1
|
Rahman SMM, Ruhee NN, Haider A, Hasan MJ, Nasrin R, Adel ASS, Uddin MKM, Ahmed S, Maug AKJ, Banu S. Xpert MTB/XDR Assay for Detection of Resistance to Isoniazid, Fluoroquinolone, Aminoglycoside, and Ethionamide Among Patients with Pulmonary Tuberculosis in Bangladesh. Infect Dis Ther 2025; 14:803-818. [PMID: 40126817 PMCID: PMC11993513 DOI: 10.1007/s40121-025-01127-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Accepted: 02/27/2025] [Indexed: 03/26/2025] Open
Abstract
INTRODUCTION Early detection of drug resistance in patients with tuberculosis (TB) is crucial for prompt and effective treatment. This study evaluated the performance of Xpert MTB/XDR assay (Xpert XDR) for detecting resistance to isoniazid (INH), fluoroquinolones (FLQ), aminoglycosides (AMG), and ethionamide (ETH) in patients with pulmonary TB (PTB) in Bangladesh. METHODS Xpert XDR was performed on sputum samples from 793 Xpert MTB/RIF positive patients with PTB enrolled between April 2021 and March 2023. Results were compared with phenotypic drug susceptibility test (pDST) performed on Lowenstein-Jensen (L-J) media for the detection of resistance to INH, FLQ, AMG, and ETH. The performance of the assay was also compared between newly diagnosed or rifampicin (RIF)-sensitive versus re-treated or RIF-resistant patients with PTB. RESULTS Of 793 samples tested by Xpert XDR, indeterminate results for INH, FLQ, AMG, and ETH were observed for 3 (0.4%), 5 (0.6%), 33 (4.2%), and 0 (0%) isolates, respectively. The assay's sensitivity and specificity compared to pDST was 94.0% (95% CI 90.5-96.4; 264/281) and 97.3% (95% CI 95.4-98.5; 495/509), respectively for INH; 86.0% (95% CI 78.2-91.8; 98/114) and 99.3% (95% CI 98.3-99.3; 669/674), respectively for FLQ; 85.7% (95% CI 42.1-99.6; 6/7) and 99.9% (95% CI 99.3-100.0; 752/753), respectively for AMG; and 25.0% (95% CI 19.0-31.7; 48/192) and 96.7% (95% CI 94.9-98.0; 581/601), respectively for ETH. Agreement of Xpert XDR with pDST was almost perfect for detecting resistance to INH, FLQ, and AMG (kappa: 0.91, 0.89, and 0.86, respectively), but fair for ETH (kappa: 0.28). Xpert XDR performed significantly better among re-treated or RIF-resistant patients with TB compared to newly diagnosed or RIF-sensitive cases. CONCLUSIONS Given the high performance, Xpert XDR assay can be programmatically implemented nationwide for rapid and accurate detection of resistance to INH, FLQ, and AMG in patients with PTB, aiding clinicians in selecting appropriate regimens for the treatment of drug-resistant TB.
Collapse
Affiliation(s)
- S M Mazidur Rahman
- Program on Emerging Infections, Infectious Diseases Division, icddr,b, Dhaka, 1212, Bangladesh
| | - Noshin Nawer Ruhee
- Program on Emerging Infections, Infectious Diseases Division, icddr,b, Dhaka, 1212, Bangladesh
| | - Amiyo Haider
- Program on Emerging Infections, Infectious Diseases Division, icddr,b, Dhaka, 1212, Bangladesh
| | - Md Jahid Hasan
- Program on Emerging Infections, Infectious Diseases Division, icddr,b, Dhaka, 1212, Bangladesh
| | - Rumana Nasrin
- Program on Emerging Infections, Infectious Diseases Division, icddr,b, Dhaka, 1212, Bangladesh
| | | | | | - Shahriar Ahmed
- Program on Emerging Infections, Infectious Diseases Division, icddr,b, Dhaka, 1212, Bangladesh
| | - Aung Kya Jai Maug
- Program on Emerging Infections, Infectious Diseases Division, icddr,b, Dhaka, 1212, Bangladesh
| | - Sayera Banu
- Program on Emerging Infections, Infectious Diseases Division, icddr,b, Dhaka, 1212, Bangladesh.
| |
Collapse
|
2
|
Serajian M, Testagrose C, Prosperi M, Boucher C. A comparative study of antibiotic resistance patterns in Mycobacterium tuberculosis. Sci Rep 2025; 15:5104. [PMID: 39934219 PMCID: PMC11814411 DOI: 10.1038/s41598-025-89087-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 02/03/2025] [Indexed: 02/13/2025] Open
Abstract
This study leverages the Bacterial and Viral Bioinformatics Resource Center (BV-BRC) to analyze over 27,000 Mycobacterium tuberculosis (MTB) genomic strains, providing a comprehensive and large-scale overview of antibiotic resistance (AMR) prevalence and resistance patterns. We used MTB++, which is the newest and most comprehensive AI-based MTB drug resistance profiler tool, to predict the resistance profile of each of the 27,000 MTB isolates and then used feature analysis to identify key genes that were associated with the resistance. There are three main contributions to this study. Firstly, it provides a detailed picture of the prevalence of specific AMR genes in the BV-BRC dataset as well as their biological implications, providing critical insight into MTB's resistance mechanisms that can help identify genes of high priority for further investigation. The second aspect of this study is to compare the prevalence of antibiotic resistance across previous studies that have addressed both the temporal and geographical evolution of MTB drug resistance. Lastly, this study emphasizes the need for targeted diagnostics and personalized treatment plans. In addition to these contributions, the study acknowledges the limitations of computational prediction and recommends future experimental validation.
Collapse
Affiliation(s)
- Mohammadali Serajian
- Department of Computer and Information Science and Engineering, University of Florida, 1889 Museum Road, Gainesville, 32611, FL, USA
| | - Conrad Testagrose
- Department of Computer and Information Science and Engineering, University of Florida, 1889 Museum Road, Gainesville, 32611, FL, USA
| | - Mattia Prosperi
- Department of Epidemiology, University of Florida, Gainesville, 32603, FL, USA
| | - Christina Boucher
- Department of Computer and Information Science and Engineering, University of Florida, 1889 Museum Road, Gainesville, 32611, FL, USA.
| |
Collapse
|
3
|
Elsaman T, Mohamed MA, Mohamed MS, Eltayib EM, Abdalla AE. Microbial-based natural products as potential inhibitors targeting DNA gyrase B of Mycobacterium tuberculosis: an in silico study. Front Chem 2025; 13:1524607. [PMID: 39917046 PMCID: PMC11798933 DOI: 10.3389/fchem.2025.1524607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 01/02/2025] [Indexed: 02/09/2025] Open
Abstract
Introduction Since the emergence of Mycobacterium tuberculosis (MBT) strains resistant to most currently used anti-tubercular drugs, there has been an urgent need to develop efficient drugs capable of modulating new therapeutic targets. Mycobacterial DNA gyrase is an enzyme that plays a crucial role in the replication and transcription of DNA in MBT. Consequently, targeting this enzyme is of particular interest in developing new drugs for the treatment of drug-resistant tuberculosis, including multidrug-resistant tuberculosis (MDR-TB) and extensively drug-resistant tuberculosis (XDR-TB). Methods In the present study, multiple computational tools were adopted to screen a microbial-based natural products database (NPAtlas) for potential inhibitors of the ATPase activity of MBT DNA gyrase. Results and discussion Twelve hits were initially identified as the top candidates based on their docking scores (ranging from -9.491 to -10.77 kcal/mol) and binding free energies (-60.37 to -73.21 kcal/mol). Following this, computational filters, including ADME-T profiling and pharmacophore modeling, were applied to further refine the selection. As a result, three compounds 1-Hydroxy-D-788-7, Erythrin, and Pyrindolol K2 emerged as the most promising, exhibiting favorable drug-like properties. Notably, 1-Hydroxy-D-788-7, an anthracycline derivative, demonstrated superior binding affinity in molecular dynamics simulations. The RMSD values, ranging from 1.7 to 2.5 Å, alongside RMSF analysis and a detailed evaluation of the established interaction forces, revealed that 1-Hydroxy-D-788-7 was the strongest binder to Mycobacterial DNA Gyrase B. The stable binding and favorable interaction profile highlighted 1-Hydroxy-D-788-7 as a top hit. These comprehensive computational findings strongly support the potential of 1-Hydroxy-D-788-7 as an effective anti-TB lead compound, warranting further experimental validation to confirm its therapeutic efficacy.
Collapse
Affiliation(s)
- Tilal Elsaman
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Magdi Awadalla Mohamed
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Malik Suliman Mohamed
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Eyman Mohamed Eltayib
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Abualgasim Elgaili Abdalla
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
| |
Collapse
|
4
|
Goel R, Tomar A, Bawari S. Insights to the role of phytoconstituents in aiding multi drug resistance - Tuberculosis treatment strategies. Microb Pathog 2025; 198:107116. [PMID: 39536840 DOI: 10.1016/j.micpath.2024.107116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/10/2024] [Accepted: 11/10/2024] [Indexed: 11/16/2024]
Abstract
Multidrug resistant tuberculosis (MDR-TB) have emerged as a global challenge. There are several underlying mechanisms which are involved in causing mycobacterial resistance towards antitubercular agents including post translational modifications, efflux pumps and gene mutations. This resistance necessitates the investigation of complementary therapeutic options including the use of bioactive compounds from plants. Recent studies have focused on recognising and isolating the characteristics of these compounds to assess their potential against MDR-TB. Phytoconstituents such as alkaloids, flavonoids, terpenoids, glycosides, and essential oils have shown promising antimicrobial activity against Mycobacterium tuberculosis. These compounds can either directly kill or inhibit the growth of M. tuberculosis or enhance the immune system's ability to fight against the infection. Some studies suggest that combining phytoconstituents with standard antitubercular medications works synergistically by enhancing the efficacy of drug, potentially lowering the associated risk of side effects and eventually combating resistance development. This review attempts to elucidate the potential of phytoconstituents in combating resistance in MDR-TB which hold a promise to change the course of treatment strategies in tuberculosis.
