1
|
Wang X, Liang X, Huang S, Wei M, Xu Y, Chen X, Miao Y, Zong R, Lin X, Li S, Liu Z, Chen Q. Metformin inhibits pathological retinal neovascularization but promotes retinal fibrosis in experimental neovascular age-related macular degeneration. Front Pharmacol 2025; 16:1547492. [PMID: 40183100 PMCID: PMC11966061 DOI: 10.3389/fphar.2025.1547492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 02/24/2025] [Indexed: 04/05/2025] Open
Abstract
Purpose This study aims to investigate the effects and mechanism of action of metformin on retinal neovascularization and fibrosis in a mouse model of neovascular age-related macular degeneration (nAMD). Methods Very low-density lipoprotein receptor knockout (Vldlr -/-) mice, a mouse model of nAMD, were used in this study. Vldlr -/- mice were administered metformin on postnatal day (P) 20 for 20 days (early stage of pathological change) or at 5.5 months of age for 45 days (late stage of pathological change). Retinal leakage was examined by fundus fluorescein angiography (FFA). Retinal neovascularization was assessed by lectin staining. Retinal fibrosis was assessed by Western blotting, immunofluorescence staining, and Masson's trichrome staining. Results Retinal vascular leakage and neovascularization were significantly reduced in Vldlr -/- mice treated with metformin compared to those treated with the vehicle at P40. The protein levels of inflammatory factors and phospho(p)-STAT3 were decreased, and P38 and ERK signaling were suppressed in the retinas of metformin-treated Vldlr -/- mice relative to those in the control group at P40. Fibrotic markers were upregulated in the retinas of Vldlr -/- mice treated with metformin compared to those treated with the vehicle at 7 months. Levels of the inflammatory factors and p-STAT3 were increased, and PI3K/AKT, P38, and ERK signaling were upregulated in the retinas of metformin-treated Vldlr -/- mice compared to those in the control group at 7 months. Conclusion Metformin inhibits pathological retinal neovascularization but promotes fibrosis in experimental nAMD. These results provide evidence and highlight important considerations for the clinical use of metformin in different stages of nAMD.
Collapse
Affiliation(s)
- Xin Wang
- Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
- Department of Ophthalmology, Suining Central Hospital, Suining, Sichuan, China
| | - Xu Liang
- Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Shiya Huang
- Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Mingyan Wei
- Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Yuan Xu
- Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Xiaodong Chen
- Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Yanliang Miao
- Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Rongrong Zong
- Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Xiang Lin
- Department of Ophthalmology, Xiang’an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Shiying Li
- Department of Ophthalmology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Zuguo Liu
- Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
- Department of Ophthalmology, Xiang’an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Qian Chen
- Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
- Department of Ophthalmology, Xiang’an Hospital of Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
2
|
Soundara Pandi SP, Winter H, Smith MR, Harkin K, Bojdo J. Preclinical Retinal Disease Models: Applications in Drug Development and Translational Research. Pharmaceuticals (Basel) 2025; 18:293. [PMID: 40143072 PMCID: PMC11944893 DOI: 10.3390/ph18030293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 02/10/2025] [Accepted: 02/18/2025] [Indexed: 03/28/2025] Open
Abstract
Retinal models play a pivotal role in translational drug development, bridging preclinical research and therapeutic applications for both ocular and systemic diseases. This review highlights the retina as an ideal organ for studying advanced therapies, thanks to its immune privilege, vascular and neuronal networks, accessibility, and advanced imaging capabilities. Preclinical retinal disease models offer unparalleled insights into inflammation, angiogenesis, fibrosis, and hypoxia, utilizing clinically translatable bioimaging tools like fundoscopy, optical coherence tomography, confocal scanning laser ophthalmoscopy, fluorescein angiography, optokinetic tracking, and electroretinography. These models have driven innovations in anti-inflammatory, anti-angiogenic, and neuroprotective strategies, with broader implications for systemic diseases such as rheumatoid arthritis, Alzheimer's, and fibrosis-related conditions. By emphasizing the integration of the 3Rs principles and novel imaging modalities, this review highlights how retinal research not only enhances therapeutic precision but also minimizes ethical concerns, paving the way for more predictive and human-relevant approaches in drug development.
Collapse
Affiliation(s)
| | - Hanagh Winter
- Medinect Bioservices Ltd., Belfast BT7 1NF, UK; (S.P.S.P.); (H.W.); (M.R.S.); (K.H.)
| | - Madeleine R. Smith
- Medinect Bioservices Ltd., Belfast BT7 1NF, UK; (S.P.S.P.); (H.W.); (M.R.S.); (K.H.)
| | - Kevin Harkin
- Medinect Bioservices Ltd., Belfast BT7 1NF, UK; (S.P.S.P.); (H.W.); (M.R.S.); (K.H.)
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT9 7BL, UK
| | - James Bojdo
- Medinect Bioservices Ltd., Belfast BT7 1NF, UK; (S.P.S.P.); (H.W.); (M.R.S.); (K.H.)
| |
Collapse
|
3
|
Zhou Y, Xue F. Revolutionary drug repositioning: the preventive and therapeutic potential of metformin and other antidiabetic drugs in age-related macular degeneration. Front Pharmacol 2024; 15:1507860. [PMID: 39720591 PMCID: PMC11666363 DOI: 10.3389/fphar.2024.1507860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 11/26/2024] [Indexed: 12/26/2024] Open
Abstract
Age-related macular degeneration (AMD) is a leading cause of blindness among the elderly worldwide. Anti-vascular endothelial growth factor (anti-VEGF) injections remain the first-line therapy for AMD. However, their high cost and the need for frequent administration pose challenges to long-term adherence, highlighting the need for accessible and cost-effective preventive strategies. Emerging evidence suggests that traditional antidiabetic drugs, such as metformin, sulfonylureas, and thiazolidinediones, may offer neuroprotective benefits, opening new avenues for AMD prevention. Among these, metformin has emerged as the most promising candidate, demonstrating significant potential in reducing AMD risk, even at low cumulative doses, primarily through AMP-activated protein kinase (AMPK) activation. Sulfonylureas, although effective in stimulating insulin secretion, carry risks such as hypoglycemia, hyperinsulinemia, and a possible association with increased cancer risk. Similarly, thiazolidinediones, while improving insulin sensitivity, are associated with adverse effects, including cardiovascular risks and macular edema, limiting their broader application in AMD prevention. This paper explores the preventive potential and underlying mechanisms of these antidiabetic drugs in AMD and discusses the role of artificial intelligence in optimizing individualized prevention strategies. By advancing precision medicine, these approaches may improve public health outcomes and reduce the burden of aging-related vision loss.
Collapse
|
4
|
Xiao JF, Luo W, Mani A, Barba H, Solanki A, Droho S, Lavine JA, Skondra D. Intravitreal Metformin Protects Against Choroidal Neovascularization and Light-Induced Retinal Degeneration. Int J Mol Sci 2024; 25:11357. [PMID: 39518910 PMCID: PMC11545389 DOI: 10.3390/ijms252111357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/12/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
Neovascular age-related macular degeneration (nAMD), a leading cause of blindness in older adults, presents a challenging pathophysiology involving choroidal neovascularization (CNV) and retinal degeneration. Current treatments relying on intravitreal (IVT) administration of anti-angiogenic agents are costly and of moderate effectiveness. Metformin, the common anti-diabetic drug, has been associated with decreased odds of developing AMD. Studies have shown that metformin can mitigate cellular aging, neoangiogenesis, and inflammation across multiple diseases. This preclinical study assessed metformin's impact on vessel growth using choroidal explants before exploring IVT metformin's effects on laser-induced CNV and light-induced retinal degeneration in C57BL/6J and BALB/cJ mice, respectively. Metformin reduced new vessel growth in choroidal explants in a dose-dependent relationship. Following laser induction, IVT metformin suppressed CNV and decreased peripheral infiltration of IBA1+ macrophages/microglia. Furthermore, IVT metformin protected against retinal thinning in response to light-induced degeneration. IVT metformin downregulated genes in the choroid and retinal pigment epithelium which are associated with angiogenesis and inflammation, two key processes that drive nAMD progression. These findings underscore metformin's capacity as an anti-angiogenic and neuroprotective agent, demonstrating this drug's potential as an accessible option to help manage nAMD.
Collapse
Affiliation(s)
- Jason F. Xiao
- Department of Ophthalmology and Visual Science, University of Chicago, Chicago, IL 60637, USA; (J.F.X.); (W.L.); (A.M.)
| | - Wendy Luo
- Department of Ophthalmology and Visual Science, University of Chicago, Chicago, IL 60637, USA; (J.F.X.); (W.L.); (A.M.)
| | - Amir Mani
- Department of Ophthalmology and Visual Science, University of Chicago, Chicago, IL 60637, USA; (J.F.X.); (W.L.); (A.M.)
| | - Hugo Barba
- Department of Ophthalmology and Visual Science, University of Chicago, Chicago, IL 60637, USA; (J.F.X.); (W.L.); (A.M.)
| | | | - Steven Droho
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (S.D.); (J.A.L.)
| | - Jeremy A. Lavine
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (S.D.); (J.A.L.)
| | - Dimitra Skondra
- Department of Ophthalmology and Visual Science, University of Chicago, Chicago, IL 60637, USA; (J.F.X.); (W.L.); (A.M.)
| |
Collapse
|
5
|
Yagasaki R, Morita A, Mori A, Sakamoto K, Nakahara T. The Anti-Diabetic Drug Metformin Suppresses Pathological Retinal Angiogenesis via Blocking the mTORC1 Signaling Pathway in Mice (Metformin Suppresses Pathological Angiogenesis). Curr Eye Res 2024; 49:505-512. [PMID: 38251680 DOI: 10.1080/02713683.2024.2302865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 01/03/2024] [Indexed: 01/23/2024]
Abstract
PURPOSE Metformin, a biguanide antihyperglycemic drug, can exert various beneficial effects in addition to its glucose-lowering effect. The effects of metformin are mainly mediated by AMP-activated protein kinase (AMPK)-dependent pathway. AMPK activation interferes with the action of the mammalian target of rapamycin complex 1 (mTORC1), and blockade of mTORC1 pathway suppresses pathological retinal angiogenesis. Therefore, in this study, we examined the effects of metformin on pathological angiogenesis and mTORC1 activity in the retinas of mice with oxygen-induced retinopathy (OIR). METHODS OIR was induced by exposing the mice to 80% oxygen from postnatal day (P) 7 to P10. The OIR mice were treated with metformin, rapamycin (an inhibitor of mTORC1), or the vehicle from P10 to P12 or P14. The formation of neovascular tufts, revascularization in the central avascular areas, expression of vascular endothelial growth factor (VEGF) and VEGF receptor (VEGFR) 2, and phosphorylated ribosomal protein S6 (pS6), a downstream indicator of mTORC1 activity, were evaluated at P10, P13, or P15. RESULTS Neovascular tufts and vascular growth in the central avascular areas were observed in the retinas of P15 OIR mice. The formation of neovascular tufts, but not the revascularization in the central avascular areas, was attenuated by metformin administration from P10 to P14. Metformin had no significant inhibitory effect on the expression of VEGF and VEGFR2, but it reduced the pS6 immunoreactivity in vascular cells at the sites of angiogenesis. Rapamycin completely blocked the phosphorylation of ribosomal protein S6 and markedly reduced the formation of neovascular tufts. CONCLUSIONS These results suggest that metformin partially suppresses the formation of neovascular tufts on the retinal surface by blocking the mTORC1 signaling pathway. Metformin may exert beneficial effects against the progression of ocular diseases in which abnormal angiogenesis is associated with the pathogenesis.
