3 pathway is inhibited by NTP effects. However, it is observed that normal cells MCF10A are more sensitive to ROS toxicity induced by NTP than cancer cells MDA-MB-231. When 5 mM of ROS inhibitor N-acetyl cysteine (NAC) is employed in NTP treatments, the proliferation of normal breast cells MCF10A recovers. Meanwhile, NTP effects remain significant inhibition of MDA-MB-231 cells. Our results further reveal that NTP can induce apoptosis in MDA-MB-231 cells through inhibiting interleukin-6 receptor (IL-6R) pathway. Moreover, the mechanism of NTP anti-cancer selectivity relates to constantly HER2/Akt activation induced by NTP especially in MCF10A cells but not in MDA-MB-231 cells. Therefore, these two different cell signaling pathways induced by NTP treatments in TNBC and homologous normal cells make NTP becoming a potential tool in future therapy.
Collapse
|
21
|
Synergistic Effect of Cold Atmospheric Plasma and Drug Loaded Core-shell Nanoparticles on Inhibiting Breast Cancer Cell Growth. Sci Rep 2016; 6:21974. [PMID: 26917087 PMCID: PMC4768177 DOI: 10.1038/srep21974] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 02/02/2016] [Indexed: 11/09/2022] Open
Abstract
Nano-based drug delivery devices allowing for effective and sustained targeted delivery of therapeutic agents to solid tumors have revolutionized cancer treatment. As an emerging biomedical technique, cold atmospheric plasma (CAP), an ionized non-thermal gas mixture composed of various reactive oxygen species, reactive nitrogen species, and UV photons, shows great potential for cancer treatment. Here we seek to develop a new dual cancer therapeutic method by integrating promising CAP and novel drug loaded core-shell nanoparticles and evaluate its underlying mechanism for targeted breast cancer treatment. For this purpose, core-shell nanoparticles were synthesized via co-axial electrospraying. Biocompatible poly (lactic-co-glycolic acid) was selected as the polymer shell to encapsulate anti-cancer therapeutics. Results demonstrated uniform size distribution and high drug encapsulation efficacy of the electrosprayed nanoparticles. Cell studies demonstrated the effectiveness of drug loaded nanoparticles and CAP for synergistic inhibition of breast cancer cell growth when compared to each treatment separately. Importantly, we found CAP induced down-regulation of metastasis related gene expression (VEGF, MTDH, MMP9, and MMP2) as well as facilitated drug loaded nanoparticle uptake which may aid in minimizing drug resistance-a major problem in chemotherapy. Thus, the integration of CAP and drug encapsulated nanoparticles provides a promising tool for the development of a new cancer treatment strategy.
Collapse
|
22
|
Non-thermal atmospheric plasma induces ROS-independent cell death in U373MG glioma cells and augments the cytotoxicity of temozolomide. Br J Cancer 2016; 114:435-43. [PMID: 26882067 PMCID: PMC4815779 DOI: 10.1038/bjc.2016.12] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 12/08/2015] [Accepted: 12/16/2015] [Indexed: 01/03/2023] Open
Abstract
Background: Non-thermal atmospheric plasma (NTAP) is an ionised gas produced under high voltage that can generate short-lived chemically active species and induce a cytotoxic insult in cancer cells. Cell-specific resistance to NTAP-mediated cytotoxicity has been reported in the literature. The aim of this study was to determine whether resistance against NTAP could be overcome using the human glioma cell line U373MG. Methods: Non-thermal atmospheric plasma was generated using a Dielectric Barrier Device (DBD) system with a maximum voltage output of 120 kV at 50 Hz. The viability of U373MG GBM cells and HeLa cervical carcinoma cells was determined using morphology, flow cytometry and cytotoxicity assays. Fluorescent probes and inhibitors were used to determine the mechanisms of cytotoxicity of cells exposed to the plasma field. Combinational therapy with temozolomide (TMZ) and multi-dose treatments were explored as mechanisms to overcome resistance to NTAP. Results: Non-thermal atmospheric plasma decreased cell viability in a dose (time)-dependent manner. U373MG cells were shown to be resistant to NTAP treatment when compared with HeLa cells, and the levels of intracellular reactive oxygen species (ROS) quantified in U373MG cells were much lower than in HeLa cells following exposure to the plasma field. Reactive oxygen species inhibitor N-acetyl cysteine (NAC) only alleviated the cytotoxic effects in HeLa cells and not in the relatively NTAP-resistant cell line U373MG. Longer exposures to NTAP induced a cell death independent of ROS, JNK and caspases in U373MG. The relative resistance of U373MG cells to NTAP could be overcome when used in combination with low concentrations of the GBM chemotherapy TMZ or exposure to multiple doses. Conclusions: For the very first time, we report that NTAP induces an ROS-, JNK- and caspase-independent mechanism of cell death in the U373MG GBM cell line that can be greatly enhanced when used in combination with low doses of TMZ. Further refinement of the technology may facilitate localised activation of cytotoxicity against GBM when used in combination with new and existing chemotherapeutic regimens.
Collapse
|