Collapse
Affiliation(s)
- Richi Goel
- Amity Institute of Pharmacy, Amity University Campus, Sector-125, Noida, 201301, Gautam Buddha Nagar, Uttar Pradesh, India
| | - Anush Tomar
- Center for Pharmacometrics & Systems Pharmacology, Department of Pharmaceutics, Lake Nona, College of Pharmacy, University of Florida, 6550 Sanger Road, Orlando, FL, 32827, USA
| | - Sweta Bawari
- Amity Institute of Pharmacy, Amity University Campus, Sector-125, Noida, 201301, Gautam Buddha Nagar, Uttar Pradesh, India.
| |
Collapse
|
5
|
Maitre T, Godmer A, Mory C, Chauffour A, Mai TC, El Helali N, Aubry A, Veziris N. Levofloxacin activity at increasing doses in a murine model of fluoroquinolone-susceptible and -resistant tuberculosis. Antimicrob Agents Chemother 2024; 68:e0058324. [PMID: 39412267 PMCID: PMC11539234 DOI: 10.1128/aac.00583-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 09/19/2024] [Indexed: 11/07/2024] Open
Abstract
High-dose levofloxacin was explored in a clinical trial against multidrug-resistant tuberculosis and failed to show increased efficacy. In this study, we used a murine model to explore the efficacy of a dose increase in levofloxacin monotherapy beyond the maximum dose evaluated in humans. A total of 120 4-week-old female BALB/c mice were intravenously infected with 106 CFU of Mycobacterium tuberculosis H37Rv wild-type (WT) or isogenic H37Rv mutants harboring GyrA A90V or D94G substitutions; the MICs were 0.25, 4, and 6 µg/mL, respectively. Levofloxacin 250 and 500 mg/kg were given every 12 h (q12h) orally for 4 weeks. Pharmacokinetic parameters were determined after five doses. These two regimens decreased lung bacillary load in mice infected with H37Rv WT but not in mice infected with the A90V and D94G mutants. Levofloxacin 250 mg/kg q12h in mice generated pharmacokinetic parameters equivalent to 1,000 mg/d in humans, whereas 500 mg/kg q12h generated a twofold greater exposure than the highest equivalent dose tested in humans (1,500 mg/d). In our dose-response model, the effective concentration at 50% (EC50) produced an AUC/MIC (AUC0-24h/MIC) ratio of 167.9 ± 27.5, and at EC80 it was 281.2 ± 97.3. Based on this model, high-dose levofloxacin regimens above 1,000 mg/d are not expected to cause a significant increase in bactericidal activity. This study suggests no benefit of high-dose levofloxacin above 1,000 mg/d in the treatment of fluoroquinolone-susceptible or -resistant tuberculosis.
Collapse
Affiliation(s)
- Thomas Maitre
- Sorbonne Université, Centre d'Immunologie et des Maladies Infectieuses (Cimi-Paris), UMR 1135, Paris, France
- Department of Pneumology and Reference Centre for Rare Lung Diseases, Assistance Publique Hôpitaux de Paris, Tenon Hospital, Paris, France
| | - Alexandre Godmer
- Sorbonne Université, Centre d'Immunologie et des Maladies Infectieuses (Cimi-Paris), UMR 1135, Paris, France
- Fédération de Bactériologie, Centre National de Référence des Mycobactéries, APHP, Sorbonne Université, Paris, France
| | - Céline Mory
- Unité de Microbiologie Clinique et Dosage des Anti-infectieux, Groupe Hospitalier Paris-Saint-Joseph, Paris, France
| | - Aurélie Chauffour
- Sorbonne Université, Centre d'Immunologie et des Maladies Infectieuses (Cimi-Paris), UMR 1135, Paris, France
| | - Thi Cuc Mai
- Sorbonne Université, Centre d'Immunologie et des Maladies Infectieuses (Cimi-Paris), UMR 1135, Paris, France
| | - Najoua El Helali
- Unité de Microbiologie Clinique et Dosage des Anti-infectieux, Groupe Hospitalier Paris-Saint-Joseph, Paris, France
| | - Alexandra Aubry
- Sorbonne Université, Centre d'Immunologie et des Maladies Infectieuses (Cimi-Paris), UMR 1135, Paris, France
- Fédération de Bactériologie, Centre National de Référence des Mycobactéries, APHP, Sorbonne Université, Paris, France
| | - Nicolas Veziris
- Sorbonne Université, Centre d'Immunologie et des Maladies Infectieuses (Cimi-Paris), UMR 1135, Paris, France
- Fédération de Bactériologie, Centre National de Référence des Mycobactéries, APHP, Sorbonne Université, Paris, France
| |
Collapse
|
6
|
Gupta A, Pal SK, Nema V. High frequency of silent mutations in gyrA gene of Mycobacterium tuberculosis in Indian isolates. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2024; 65:289-293. [PMID: 39262280 DOI: 10.1002/em.22629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/13/2024]
Abstract
Reporting any uncommon or untapped changes in bacterial genetics or physiology would be of great importance to support the drug development process. We studied 120 Mycobacterium tuberculosis clinical isolates with different geographical origin within India and their resistance profile and found a significant number of isolates (109) harboring the polymorphism at nucleotide positions 61 and 284 of the gyrA gene. Bioinformatics analysis of these changes for drug binding suggested no significant change in the binding of the drug but have lower binding energies as compared with the wild-type proteins. Although functionally silent for the gyrA gene, these changes are indicating a silent geographical and evolutionary change that needs to be further studied for drug discovery and bacterial fitness.
Collapse
Affiliation(s)
- Anamika Gupta
- Division of Molecular Biology, ICMR-National Institute of Translational Virology and AIDS Research (formerly: National AIDS Research Institute), Pune, Maharashtra, India
| | - Sudhir K Pal
- Division of Molecular Biology, ICMR-National Institute of Translational Virology and AIDS Research (formerly: National AIDS Research Institute), Pune, Maharashtra, India
| | - Vijay Nema
- Division of Molecular Biology, ICMR-National Institute of Translational Virology and AIDS Research (formerly: National AIDS Research Institute), Pune, Maharashtra, India
| |
Collapse
|
7
|
Akanksha, Mehra S. Conserved Evolutionary Trajectory Can Be Perturbed to Prevent Resistance Evolution under Norfloxacin Pressure by Forcing Mycobacterium smegmatis on Alternate Evolutionary Paths. ACS Infect Dis 2024; 10:2623-2636. [PMID: 38959403 DOI: 10.1021/acsinfecdis.3c00605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Antibiotic resistance is a pressing health issue, with the emergence of resistance in bacteria outcompeting the discovery of novel drug candidates. While many studies have used Adaptive Laboratory Evolution (ALE) to understand the determinants of resistance, the influence of the drug dosing profile on the evolutionary trajectory remains understudied. In this study, we employed ALE on Mycobacterium smegmatis exposed to various concentrations of Norfloxacin using both cyclic constant and stepwise increasing drug dosages to examine their impact on the resistance mechanisms selected. Mutations in an efflux pump regulator, LfrR, were found in all of the evolved populations irrespective of the drug profile and population bottleneck, indicating a conserved efflux-based resistance mechanism. This mutation appeared early in the evolutionary trajectory, providing low-level resistance when present alone, with a further increase in resistance resulting from successive accumulation of other mutations. Notably, drug target mutations, similar to those observed in clinical isolates, were only seen above a threshold of greater than 4× the minimum inhibitory concentration (MIC). A combination of three mutations in the genes, lfrR, MSMEG_1959, and MSMEG_5045, was conserved across multiple lineages, leading to high-level resistance and preceding the appearance of drug target mutations. Interestingly, in populations evolved from parental strains lacking the lfrA efflux pump, the primary target of the lfrR regulator, no lfrR gene mutations are selected. Furthermore, evolutional trajectories originating from the ΔlfrA strain displayed early arrest in some lineages and the absence of target gene mutations in those that evolved, albeit delayed. Thus, blocking or inhibiting the expression of efflux pumps can arrest or delay the fixation of drug target mutations, potentially limiting the maximum attainable resistance levels.
Collapse
Affiliation(s)
- Akanksha
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra 400076, India
| | - Sarika Mehra
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra 400076, India
| |
Collapse
|
8
|
Wang T, Li MY, Cai XS, Cheng QS, Li Z, Liu TT, Zhou LF, Wang HH, Feng GD, Marais BJ, Zhao G. Disease spectrum and prognostic factors in patients treated for tuberculous meningitis in Shaanxi province, China. Front Microbiol 2024; 15:1374458. [PMID: 38827153 PMCID: PMC11140062 DOI: 10.3389/fmicb.2024.1374458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/24/2024] [Indexed: 06/04/2024] Open
Abstract
Background Tuberculous meningitis (TBM) is the most severe form of tuberculosis (TB) and can be difficult to diagnose and treat. We aimed to describe the clinical presentation, diagnosis, disease spectrum, outcome, and prognostic factors of patients treated for TBM in China. Methods A multicenter retrospective study was conducted from 2009 to 2019 enrolling all presumptive TBM patients referred to Xijing tertiary Hospital from 27 referral centers in and around Shaanxi province, China. Patients with clinical features suggestive of TBM (abnormal CSF parameters) were included in the study if they had adequate baseline information to be classified as "confirmed," "probable," or "possible" TBM according to international consensus TBM criteria and remained in follow-up. Patients with a confirmed alternative diagnosis or severe immune compromise were excluded. Clinical presentation, central nervous system imaging, cerebrospinal fluid (CSF) results, TBM score, and outcome-assessed using the modified Barthel disability index-were recorded and compared. Findings A total of 341 presumptive TBM patients met selection criteria; 63 confirmed TBM (25 culture positive, 42 Xpert-MTB/RIF positive), 66 probable TBM, 163 possible TBM, and 49 "not TBM." Death was associated with BMRC grade III (OR = 5.172; 95%CI: 2.298-11.641), TBM score ≥ 15 (OR = 3.843; 95%CI: 1.372-10.761), age > 60 years (OR = 3.566; 95%CI: 1.022-12.442), and CSF neutrophil ratio ≥ 25% (OR = 2.298; 95%CI: 1.027-5.139). Among those with confirmed TBM, nearly one-third (17/63, 27.0%) had a TBM score < 12; these patients exhibited less classic meningitis symptoms and signs and had better outcomes compared with those with a TBM score ≥ 12. In this group, signs of disseminated/miliary TB (OR = 12.427; 95%CI: 1.138-135.758) and a higher TBM score (≥15, OR = 8.437; 95%CI: 1.328-53.585) were most strongly associated with death. Conclusion TBM patients who are older (>60 years) have higher TBM scores or CSF neutrophil ratios, have signs of disseminated/miliary TB, and are at greatest risk of death. In general, more effort needs to be done to improve early diagnosis and treatment outcome in TBM patients.