Collapse
Affiliation(s)
- Rina Yagasaki
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, Tokyo, Japan
| | - Akane Morita
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, Tokyo, Japan
| | - Asami Mori
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, Tokyo, Japan
| | - Kenji Sakamoto
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, Tokyo, Japan
| | - Tsutomu Nakahara
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, Tokyo, Japan
| |
Collapse
|
6
|
Shakeri F, Mohamadynejad P, Moghanibashi M. Identification of autophagy and angiogenesis modulators in colorectal cancer based on bioinformatics analysis. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2023; 43:340-355. [PMID: 37791824 DOI: 10.1080/15257770.2023.2259431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/11/2023] [Indexed: 10/05/2023]
Abstract
Colorectal cancer (CRC) is the third most common cancer and the fourth leading cause of cancer-related death worldwide. The purpose of this study was to discover novel molecular pathways and potential prognosis biomarkers. To achieve this, we acquired five microarray datasets from the Gene Expression Omnibus (GEO) database. We identified differentially expressed genes between CRC and adjacent normal tissue samples and further validated them using The Cancer Genome Atlas (TCGA) database. Using various analytical approaches, including the construction of a competing endogenous RNA (ceRNA) network, Gene Ontology term and Kyoto Encyclopedia of Genes and Genomes pathway analyses, as well as survival analysis, we identified key genes and pathways associated with the diagnosis and prognosis of CRC. We obtained a total of 185 differentially expressed genes, comprising 17 lncRNAs, 30 miRNAs, and 138 mRNAs. The ceRNA network consisted of 17 lncRNAs, 25 miRNAs, and 7 mRNAs. Among the 7 mRNAs involved in the ceRNA network, SLC7A5 and KRT80 were found to be upregulated, while ADIPOQ, CCBE1, KCNB1, CADM2, and CHRDL1 were downregulated in CRC. Further analysis revealed that ADIPOQ and SLC7A5 are involved in the AMPK and mTOR signaling pathway, respectively. In addition, survival analysis demonstrated a statistically significant relationship between ADIPOQ, SLC7A5, and overall survival rates in CRC patients. In conclusion, our findings suggest that downregulation of ADIPOQ and upregulation of SLC7A5 in tumor cells lead to increased mTORC1 activity, reduced autophagy, enhanced angiogenesis, and ultimately contribute to cancer progression and decreased survival in CRC patients.
Collapse
Affiliation(s)
- Fariba Shakeri
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Parisa Mohamadynejad
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Mehdi Moghanibashi
- Department of Genetics, Faculty of Medicine, Kazerun Branch, Islamic Azad University, Kazerun, Iran
| |
Collapse
|
7
|
Kaufmann GT, Hyman MJ, Gonnah R, Hariprasad S, Skondra D. Association of Metformin and Other Diabetes Medication Use and the Development of New-Onset Dry Age-Related Macular Degeneration: A Case-Control Study. Invest Ophthalmol Vis Sci 2023; 64:22. [PMID: 37589984 PMCID: PMC10440611 DOI: 10.1167/iovs.64.11.22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 07/25/2023] [Indexed: 08/18/2023] Open
Abstract
Purpose To investigate if metformin use is associated with decreased odds of developing new non-neovascular ("dry") age-related macular degeneration (AMD). Methods Case-control study examining 194,135 cases with diagnoses of new-onset AMD between 2008 and 2017 and 193,990 matched controls in the Merative MarketScan Research Databases. The diabetic subgroup included 49,988 cases and 49,460 controls. Multivariable conditional logistic regressions identified the risks of exposures on the development of dry AMD. Main outcome measures were odds ratios (ORs) of developing dry AMD with metformin use. Results In multivariable conditional logistic regression, any metformin use was associated with decreased odds of developing dry AMD (OR = 0.97; 95% confidence interval [CI], 0.95-0.99). This protective effect was noted for cumulative 2-year doses of metformin of 1 to 270 g (OR = 0.93; 95% CI, 0.90-0.97) and 271 to 600 g (OR = 0.92; 95% CI, 0.89-0.96). In a diabetic subgroup, metformin use below 601 g per 2 years decreased the odds of developing dry AMD (1-270 g: OR = 0.95; 95% CI, 0.91-0.99; 271-600 g: OR = 0.92; 95% CI, 0.89-0.96). Unlike in diabetic patients with diabetic retinopathy, diabetic patients without diabetic retinopathy had decreased odds of developing dry AMD with any metformin use (OR = 0.97; 95% CI, 0.94-0.998) and cumulative two-year doses of 1 to 270 g (OR 0.96; 95% CI, 0.91-0.998) and 271 to 600 g (OR = 0.92; 95% CI, 0.88-0.96). Conclusions Metformin use was associated with decreased odds of developing dry AMD. The protective effect was observed for cumulative 2-year doses below 601 g. In diabetics, this association persisted, specifically in those without diabetic retinopathy. Therefore, metformin may be a strategy to prevent development of dry AMD.
Collapse
Affiliation(s)
- Gabriel T. Kaufmann
- Department of Ophthalmology and Visual Science, Pritzker School of Medicine, The University of Chicago, Chicago, Illinois, United States
| | - Max J. Hyman
- The Center for Health and the Social Sciences, The University of Chicago, Chicago, Illinois, United States
| | - Reem Gonnah
- Department of Ophthalmology and Visual Science, Pritzker School of Medicine, The University of Chicago, Chicago, Illinois, United States
| | - Seenu Hariprasad
- Department of Ophthalmology and Visual Science, Pritzker School of Medicine, The University of Chicago, Chicago, Illinois, United States
| | - Dimitra Skondra
- Department of Ophthalmology and Visual Science, Pritzker School of Medicine, The University of Chicago, Chicago, Illinois, United States
| |
Collapse
|
8
|
Xie EF, Hilkert Rodriguez S, Xie B, D’Souza M, Reem G, Sulakhe D, Skondra D. Identifying novel candidate compounds for therapeutic strategies in retinopathy of prematurity via computational drug-gene association analysis. Front Pediatr 2023; 11:1151239. [PMID: 37492605 PMCID: PMC10365641 DOI: 10.3389/fped.2023.1151239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 06/26/2023] [Indexed: 07/27/2023] Open
Abstract
Purpose Retinopathy of prematurity (ROP) is the leading cause of preventable childhood blindness worldwide. Although interventions such as anti-VEGF and laser have high success rates in treating severe ROP, current treatment and preventative strategies still have their limitations. Thus, we aim to identify drugs and chemicals for ROP with comprehensive safety profiles and tolerability using a computational bioinformatics approach. Methods We generated a list of genes associated with ROP to date by querying PubMed Gene which draws from animal models, human studies, and genomic studies in the NCBI database. Gene enrichment analysis was performed on the ROP gene list with the ToppGene program which draws from multiple drug-gene interaction databases to predict compounds with significant associations to the ROP gene list. Compounds with significant toxicities or without known clinical indications were filtered out from the final drug list. Results The NCBI query identified 47 ROP genes with pharmacologic annotations present in ToppGene. Enrichment analysis revealed multiple drugs and chemical compounds related to the ROP gene list. The top ten most significant compounds associated with ROP include ascorbic acid, simvastatin, acetylcysteine, niacin, castor oil, penicillamine, curcumin, losartan, capsaicin, and metformin. Antioxidants, NSAIDs, antihypertensives, and anti-diabetics are the most common top drug classes derived from this analysis, and many of these compounds have potential to be readily repurposed for ROP as new prevention and treatment strategies. Conclusion This bioinformatics analysis creates an unbiased approach for drug discovery by identifying compounds associated to the known genes and pathways of ROP. While predictions from bioinformatic studies require preclinical/clinical studies to validate their results, this technique could certainly guide future investigations for pathologies like ROP.
Collapse
Affiliation(s)
- Edward F. Xie
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, Chicago, IL, United States
| | - Sarah Hilkert Rodriguez
- Department of Ophthalmology and Visual Science, University of Chicago, Chicago, IL, United States
| | - Bingqing Xie
- Department of Medicine, University of Chicago, Chicago, IL, United States
| | - Mark D’Souza
- Center for Research Informatics, The University of Chicago, Chicago, IL, United States
| | - Gonnah Reem
- Department of Ophthalmology and Visual Science, University of Chicago, Chicago, IL, United States
| | - Dinanath Sulakhe
- Center for Research Informatics, The University of Chicago, Chicago, IL, United States
| | - Dimitra Skondra
- Department of Ophthalmology and Visual Science, University of Chicago, Chicago, IL, United States
| |
Collapse
|
9
|
Siddiqui MR, Reddy NM, Faridi HM, Shahid M, Shanley TP. Metformin alleviates lung-endothelial hyperpermeability by regulating cofilin-1/PP2AC pathway. Front Pharmacol 2023; 14:1211460. [PMID: 37361221 PMCID: PMC10285707 DOI: 10.3389/fphar.2023.1211460] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023] Open
Abstract
Background: Microvascular endothelial hyperpermeability is an earliest pathological hallmark in Acute Lung Injury (ALI), which progressively leads to Acute Respiratory Distress Syndrome (ARDS). Recently, vascular protective and anti-inflammatory effect of metformin, irrespective of glycemic control, has garnered significant interest. However, the underlying molecular mechanism(s) of metformin's barrier protective benefits in lung-endothelial cells (ECs) has not been clearly elucidated. Many vascular permeability-increasing agents weakened adherens junctions (AJ) integrity by inducing the reorganization of the actin cytoskeleton and stress fibers formation. Here, we hypothesized that metformin abrogated endothelial hyperpermeability and strengthen AJ integrity via inhibiting stress fibers formation through cofilin-1-PP2AC pathway. Methods: We pretreated human lung microvascular ECs (human-lung-ECs) with metformin and then challenged with thrombin. To investigate the vascular protective effects of metformin, we studied changes in ECs barrier function using electric cell-substrate impedance sensing, levels of actin stress fibers formation and inflammatory cytokines IL-1β and IL-6 expression. To explore the downstream mechanism, we studied the Ser3-phosphorylation-cofilin-1 levels in scramble and PP2AC-siRNA depleted ECs in response to thrombin with and without metformin pretreatment. Results: In-vitro analyses showed that metformin pretreatment attenuated thrombin-induced hyperpermeability, stress fibers formation, and the levels of inflammatory cytokines IL-6 and IL-β in human-lung-ECs. We found that metformin mitigated Ser3-phosphorylation mediated inhibition of cofilin-1 in response to thrombin. Furthermore, genetic deletion of PP2AC subunit significantly inhibited metformin efficacy to mitigate thrombin-induced Ser3-phosphorylation cofilin-1, AJ disruption and stress fibers formation. We further demonstrated that metformin increases PP2AC activity by upregulating PP2AC-Leu309 methylation in human-lung-ECs. We also found that the ectopic expression of PP2AC dampened thrombin-induced Ser3-phosphorylation-mediated inhibition of cofilin-1, stress fibers formation and endothelial hyperpermeability. Conclusion: Together, these data reveal the unprecedented endothelial cofilin-1/PP2AC signaling axis downstream of metformin in protecting against lung vascular endothelial injury and inflammation. Therefore, pharmacologically enhancing endothelial PP2AC activity may lead to the development of novel therapeutic approaches for prevention of deleterious effects of ALI on vascular ECs.