Collapse
Affiliation(s)
- Ting Wang
- Department of Neurology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Meng-yan Li
- Department of Neurology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Xin-shan Cai
- Department of Clinical Laboratory, Guangzhou Chest Hospital, Guangzhou, China
| | - Qiu-sheng Cheng
- Department of Neurology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Ze Li
- Department of Neurology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Ting-ting Liu
- Department of Neurology, Xijing Hospital, The Air Force Medical University, Xi’an, China
| | - Lin-fu Zhou
- Department of Neurology, Northwestern University School of Medicine, Xi’an, China
| | - Hong-hao Wang
- Department of Neurology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Guo-dong Feng
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ben J. Marais
- Sydney Infectious Diseases Institute (Sydney ID) and the WHO Collaborating Centre in Tuberculosis, University of Sydney, Sydney, NSW, Australia
| | - Gang Zhao
- Department of Neurology, Xijing Hospital, The Air Force Medical University, Xi’an, China
- Department of Neurology, Northwestern University School of Medicine, Xi’an, China
| |
Collapse
|
9
|
Bhanushali A, Atre S, Nair P, Thandaseery GA, Shah S, Kuruwa S, Zade A, Nikam C, Gomare M, Chatterjee A. Whole-genome sequencing of clinical isolates from tuberculosis patients in India: real-world data indicates a high proportion of pre-XDR cases. Microbiol Spectr 2024; 12:e0277023. [PMID: 38597637 PMCID: PMC11064594 DOI: 10.1128/spectrum.02770-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 03/11/2024] [Indexed: 04/11/2024] Open
Abstract
Treatment decisions for tuberculosis (TB) in the absence of full drug-susceptibility data can result in amplifying resistance and may compromise treatment outcomes. Genomics of Mycobacterium tuberculosis (M.tb) from clinical samples enables detection of drug resistance to multiple drugs. We performed whole-genome sequencing (WGS) for 600 clinical samples from patients with tuberculosis to identify the drug-resistance profile and mutation spectrum. We documented the reasons reported by clinicians for referral. WGS identified a high proportion (51%) of pre-extensively drug-resistant (pre-XDR) cases followed by multidrug-resistant tuberculosis (MDR-TB) (15.5%). This correlates with the primary reason for referral, as non-response to the first-line treatment (67%) and treatment failure or rifampicin resistance (14%). Multivariate analysis indicated that all young age groups (P < 0.05), male gender (P < 0.05), and Beijing strain (P < 0.01) were significant independent predictors of MDR-TB or MDR-TB+ [pre-extensively drug-resistant tuberculosis (XDR-TB) and XDR-TB]. Ser315Thr (72.5%) in the inhA gene and Ser450Leu in the rpoB gene (65.5%) were the most prevalent mutations, as were resistance-conferring mutations to pyrazinamide (41%) and streptomycin (61.33%). Mutations outside the rifampicin resistance-determining region (RRDR), Ile491Phe and Val170Phe, were seen in 1.3% of cases; disputed mutations in rpoB (Asp435Tyr, His445Asn, His445Leu, and Leu430Pro) were seen in 6% of cases, and mutations to newer drugs such as bedaquiline and linezolid in 1.0% and 7.5% of cases, respectively. This study on clinical samples highlights that there is a high proportion of pre-XDR cases and emerging resistance to newer drugs; ongoing transmission of these strains can cause serious threat to public health; and whole-genome sequencing can effectively identify and support precision medicine for TB. IMPORTANCE The current study is based on real-world data on the TB drug-resistance profile by whole-genome sequencing of 600 clinical samples from patients with TB in India. This study indicates the clinicians' reasons for sending samples for WGS, which is for difficult-to-treat cases and/or relapse and treatment failure. The study reports a significant proportion of cases with pre-XDR-TB strains that warrant policy makers' attention. It reflects the current iterative nature of the diagnostic tests under programmatic conditions that leads to delays in appropriate diagnosis and empirical treatment. India had an estimated burden of 2.95 million TB cases in 2020 and 135,000 multidrug-resistant cases. However, WGS profiles of M.tb from India remains disproportionately poorly represented. This study adds a significant body of data on the mutation profiles seen in M.tb isolated from patients with TB in India, mutations outside the RRDR, disputed mutations, and resistance-conferring mutations to newer drugs such as bedaquiline and linezolid.
Collapse
Affiliation(s)
| | - Sachin Atre
- Dr. D.Y. Patil Medical College Hospital and Research Centre, Pune, India
| | - Preethi Nair
- HaystackAnalytics Pvt. Ltd., IIT Bombay, Mumbai, India
| | | | - Sanchi Shah
- HaystackAnalytics Pvt. Ltd., IIT Bombay, Mumbai, India
| | | | - Amrutraj Zade
- HaystackAnalytics Pvt. Ltd., IIT Bombay, Mumbai, India
| | | | | | | |
Collapse
|
10
|
Reta MA, Maningi NE, Fourie PB. Patterns and profiles of drug resistance-conferring mutations in Mycobacterium tuberculosis genotypes isolated from tuberculosis-suspected attendees of spiritual holy water sites in Northwest Ethiopia. Front Public Health 2024; 12:1356826. [PMID: 38566794 PMCID: PMC10985251 DOI: 10.3389/fpubh.2024.1356826] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 02/26/2024] [Indexed: 04/04/2024] Open
Abstract
Purpose This study examined the patterns and frequency of genetic changes responsible for resistance to first-line (rifampicin and isoniazid), fluoroquinolones, and second-line injectable drugs in drug-resistant Mycobacterium tuberculosis (MTB) isolated from culture-positive pulmonary tuberculosis (PTB) symptomatic attendees of spiritual holy water sites (HWSs) in the Amhara region. Patients and methods From June 2019 to March 2020, a cross-sectional study was carried out. A total of 122 culture-positive MTB isolates from PTB-suspected attendees of HWSs in the Amhara region were evaluated for their drug resistance profiles, and characterized gene mutations conferring resistance to rifampicin (RIF), isoniazid (INH), fluoroquinolones (FLQs), and second-line injectable drugs (SLIDs) using GenoType®MTBDRplus VER2.0 and GenoType®MTBDRsl VER2.0. Drug-resistant MTB isolates were Spoligotyped following the manufacturer's protocol. Results Genetic changes (mutations) responsible for resistance to RIF, INH, and FLQs were identified in 15/122 (12.3%), 20/122 (16.4%), and 5/20 (25%) of MTB isolates, respectively. In RIF-resistant, rpoB/Ser531Lue (n = 12, 80%) was most frequent followed by His526Tyr (6.7%). Amongst INH-resistant isolates, katG/Ser315Thr1 (n = 19, 95%) was the most frequent. Of 15 MDR-TB, the majority (n = 12, 80%) isolates had mutations at both rpoB/Ser531Leu and katG/Ser315Thr1. All 20 INH and/or RIF-resistant isolates were tested with the MTBDRsl VER 2.0, yielding 5 FLQs-resistant isolates with gene mutations at rpoB/Ser531Lue, katG/Ser315Thr1, and gyrA/Asp94Ala genes. Of 20 Spoligotyped drug-resistant MTB isolates, the majority (n = 11, 55%) and 6 (30%) were SIT149/T3-ETH and SIT21/CAS1-Kili sublineages, respectively; and they were any INH-resistant (mono-hetero/multi-). Of 15 RIF-resistant (RR/MDR-TB) isolates, 7 were SIT149/T3-ETH, while 6 were SIT21/CAS1-Kili sublineages. FLQ resistance was detected in four SIT21/CAS1-Kili lineages. Conclusion In the current study, the most common gene mutations responsible for resistance to INH, RIF, and FLQs were identified. SIT149/T3-ETH and SIT21/CAS1-Kili constitute the majority of drug-resistant TB (DR-TB) isolates. To further understand the complete spectrum of genetic changes/mutations and related genotypes, a sequencing technology is warranted.
Collapse
Affiliation(s)
- Melese Abate Reta
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
- Department of Medical Laboratory Science, College of Health Sciences, Woldia University, Woldia, Ethiopia
| | - Nontuthuko Excellent Maningi
- Department of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Durban, South Africa
| | - P. Bernard Fourie
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
11
|
Primo LMDG, Roque-Borda CA, Carnero Canales CS, Caruso IP, de Lourenço IO, Colturato VMM, Sábio RM, de Melo FA, Vicente EF, Chorilli M, da Silva Barud H, Barbugli PA, Franzyk H, Hansen PR, Pavan FR. Antimicrobial peptides grafted onto the surface of N-acetylcysteine-chitosan nanoparticles can revitalize drugs against clinical isolates of Mycobacterium tuberculosis. Carbohydr Polym 2024; 323:121449. [PMID: 37940311 DOI: 10.1016/j.carbpol.2023.121449] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/21/2023] [Accepted: 09/28/2023] [Indexed: 11/10/2023]
Abstract
Tuberculosis is caused by Mycobacterium tuberculosis (MTB) and is the leading cause of death from infectious diseases in the World. The search for new antituberculosis drugs is a high priority, since several drug-resistant TB-strains have emerged. Many nanotechnology strategies are being explored to repurpose or revive drugs. An interesting approach is to graft antimicrobial peptides (AMPs) to antibiotic-loaded nanoparticles. The objective of the present work was to determine the anti-MTB activity of rifampicin-loaded N-acetylcysteine-chitosan-based nanoparticles (NPs), conjugated with the AMP Ctx(Ile21)-Ha; against clinical isolates (multi- and extensively-drug resistant) and the H37Rv strain. The modified chitosan and drug-loaded NPs were characterized with respect to their physicochemical stability and their antimycobacterial profile, which showed potent inhibition (MIC values <0.977 μg/mL) by the latter. Furthermore, their accumulation within macrophages and cytotoxicity were determined. To understand the possible mechanisms of action, an in silico study of the peptide against MTB membrane receptors was performed. The results presented herein demonstrate that antibiotic-loaded NPs grafted with an AMP can be a powerful tool for revitalizing drugs against multidrug-resistant M. tuberculosis strains, by launching multiple attacks against MTB. This approach could potentially serve as a novel treatment strategy for various long-term diseases requiring extended treatment periods.
Collapse
Affiliation(s)
- Laura Maria Duran Gleriani Primo
- São Paulo State University (UNESP), Tuberculosis Research Laboratory, School of Pharmaceutical Sciences, Araraquara, São Paulo, Brazil
| | - Cesar Augusto Roque-Borda
- São Paulo State University (UNESP), Tuberculosis Research Laboratory, School of Pharmaceutical Sciences, Araraquara, São Paulo, Brazil; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Christian Shleider Carnero Canales
- Vicerrectorado de Investigación, Facultad de Ciencias Farmacéuticas bioquímicas y biotecnológicas, Universidad Católica de Santa María, Arequipa, Peru
| | - Icaro Putinhon Caruso
- Department of Physics - Institute of Biosciences, Humanities and Exact Sciences (IBILCE), São Paulo State University (UNESP), 15054-000 São José do Rio Preto, São Paulo, Brazil
| | - Isabella Ottenio de Lourenço
- Department of Physics - Institute of Biosciences, Humanities and Exact Sciences (IBILCE), São Paulo State University (UNESP), 15054-000 São José do Rio Preto, São Paulo, Brazil
| | - Vitória Maria Medalha Colturato
- Department of Biotechnology, Laboratory of Polymers and Biomaterials, University of Araraquara (UNIARA), Araraquara, São Paulo, Brazil
| | - Rafael Miguel Sábio
- São Paulo State University (UNESP), Department of Drug and Medicines, School of Pharmaceutical Sciences, Araraquara, São Paulo, Brazil
| | - Fernando Alves de Melo
- Department of Physics - Institute of Biosciences, Humanities and Exact Sciences (IBILCE), São Paulo State University (UNESP), 15054-000 São José do Rio Preto, São Paulo, Brazil
| | - Eduardo Festozo Vicente
- School of Sciences and Engineering, São Paulo State University (UNESP), Tupã, São Paulo, Brazil
| | - Marlus Chorilli
- São Paulo State University (UNESP), Department of Drug and Medicines, School of Pharmaceutical Sciences, Araraquara, São Paulo, Brazil
| | - Hernane da Silva Barud
- Department of Biotechnology, Laboratory of Polymers and Biomaterials, University of Araraquara (UNIARA), Araraquara, São Paulo, Brazil
| | - Paula Aboud Barbugli
- Department of Dental Materials and Prosthodontics, School of Dentistry, Sao Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Henrik Franzyk
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Paul Robert Hansen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Fernando Rogério Pavan
- São Paulo State University (UNESP), Tuberculosis Research Laboratory, School of Pharmaceutical Sciences, Araraquara, São Paulo, Brazil.
| |
Collapse
|
12
|
Deng Z, Chapagain P, Leng F. Macromolecular crowding potently stimulates DNA supercoiling activity of Mycobacterium tuberculosis DNA gyrase. J Biol Chem 2023; 299:105439. [PMID: 37944619 PMCID: PMC10731242 DOI: 10.1016/j.jbc.2023.105439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/19/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023] Open
Abstract
Macromolecular crowding, manifested by high concentrations of proteins and nucleic acids in living cells, significantly influences biological processes such as enzymatic reactions. Studying these reactions in vitro, using agents such as polyetthylene glycols (PEGs) and polyvinyl alcohols (PVAs) to mimic intracellular crowding conditions, is essential due to the notable differences from enzyme behaviors observed in diluted aqueous solutions. In this article, we studied Mycobacterium tuberculosis (Mtb) DNA gyrase under macromolecular crowding conditions by incorporating PEGs and PVAs into the DNA supercoiling reactions. We discovered that high concentrations of potassium glutamate, glycine betaine, PEGs, and PVA substantially stimulated the DNA supercoiling activity of Mtb DNA gyrase. Steady-state kinetic studies showed that glycine betaine and PEG400 significantly reduced the KM of Mtb DNA gyrase and simultaneously increased the Vmax or kcat of Mtb DNA gyrase for ATP and the plasmid DNA molecule. Molecular dynamics simulation studies demonstrated that PEG molecules kept the ATP lid of DNA gyrase subunit B in a closed or semiclosed conformation, which prevented ATP molecules from leaving the ATP-binding pocket of DNA gyrase subunit B. The stimulation of the DNA supercoiling activity of Mtb DNA gyrase by these molecular crowding agents likely results from a decrease in water activity and an increase in excluded volume.
Collapse
Affiliation(s)
- Zifang Deng
- Biomolecular Science Institute, Florida International University, Miami, Florida, USA; Department of Chemistry & Biochemistry, Florida International University, Miami, Florida, USA
| | - Prem Chapagain
- Biomolecular Science Institute, Florida International University, Miami, Florida, USA; Department of Physics, Florida International University, Miami, Florida, USA
| | - Fenfei Leng
- Biomolecular Science Institute, Florida International University, Miami, Florida, USA; Department of Chemistry & Biochemistry, Florida International University, Miami, Florida, USA.
| |
Collapse
|
13
|
Khan Z, Zhu Y, Guan P, Peng J, Su B, Ma S, Ualiyeva D, Jamal K, Yusuf B, Ding J, Sapkota S, Hameed HMA, Tan Y, Lin Y, Hu J, Liu J, Zhang T. Distribution of common and rare drug resistance patterns in Mycobacterium tuberculosis clinical isolates revealed by GenoType MTBDR plus and MTBDR sl assay. J Thorac Dis 2023; 15:5494-5506. [PMID: 37969306 PMCID: PMC10636455 DOI: 10.21037/jtd-23-138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 08/25/2023] [Indexed: 11/17/2023]
Abstract
Background Tuberculosis (TB) remains a significant global health emergency caused by Mycobacterium tuberculosis (Mtb). The epidemiology, transmission, genotypes, mutational patterns, and clinical consequences of TB have been extensively studied worldwide, however, there is a lack of information regarding the epidemiology and mutational patterns of Mtb in Pakistan, specifically concerning the prevalence of multi-drug resistant TB (MDR-TB). Methods This study aimed to investigate the incidence of Mtb and associated mutational patterns using the line probe assay (LPA). Previous studies have reported a high frequency of mutations in the rpoB, inhA, and katG genes, which are associated with resistance to rifampicin (RIF) and isoniazid (INH). Therefore, the current study utilized LPA to detect mutations in the rpoB, katG, and inhA genes to identify multi-drug resistant Mtb. Results LPA analysis of a large pool of Mtb isolates, including samples from 241 sputum-positive patients, revealed that 34.85% of isolates were identified as MDR-TB, consistent with reports from various regions worldwide. The most prevalent mutations observed were rpoB S531L and inhA promoter C15T, which were associated with resistance to RIF and INH, respectively. Conclusions This study highlights the effectiveness of GenoType MTBDRplus and MTBDRsl assays as valuable tools for TB management. These assays enable rapid detection of resistance to RIF, INH, and fluoroquinolones (FQs) in Mtb clinical isolates, surpassing the limitations of solid and liquid media-based methods. The findings contribute to our understanding of MDR-TB epidemiology and provide insights into the genetic profiles of Mtb in Pakistan, which are essential for effective TB control strategies.
Collapse
Affiliation(s)
- Zafran Khan
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Canada
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou, China
| | - Yuting Zhu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou, China
- University of Science and Technology of China, Hefei, China
| | - Ping Guan
- State Key Laboratory of Respiratory Disease, Guangzhou Chest Hospital, Guangzhou, China
| | - Jiacong Peng
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou, China
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Biyi Su
- State Key Laboratory of Respiratory Disease, Guangzhou Chest Hospital, Guangzhou, China
| | - Shangming Ma
- State Key Laboratory of Respiratory Disease, Guangzhou Chest Hospital, Guangzhou, China
| | - Daniya Ualiyeva
- University of Chinese Academy of Sciences, Beijing, China
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Khalid Jamal
- Programmatic Management of Drug-Resistant Tuberculosis, Saidu Teaching Hospital, Saidu Sharif, Pakistan
| | - Buhari Yusuf
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou, China
| | - Jie Ding
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou, China
| | - Sanjeep Sapkota
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou, China
| | - H. M. Adnan Hameed
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou, China
| | - Yaoju Tan
- State Key Laboratory of Respiratory Disease, Guangzhou Chest Hospital, Guangzhou, China
| | - Yongping Lin
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou, China
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jinxing Hu
- State Key Laboratory of Respiratory Disease, Guangzhou Chest Hospital, Guangzhou, China
| | - Jianxiong Liu
- State Key Laboratory of Respiratory Disease, Guangzhou Chest Hospital, Guangzhou, China
| | - Tianyu Zhang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou, China
| |
Collapse
|
14
|
Dias M, Chapagain T, Leng F. A Fluorescence-Based, T5 Exonuclease-Amplified DNA Cleavage Assay for Discovering Bacterial DNA Gyrase Poisons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.16.562555. [PMID: 37904923 PMCID: PMC10614890 DOI: 10.1101/2023.10.16.562555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Fluoroquinolones (FQs) are potent antibiotics of clinical significance, known for their unique mechanism of action as gyrase poisons, which stabilize gyrase-DNA cleavage complexes and convert gyrase into a DNA-damaging machinery. Unfortunately, FQ resistance has emerged, and these antibiotics can cause severe side effects. Therefore, discovering novel gyrase poisons with different chemical scaffolds is essential. The challenge lies in efficiently identifying them from compound libraries containing thousands or millions of drug-like compounds, as high-throughput screening (HTS) assays are currently unavailable. Here we report a novel fluorescence-based, T5 exonuclease-amplified DNA cleavage assay for gyrase poison discovery. This assay capitalizes on recent findings showing that multiple gyrase molecules can simultaneously bind to a plasmid DNA molecule, forming multiple gyrase-DNA cleavage complexes on the same plasmid. These gyrase-DNA cleavage complexes, stabilized by a gyrase poison, can be captured using sarkosyl. Proteinase K digestion results in producing small DNA fragments. T5 exonuclease, selectively digesting linear and nicked DNA, can fully digest the fragmented linear DNA molecules and, thus, "amplify" the decrease in fluorescence signal of the DNA cleavage products after SYBR Green staining. This fluorescence-based, T5 exonuclease-amplified DNA cleavage HTS assay is validated using a 50-compound library, making it suitable for screening large compound libraries.
Collapse
|
15
|
Li MC, Lu Y, Liu HC, Lin SQ, Qian C, Nan XT, Li GL, Zhao XQ, Wan KL, Zhao LL. Rapid detection of fluoroquinolone resistance in Mycobacterium tuberculosis using a novel multienzyme isothermal rapid assay. J Antibiot (Tokyo) 2023; 76:598-602. [PMID: 37402884 DOI: 10.1038/s41429-023-00639-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 07/06/2023]
Abstract
Simple, rapid, and accurate detection of Fluoroquinolone (FQ) resistance is essential for early initiation of appropriate anti-tuberculosis treatment regimen among rifampicin-resistant tuberculosis (RR-TB). In this study, we developed a new assay, which combines multienzyme isothermal rapid amplification and a lateral flow strip (MIRA-LF), to identify the mutations on codons 90 and 94 of gyrA for detecting levofloxacin (LFX) resistance. Compared to conventional phenotypic drug susceptibility testing, the new assay detected fluoroquinolone resistance with a sensitivity, specificity, and accuracy of 92.4%, 98.5%, and 96.5%, respectively. Thus, these characteristics of the newly developed MIRA-LF assay make it particularly useful and accurate for detecting FQ resistance in Mycobacterium tuberculosis in resource-limited condition.