Collapse
Affiliation(s)
- M. Rizwan Siddiqui
- Department of Pediatrics, Ann & Robert H. Lurie Children’s Hospital of Chicago, Stanley Manne Children’s Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Narsa M. Reddy
- Department of Pediatrics, Ann & Robert H. Lurie Children’s Hospital of Chicago, Stanley Manne Children’s Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Hafeez M. Faridi
- Drug Discovery Center, Department of Internal Medicine, Rush University Medical Center, Chicago, IL, United States
| | - Mohd Shahid
- Department of Pharmaceutical Sciences, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Thomas P. Shanley
- Department of Pediatrics, Ann & Robert H. Lurie Children’s Hospital of Chicago, Stanley Manne Children’s Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| |
Collapse
|
10
|
Sirico A, Rossi ED, Degennaro VA, Arena V, Rizzi A, Tartaglione L, Di Leo M, Pitocco D, Lanzone A. Placental diabesity: placental VEGF and CD31 expression according to pregestational BMI and gestational weight gain in women with gestational diabetes. Arch Gynecol Obstet 2023; 307:1823-1831. [PMID: 35835917 DOI: 10.1007/s00404-022-06673-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 06/14/2022] [Indexed: 12/29/2022]
Abstract
PURPOSE The aim of this study is to investigate the placental expression of VEGF and CD31 in pregnancies complicated by gestational diabetes (GDM) and the influence of pregestational BMI and gestational weight gain (GWG) on this expression. METHODS We prospectively enrolled pregnant women with diagnosis of GDM and healthy controls who delivered in our Center between December 2016 and May 2017. Patients were grouped according to the presence of GDM and we compared pregnancy characteristics, placental VEGF and CD31 expression between the cases and controls. Immunochemistry analysis was performed to assess biomarkers positivity. Positivity of biomarkers was assessed in a dichotomic fashion with positivity set at 5% for VEGF and 1% for CD31. RESULTS 39 patients matched inclusion criteria, 29 (74.3%) women with GDM and 10 (25.7%) healthy controls. Immunochemistry analysis showed that VEGF was more expressed in placentas from women with GDM compared to controls (21/29, 72.4% vs 2/10, 20%; p = 0.007), and CD31 was more expressed in placentas from women with GDM compared to controls (6/29, 20.7% vs 0/10, 0%; risk difference 0.2). VEGF positivity was associated with the presence of GDM (aOR 22.02, 95% CI 1.13-428.08, p = 0.04), pregestational BMI (aOR 1.53, 1.00-2.34, p = 0.05) and GWG (aOR 1.47, 95% CI 1.03-2.11, p = 0.03). CD31 positivity was associated with the pregestational BMI (aOR 1.47, 95% CI 1.00-2.17, p = 0.05) and with the gestational weight gain (aOR 1.32, 95% CI 1.01-1.72, p = 0.04). CONCLUSION Pregnancies complicated by GDM are characterized by increased placental expression of VEGF and CD31, and the expression of these markers is also independently associated to maternal increased pregestational BMI and GWG, defining the concept of "placental diabesity".
Collapse
Affiliation(s)
- Angelo Sirico
- Obstetrics and High-Risk Pregnancy Unit, Department of Woman, Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli - IRCCS, Largo Agostino Gemelli 8, 00168, Rome, RM, Italy.
| | - Esther Diana Rossi
- Division of Anatomic Pathology and Histology, Fondazione Policlinico Universitario A. Gemelli - IRCCS, Largo Agostino Gemelli 8, 00168, Rome, Italy
- Università Cattolica del Sacro Cuore, Rome, Italy
| | - Valentina Anna Degennaro
- Obstetrics and High-Risk Pregnancy Unit, Department of Woman, Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli - IRCCS, Largo Agostino Gemelli 8, 00168, Rome, RM, Italy
- Department of Obstetrics and Gynecology, University of Parma, Parma, Italy
| | - Vincenzo Arena
- Pathology Unit, Department of Woman, Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli - IRCCS, Largo Agostino Gemelli 8, 00168, Rome, Italy
| | - Alessandro Rizzi
- Diabetology Unit, Fondazione Policlinico Universitario A. Gemelli - IRCCS, Largo Agostino Gemelli 8, 00168, Rome, Italy
| | - Linda Tartaglione
- Diabetology Unit, Fondazione Policlinico Universitario A. Gemelli - IRCCS, Largo Agostino Gemelli 8, 00168, Rome, Italy
| | - Mauro Di Leo
- Diabetology Unit, Fondazione Policlinico Universitario A. Gemelli - IRCCS, Largo Agostino Gemelli 8, 00168, Rome, Italy
| | - Dario Pitocco
- Diabetology Unit, Fondazione Policlinico Universitario A. Gemelli - IRCCS, Largo Agostino Gemelli 8, 00168, Rome, Italy
| | - Antonio Lanzone
- Obstetrics and High-Risk Pregnancy Unit, Department of Woman, Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli - IRCCS, Largo Agostino Gemelli 8, 00168, Rome, RM, Italy
- Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
11
|
Nguyen DD, Luo LJ, Yang CJ, Lai JY. Highly Retina-Permeating and Long-Acting Resveratrol/Metformin Nanotherapeutics for Enhanced Treatment of Macular Degeneration. ACS NANO 2023; 17:168-183. [PMID: 36524981 DOI: 10.1021/acsnano.2c05824] [Citation(s) in RCA: 110] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The development of therapeutics for effective treatments of retinal diseases is significantly constrained by various biological barriers. We herein report a nanomedicine strategy to develop nanotherapeutics featured with not only high retinal permeability but also sustained bioactive delivery. Specifically, the nanotherapeutics are rationally designed via aminolysis of resveratrol-encapsulated polycaprolactone nanoparticles (R@PCL NPs), followed by the formation of amide linkages with carboxyl-terminated transacting activator of transcription cell penetrating peptide (T) and metformin (M). The R@PCL-T/M NP nanotherapeutics are demonstrated in vitro to possess persistent drug release profiles, good ocular biocompatibility, and potent bioactive activities for targeting prevailing risk factors associated with retinal diseases. In vivo studies indicate that single-dose intravitreal administration of the R@PCL-T/M NPs can effectively improve retinal permeability (∼15-fold increase), prevent loss of endogenous antioxidants, and suppress the growth of abnormal vessels in the retina with macular degeneration for 56 days. This high treatment efficacy can be ascribed to the enhanced retinal permeability of the nanotherapeutics in conjunction with the sustained pharmacological activity of the dual drugs (R and M) in the retinal pigment epithelial region. These findings show a great promise for the development of pharmacological nanoformulations capable of targeting the retina and thereby treating complex posterior segment diseases with improved efficacies.
Collapse
Affiliation(s)
- Duc Dung Nguyen
- Department of Biomedical Engineering, Chang Gung University, Taoyuan 33302, Taiwan
| | - Li-Jyuan Luo
- Department of Biomedical Engineering, Chang Gung University, Taoyuan 33302, Taiwan
| | - Chia-Jung Yang
- Department of Biomedical Engineering, Chang Gung University, Taoyuan 33302, Taiwan
| | - Jui-Yang Lai
- Department of Biomedical Engineering, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou, Taoyuan 33305, Taiwan
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan
| |
Collapse
|
12
|
Dátilo MN, Formigari GP, de Faria JBL, de Faria JML. AMP kinase activation by Omega-3 polyunsaturated fatty acid protects the retina against ischemic insult: An in vitro and in vivo study. Exp Eye Res 2023; 226:109345. [PMID: 36509164 DOI: 10.1016/j.exer.2022.109345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/07/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
PURPOSE To investigate the possible beneficial effects of omega-3 polyunsaturated fatty acids (ω3-PUFAs) in ischemic retinal angiogenesis and whether AMP-activated protein kinase (AMPK) is involved. METHODS Human retinal microvascular endothelial cells (hRMECs) were exposed to dimethyloxalylglycine (DMOG), a hypoxia-inducible factor hydroxylase inhibitor, in the presence or absence of docosahexaenoic acid (DHA) and small interfering RNA (siRNA) for AMPKα for 24 h. Ischemic factors, endothelial mesenchymal transition marker, endothelial barrier integrity, cell migration, and tube formation were evaluated. Neonatal AMPKα2-/- and control wild-type (WT) mice were submitted to an oxygen-induced retinopathy (OIR) protocol; their nursing mother mice were either fed ω3-PUFAs or not. In the end, ischemic markers and endothelial cell proliferation were evaluated in neonatal mouse retinal tissue through immunohistochemical or immunofluorescent assays among all studied groups. RESULTS Cells exposed to DMOG displayed increased expressions of hypoxic and endothelial mesenchymal transition (vimentin) markers and barrier disarrangement of Zonula Occludens-1 compared to the control, accompanied by increased cellular migration and tube formation (p < 0.05). AMPK activity was significantly decreased. Supplementation with DHA restored the mentioned alterations compared to DMOG (p<0.05). In siRNAAMPKα-treated cells, the beneficial effects observed with DHA were abolished. DHA upregulated G-protein receptor-120 (GPR120), which promptly increased intracellular levels of calcium (p ≤ 0.001), which consequently increased Calcium/calmodulin-dependent protein kinase kinase β expression (CaMKKβ) thus phosphorylating AMPKThr172. AMPKα2-/- and wild-type (WT) OIR mice exhibited similar retinal ischemic changes, and the oral supplementation with ω3-PUFA efficiently prevented the noticed ischemic alterations only in WT mice, suggesting that AMPKα2 is pivotal in the protective effects of ω3-PUFA. CONCLUSIONS ω3-PUFAs protect the retina from the effects of ischemic conditions, and this effect occurs via the GPR120-CaMKKβ-AMPK axis. A better understanding of this mechanism might improve the control of pathological angiogenesis in retinal ischemic diseases.
Collapse
Affiliation(s)
- Marcella N Dátilo
- Renal Pathophysiology Laboratory, Investigation on Diabetes Complications, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Guilherme P Formigari
- Renal Pathophysiology Laboratory, Investigation on Diabetes Complications, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - José B Lopes de Faria
- Renal Pathophysiology Laboratory, Investigation on Diabetes Complications, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Jacqueline M Lopes de Faria
- Renal Pathophysiology Laboratory, Investigation on Diabetes Complications, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, SP, Brazil.
| |
Collapse
|
13
|
Asare-Bediako B, Adu-Agyeiwaah Y, Abad A, Li Calzi S, Floyd JL, Prasad R, DuPont M, Asare-Bediako R, Bustelo XR, Grant MB. Hematopoietic Cells Influence Vascular Development in the Retina. Cells 2022; 11:3207. [PMID: 36291075 PMCID: PMC9601270 DOI: 10.3390/cells11203207] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/04/2022] [Accepted: 10/09/2022] [Indexed: 11/16/2022] Open
Abstract
Hematopoietic cells play a crucial role in the adult retina in health and disease. Monocytes, macrophages, microglia and myeloid angiogenic cells (MACs) have all been implicated in retinal pathology. However, the role that hematopoietic cells play in retinal development is understudied. The temporal changes in recruitment of hematopoietic cells into the developing retina and the phenotype of the recruited cells are not well understood. In this study, we used the hematopoietic cell-specific protein Vav1 to track and investigate hematopoietic cells in the developing retina. By flow cytometry and immunohistochemistry, we show that hematopoietic cells are present in the retina as early as P0, and include microglia, monocytes and MACs. Even before the formation of retinal blood vessels, hematopoietic cells localize to the inner retina where they eventually form networks that intimately associate with the developing vasculature. Loss of Vav1 lead to a reduction in the density of medium-sized vessels and an increased inflammatory response in retinal astrocytes. When pups were subjected to oxygen-induced retinopathy, hematopoietic cells maintained a close association with the vasculature and occasionally formed 'frameworks' for the generation of new vessels. Our study provides further evidence for the underappreciated role of hematopoietic cells in retinal vasculogenesis and the formation of a healthy retina.