Collapse
Affiliation(s)
- Ma-Chao Li
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 102206, Beijing, China
| | - Yao Lu
- Department of Laboratory Medicine, Ningbo First Hospital, Ningbo Hospital of Ningbo University, Ningbo, 315010, China
| | - Hai-Can Liu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 102206, Beijing, China
| | - Shi-Qiang Lin
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Cheng Qian
- Beijing Center for Disease Control and Prevention, 100013, Beijing, China
| | - Xiao-Tian Nan
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 102206, Beijing, China
| | - Gui-Lian Li
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 102206, Beijing, China
| | - Xiu-Qin Zhao
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 102206, Beijing, China
| | - Kang-Lin Wan
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 102206, Beijing, China
| | - Li-Li Zhao
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 102206, Beijing, China.
| |
Collapse
|
16
|
Perumal R, Khan A, Naidoo K, Ngema SL, Nandlal L, Padayatchi N, Dookie N. Mycobacterium tuberculosis Intra-Host Evolution Among Drug-Resistant Tuberculosis Patients Failing Treatment. Infect Drug Resist 2023; 16:2849-2859. [PMID: 37193296 PMCID: PMC10182815 DOI: 10.2147/idr.s408976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/29/2023] [Indexed: 05/18/2023] Open
Abstract
Background Understanding Mycobacterium tuberculosis (Mtb) intra-host evolution of drug resistance is important for successful drug-resistant tuberculosis (DR-TB) treatment and control strategies. This study aimed to characterise the acquisition of genetic mutations and low-frequency variants associated with treatment-emergent Mtb drug resistance in longitudinally profiled clinical isolates from patients who experienced DR-TB treatment failure. Patients and Methods We performed deep Whole Genome Sequencing on 23 clinical isolates obtained longitudinally across nine timepoints from five patients who experienced DR-TB treatment failure enrolled in the CAPRISA 020 InDEX study. The minimum inhibitory concentrations (MICs) were established on the BACTEC™ MGIT 960™ instrument on 15/23 longitudinal clinical isolates for eight anti-TB drugs (rifampicin, isoniazid, ethambutol, levofloxacin, moxifloxacin, linezolid, clofazimine, bedaquiline). Results In total, 22 resistance associated mutations/variants were detected. We observed four treatment-emergent mutations in two out of the five patients. Emerging resistance to the fluoroquinolones was associated with 16- and 64-fold elevated levofloxacin (2-8 mg/L) and moxifloxacin (1-2 mg/L) MICs, respectively, resulting from the D94G/N and A90V variants in the gyrA gene. We identified two novel mutations associated with elevated bedaquiline MICs (>66-fold): an emerging frameshift variant (D165) on the Rv0678 gene and R409Q variant on the Rv1979c gene present from baseline. Conclusion Genotypic and phenotypic resistance to the fluoroquinolones and bedaquiline was acquired in two out of five patients who experienced DR-TB treatment failure. Deep sequencing of multiple longitudinal clinical isolates for resistance-associated mutations coupled with phenotypic MIC testing confirmed intra-host Mtb evolution.
Collapse
Affiliation(s)
- Rubeshan Perumal
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, KwaZulu Natal, South Africa
- South African Medical Research Council (SAMRC) – CAPRISA HIV-TB Pathogenesis and Treatment Research Unit, Durban, KwaZulu Natal, South Africa
| | - Azraa Khan
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, KwaZulu Natal, South Africa
| | - Kogieleum Naidoo
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, KwaZulu Natal, South Africa
- South African Medical Research Council (SAMRC) – CAPRISA HIV-TB Pathogenesis and Treatment Research Unit, Durban, KwaZulu Natal, South Africa
| | - Senamile L Ngema
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, KwaZulu Natal, South Africa
| | - Louansha Nandlal
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, KwaZulu Natal, South Africa
- South African Medical Research Council (SAMRC) – CAPRISA HIV-TB Pathogenesis and Treatment Research Unit, Durban, KwaZulu Natal, South Africa
| | - Nesri Padayatchi
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, KwaZulu Natal, South Africa
- South African Medical Research Council (SAMRC) – CAPRISA HIV-TB Pathogenesis and Treatment Research Unit, Durban, KwaZulu Natal, South Africa
| | - Navisha Dookie
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, KwaZulu Natal, South Africa
- South African Medical Research Council (SAMRC) – CAPRISA HIV-TB Pathogenesis and Treatment Research Unit, Durban, KwaZulu Natal, South Africa
| |
Collapse
|
17
|
Pinhata JMW, Brandao AP, Gallo JF, Oliveira RSD, Ferrazoli L. GenoType MTBDRsl for detection of second-line drugs and ethambutol resistance in multidrug-resistant Mycobacterium tuberculosis isolates at a high-throughput laboratory. Diagn Microbiol Infect Dis 2023; 105:115856. [PMID: 36446302 DOI: 10.1016/j.diagmicrobio.2022.115856] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 10/13/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022]
Abstract
We assessed the performance of MTBDRsl for detection of resistance to fluoroquinolones, aminoglycosides/cyclic peptides, and ethambutol compared to BACTEC MGIT 960 by subjecting simultaneously to both tests 385 phenotypically multidrug-resistant-Mycobacterium tuberculosis isolates from Sao Paulo, Brazil. Discordances were resolved by Sanger sequencing. MTBDRsl correctly detected 99.7% of the multidrug-resistant isolates, 87.8% of the pre-XDR, and 73.9% of the XDR. The assay showed sensitivity of 86.4%, 100%, 85.2% and 76.4% for fluoroquinolones, amikacin/kanamycin, capreomycin and ethambutol, respectively. Specificity was 100% for fluoroquinolones and aminoglycosides/cyclic peptides, and 93.6% for ethambutol. Most fluoroquinolone-discordances were due to mutations in genome regions not targeted by the MTBDRsl v. 1.0: gyrA_H70R and gyrB_R446C, D461N, D449V, and N488D. Capreomycin-resistant isolates with wild-type rrs results on MTBDRsl presented tlyA mutations. MTBDRsl presented good performance for detecting resistance to second-line drugs and ethambutol in clinical isolates. In our setting, multidrug-resistant. isolates presented mutations not targeted by the molecular assay.
Collapse
Affiliation(s)
- Juliana Maira Watanabe Pinhata
- Núcleo de Tuberculose e Micobacterioses, Centro de Bacteriologia, Instituto Adolfo Lutz (IAL), São Paulo, São Paulo, Brazil.
| | - Angela Pires Brandao
- Núcleo de Tuberculose e Micobacterioses, Centro de Bacteriologia, Instituto Adolfo Lutz (IAL), São Paulo, São Paulo, Brazil; Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Juliana Failde Gallo
- Núcleo de Tuberculose e Micobacterioses, Centro de Bacteriologia, Instituto Adolfo Lutz (IAL), São Paulo, São Paulo, Brazil
| | - Rosângela Siqueira de Oliveira
- Núcleo de Tuberculose e Micobacterioses, Centro de Bacteriologia, Instituto Adolfo Lutz (IAL), São Paulo, São Paulo, Brazil
| | - Lucilaine Ferrazoli
- Núcleo de Tuberculose e Micobacterioses, Centro de Bacteriologia, Instituto Adolfo Lutz (IAL), São Paulo, São Paulo, Brazil
| |
Collapse
|
18
|
Agonafir M, Belay G, Feleke A, Maningi N, Girmachew F, Reta M, Fourie PB. Profile and Frequency of Mutations Conferring Drug-Resistant Tuberculosis in the Central, Southeastern and Eastern Ethiopia. Infect Drug Resist 2023; 16:2953-2961. [PMID: 37201127 PMCID: PMC10187580 DOI: 10.2147/idr.s408567] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/05/2023] [Indexed: 05/20/2023] Open
Abstract
Purpose Advances in molecular tools that assess genes harboring drug resistance mutations have greatly improved the detection and treatment of drug-resistant tuberculosis (DR-TB). This study was conducted to determine the frequency and type of mutations that are responsible for resistance to rifampicin (RIF), isoniazid (INH), fluoroquinolones (FLQs) and second-line injectable drugs (SLIDs) in Mycobacterium tuberculosis (MTB) isolates obtained from culture-positive pulmonary tuberculosis (TB) patients in the central, southeastern and eastern Ethiopia. Patients and Methods In total, 224 stored culture-positive MTB isolates from pulmonary TB patients referred to Adama and Harar regional TB laboratories between August 2018 and January 2019 were assessed for mutations conferring RIF, INH, FLQs and SLIDs resistance using GenoType®MTBDRplus (MTBDRplus) and GenoType®MTBDRsl (MTBDRsl). Results RIF, INH, FLQs and SLIDs resistance-conferring mutations were identified in 88/224 (39.3%), 85/224 (38.0%), 7/77 (9.1%), and 3/77% (3.9%) of MTB isolates, respectively. Mutation codons rpoB S531L (59.1%) for RIF, katG S315T (96.5%) for INH, gyrA A90V (42.1%) for FLQs and WT1 rrs (100%) for SLIDs were observed in the majority of the isolates tested. Over a 10th of rpoB mutations detected in the current study were unknown. Conclusion In this study, the most common mutations conferring drug resistance to RIF, INH, FLQs were identified. However, a significant proportion of RIF-resistant isolates manifested unknown rpoB mutations. Similarly, although few in number, all SLID-resistant isolates had unknown rrs mutations. To further elucidate the entire spectrum of mutations, tool such as whole-genome sequencing is imperative. Furthermore, the expansion of molecular drug susceptibility testing services is critical for tailoring patient treatment and preventing disease transmission.
Collapse
Affiliation(s)
- Mulualem Agonafir
- Department of Microbial, Cellular and Molecular Biology, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa, Ethiopia
- Correspondence: Mulualem Agonafir, Department of Microbial, Cellular and Molecular Biology, College of Natural and Computational Sciences, Addis Ababa University, P.O. Box 34738, Addis Ababa, Ethiopia, Tel +251911446959, Email
| | - Gurja Belay
- Department of Microbial, Cellular and Molecular Biology, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Adey Feleke
- Department of Microbial, Cellular and Molecular Biology, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Nontuthuko Maningi
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | | | - Melese Reta
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
- Department of Medical Laboratory Sciences, College of Health Sciences, Woldia University, Woldia, Ethiopia
| | - P Bernard Fourie
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
19
|
Shariati A, Arshadi M, Khosrojerdi MA, Abedinzadeh M, Ganjalishahi M, Maleki A, Heidary M, Khoshnood S. The resistance mechanisms of bacteria against ciprofloxacin and new approaches for enhancing the efficacy of this antibiotic. Front Public Health 2022; 10:1025633. [PMID: 36620240 PMCID: PMC9815622 DOI: 10.3389/fpubh.2022.1025633] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/22/2022] [Indexed: 12/24/2022] Open
Abstract
For around three decades, the fluoroquinolone (FQ) antibiotic ciprofloxacin has been used to treat a range of diseases, including chronic otorrhea, endocarditis, lower respiratory tract, gastrointestinal, skin and soft tissue, and urinary tract infections. Ciprofloxacin's main mode of action is to stop DNA replication by blocking the A subunit of DNA gyrase and having an extra impact on the substances in cell walls. Available in intravenous and oral formulations, ciprofloxacin reaches therapeutic concentrations in the majority of tissues and bodily fluids with a low possibility for side effects. Despite the outstanding qualities of this antibiotic, Salmonella typhi, Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa have all shown an increase in ciprofloxacin resistance over time. The rise of infections that are resistant to ciprofloxacin shows that new pharmacological synergisms and derivatives are required. To this end, ciprofloxacin may be more effective against the biofilm community of microorganisms and multi-drug resistant isolates when combined with a variety of antibacterial agents, such as antibiotics from various classes, nanoparticles, natural products, bacteriophages, and photodynamic therapy. This review focuses on the resistance mechanisms of bacteria against ciprofloxacin and new approaches for enhancing its efficacy.