Collapse
Affiliation(s)
- Bright Asare-Bediako
- Vision Science Graduate Program, School of Optometry, University of Alabama at Birmingham, Birmingham, AL 35233, USA
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama, Birmingham, AL 35294, USA
| | - Yvonne Adu-Agyeiwaah
- Vision Science Graduate Program, School of Optometry, University of Alabama at Birmingham, Birmingham, AL 35233, USA
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama, Birmingham, AL 35294, USA
| | - Antonio Abad
- Centro de Investigación del Cáncer de Salamanca, CSIC and University of Salamanca, 37007 Salamanca, Spain
- Instituto de Biología Molecular y Celular del Cáncer, CSIC and University of Salamanca, 37007 Salamanca, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBER), CSIC and University of Salamanca, 37007 Salamanca, Spain
| | - Sergio Li Calzi
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama, Birmingham, AL 35294, USA
| | - Jason L. Floyd
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama, Birmingham, AL 35294, USA
| | - Ram Prasad
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama, Birmingham, AL 35294, USA
| | - Mariana DuPont
- Vision Science Graduate Program, School of Optometry, University of Alabama at Birmingham, Birmingham, AL 35233, USA
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama, Birmingham, AL 35294, USA
| | - Richmond Asare-Bediako
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY 14623, USA
| | - Xose R. Bustelo
- Centro de Investigación del Cáncer de Salamanca, CSIC and University of Salamanca, 37007 Salamanca, Spain
| | - Maria B. Grant
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama, Birmingham, AL 35294, USA
| |
Collapse
|
14
|
Jiang J, Chen Y, Zhang H, Yuan W, Zhao T, Wang N, Fan G, Zheng D, Wang Z. Association between metformin use and the risk of age-related macular degeneration in patients with type 2 diabetes: a retrospective study. BMJ Open 2022; 12:e054420. [PMID: 35473747 PMCID: PMC9045056 DOI: 10.1136/bmjopen-2021-054420] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
OBJECTIVES To investigate the effect of metformin on the decreased risk of developing age-related macular degeneration (AMD) in patients with type 2 diabetes mellitus (T2DM) for ≥10 years. DESIGN A retrospective study. PARTICIPANTS Patients aged ≥50 with a diagnosis of T2DM no less than 10 years were included. METHODS Variables predisposing to AMD were reviewed; the potential confounders related to T2DM or AMD were selected from literature records; AMD and diabetic retinopathy (DR) were diagnosed by funduscopy, optical coherence tomography and/or fluorescein angiography. The subgroup analysis was performed in early and late AMD. The protective effect of metformin was evaluated in duration-response and dose-response patterns. RESULTS A total of 324 patients (115 metformin non-users and 209 users) were included in the final analysis. AMD was observed in 15.8% of metformin users and 45.2% of metformin non-users (p<0.0001). The ORs for any AMD, early AMD and late AMD present in patients with DR were 0.06 (0.02-0.20), 0.03 (0.00-0.20) and 0.17 (0.04-0.75). The serum high-density lipoprotein level was positively associated with the late AMD risk (p=0.0054). When analysed by the tertiles of cumulative duration, a similarly reduced risk was observed for the second (5-9 years) (OR: 0.24, 95% CI: 0.08 to 0.75) and third tertiles (≥10 years) (OR: 0.22, 95% CI: 0.09 to 0.52) compared with the first tertile (≤4 years). CONCLUSION Among patients with T2DM for ≥10 years, metformin users were less likely to develop any AMD and early AMD than non-users; however, the late AMD was not significantly associated with the use of metformin. Also, AMD was less prevalent in patients with DR. The prolonged metformin treatment with a high cumulative dose enhanced the protective effect against AMD. Metformin significantly reduces the AMD risk when the cumulative duration is >5 years.
Collapse
Affiliation(s)
- Jingjing Jiang
- Ophthalmology, China-Japan Friendship Hospital, Beijing, China
| | - Yi Chen
- Ophthalmology, China-Japan Friendship Hospital, Beijing, China
| | - Hongsong Zhang
- Ophthalmology, China-Japan Friendship Hospital, Beijing, China
| | - Wei Yuan
- Ophthalmology, China-Japan Friendship Hospital, Beijing, China
| | - Tong Zhao
- Ophthalmology, China-Japan Friendship Hospital, Beijing, China
| | - Na Wang
- Endocrinology, China-Japan Friendship Hospital, Beijing, China
| | - Guohui Fan
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Dongxing Zheng
- Ophthalmology, China-Japan Friendship Hospital, Beijing, China
| | - Zhijun Wang
- Ophthalmology, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
15
|
Amin SV, Khanna S, Parvar SP, Shaw LT, Dao D, Hariprasad SM, Skondra D. Metformin and retinal diseases in preclinical and clinical studies: Insights and review of literature. Exp Biol Med (Maywood) 2022; 247:317-329. [PMID: 35068220 PMCID: PMC8899338 DOI: 10.1177/15353702211069986] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Metformin is one of the most prescribed drugs in the world giving potential health benefits beyond that of type 2 diabetes (T2DM). Emerging evidence suggests that it may have protective effects for retinal/posterior segment diseases including diabetic retinopathy (DR), age-related macular degeneration (AMD), inherited retinal degeneration such as retinitis pigmentosa (RP), primary open angle glaucoma (POAG), retinal vein occlusion (RVO), and uveitis. Metformin exerts potent anti-inflammatory, antiangiogenic, and antioxidative effects on the retina in response to pathologic stressors. In this review, we highlight the broad mechanism of action of metformin through key preclinical studies on animal models and cell lines used to simulate human retinal disease. We then explore the sparse but promising retrospective clinical data on metformin's potential protective role in DR, AMD, POAG, and uveitis. Prospective clinical data is needed to clarify metformin's role in management of posterior segment disorders. However, given metformin's proven broad biochemical effects, favorable safety profile, relatively low cost, and promising data to date, it may represent a new therapeutic preventive and strategy for retinal diseases.
Collapse
Affiliation(s)
- Shivam V Amin
- Department of Ophthalmology and Visual Science, The University of Chicago, Chicago, IL 60637, USA
| | - Saira Khanna
- Department of Ophthalmology and Visual Science, The University of Chicago, Chicago, IL 60637, USA
| | - Seyedeh P Parvar
- Islamic Azad University Tehran Faculty of Medicine, Tehran QCGM+X9, Tehran Province, Iran
| | - Lincoln T Shaw
- Department of Ophthalmology and Visual Science, The University of Chicago, Chicago, IL 60637, USA
| | - David Dao
- Department of Ophthalmology and Visual Science, The University of Chicago, Chicago, IL 60637, USA
| | - Seenu M Hariprasad
- Department of Ophthalmology and Visual Science, The University of Chicago, Chicago, IL 60637, USA
| | - Dimitra Skondra
- Department of Ophthalmology and Visual Science, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
16
|
Dang KR, Wu T, Hui YN, Du HJ. Newly-found functions of metformin for the prevention and treatment of age-related macular degeneration. Int J Ophthalmol 2021; 14:1274-1280. [PMID: 34414094 PMCID: PMC8342286 DOI: 10.18240/ijo.2021.08.20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 05/11/2021] [Indexed: 12/18/2022] Open
Abstract
Metformin (MET), a first-line oral agent used to treat diabetes, exerts its function mainly by activating adenosine monophosphate-activated protein. The accumulation of oxidized phospholipids in the outer layer of the retina plays a key role in retinal pigment epithelium (RPE) cells death and the formation of choroidal neovascularization (CNV), which mean the development of age-related macular degeneration (AMD). Recent studies have shown that MET can regulate lipid metabolism, inhibit inflammation, and prohibit retinal cell death and CNV formation due to various pathological factors. Here, newly discovered functions of MET that may be used for the prevention and treatment of AMD were reviewed.
Collapse
Affiliation(s)
- Kuan-Rong Dang
- Department of Ophthalmology, Xijing Hospital, Eye Institute of Chinese PLA, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Tong Wu
- Department of Ophthalmology, Xijing Hospital, Eye Institute of Chinese PLA, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Yan-Nian Hui
- Department of Ophthalmology, Xijing Hospital, Eye Institute of Chinese PLA, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Hong-Jun Du
- Department of Ophthalmology, Xijing Hospital, Eye Institute of Chinese PLA, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| |
Collapse
|
17
|
Wang JL, Lan YW, Tsai YT, Chen YC, Staniczek T, Tsou YA, Yen CC, Chen CM. Additive Antiproliferative and Antiangiogenic Effects of Metformin and Pemetrexed in a Non-Small-Cell Lung Cancer Xenograft Model. Front Cell Dev Biol 2021; 9:688062. [PMID: 34235153 PMCID: PMC8255984 DOI: 10.3389/fcell.2021.688062] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/31/2021] [Indexed: 12/16/2022] Open
Abstract
Lung cancer is heterogeneous and challenging to cope with once it has progressed. Chemotherapy is the first step once no active driver mutation has been discovered. Non-antitumor drugs have been found to be beneficial when used as adjuvants to chemotherapy. In this study, the additive effect and mechanism of metformin combined with pemetrexed in non-small-cell lung cancer (NSCLC) cells were elucidated. Three NSCLC cell lines, A549, H1975, and HCC827, were used to analyze tumor cell proliferation, colony formation and the cell cycle in vitro when exposed to metformin alone, pemetrexed alone or their combination. We found that combination treatment in three cell lines exerted antiproliferative effects through cell cycle arrest in the S phase. An ex vivo chicken chorioallantoic membrane (CAM) assay was used to examine the antiangiogenic effect of metformin combined with pemetrexed on vascular structure formation. We further created an A549 orthotopic xenograft model with an in vivo imaging system (IVIS) and explored the associated indicators involved in the tumorigenic process. The in vitro results showed that the combination of metformin and pemetrexed exhibited an antiproliferative effect in reducing cell viability and colony formation, the downregulation of cyclin D1 and A2 and the upregulation of CDKN1B, which are involved in the G1/S phase. For antiangiogenic effects, the combination therapy inhibited the vascular structure, as proven by the CAM assay. We elucidated that combination therapy could target VEGFA and Endoglin by RT-qPCR, ELISA and histopathological findings in an A549 orthotopic NSCLC xenograft model. Our research demonstrated the additive antiproliferative and antiangiogenic effects of the combination of metformin with pemetrexed in NSCLC and could be applied to clinical lung cancer therapy.
Collapse
Affiliation(s)
- Jiun-Long Wang
- Ph.D. Program in Translational Medicine, Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan.,Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Ying-Wei Lan
- Ph.D. Program in Translational Medicine, Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Yi-Ting Tsai
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Ying-Cheng Chen
- Ph.D. Program in Translational Medicine, Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Theresa Staniczek
- Department of Dermatology, Venereology and Allergology, Center of Excellence in Dermatology, University Medical Center and Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Yung-An Tsou
- Department of Otolaryngology-Head and Neck Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Chih-Ching Yen
- Department of Internal Medicine, China Medical University Hospital, College of Health Care, China Medical University, Taichung, Taiwan
| | - Chuan-Mu Chen
- Ph.D. Program in Translational Medicine, Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan.,The iEGG and Animal Biotechnology Center, Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
18
|
Romdhoniyyah DF, Harding SP, Cheyne CP, Beare NAV. Metformin, A Potential Role in Age-Related Macular Degeneration: A Systematic Review and Meta-Analysis. Ophthalmol Ther 2021; 10:245-260. [PMID: 33846958 PMCID: PMC8079568 DOI: 10.1007/s40123-021-00344-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 03/27/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Currently, no generally approved medical treatment can delay the onset of age-related macular degeneration (AMD) or slow the progression of degenerative changes. Repurposing drugs with beneficial effects on AMD pathophysiology offers a route to new treatments which is faster, cost-effective, and safer for patients. Recent studies indicate a potential role for metformin in delaying AMD development and progression. In this context, we conducted a systematic review and meta-analysis to look for beneficial associations between metformin and AMD. METHODS We systematically searched Medline and Embase (via Ovid), Web of Science, and ClinicalTrials.gov databases for clinical studies in humans that examined the associations between metformin treatment and AMD published from inception to February 2021. We calculated pooled odds ratio (OR) with 95% confidence interval (CI) considering a random effect model in the meta-analysis. RESULTS Five retrospective studies met the inclusion criteria. There are no prospective studies that have reported the effect of metformin in AMD. The meta-analysis showed that people taking metformin were less likely to have AMD although statistical significance was not met (pooled adjusted OR = 0.80, 95% CI 0.54-1.05, I2 = 98.8%). Subgroup analysis of the association between metformin and early and late AMD could not be performed since the data was not available from the included studies. CONCLUSIONS Analysis of retrospective data suggests a signal that metformin may be associated with decreased risk of any AMD. It should be interpreted with caution because of the failure to meet statistical significance, the small number of studies, and the limitation of routine record data. However prospective studies are warranted in generalizable populations without diabetes, of varied ethnicities, and AMD stages. Clinical trials are needed to determine if metformin has efficacy in treating early and late-stage AMD.
Collapse
Affiliation(s)
- Dewi Fathin Romdhoniyyah
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, L7 8TX, UK.
| | - Simon P Harding
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, L7 8TX, UK
- St. Paul's Eye Unit, Liverpool University Hospitals NHS Foundation Trust, Member of Liverpool Health Partners, Liverpool, UK
| | - Christopher P Cheyne
- Department of Health Data Science, Institute of Population Health, University of Liverpool, Liverpool, UK
| | - Nicholas A V Beare
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, L7 8TX, UK
- St. Paul's Eye Unit, Liverpool University Hospitals NHS Foundation Trust, Member of Liverpool Health Partners, Liverpool, UK
| |
Collapse
|
19
|
Lui KH, Li S, Lo WS, Gu Y, Wong WT. In vivo photoacoustic imaging for monitoring treatment outcome of corneal neovascularization with metformin eye drops. BIOMEDICAL OPTICS EXPRESS 2021; 12:3597-3606. [PMID: 34221681 PMCID: PMC8221937 DOI: 10.1364/boe.423982] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/21/2021] [Accepted: 04/21/2021] [Indexed: 05/25/2023]
Abstract
Corneal neovascularization (CNV) compromises corneal avascularity and visual acuity. Current clinical visualization approaches are subjective and unable to provide molecular information. Photoacoustic (PA) imaging offers an objective and non-invasive way for angiogenesis investigation through hemodynamic and oxygen saturation level (sO2) quantification. Here, we demonstrate the utility of PA and slit lamp microscope for in vivo rat CNV model. PA images revealed untreated corneas exhibited higher sO2 level than treatment groups. The PA results complement with the color image obtained with slit lamp. These data suggest PA could offer an objective and non-invasive method for monitoring CNV progression and treatment outcome through the sO2 quantification.
Collapse
Affiliation(s)
- Kwok-Ho Lui
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
- These authors contributed equally
| | - Shiying Li
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
- These authors contributed equally
| | - Wai-sum Lo
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Yanjuan Gu
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Wing-Tak Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
- Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, China
| |
Collapse
|
20
|
Watanabe K, Asano D, Ushikubo H, Morita A, Mori A, Sakamoto K, Ishii K, Nakahara T. Metformin Protects against NMDA-Induced Retinal Injury through the MEK/ERK Signaling Pathway in Rats. Int J Mol Sci 2021; 22:ijms22094439. [PMID: 33922757 PMCID: PMC8123037 DOI: 10.3390/ijms22094439] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/18/2021] [Accepted: 04/19/2021] [Indexed: 12/11/2022] Open
Abstract
Metformin, an anti-hyperglycemic drug of the biguanide class, exerts positive effects in several non-diabetes-related diseases. In this study, we aimed to examine the protective effects of metformin against N-methyl-D-aspartic acid (NMDA)-induced excitotoxic retinal damage in rats and determine the mechanisms of its protective effects. Male Sprague–Dawley rats (7 to 9 weeks old) were used in this study. Following intravitreal injection of NMDA (200 nmol/eye), the number of neuronal cells in the ganglion cell layer and parvalbumin-positive amacrine cells decreased, whereas the number of CD45-positive leukocytes and Iba1-positive microglia increased. Metformin attenuated these NMDA-induced responses. The neuroprotective effect of metformin was abolished by compound C, an inhibitor of AMP-activated protein kinase (AMPK). The AMPK activator, AICAR, exerted a neuroprotective effect in NMDA-induced retinal injury. The MEK1/2 inhibitor, U0126, reduced the neuroprotective effect of metformin. These results suggest that metformin protects against NMDA-induced retinal neurotoxicity through activation of the AMPK and MEK/extracellular signal-regulated kinase (ERK) signaling pathways. This neuroprotective effect could be partially attributable to the inhibitory effects on inflammatory responses.
Collapse
Affiliation(s)
- Koki Watanabe
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, Tokyo 108-8641, Japan; (K.W.); (D.A.); (H.U.); (A.M.); (A.M.); (K.S.); (K.I.)
| | - Daiki Asano
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, Tokyo 108-8641, Japan; (K.W.); (D.A.); (H.U.); (A.M.); (A.M.); (K.S.); (K.I.)
| | - Hiroko Ushikubo
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, Tokyo 108-8641, Japan; (K.W.); (D.A.); (H.U.); (A.M.); (A.M.); (K.S.); (K.I.)
- Center for Pharmaceutical Education, Faculty of Pharmacy, Yokohama University of Pharmacy, Kanagawa 245-0066, Japan
| | - Akane Morita
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, Tokyo 108-8641, Japan; (K.W.); (D.A.); (H.U.); (A.M.); (A.M.); (K.S.); (K.I.)
| | - Asami Mori
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, Tokyo 108-8641, Japan; (K.W.); (D.A.); (H.U.); (A.M.); (A.M.); (K.S.); (K.I.)
- Laboratory of Medical Pharmacology, Department of Clinical & Pharmaceutical Sciences, Faculty of Pharma-Sciences, Teikyo University, Tokyo 173-8605, Japan
| | - Kenji Sakamoto
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, Tokyo 108-8641, Japan; (K.W.); (D.A.); (H.U.); (A.M.); (A.M.); (K.S.); (K.I.)
- Laboratory of Medical Pharmacology, Department of Clinical & Pharmaceutical Sciences, Faculty of Pharma-Sciences, Teikyo University, Tokyo 173-8605, Japan
| | - Kunio Ishii
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, Tokyo 108-8641, Japan; (K.W.); (D.A.); (H.U.); (A.M.); (A.M.); (K.S.); (K.I.)
- Center for Pharmaceutical Education, Faculty of Pharmacy, Yokohama University of Pharmacy, Kanagawa 245-0066, Japan
| | - Tsutomu Nakahara
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, Tokyo 108-8641, Japan; (K.W.); (D.A.); (H.U.); (A.M.); (A.M.); (K.S.); (K.I.)
- Correspondence: ; Tel./Fax: +81-3-3444-6205
| |
Collapse
|
21
|
Ren Y, Luo H. Metformin: The next angiogenesis panacea? SAGE Open Med 2021; 9:20503121211001641. [PMID: 33796300 PMCID: PMC7970164 DOI: 10.1177/20503121211001641] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 02/17/2021] [Indexed: 12/18/2022] Open
Abstract
Angiogenesis, the development of new blood vessels from existing ones, is
a critical process in wound healing and skeletal muscle hypertrophy.
It also leads to pathological conditions such as retinopathy and tumor
genesis. Metformin, the first-line treatment for type 2 diabetic
mellitus, has a specific regulatory effect on the process of
angiogenesis. Anti-angiogenesis can inhibit the occurrence and
metastasis of tumors and alleviate patients’ symptoms with polycystic
ovary syndrome. Moreover, promoting angiogenesis effect can accelerate
wound healing and promote stroke recovery and limb ischemia
reconstruction. This review reorganizes metformin in angiogenesis, and
the underlying mechanism in alleviating disease to bring some
inspiration to relevant researchers.
Collapse
Affiliation(s)
- Yu Ren
- Department of Pharmacy, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, China
| | - Hua Luo
- Department of Orthopaedics, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, China
| |
Collapse
|
22
|
Huang XL, Khan MI, Wang J, Ali R, Ali SW, Zahra QUA, Kazmi A, Lolai A, Huang YL, Hussain A, Bilal M, Li F, Qiu B. Role of receptor tyrosine kinases mediated signal transduction pathways in tumor growth and angiogenesis-New insight and futuristic vision. Int J Biol Macromol 2021; 180:739-752. [PMID: 33737188 DOI: 10.1016/j.ijbiomac.2021.03.075] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/13/2021] [Accepted: 03/13/2021] [Indexed: 12/18/2022]
Abstract
In the past two decades, significant progress has been made in the past two decades towards the understanding of the basic mechanisms underlying cancer growth and angiogenesis. In this context, receptor tyrosine kinases (RTKs) play a pivotal role in cell proliferation, differentiation, growth, motility, invasion, and angiogenesis, all of which contribute to tumor growth and progression. Mutations in RTKs lead to abnormal signal transductions in several pathways such as Ras-Raf, MEK-MAPK, PI3K-AKT and mTOR pathways, affecting a wide range of biological functions including cell proliferation, survival, migration and vascular permeability. Increasing evidence demonstrates that multiple kinases are involved in angiogenesis including RTKs such as vascular endothelial growth factor, platelet derived growth factor, epidermal growth factor, insulin-like growth factor-1, macrophage colony-stimulating factor, nerve growth factor, fibroblast growth factor, Hepatocyte Growth factor, Tie 1 & 2, Tek, Flt-3, Flt-4 and Eph receptors. Overactivation of RTKs and its downstream regulation is implicated in tumor initiation and angiogenesis, representing one of the hallmarks of cancer. This review discusses the role of RTKs, PI3K, and mTOR, their involvement, and their implication in pro-oncogenic cellular processes and angiogenesis with effective approaches and newly approved drugs to inhibit their unrestrained action.
Collapse
Affiliation(s)
- Xiao Lin Huang
- School of Computer Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Muhammad Imran Khan
- Hefei National Lab for Physical Sciences at the Microscale and the Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui 230027, China.
| | - Jing Wang
- First Affiliated Hospital of University of Science and Technology of China Hefei, Anhui 230036, China
| | - Rizwan Ali
- Hefei National Lab for Physical Sciences at the Microscale and the Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Syed Wajahat Ali
- Hefei National Lab for Physical Sciences at the Microscale and the Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Qurat-Ul-Ain Zahra
- Hefei National Lab for Physical Sciences at the Microscale and the Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Ahsan Kazmi
- Department of Pathology, Al-Nafees Medical College and Hospital, Isra University, Islamabad 45600, Pakistan
| | - Arbelo Lolai
- School of Computer Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Yu Lin Huang
- School of Computer Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Alamdar Hussain
- Department of Laboratory Medicine, Karolinska Institutet, Karolinska Hospital, Huddinge, SE 141 86 Stockholm, Sweden; Department of Biosciences, COMSATS Institute of Information Technology, Chak Shahzad Campus, Islamabad 44000, Pakistan
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Fenfen Li
- Hefei National Lab for Physical Sciences at the Microscale and the Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui 230027, China.
| | - Bensheng Qiu
- Hefei National Lab for Physical Sciences at the Microscale and the Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui 230027, China.
| |
Collapse
|
23
|
Alomar SY, M Barakat B, Eldosoky M, Atef H, Mohamed AS, Elhawary R, El-Shafey M, Youssef AM, Elkazaz AY, Gabr AM, Elaskary AA, Salih MAK, Alolayan SO, Zaitone SA. Protective effect of metformin on rat diabetic retinopathy involves suppression of toll-like receptor 4/nuclear factor-k B expression and glutamate excitotoxicity. Int Immunopharmacol 2021; 90:107193. [PMID: 33246827 DOI: 10.1016/j.intimp.2020.107193] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/27/2020] [Accepted: 11/08/2020] [Indexed: 01/27/2023]
Abstract
Microvascular complications of diabetes mellitus are progressively significant reasons for mortality. Metformin (MET) is considered as the first-line therapy for type 2 diabetes patients, and may be especially beneficial in cases of diabetic retinopathy although the precise mechanisms of MET action are not fully elucidated. The current study was designed to inspect the antioxidant and modulatory actions of MET on DRET in streptozotocin-induced diabetic rats. The effect of MET on the toll-like receptor 4/nuclear factor kappa B (TLR4/NFkB), inflammatory burden and glutamate excitotoxicity was assessed. Twenty-four male rats were assigned to four experimental groups: (1) Vehicle group, (2) Diabetic control: developed diabetes by injection of streptozotocin (60 mg/kg, i.p.). (3&4) Diabetic + MET group: diabetic rats were left for 9 weeks without treatment and then received oral MET 100 and 200 mg/kg for 6 weeks. Retinal samples were utilized in biochemical, histological, immunohistochemical and electron microscopic studies. MET administration significantly decreased retinal level of insulin growth factor and significantly suppressed the diabetic induced increase of malondialdehyde, glutamate, tumor necrosis factor-α and vascular endothelial growth factor (VEGF). Further, MET decreased the retinal mRNA expression of NFkB, tumor necrosis factor-α and TLR4 in diabetic rats. The current findings shed the light on MET's efficacy as an adjuvant therapy to hinder the development of diabetic retinopathy, at least partly, via inhibition of oxidative stress-induced NFkB/TLR4 pathway and suppression of glutamate excitotoxicity.