Collapse
Affiliation(s)
- Aref Shariati
- Molecular and Medicine Research Center, Khomein University of Medical Sciences, Khomein, Iran
| | - Maniya Arshadi
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran,Department of Microbiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Mostafa Abedinzadeh
- Student Research Committee, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Mahsa Ganjalishahi
- Student Research Committee, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Abbas Maleki
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Mohsen Heidary
- Department of Laboratory Sciences, School of Paramedical Sciences, Sabzevar University of Medical Sciences, Sabzevar, Iran,Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran,*Correspondence: Mohsen Heidary
| | - Saeed Khoshnood
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran,Student Research Committee, Ilam University of Medical Sciences, Ilam, Iran,Saeed Khoshnood
| |
Collapse
|
20
|
Alfonso EE, Troche R, Deng Z, Annamalai T, Chapagain P, Tse-Dinh YC, Leng F. Potent Inhibition of Bacterial DNA Gyrase by Digallic Acid and Other Gallate Derivatives. ChemMedChem 2022; 17:e202200301. [PMID: 36161274 PMCID: PMC9742164 DOI: 10.1002/cmdc.202200301] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/23/2022] [Indexed: 01/14/2023]
Abstract
Bacterial DNA gyrase, an essential enzyme, is a validated target for discovering and developing new antibiotics. Here we screened a pool of polyphenols and discovered that digallic acid is a potent DNA gyrase inhibitor. We also found that several food additives based on gallate, such as dodecyl gallate, potently inhibit bacterial DNA gyrase. Interestingly, the IC50 of these gallate derivatives against DNA gyrase is correlated with the length of hydrocarbon chain connecting to the gallate. These new bacterial DNA gyrase inhibitors are ATP competitive inhibitors of DNA gyrase. Our results also show that digallic acid and certain gallate derivatives potently inhibit E. coli DNA topoisomerase IV. Several gallate derivatives have strong antimicrobial activities against Staphylococcus aureus and methicillin-resistant Staphylococcus aureus (MRSA). This study provides a solid foundation for the design and synthesis of gallate-based DNA gyrase inhibitors that may be used to combat antibacterial resistance.
Collapse
Affiliation(s)
- Eddy E Alfonso
- Biomolecular Sciences Institute, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA
| | - Rogelio Troche
- Biomolecular Sciences Institute, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA
| | - Zifang Deng
- Biomolecular Sciences Institute, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA
| | - Thirunavukkarasu Annamalai
- Biomolecular Sciences Institute, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA
| | - Prem Chapagain
- Biomolecular Sciences Institute, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA
- Department of Physics, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA
| | - Yuk-Ching Tse-Dinh
- Biomolecular Sciences Institute, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA
| | - Fenfei Leng
- Biomolecular Sciences Institute, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA
| |
Collapse
|
21
|
Schaberg T, Brinkmann F, Feiterna-Sperling C, Geerdes-Fenge H, Hartmann P, Häcker B, Hauer B, Haas W, Heyckendorf J, Lange C, Maurer FP, Nienhaus A, Otto-Knapp R, Priwitzer M, Richter E, Salzer HJ, Schoch O, Schönfeld N, Stahlmann R, Bauer T. Tuberkulose im Erwachsenenalter. Pneumologie 2022; 76:727-819. [DOI: 10.1055/a-1934-8303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
ZusammenfassungDie Tuberkulose ist in Deutschland eine seltene, überwiegend gut behandelbare Erkrankung. Weltweit ist sie eine der häufigsten Infektionserkrankungen mit ca. 10 Millionen Neuerkrankungen/Jahr. Auch bei einer niedrigen Inzidenz in Deutschland bleibt Tuberkulose insbesondere aufgrund der internationalen Entwicklungen und Migrationsbewegungen eine wichtige Differenzialdiagnose. In Deutschland besteht, aufgrund der niedrigen Prävalenz der Erkrankung und der damit verbundenen abnehmenden klinischen Erfahrung, ein Informationsbedarf zu allen Aspekten der Tuberkulose und ihrer Kontrolle. Diese Leitlinie umfasst die mikrobiologische Diagnostik, die Grundprinzipien der Standardtherapie, die Behandlung verschiedener Organmanifestationen, den Umgang mit typischen unerwünschten Arzneimittelwirkungen, die Besonderheiten in der Diagnostik und Therapie resistenter Tuberkulose sowie die Behandlung bei TB-HIV-Koinfektion. Sie geht darüber hinaus auf Versorgungsaspekte und gesetzliche Regelungen wie auch auf die Diagnosestellung und präventive Therapie einer latenten tuberkulösen Infektion ein. Es wird ausgeführt, wann es der Behandlung durch spezialisierte Zentren bedarf.Die Aktualisierung der S2k-Leitlinie „Tuberkulose im Erwachsenenalter“ soll allen in der Tuberkuloseversorgung Tätigen als Richtschnur für die Prävention, die Diagnose und die Therapie der Tuberkulose dienen und helfen, den heutigen Herausforderungen im Umgang mit Tuberkulose in Deutschland gewachsen zu sein.
Collapse
Affiliation(s)
- Tom Schaberg
- Deutsches Zentralkomitee zur Bekämpfung der Tuberkulose e. V. (DZK), Berlin
| | - Folke Brinkmann
- Abteilung für pädiatrische Pneumologie/CF-Zentrum, Universitätskinderklinik der Ruhr-Universität Bochum, Bochum
| | - Cornelia Feiterna-Sperling
- Klinik für Pädiatrie mit Schwerpunkt Pneumologie, Immunologie und Intensivmedizin, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin und Humboldt-Universität zu Berlin, Berlin
| | | | - Pia Hartmann
- Labor Dr. Wisplinghoff Köln, Klinische Infektiologie, Köln
- Department für Klinische Infektiologie, St. Vinzenz-Hospital, Köln
| | - Brit Häcker
- Deutsches Zentralkomitee zur Bekämpfung der Tuberkulose e. V. (DZK), Berlin
| | | | | | - Jan Heyckendorf
- Klinik für Innere Medizin I, Universitätsklinikum Schleswig-Holstein, Campus Kiel
| | - Christoph Lange
- Klinische Infektiologie, Forschungszentrum Borstel
- Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hamburg-Lübeck-Borstel-Riems
- Respiratory Medicine and International Health, Universität zu Lübeck, Lübeck
- Baylor College of Medicine and Texas Childrenʼs Hospital, Global TB Program, Houston, TX, USA
| | - Florian P. Maurer
- Nationales Referenzzentrum für Mykobakterien, Forschungszentrum Borstel, Borstel
- Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Hamburg-Eppendorf, Hamburg
| | - Albert Nienhaus
- Institut für Versorgungsforschung in der Dermatologie und bei Pflegeberufen (IVDP), Universitätsklinikum Hamburg Eppendorf (UKE), Hamburg
| | - Ralf Otto-Knapp
- Deutsches Zentralkomitee zur Bekämpfung der Tuberkulose e. V. (DZK), Berlin
| | | | | | | | | | | | - Ralf Stahlmann
- Institut für klinische Pharmakologie und Toxikologie, Charité Universitätsmedizin, Berlin
| | - Torsten Bauer
- Deutsches Zentralkomitee zur Bekämpfung der Tuberkulose e. V. (DZK), Berlin
- Lungenklinik Heckeshorn, Helios Klinikum Emil von Behring, Berlin
| |
Collapse
|
22
|
Alfonso EE, Deng Z, Boaretto D, Hood BL, Vasile S, Smith LH, Chambers JW, Chapagain P, Leng F. Novel and Structurally Diversified Bacterial DNA Gyrase Inhibitors Discovered through a Fluorescence-Based High-Throughput Screening Assay. ACS Pharmacol Transl Sci 2022; 5:932-944. [PMID: 36268121 PMCID: PMC9578135 DOI: 10.1021/acsptsci.2c00113] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Indexed: 12/25/2022]
Abstract
Bacterial DNA gyrase, a type IIA DNA topoisomerase that plays an essential role in bacterial DNA replication and transcription, is a clinically validated target for discovering and developing new antibiotics. In this article, based on a supercoiling-dependent fluorescence quenching (SDFQ) method, we developed a high-throughput screening (HTS) assay to identify inhibitors targeting bacterial DNA gyrase and screened the National Institutes of Health's Molecular Libraries Small Molecule Repository library containing 370,620 compounds in which 2891 potential gyrase inhibitors have been identified. According to these screening results, we acquired 235 compounds to analyze their inhibition activities against bacterial DNA gyrase using gel- and SDFQ-based DNA gyrase inhibition assays and discovered 155 new bacterial DNA gyrase inhibitors with a wide structural diversity. Several of them have potent antibacterial activities. These newly discovered gyrase inhibitors include several DNA gyrase poisons that stabilize the gyrase-DNA cleavage complexes and provide new chemical scaffolds for the design and synthesis of bacterial DNA gyrase inhibitors that may be used to combat multidrug-resistant bacterial pathogens. Additionally, this HTS assay can be applied to screen inhibitors against other DNA topoisomerases.