Collapse
Affiliation(s)
- Suliman Y Alomar
- Doping Research Chair, Department of Zoology, College of Science, King Saud University, Riyadh 11495, Saudi Arabia.
| | - Bassant M Barakat
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt; Department of Clinical Pharmacy, College of Clinical Pharmacy, Al-Baha University, Al-Baha, Saudi Arabia
| | - Mohamed Eldosoky
- Department of Neuroscience Technology, College of Applied Sciences, Jubail Imam Abdulrahman bin Faisal University, Saudi Arabia
| | - Hoda Atef
- Department of Histology and Cell Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Abdelaty Shawky Mohamed
- Pathology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt; Basic Medical Sciences Department, College of Medicine, AlMaarefa University, Riyadh, Saudi Arabia
| | - Reda Elhawary
- Department of Pathology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Mohamed El-Shafey
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, Egypt; Physiological Sciences Department, Fakeeh College for Medical Sciences, Jeddah, Saudi Arabia
| | - Amal M Youssef
- Department of Physiology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Amany Y Elkazaz
- Biochemistry and Molecular Biology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt; Biochemistry and Molecular Biology Department, Faculty of Medicine, Portsaid University, Portsaid, Egypt
| | - Attia M Gabr
- Department of Clinical Pharmacology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt; Pharmacology and Therapeutics Department, College of Medicine, Qassim University, Qassim, Saudi Arabia
| | | | - Mohamed A K Salih
- Ophthalmology Department, Al-Azher Asyut Faculty of Medicine for Men, Asyut, Egypt
| | - Sultan Othman Alolayan
- Clinical and Hospital Pharmacy Department, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah, Saudi Arabia
| | - Sawsan A Zaitone
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia.
| |
Collapse
|
24
|
Wang G, Lin F, Wan Q, Wu J, Luo M. Mechanisms of action of metformin and its regulatory effect on microRNAs related to angiogenesis. Pharmacol Res 2020; 164:105390. [PMID: 33352227 DOI: 10.1016/j.phrs.2020.105390] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/07/2020] [Accepted: 12/12/2020] [Indexed: 02/07/2023]
Abstract
Angiogenesis is rapidly initiated in response to pathological conditions and is a key target for pharmaceutical intervention in various malignancies. Anti-angiogenic therapy has emerged as a potential and effective therapeutic strategy for treating cancer and cardiovascular-related diseases. Metformin, a first-line oral antidiabetic agent for type 2 diabetes mellitus (T2DM), not only reduces blood glucose levels and improves insulin sensitivity and exerts cardioprotective effects but also shows benefits against cancers, cardiovascular diseases, and other diverse diseases and regulates angiogenesis. MicroRNAs (miRNAs) are endogenous noncoding RNA molecules with a length of approximately 19-25 bases that are widely involved in controlling various human biological processes. A large number of miRNAs are involved in the regulation of cardiovascular cell function and angiogenesis, of which miR-21 not only regulates vascular cell proliferation, migration and apoptosis but also plays an important role in angiogenesis. The relationship between metformin and abnormal miRNA expression has gradually been revealed in the context of numerous diseases and has received increasing attention. This paper reviews the drug-target interactions and drug repositioning events of metformin that influences vascular cells and has benefits on angiogenesis-mediated effects. Furthermore, we use miR-21 as an example to explain the specific molecular mechanism underlying metformin-mediated regulation of the miRNA signaling pathway controlling angiogenesis and vascular protective effects. These findings may provide a new therapeutic target and theoretical basis for the clinical prevention and treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Gang Wang
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan, China; Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, the School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.
| | - Fang Lin
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan, China; Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, the School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.
| | - Qin Wan
- Department of Endocrinology, Nephropathy Clinical Medical Research Center of Sichuan Province, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.
| | - Jianbo Wu
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan, China; Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, the School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China; Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, United States.
| | - Mao Luo
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan, China; Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, the School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
25
|
Skol AD, Jung SC, Sokovic AM, Chen S, Fazal S, Sosina O, Borkar PP, Lin A, Sverdlov M, Cao D, Swaroop A, Bebu I, Stranger BE, Grassi MA. Integration of genomics and transcriptomics predicts diabetic retinopathy susceptibility genes. eLife 2020; 9:59980. [PMID: 33164750 PMCID: PMC7728435 DOI: 10.7554/elife.59980] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 11/06/2020] [Indexed: 02/06/2023] Open
Abstract
We determined differential gene expression in response to high glucose in lymphoblastoid cell lines derived from matched individuals with type 1 diabetes with and without retinopathy. Those genes exhibiting the largest difference in glucose response were assessed for association with diabetic retinopathy in a genome-wide association study meta-analysis. Expression quantitative trait loci (eQTLs) of the glucose response genes were tested for association with diabetic retinopathy. We detected an enrichment of the eQTLs from the glucose response genes among small association p-values and identified folliculin (FLCN) as a susceptibility gene for diabetic retinopathy. Expression of FLCN in response to glucose was greater in individuals with diabetic retinopathy. Independent cohorts of individuals with diabetes revealed an association of FLCN eQTLs with diabetic retinopathy. Mendelian randomization confirmed a direct positive effect of increased FLCN expression on retinopathy. Integrating genetic association with gene expression implicated FLCN as a disease gene for diabetic retinopathy. One of the side effects of diabetes is loss of vision from diabetic retinopathy, which is caused by injury to the light sensing tissue in the eye, the retina. Almost all individuals with diabetes develop diabetic retinopathy to some extent, and it is the leading cause of irreversible vision loss in working-age adults in the United States. How long a person has been living with diabetes, the extent of increased blood sugars and genetics all contribute to the risk and severity of diabetic retinopathy. Unfortunately, virtually no genes associated with diabetic retinopathy have yet been identified. When a gene is activated, it produces messenger molecules known as mRNA that are used by cells as instructions to produce proteins. The analysis of mRNA molecules, as well as genes themselves, can reveal the role of certain genes in disease. The studies of all genes and their associated mRNAs are respectively called genomics and transcriptomics. Genomics reveals what genes are present, while transcriptomics shows how active genes are in different cells. Skol et al. developed methods to study genomics and transcriptomics together to help discover genes that cause diabetic retinopathy. Genes involved in how cells respond to high blood sugar were first identified using cells grown in the lab. By comparing the activity of these genes in people with and without retinopathy the study identified genes associated with an increased risk of retinopathy in diabetes. In people with retinopathy, the activity of the folliculin gene (FLCN) increased more in response to high blood sugar. This was further verified with independent groups of people and using computer models to estimate the effect of different versions of the folliculin gene. The methods used here could be applied to understand complex genetics in other diseases. The results provide new understanding of the effects of diabetes. They may also help in the development of new treatments for diabetic retinopathy, which are likely to improve on the current approach of using laser surgery or injections into the eye.
Collapse
Affiliation(s)
- Andrew D Skol
- Department of Pathology and Laboratory Medicine, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, United States
| | - Segun C Jung
- Research and Development, NeoGenomics Laboratories, Aliso Viejo, United States
| | | | - Siquan Chen
- Cellular Screening Center, Office of Shared Research Facilities, The University of Chicago, Chicago, United States
| | - Sarah Fazal
- Cellular Screening Center, Office of Shared Research Facilities, The University of Chicago, Chicago, United States
| | - Olukayode Sosina
- Department of Biostatistics, Johns Hopkins University, Baltimore, United States.,National Eye Institute, National Institutes of Health (NIH), Bethesda, United States
| | | | - Amy Lin
- University of Illinois at Chicago, Chicago, United States
| | - Maria Sverdlov
- University of Illinois at Chicago, Chicago, United States
| | - Dingcai Cao
- University of Illinois at Chicago, Chicago, United States
| | - Anand Swaroop
- National Eye Institute, National Institutes of Health (NIH), Bethesda, United States
| | - Ionut Bebu
- The George Washington University, Biostatistics Center, Rockville, United States
| | | | - Barbara E Stranger
- Department of Pharmacology, Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, United States
| | | |
Collapse
|
26
|
Liu D, Wu Q, Zhu Y, Liu Y, Xie X, Li S, Lin H, Chen W, Zhu F. Co-delivery of metformin and levofloxacin hydrochloride using biodegradable thermosensitive hydrogel for the treatment of corneal neovascularization. Drug Deliv 2019; 26:522-531. [PMID: 31090470 PMCID: PMC6534255 DOI: 10.1080/10717544.2019.1609623] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/15/2019] [Accepted: 04/16/2019] [Indexed: 12/31/2022] Open
Abstract
Corneal neovascularization (CNV) is one of the major causes of severe disorders in ocular surface. Subconjunctival administration provides a localized and effective delivery of anti-angiogenic agents to inhibit neovascularization. In the present study, the ABA triblock copolymer of poly(D,L-lactic-co-glycolic acid)-block-poly(ethylene glycol)-block-poly(D,L-lactic-co-glycolic acid) (PLGA-PEG-PLGA) was used as a sustained drug delivery carrier for metformin (MET) and levofloxacin hydrochloride (LFH). Both drugs and PLGA-PEG-PLGA copolymers could be easily dissolved in water at low or room temperature and the mixed solution could form a drug-loaded thermosensitive hydrogel in terms of body temperature response. The in vitro release investigation displayed a sustained release of MET and LFH from the formulation for one month. The in vivo efficacy of subconjunctival injection of the MET + LFH loaded thermosensitive hydrogel in inhibiting CNV was evaluated on a mouse model of corneal alkali burn. Compared with the single administration of MET or LFH loaded thermosensitive hydrogel, the MET + LFH loaded thermosensitive hydrogel remarkably inhibited the formation of CNV. The sustained release of MET and an antibiotic (LFH) provides synergistic therapeutic outcome. As a result, the co-delivery of MET and LFH using PLGA-PEG-PLGA thermosensitive hydrogel by subconjunctival injection has great potential for ocular anti-angiogenic therapy.
Collapse
Affiliation(s)
- Dong Liu
- GDHPPCLab, School of Chemistry, Sun Yat–Sen University, Guangzhou, China
| | - Qianni Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Yuqiong Zhu
- GDHPPCLab, School of Chemistry, Sun Yat–Sen University, Guangzhou, China
| | - Yijun Liu
- GDHPPCLab, School of Chemistry, Sun Yat–Sen University, Guangzhou, China
| | - Xiuli Xie
- GDHPPCLab, School of Chemistry, Sun Yat–Sen University, Guangzhou, China
| | - Sihan Li
- GDHPPCLab, School of Chemistry, Sun Yat–Sen University, Guangzhou, China
| | - Haotian Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Weirong Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Fangming Zhu
- GDHPPCLab, School of Chemistry, Sun Yat–Sen University, Guangzhou, China
- Key Lab for Polymer Composite and Functional Materials of Ministry of Education, School of Chemistry, Sun Yat–Sen University, Guangzhou, China
| |
Collapse
|
27
|
Ma Q, Gu JT, Wang B, Feng J, Yang L, Kang XW, Duan P, Sun X, Liu PJ, Wang JC. PlGF signaling and macrophage repolarization contribute to the anti-neoplastic effect of metformin. Eur J Pharmacol 2019; 863:172696. [PMID: 31562866 DOI: 10.1016/j.ejphar.2019.172696] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 09/23/2019] [Accepted: 09/24/2019] [Indexed: 01/05/2023]
Abstract
Placental growth factor (PlGF) related signaling pathway has been shown to have close relationship with the progression of cancers. Metformin has been reported to have an inhibitory effect on PlGF expression in a breast cancer model. However, little is known about whether the anti-neoplastic activity of metformin is contributed by its inhibitory effect on PlGF expression. Protein, mRNA and secretion levels of PlGF were tested and the proliferation of cancer cells was determined. After treatment of metformin, BALB/c mice bearing 4T1 tumors were sacrificed and immunohistochemistry staining of the tumor sections was obtained. Baseline expression of autocrine PlGF varied between different breast cancer cell lines, while the expression of vascular endothelial growth factor receptor-1 (VEGFR-1) was comparable between cell lines. Other clinical data showed that the expression of PlGF other than VEGFR-1 had a prognostic value for patients with breast cancers. Metformin significantly decreased the secretion and mRNA levels of PlGF, which greatly contributed to its inhibitory effect on the proliferation of breast cancer cells with high P1GF expression. The unresponsiveness of tumor cells with low PlGF expression to genetic silencing was reversed by the supplementation of exogenous PlGF. Systemic metformin administration apparently inhibited the in vivo growth of 4T1 carcinoma, which was accompanied by the repolarization of macrophages from M2 to M1. These findings indicated that both autocrine and paracrine PlGF signaling and macrophage repolarization are involved in the progression of breast cancer, which could be targeted by metformin.
Collapse
Affiliation(s)
- Qiang Ma
- Department of peripheral vascular diseases, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, PR China.
| | - Jing-Tao Gu
- Department of Vascular Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, PR China.
| | - Bo Wang
- Center for Translational Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, PR China.
| | - Jun Feng
- Department of Vascular Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, PR China.
| | - Lin Yang
- Department of psychiatry, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, PR China.
| | - Xiao-Wei Kang
- Education Administration Office, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, PR China.
| | - Peng Duan
- Emergency Department, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, PR China.
| | - Xin Sun
- Department of Thoracic Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, PR China.
| | - Pei-Jun Liu
- Center for Translational Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, PR China; Key Laboratory for Tumor Precision Medicine of Shaanxi Province, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, PR China.
| | - Ji-Chang Wang
- Department of Vascular Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, PR China; Center for Translational Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, PR China.
| |
Collapse
|
28
|
Li Y, Sun R, Zou J, Ying Y, Luo Z. Dual Roles of the AMP-Activated Protein Kinase Pathway in Angiogenesis. Cells 2019; 8:E752. [PMID: 31331111 PMCID: PMC6678403 DOI: 10.3390/cells8070752] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/11/2019] [Accepted: 07/14/2019] [Indexed: 12/21/2022] Open
Abstract
Angiogenesis plays important roles in development, stress response, wound healing, tumorigenesis and cancer progression, diabetic retinopathy, and age-related macular degeneration. It is a complex event engaging many signaling pathways including vascular endothelial growth factor (VEGF), Notch, transforming growth factor-beta/bone morphogenetic proteins (TGF-β/BMPs), and other cytokines and growth factors. Almost all of them eventually funnel to two crucial molecules, VEGF and hypoxia-inducing factor-1 alpha (HIF-1α) whose expressions could change under both physiological and pathological conditions. Hypoxic conditions stabilize HIF-1α, while it is upregulated by many oncogenic factors under normaxia. HIF-1α is a critical transcription activator for VEGF. Recent studies have shown that intracellular metabolic state participates in regulation of sprouting angiogenesis, which may involve AMP-activated protein kinase (AMPK). Indeed, AMPK has been shown to exert both positive and negative effects on angiogenesis. On the one hand, activation of AMPK mediates stress responses to facilitate autophagy which stabilizes HIF-1α, leading to increased expression of VEGF. On the other hand, AMPK could attenuate angiogenesis induced by tumor-promoting and pro-metastatic factors, such as the phosphoinositide 3-kinase /protein kinase B (Akt)/mammalian target of rapamycin (PI3K/Akt/mTOR), hepatic growth factor (HGF), and TGF-β/BMP signaling pathways. Thus, this review will summarize research progresses on these two opposite effects and discuss the mechanisms behind the discrepant findings.
Collapse
Affiliation(s)
- Yuanjun Li
- Jiangxi Provincial Key Laboratory of Tumor Pathogens and Molecular Pathology, Department of Pathophysiology, School of Basic Medical Sciences, Nanchang University Jiangxi Medical College, Nanchang, Jiangxi, Post Code 330006, China
| | - Ruipu Sun
- Queen Mary School, Nanchang University Jiangxi Medical College, Nanchang, Jiangxi 30006, China
| | - Junrong Zou
- Jiangxi Provincial Key Laboratory of Tumor Pathogens and Molecular Pathology, Department of Pathophysiology, School of Basic Medical Sciences, Nanchang University Jiangxi Medical College, Nanchang, Jiangxi, Post Code 330006, China
| | - Ying Ying
- Jiangxi Provincial Key Laboratory of Tumor Pathogens and Molecular Pathology, Department of Pathophysiology, School of Basic Medical Sciences, Nanchang University Jiangxi Medical College, Nanchang, Jiangxi, Post Code 330006, China
| | - Zhijun Luo
- Jiangxi Provincial Key Laboratory of Tumor Pathogens and Molecular Pathology, Department of Pathophysiology, School of Basic Medical Sciences, Nanchang University Jiangxi Medical College, Nanchang, Jiangxi, Post Code 330006, China.
- Queen Mary School, Nanchang University Jiangxi Medical College, Nanchang, Jiangxi 30006, China.
| |
Collapse
|
29
|
Nakamura S, Noguchi T, Inoue Y, Sakurai S, Nishinaka A, Hida Y, Masuda T, Nakagami Y, Horai N, Tsusaki H, Hara H, Shimazawa M. Nrf2 Activator RS9 Suppresses Pathological Ocular Angiogenesis and Hyperpermeability. ACTA ACUST UNITED AC 2019; 60:1943-1952. [DOI: 10.1167/iovs.18-25745] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Shinsuke Nakamura
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Tetsuro Noguchi
- Biomedical Research, Gifu Pharmaceutical University, Gifu, Japan
- Shin Nippon Biomedical Laboratories Ltd. Drug Safety Research Laboratories (SNBL DSR), Kagoshima, Japan
| | - Yuki Inoue
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Shuji Sakurai
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Anri Nishinaka
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Yoshifumi Hida
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Tomomi Masuda
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | | | - Naoto Horai
- Biomedical Research, Gifu Pharmaceutical University, Gifu, Japan
- Shin Nippon Biomedical Laboratories Ltd. Drug Safety Research Laboratories (SNBL DSR), Kagoshima, Japan
| | - Hideshi Tsusaki
- Biomedical Research, Gifu Pharmaceutical University, Gifu, Japan
- Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Hideaki Hara
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
- Biomedical Research, Gifu Pharmaceutical University, Gifu, Japan
| | - Masamitsu Shimazawa
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
- Biomedical Research, Gifu Pharmaceutical University, Gifu, Japan
| |
Collapse
|
30
|
Favorable outcomes of metformin on coronary microvasculature in experimental diabetic cardiomyopathy. J Mol Histol 2018; 49:639-649. [PMID: 30317407 DOI: 10.1007/s10735-018-9801-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 10/08/2018] [Indexed: 02/07/2023]
Abstract
Although metformin is widely prescribed in diabetes, its use with associated cardiac dysfunction remains debatable. In the current study, we investigated the effect of metformin on coronary microvasculature in experimental diabetic cardiomyopathy (DCM) induced by streptozotocin. Administration of metformin after induction of DCM, reversed almost all cardiomyocyte degenerative changes induced by DCM. Metformin diminished the significantly increased (p < 0.05) collagen deposited in the DCM. In addition metformin had improved the density of the significantly decreased arteriolar (αSMA+) and capillary (CD31+) coronary microvasculature compared to that of the DCM and non-diabetics (ND) with downregulation of the significantly increased expression (p < 0.05) of COL-I, III, TGF-β, CTGF, ICAM and VCAM genes. Therefore metformin may be beneficial in limiting the fibrotic and the vascular remodeling occurring in DCM at the genetic as well as the structural levels.
Collapse
|
31
|
Han J, Li Y, Liu X, Zhou T, Sun H, Edwards P, Gao H, Yu FS, Qiao X. Metformin suppresses retinal angiogenesis and inflammation in vitro and in vivo. PLoS One 2018. [PMID: 29513760 PMCID: PMC5841739 DOI: 10.1371/journal.pone.0193031] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The oral anti-diabetic drug metformin has been found to reduce cardiovascular complications independent of glycemic control in diabetic patients. However, its role in diabetic retinal microvascular complications is not clear. This study is to investigate the effects of metformin on retinal vascular endothelium and its possible mechanisms, regarding two major pathogenic features of diabetic retinopathy: angiogenesis and inflammation. In human retinal vascular endothelial cell culture, metformin inhibited various steps of angiogenesis including endothelial cell proliferation, migration, and tube formation in a dose-dependent manner. Its anti-angiogenic activity was confirmed in vivo that metformin significantly reduced spontaneous intraretinal neovascularization in a very-low-density lipoprotein receptor knockout mutant mouse (p<0.05). Several inflammatory molecules upregulated by tumor necrosis factor-α in human retinal vascular endothelial cells were markedly reduced by metformin, including nuclear factor kappa B p65 (NFκB p65), intercellular adhesion molecule-1 (ICAM-1), monocyte chemotactic protein-1 (MCP-1), and interleukin-8 (IL-8). Further, metformin significantly decreased retinal leukocyte adhesion (p<0.05) in streptozotocin-induced diabetic mice. Activation of AMP-activated protein kinase was found to play a partial role in the suppression of ICAM-1 and MCP-1 by metformin, but not in those of NFκB p65 and IL-8. Our findings support the notion that metformin has considerable anti-angiogenic and anti-inflammatory effects on retinal vasculature. Metformin could be potentially used for the purpose of treating diabetic retinopathy in addition to blood glucose control in diabetic patients.
Collapse
Affiliation(s)
- Jing Han
- Department of Ophthalmology, Henry Ford Health System, Detroit, Michigan, United States of America
- Department of Ophthalmology, Tangdu Hospital, Fourth Military Medical University, Xi’an, Shaanxi, People’s Republic of China
| | - Yue Li
- Department of Ophthalmology, Henry Ford Health System, Detroit, Michigan, United States of America
| | - Xiuli Liu
- Department of Ophthalmology, Henry Ford Health System, Detroit, Michigan, United States of America
| | - Tongrong Zhou
- Department of Ophthalmology, Henry Ford Health System, Detroit, Michigan, United States of America
| | - Haijing Sun
- Departments of Ophthalmology and Anatomy and Cell Biology, Wayne State University, School of Medicine, Detroit, Michigan, United States of America
| | - Paul Edwards
- Department of Ophthalmology, Henry Ford Health System, Detroit, Michigan, United States of America
| | - Hua Gao
- Department of Ophthalmology, Henry Ford Health System, Detroit, Michigan, United States of America
| | - Fu-Shin Yu
- Departments of Ophthalmology and Anatomy and Cell Biology, Wayne State University, School of Medicine, Detroit, Michigan, United States of America
| | - Xiaoxi Qiao
- Department of Ophthalmology, Henry Ford Health System, Detroit, Michigan, United States of America
- * E-mail:
| |
Collapse
|
32
|
Li Y, Ryu C, Munie M, Noorulla S, Rana S, Edwards P, Gao H, Qiao X. Association of Metformin Treatment with Reduced Severity of Diabetic Retinopathy in Type 2 Diabetic Patients. J Diabetes Res 2018; 2018:2801450. [PMID: 29854819 PMCID: PMC5952500 DOI: 10.1155/2018/2801450] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 03/23/2018] [Accepted: 03/28/2018] [Indexed: 11/26/2022] Open
Abstract
PURPOSE To evaluate effects of long-term metformin on the severity of diabetic retinopathy (DR) in high-risk type 2 diabetic (T2D) patients. METHODS A retrospective chart review study was conducted involving 335 DR patients with T2D ≥ 15 years from 1990 to 2013. The severity of DR was determined by Early Treatment Diabetic Retinopathy Study scale. The associations between metformin and DR severity were evaluated. Comparison with stratification for the use of sulfonylurea and insulin was performed to identify possible confounding effects. RESULTS Severe nonproliferative diabetic retinopathy or proliferative diabetic retinopathy (SNPDR/PDR) was more often diagnosed in nonmetformin users (67/142, 47%) versus metformin users (48/193, 25%) (p < 0.001), regardless of gender and race of the patients. The odds ratio of metformin associated with SNPDR/PDR was 0.37 in all cases (p < 0.001), 0.35 in sulfonylurea use cohort (p < 0.05), 0.45 in nonsulfonylurea use cohorts (p < 0.01), and 0.42 in insulin use cohort (p < 0.01). Insulin users had a higher rate of SNPDR/PDR. Metformin had no influence on the occurrence of clinical significant diabetic macular edema. CONCLUSIONS Long-term use of metformin is independently associated with a significant lower rate of SNPDR/PDR in patients with type 2 diabetes ≥ 15 years.