Collapse
Affiliation(s)
- Eddy E. Alfonso
- Biomolecular
Sciences Institute, Florida International
University, Miami, Florida 33199, United States
- Department
of Chemistry and Biochemistry, Florida International
University, Miami, Florida 33199, United
States
| | - Zifang Deng
- Biomolecular
Sciences Institute, Florida International
University, Miami, Florida 33199, United States
- Department
of Chemistry and Biochemistry, Florida International
University, Miami, Florida 33199, United
States
| | - Daniel Boaretto
- Biomolecular
Sciences Institute, Florida International
University, Miami, Florida 33199, United States
- Department
of Chemistry and Biochemistry, Florida International
University, Miami, Florida 33199, United
States
| | - Becky L. Hood
- Conrad
Prebys Center for Chemical Genomics, Sanford
Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Stefan Vasile
- Conrad
Prebys Center for Chemical Genomics, Sanford
Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Layton H. Smith
- Conrad
Prebys Center for Chemical Genomics, Sanford
Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Jeremy W. Chambers
- Biomolecular
Sciences Institute, Florida International
University, Miami, Florida 33199, United States
- Department
of Environmental Health Sciences, Florida
International University, Miami, Florida 33199, United States
| | - Prem Chapagain
- Biomolecular
Sciences Institute, Florida International
University, Miami, Florida 33199, United States
- Department
of Physics, Florida International University, Miami, Florida 33199, United States
| | - Fenfei Leng
- Biomolecular
Sciences Institute, Florida International
University, Miami, Florida 33199, United States
- Department
of Chemistry and Biochemistry, Florida International
University, Miami, Florida 33199, United
States
| |
Collapse
|
23
|
Zhang Y, Jiang Y, Yu C, Li J, Shen X, Pan Q, Shen X. Whole-genome sequencing for surveillance of fluoroquinolone resistance in rifampicin-susceptible tuberculosis in a rural district of Shanghai: A 10-year retrospective study. Front Public Health 2022; 10:990894. [PMID: 36187694 PMCID: PMC9521709 DOI: 10.3389/fpubh.2022.990894] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/19/2022] [Indexed: 01/26/2023] Open
Abstract
Background Fluoroquinolones (FQs) are the most important second-line anti-tuberculosis (anti-TB) drugs, primarily used for the treatment of multidrug- or rifampicin-resistant TB (MDR/RR-TB). However, FQs are also commonly used to treat other bacterial infections. There are few published data on the rates of FQ resistance among rifampicin-susceptible TB. Methods We used whole-genome sequencing (WGS) to determine the prevalence of FQ resistance among rifampicin-susceptible TB in a rural district of Shanghai. This was a population-based retrospective study of all culture-positive pulmonary TB patients diagnosed in the Chongming district of Shanghai, China during 2009-2018. Results The rate of FQ resistance was 8.4% (29/345) among TB, 6.2% (20/324) among rifampicin-susceptible TB, and 42.9% (9/21) among MDR/RR-TB. Transmission of FQ-resistant strains was defined as strains differing within 12 single-nucleotide polymorphisms (SNPs) based on WGS. Among the rifampicin-susceptible TB, 20% (4/20) of FQ resistance was caused by the transmission of FQ-resistant strains and 45% (9/20) of FQ resistance was identified as hetero-resistance. Conclusions The prevalence of FQ resistance in rifampicin-susceptible TB was higher than expected in Shanghai. Both the transmission and the selection of drug-resistant strains drive the emergence of FQ resistance in rifampicin-susceptible TB isolates. Therefore, the WGS-based surveillance system for TB should be urgently established and the clinical awareness of the rational use of FQs for respiratory infections should be enhanced to prevent the premature occurrence of FQ resistance.
Collapse
Affiliation(s)
- Yangyi Zhang
- Division of Tuberculosis and HIV/AIDS Prevention, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China,Shanghai Institutes of Preventive Medicine, Shanghai, China,Department of Epidemiology, School of Public Health and Key Laboratory of Public Health Safety, Fudan University, Shanghai, China
| | - Yuan Jiang
- Division of Tuberculosis and HIV/AIDS Prevention, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China,Shanghai Institutes of Preventive Medicine, Shanghai, China
| | - Chenlei Yu
- Division of Tuberculosis and HIV/AIDS Prevention, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China,Shanghai Institutes of Preventive Medicine, Shanghai, China
| | - Jing Li
- Division of Tuberculosis and HIV/AIDS Prevention, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China,Shanghai Institutes of Preventive Medicine, Shanghai, China
| | - Xuhui Shen
- Division of Tuberculosis and HIV/AIDS Prevention, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China,Shanghai Institutes of Preventive Medicine, Shanghai, China
| | - Qichao Pan
- Division of Tuberculosis and HIV/AIDS Prevention, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China,Shanghai Institutes of Preventive Medicine, Shanghai, China
| | - Xin Shen
- Division of Tuberculosis and HIV/AIDS Prevention, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China,Shanghai Institutes of Preventive Medicine, Shanghai, China,*Correspondence: Xin Shen
| |
Collapse
|
24
|
Bhagwat A, Deshpande A, Parish T. How Mycobacterium tuberculosis drug resistance has shaped anti-tubercular drug discovery. Front Cell Infect Microbiol 2022; 12:974101. [PMID: 36159638 PMCID: PMC9500310 DOI: 10.3389/fcimb.2022.974101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
Drug resistance is an increasing problem for the treatment of tuberculosis. The prevalence of clinical isolates with pre-existing resistance needs to be considered in any drug discovery program. Non-specific mechanisms of resistance such as increased efflux or decreased permeability need to be considered both in developing individual drug candidates and when designing novel regimens. We review a number of different approaches to develop new analogs and drug combinations or improve efficacy of existing drugs that may overcome or delay the appearance of clinical resistance. We also discuss the need to fully characterize mechanisms of resistance and cross- resistance to existing drugs to ensure that novel drugs will be clinically effective.
Collapse
|
25
|
Shanmugam SK, Kumar N, Sembulingam T, Ramalingam SB, Selvaraj A, Rajendhiran U, Solaiyappan S, Tripathy SP, Natrajan M, Chandrasekaran P, Swaminathan S, Parkhill J, Peacock SJ, Ranganathan UDK. Mycobacterium tuberculosis Lineages Associated with Mutations and Drug Resistance in Isolates from India. Microbiol Spectr 2022; 10:e0159421. [PMID: 35442078 PMCID: PMC9241780 DOI: 10.1128/spectrum.01594-21] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 03/03/2022] [Indexed: 12/12/2022] Open
Abstract
Current knowledge on resistance-conferring determinants in Mycobacterium tuberculosis is biased toward globally dominant lineages 2 and 4. In contrast, lineages 1 and 3 are predominant in India. In this study, we performed whole-genome sequencing of 498 MDR M. tuberculosis isolates from India to determine the prevalence of drug resistance mutations and to understand the genomic diversity. A retrospective collection of 498 M. tuberculosis isolates submitted to the National Institute for Research in Tuberculosis for phenotypic susceptibility testing between 2014 to 2016 were sequenced. Genotypic resistance prediction was performed using known resistance-conferring determinants. Genotypic and phenotypic results for 12 antituberculosis drugs were compared, and sequence data were explored to characterize lineages and their association with drug resistance. Four lineages were identified although lineage 1 predominated (43%). The sensitivity of prediction for isoniazid and rifampicin was 92% and 98%, respectively. We observed lineage-specific variations in the proportion of isolates with resistance-conferring mutations, with drug resistance more common in lineages 2 and 3. Disputed mutations (codons 430, 435, 445, and 452) in the rpoB gene were more common in isolates other than lineage 2. Phylogenetic analysis and pairwise SNP difference revealed high genetic relatedness of lineage 2 isolates. WGS based resistance prediction has huge potential, but knowledge of regional and national diversity is essential to achieve high accuracy for resistance prediction. IMPORTANCE Current knowledge on resistance-conferring determinants in Mycobacterium tuberculosis is biased toward globally dominant lineages 2 and 4. In contrast, lineages 1 and 3 are predominant in India. We performed whole-genome sequencing of 498 MDR M. tuberculosis isolates from India to determine the prevalence of drug resistance mutations and to understand genomic diversity. Four lineages were identified although lineage 1 predominated (43%). The sensitivity of prediction for isoniazid and rifampicin was 92% and 98%, respectively. We observed lineage-specific variations in the proportion of isolates with resistance-conferring mutations, with drug resistance more common in lineages 2 and 3. Disputed mutations (codons 430, 435, 445, and 452) in the rpoB gene were more common in isolates other than lineage 2. Phylogenetic analysis and pairwise SNP difference revealed high genetic relatedness of lineage 2 isolates. WGS based resistance prediction has huge potential, but knowledge of regional and national diversity is essential to achieve high accuracy for resistance prediction.
Collapse
Affiliation(s)
- Siva Kumar Shanmugam
- Indian Council of Medical Research (ICMR)-National Institute for Research in Tuberculosis, Chennai, India
| | - Narender Kumar
- Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Tamilzhalagan Sembulingam
- Indian Council of Medical Research (ICMR)-National Institute for Research in Tuberculosis, Chennai, India
| | - Suresh Babu Ramalingam
- Indian Council of Medical Research (ICMR)-National Institute for Research in Tuberculosis, Chennai, India
| | - Ashok Selvaraj
- Indian Council of Medical Research (ICMR)-National Institute for Research in Tuberculosis, Chennai, India
| | - Udhayakumar Rajendhiran
- Indian Council of Medical Research (ICMR)-National Institute for Research in Tuberculosis, Chennai, India
| | - Sudha Solaiyappan
- Indian Council of Medical Research (ICMR)-National Institute for Research in Tuberculosis, Chennai, India
| | - Srikanth P. Tripathy
- Indian Council of Medical Research (ICMR)-National Institute for Research in Tuberculosis, Chennai, India
| | - Mohan Natrajan
- Indian Council of Medical Research (ICMR)-National Institute for Research in Tuberculosis, Chennai, India
| | | | | | - Julian Parkhill
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Sharon J. Peacock
- Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Uma Devi K. Ranganathan
- Indian Council of Medical Research (ICMR)-National Institute for Research in Tuberculosis, Chennai, India
| |
Collapse
|
26
|
Maestre-Carballa L, Navarro-López V, Martinez-Garcia M. A Resistome Roadmap: From the Human Body to Pristine Environments. Front Microbiol 2022; 13:858831. [PMID: 35633673 PMCID: PMC9134733 DOI: 10.3389/fmicb.2022.858831] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/14/2022] [Indexed: 11/23/2022] Open
Abstract
A comprehensive characterization of the human body resistome [sets of antibiotic resistance genes (ARGs)] is yet to be done and paramount for addressing the antibiotic microbial resistance threat. Here, we study the resistome of 771 samples from five major body parts (skin, nares, vagina, gut, and oral cavity) of healthy subjects from the Human Microbiome Project (HMP) and addressed the potential dispersion of ARGs in pristine environments. A total of 28,714 ARGs belonging to 235 different ARG types were found in the HMP proteome dataset (n = 9.1 × 107 proteins analyzed). Our study reveals a distinct resistome profile (ARG type and abundance) between body sites and high interindividual variability. Nares had the highest ARG load (≈5.4 genes/genome) followed by the oral cavity, whereas the gut showed one of the highest ARG richness (shared with nares) but the lowest abundance (≈1.3 genes/genome). The fluroquinolone resistance genes were the most abundant in the human body, followed by macrolide–lincosamide–streptogramin (MLS) or tetracycline. Most ARGs belonged to common bacterial commensals and multidrug resistance trait were predominant in the nares and vagina. Many ARGs detected here were considered as low risk for human health, whereas only a few of them, such as BlaZ, dfrA14, dfrA17, or tetM, were classified as high-risk ARG. Our data also provide hope, since the spread of common ARG from the human body to pristine environments (n = 271 samples; 77 Gb of sequencing data and 2.1 × 108 proteins analyzed) thus far remains very unlikely (only one case found in an autochthonous bacterium from a pristine environment). These findings broaden our understanding of ARG in the context of the human microbiome and the One-Health Initiative of WHO uniting human host–microbes and environments as a whole.