Collapse
Affiliation(s)
- Yue Li
- Department of Ophthalmology, Henry Ford Health System, 1 Ford Place 5D, Detroit, MI 48202, USA
| | - Christina Ryu
- Department of Ophthalmology, Henry Ford Health System, 1 Ford Place 5D, Detroit, MI 48202, USA
| | - Metasebia Munie
- Department of Ophthalmology, Henry Ford Health System, 1 Ford Place 5D, Detroit, MI 48202, USA
| | - Salma Noorulla
- Department of Ophthalmology, Henry Ford Health System, 1 Ford Place 5D, Detroit, MI 48202, USA
| | - Satyesh Rana
- Department of Ophthalmology, Henry Ford Health System, 1 Ford Place 5D, Detroit, MI 48202, USA
| | - Paul Edwards
- Department of Ophthalmology, Henry Ford Health System, 1 Ford Place 5D, Detroit, MI 48202, USA
| | - Hua Gao
- Department of Ophthalmology, Henry Ford Health System, 1 Ford Place 5D, Detroit, MI 48202, USA
| | - Xiaoxi Qiao
- Department of Ophthalmology, Henry Ford Health System, 1 Ford Place 5D, Detroit, MI 48202, USA
| |
Collapse
|
33
|
Joo MK, Park JJ, Chun HJ. Additional Benefits of Routine Drugs on Gastrointestinal Cancer: Statins, Metformin, and Proton Pump Inhibitors. Dig Dis 2017; 36:1-14. [PMID: 28881340 DOI: 10.1159/000480149] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 08/08/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND Commonly used medications including statins, metformin, and proton pump inhibitors (PPIs) effectively reduce the risk of esophageal, gastric, and colorectal cancer (CRC). SUMMARY A number of observational studies and meta-analyses have shown that long-term statin use significantly reduces the incidence of gastrointestinal (GI) cancer. Moreover, statin use after GI cancer diagnosis has been significantly associated with better prognosis in large-scale cohort studies. Metformin was rigorously evaluated in a population-based study and meta-analysis, and was found to have an unexpected benefit in the prevention and prolonged survival of CRC patients with type 2 diabetes mellitus. In contrast, few studies have demonstrated the chemopreventive effect of metformin for esophageal and gastric cancer. Recent observational studies have demonstrated that PPIs effectively reduce the progression of nondysplastic Barrett's esophagus into esophageal adenocarcinoma in a dose-dependent manner. However, the association between chronic PPI use and CRC or gastric cancer risk is still controversial. It was expected that these 3 routinely used medicines would show a synergistic effect with conventional systemic chemotherapy in advanced GI cancers. However, recent phase III studies failed to show significantly better outcomes. Key Messages: Further studies are needed to identify "additional" anticancer effects of these commonly used medicines.
Collapse
Affiliation(s)
- Moon Kyung Joo
- Division of Gastroenterology, Department of Internal Medicine, Korea University College of Medicine Guro Hospital, Seoul, South Korea
| | | | | |
Collapse
|
34
|
Mori A, Ishikawa E, Amano T, Sakamoto K, Nakahara T. Anti-diabetic drug metformin dilates retinal blood vessels through activation of AMP-activated protein kinase in rats. Eur J Pharmacol 2017; 798:66-71. [PMID: 28087254 DOI: 10.1016/j.ejphar.2017.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/20/2016] [Accepted: 01/09/2017] [Indexed: 12/29/2022]
Abstract
The aim of this study was to examine whether metformin, a biguanide anti-hyperglycemic drug, dilates retinal blood vessels in rats. Ocular fundus images were captured with an original high-resolution digital fundus camera in vivo and diameters of retinal blood vessels were measured. Both systemic blood pressure and heart rate were continuously recorded. Metformin (0.01-0.3mg/kg/min) increased diameters of retinal blood vessels in a dose-dependent manner. This retinal vasodilator effect of metformin was abolished by compound C, an inhibitor of AMP-activated protein kinase (AMPK), and NG-nitro-L-arginine methyl ester, an inhibitor of nitric oxide (NO) synthase. Similar results were obtained with the AMPK activator 5-aminoimidazole-4-carboxamide-1-β-D-ribonucleoside (AICAR, 0.01-1mg/kg/min). Neither metformin nor AICAR exerted significant effect on mean blood pressure and heart rate. However, a significant pressor response to AICAR was observed upon inhibition of NO synthase. These results suggest that metformin dilates retinal blood vessels through activation of AMPK, and NO plays an important role in the retinal vasodilator response following AMPK activation.
Collapse
Affiliation(s)
- Asami Mori
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Eriko Ishikawa
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Tomoyo Amano
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Kenji Sakamoto
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Tsutomu Nakahara
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan.
| |
Collapse
|
35
|
Maniar K, Moideen A, Mittal A, Patil A, Chakrabarti A, Banerjee D. A story of metformin-butyrate synergism to control various pathological conditions as a consequence of gut microbiome modification: Genesis of a wonder drug? Pharmacol Res 2016; 117:103-128. [PMID: 27939359 DOI: 10.1016/j.phrs.2016.12.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 11/25/2016] [Accepted: 12/05/2016] [Indexed: 12/19/2022]
Abstract
The most widely prescribed oral anti-diabetic agent today in the world today is a member of the biguanide class of drugs called metformin. Apart from its use in diabetes, it is currently being investigated for its potential use in many diseases such as cancer, cardiovascular diseases, Alzheimer's disease, obesity, comorbidities of diabetes such as retinopathy, nephropathy to name a few. Numerous in-vitro and in-vivo studies as well as clinical trials have been and are being conducted with a vast amount of literature being published every day. Numerous mechanisms for this drug have been proposed, but they have been unable to explain all the actions observed clinically. It is of interest that insulin has a stimulatory effect on cellular growth. Metformin sensitizes the insulin action but believed to be beneficial in cancer. Like -wise metformin is shown to have beneficial effects in opposite sets of pathological scenario looking from insulin sensitization point of view. This requires a comprehensive review of the disease conditions which are claimed to be affected by metformin therapy. Such a comprehensive review is presently lacking. In this review, we begin by examining the history of metformin before it became the most popular anti-diabetic medication today followed by a review of its relevant molecular mechanisms and important clinical trials in all areas where metformin has been studied and investigated till today. We also review novel mechanistic insight in metformin action in relation to microbiome and elaborate implications of such aspect in various disease states. Finally, we highlight the quandaries and suggest potential solutions which will help the researchers and physicians to channel their research and put this drug to better use.
Collapse
Affiliation(s)
- Kunal Maniar
- Department of Pharmacology, Post Graduate Institute of Medical Education & Research, Chandigarh, India
| | - Amal Moideen
- Department of Pharmacology, Post Graduate Institute of Medical Education & Research, Chandigarh, India
| | - Ankur Mittal
- Department of Experimental Medicine & Biotechnology, Post Graduate Institute of Medical Education & Research, Chandigarh, India
| | - Amol Patil
- Department of Pharmacology, Post Graduate Institute of Medical Education & Research, Chandigarh, India
| | - Amitava Chakrabarti
- Department of Pharmacology, Post Graduate Institute of Medical Education & Research, Chandigarh, India
| | - Dibyajyoti Banerjee
- Department of Experimental Medicine & Biotechnology, Post Graduate Institute of Medical Education & Research, Chandigarh, India.
| |
Collapse
|
36
|
Daugan M, Dufaÿ Wojcicki A, d’Hayer B, Boudy V. Metformin: An anti-diabetic drug to fight cancer. Pharmacol Res 2016; 113:675-685. [DOI: 10.1016/j.phrs.2016.10.006] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 09/22/2016] [Accepted: 10/04/2016] [Indexed: 12/22/2022]
|
37
|
Yi QY, Deng G, Chen N, Bai ZS, Yuan JS, Wu GH, Wang YW, Wu SJ. Metformin inhibits development of diabetic retinopathy through inducing alternative splicing of VEGF-A. Am J Transl Res 2016; 8:3947-3954. [PMID: 27725874 PMCID: PMC5040692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 08/11/2016] [Indexed: 06/06/2023]
Abstract
Previous studies have shown that metformin, an AMP-activated protein kinase activator widely prescribed for type 2 diabetes, is especially beneficial in cases of diabetic retinopathy (DR) with undetermined mechanisms. Here, we used a streptozotocin-induced diabetes model in mice to study the effects of metformin on the development of DR. We found that 10 weeks after STZ treatment, DR was induced in STZ-treated mice, regardless treatment of metformin. However, metformin alleviated the DR, seemingly through attenuating the retina neovascularization. The total vascular endothelial cell growth factor A (VEGF-A) in eyes was not altered by metformin, but the phosphorylation of the VEGF receptor 2 (VEGFR2) was decreased, which inhibited VEGF signaling. Further analysis showed that metformin may induce VEGF-A mRNA splicing to VEGF120 isoform to reduce its activation of the VEGFR2. These findings are critical for generating novel medicine for DR treatment.
Collapse
Affiliation(s)
- Quan-Yong Yi
- Department of Ophthalmology, Ningbo Eye HospitalNingbo 315040, China
| | - Gang Deng
- Ningbo Central Blood CenterNingbo 315040, China
| | - Nan Chen
- Department of Ophthalmology, the Fourth Affiliated Hospital of Guangzhou Medical UniversityGuangzhou 510000, China
| | - Zhi-Sha Bai
- Department of Ophthalmology, Ningbo Eye HospitalNingbo 315040, China
| | - Jian-Shu Yuan
- Department of Ophthalmology, Ningbo Eye HospitalNingbo 315040, China
| | - Guo-Hai Wu
- Department of Ophthalmology, Ningbo Eye HospitalNingbo 315040, China
| | - Yu-Wen Wang
- Department of Ophthalmology, Ningbo Eye HospitalNingbo 315040, China
| | - Shan-Jun Wu
- Department of Ophthalmology, Ningbo Eye HospitalNingbo 315040, China
| |
Collapse
|
38
|
Zhao B, Wang X, Zheng J, Wang H, Liu J. Effects of metformin treatment on glioma-induced brain edema. Am J Transl Res 2016; 8:3351-3363. [PMID: 27648126 PMCID: PMC5009388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 02/21/2016] [Indexed: 06/06/2023]
Abstract
Considerable evidence has demonstrated that metformin can activate 5'-AMP-activated protein kinase (AMPK) signaling pathway, which plays a critical role in protection of endothelial cell permeability. Hence, the present study evaluated the effects of metformin on blood brain barrier permeability and AQP4 expression in vitro, and assessed the effects of metformin treatment on tumor-induced brain edema in vivo. Hypoxia or VEGF exposure enhanced bEnd3 endothelial cell monolayer permeability and attenuated the expression of tight junction proteins including Occludin, Claudin-5, ZO-1, and ZO-2. However, 0.5 mM metformin treatment protected bEnd3 endothelial cell monolayer from hypoxia or VEGF-induced permeability, which was correlated with increased expression of tight junction proteins. Furthermore, metformin treatment attenuated AQP4 protein expression in cultured astrocytes. Such an effect involved the activation of AMPK and inhibition of NF-κB. Finally, metformin treatment dose-dependently reduced glioma induced vascular permeability and cerebral edema in vivo in rats. Thus, our results suggested that metformin may protect endothelial cell tight junction, prevent damage to the blood brain barrier induced by brain tumor growth, and alleviate the formation of cerebral edema. Furthermore, since the formation of cytotoxic edema and AQP4 expression was positively correlated, our results indicated that metformin may reduce the formation of cytotoxic edema. However, given that AQP4 plays a key role in the elimination of cerebral edema, attenuation of AQP4 expression by metformin may reduce the elimination of cerebral edema. Hence, future studies will be necessary to dissect the specific mechanisms of metformin underlying the dynamics of tumor-induced brain edema in vivo.
Collapse
Affiliation(s)
- Bin Zhao
- The Second Department of Neurosurgery, The Second Hospital of Jilin UniversityChangchun, P. R. China
| | - Xiaoke Wang
- The Second Department of Neurosurgery, The Second Hospital of Jilin UniversityChangchun, P. R. China
| | - Jun Zheng
- Department of Neurosurgery, The Second Hospital of Hebei Medical UniversityShijiazhuang, P. R. China
| | - Hailiang Wang
- The Second Department of Neurosurgery, The Second Hospital of Jilin UniversityChangchun, P. R. China
| | - Jun Liu
- The Second Department of Neurosurgery, The Second Hospital of Jilin UniversityChangchun, P. R. China
| |
Collapse
|