Collapse
Affiliation(s)
- Lucia Maestre-Carballa
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| | - Vicente Navarro-López
- Clinical Microbiology and Infectious Disease Unit, Hospital Universitario Vinalopó, Elche, Spain
| | - Manuel Martinez-Garcia
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| |
Collapse
|
27
|
Govender P, Müller R, Singh K, Reddy V, Eyermann CJ, Fienberg S, Ghorpade SR, Koekemoer L, Myrick A, Schnappinger D, Engelhart C, Meshanni J, Byl JAW, Osheroff N, Singh V, Chibale K, Basarab GS. Spiropyrimidinetrione DNA Gyrase Inhibitors with Potent and Selective Antituberculosis Activity. J Med Chem 2022; 65:6903-6925. [PMID: 35500229 DOI: 10.1021/acs.jmedchem.2c00266] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
New antibiotics with either a novel mode of action or novel mode of inhibition are urgently needed to overcome the threat of drug-resistant tuberculosis (TB). The present study profiles new spiropyrimidinetriones (SPTs), DNA gyrase inhibitors having activity against drug-resistant Mycobacterium tuberculosis (Mtb), the causative agent of TB. While the clinical candidate zoliflodacin has progressed to phase 3 trials for the treatment of gonorrhea, compounds herein demonstrated higher inhibitory potency against Mtb DNA gyrase (e.g., compound 42 with IC50 = 2.0) and lower Mtb minimum inhibitor concentrations (0.49 μM for 42). Notably, 42 and analogues showed selective Mtb activity relative to representative Gram-positive and Gram-negative bacteria. DNA gyrase inhibition was shown to involve stabilization of double-cleaved DNA, while on-target activity was supported by hypersensitivity against a gyrA hypomorph. Finally, a docking model for SPTs with Mtb DNA gyrase was developed, and a structural hypothesis was built for structure-activity relationship expansion.
Collapse
Affiliation(s)
- Preshendren Govender
- Drug Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch, Cape Town 7701, South Africa
| | - Rudolf Müller
- Drug Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch, Cape Town 7701, South Africa
| | - Kawaljit Singh
- Drug Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch, Cape Town 7701, South Africa
| | - Virsinha Reddy
- Drug Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch, Cape Town 7701, South Africa
| | - Charles J Eyermann
- Drug Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch, Cape Town 7701, South Africa
| | - Stephen Fienberg
- Drug Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch, Cape Town 7701, South Africa
| | - Sandeep R Ghorpade
- Drug Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch, Cape Town 7701, South Africa
| | - Lizbé Koekemoer
- Drug Discovery and Development Centre (H3D) South African Medical Research Council Drug Discovery and Development Research Unit, Department of Chemistry and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch, Cape Town 7701, South Africa
| | - Alissa Myrick
- Drug Discovery and Development Centre (H3D) South African Medical Research Council Drug Discovery and Development Research Unit, Department of Chemistry and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch, Cape Town 7701, South Africa
| | - Dirk Schnappinger
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York 10065, United States
| | - Curtis Engelhart
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York 10065, United States
| | - Jaclynn Meshanni
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York 10065, United States
| | - Jo Ann W Byl
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Neil Osheroff
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States.,Department of Medicine (Hematology/Oncology), Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States.,VA Tennessee Valley Healthcare System, Nashville, Tennessee 37212, United States
| | - Vinayak Singh
- Drug Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch, Cape Town 7701, South Africa.,Drug Discovery and Development Centre (H3D) South African Medical Research Council Drug Discovery and Development Research Unit, Department of Chemistry and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch, Cape Town 7701, South Africa
| | - Kelly Chibale
- Drug Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch, Cape Town 7701, South Africa.,Drug Discovery and Development Centre (H3D) South African Medical Research Council Drug Discovery and Development Research Unit, Department of Chemistry and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch, Cape Town 7701, South Africa
| | - Gregory S Basarab
- Drug Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch, Cape Town 7701, South Africa.,Drug Discovery and Development Centre (H3D), Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Observatory, Cape Town, 7935, South Africa
| |
Collapse
|
28
|
Rana V, Singh N, Nikam C, Kambli P, Singh PK, Singh U, Jain A, Rodrigues C, Sharma C. Molecular Epidemiology and Polymorphism Analysis in Drug-Resistant Genes in M. tuberculosis Clinical Isolates from Western and Northern India. Infect Drug Resist 2022; 15:1717-1732. [PMID: 35422638 PMCID: PMC9005233 DOI: 10.2147/idr.s345855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 03/02/2022] [Indexed: 11/23/2022] Open
Abstract
Introduction The mechanistic details of first line drug (FLD) resistance have been thoroughly explored but the genetic resistance mechanisms of second line injectables, which form the backbone of the combinatorial drug resistant tuberculosis therapy, are partially identified. This study aims to highlight the genetic and spoligotypic differences in the second line drug (SLD) resistant and sensitive Mycobacterium tuberculosis (Mtb) clinical isolates from Mumbai (Western India) and Lucknow (Northern India). Methods The rrs, eis, whiB7, tlyA, gyrA and gyrB target loci were screened in 126 isolates and spoligotyped. Results The novel mutations were observed in whiB7 loci (A43T, C44A, C47A, G48T, G59A and T152G in 5’-UTR; A42C, C253T and T270G in gene), tlyA (+CG200, G165A, C415G, and +G543) and gyrB (+G1359 and +A1429). Altogether, the rrs, eis, and whiB7 loci harbored mutations in ~86% and ~47% kanamycin resistant isolates from Mumbai and Lucknow, respectively. Mumbai strains displayed higher prevalence of mutations in gyrA (~85%) and gyrB loci (~13%) as compared to those from Lucknow (~69% and ~3.0%, respectively). Further, spoligotyping revealed that Beijing lineage is distributed equally amongst the drug resistant strains of Mumbai and Lucknow, but EAI-5 is existed at a higher level only in Mumbai. The lineages Manu2, CAS1-Delhi and T1 are more prevalent in Lucknow. Conclusion Besides identifying novel mutations in whiB7, tlyA and gyrB target loci, our analyses unveiled a potential polymorphic and phylogeographical demarcation among two distinct regions.
Collapse
Affiliation(s)
- Vibhuti Rana
- CSIR- Institute of Microbial Technology, Chandigarh, 160036, India
| | - Nittu Singh
- CSIR- Institute of Microbial Technology, Chandigarh, 160036, India
| | - Chaitali Nikam
- Department of Microbiology, P. D. Hinduja National Hospital and Medical Research Centre, Mumbai, 400016, Maharashtra, India
| | - Priti Kambli
- Department of Microbiology, P. D. Hinduja National Hospital and Medical Research Centre, Mumbai, 400016, Maharashtra, India
| | - Pravin K Singh
- Department of Microbiology, King George Medical University, Lucknow, 226003, Uttar Pradesh, India
| | - Urmila Singh
- Department of Microbiology, King George Medical University, Lucknow, 226003, Uttar Pradesh, India
| | - Amita Jain
- Department of Microbiology, King George Medical University, Lucknow, 226003, Uttar Pradesh, India
| | - Camilla Rodrigues
- Department of Microbiology, P. D. Hinduja National Hospital and Medical Research Centre, Mumbai, 400016, Maharashtra, India
| | - Charu Sharma
- CSIR- Institute of Microbial Technology, Chandigarh, 160036, India
- Correspondence: Charu Sharma, CSIR-Institute of Microbial Technology, Sector 39-A, Chandigarh, 160036, India, Tel +911722880309/310, Fax +911722690585, Email
| |
Collapse
|
29
|
Wang Z, Sun R, Mu C, Wang C, Zhao H, Jiang L, Ju H, Dai W, Zhang F. Characterization of Fluoroquinolone-Resistant and Multidrug-Resistant Mycobacterium tuberculosis Isolates Using Whole-Genome Sequencing in Tianjin, China. Infect Drug Resist 2022; 15:1793-1803. [PMID: 35444430 PMCID: PMC9013706 DOI: 10.2147/idr.s361635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/02/2022] [Indexed: 11/23/2022] Open
Abstract
Objective Methods Results Conclusion
Collapse
Affiliation(s)
- Zhirui Wang
- Tuberculosis Reference Laboratory, Tianjin Center for Tuberculosis Control, Tianjin, People’s Republic of China
| | - Rui Sun
- Tuberculosis Reference Laboratory, Tianjin Center for Tuberculosis Control, Tianjin, People’s Republic of China
| | - Cheng Mu
- Tuberculosis Reference Laboratory, Tianjin Center for Tuberculosis Control, Tianjin, People’s Republic of China
| | - Chunhua Wang
- Tuberculosis Reference Laboratory, Tianjin Center for Tuberculosis Control, Tianjin, People’s Republic of China
| | - Hui Zhao
- Tuberculosis Reference Laboratory, Tianjin Center for Tuberculosis Control, Tianjin, People’s Republic of China
| | - Lina Jiang
- Tuberculosis Reference Laboratory, Tianjin Center for Tuberculosis Control, Tianjin, People’s Republic of China
| | - Hanfang Ju
- Tuberculosis Reference Laboratory, Tianjin Center for Tuberculosis Control, Tianjin, People’s Republic of China
| | - Wenxi Dai
- Tuberculosis Reference Laboratory, Tianjin Center for Tuberculosis Control, Tianjin, People’s Republic of China
| | - Fan Zhang
- Tuberculosis Reference Laboratory, Tianjin Center for Tuberculosis Control, Tianjin, People’s Republic of China
- Correspondence: Fan Zhang, Tuberculosis Reference Laboratory, Tianjin Center for Tuberculosis Control, No. 124, Chifeng Road, Heping District, Tianjin, 300041, People’s Republic of China, Tel +86-22-27124491, Fax +86-22-27117595, Email
| |
Collapse
|
30
|
Spiropyrimidinetriones: a Class of DNA Gyrase Inhibitors with Activity against Mycobacterium tuberculosis and without Cross-Resistance to Fluoroquinolones. Antimicrob Agents Chemother 2022; 66:e0219221. [PMID: 35266826 PMCID: PMC9017349 DOI: 10.1128/aac.02192-21] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Described here is a series of spiropyrimidinetrione (SPT) compounds with activity against Mycobacterium tuberculosis through inhibition of DNA gyrase. The SPT class operates via a novel mode of inhibition, which involves Mg2+-independent stabilization of the DNA cleavage complex with DNA gyrase and is thereby not cross-resistant with other DNA gyrase-inhibiting antibacterials, including fluoroquinolones. Compound 22 from the series was profiled broadly and showed in vitro cidality as well as intracellular activity against M. tuberculosis in macrophages. Evidence for the DNA gyrase mode of action was supported by inhibition of the target in a DNA supercoiling assay and elicitation of an SOS response seen in a recA reporter strain of M. tuberculosis. Pharmacokinetic properties of 22 supported evaluation of efficacy in an acute model of M. tuberculosis infection, where modest reduction in CFU numbers was seen. This work offers promise for deriving a novel drug class of tuberculosis agent without preexisting clinical resistance.
Collapse
|
31
|
Rahman SMM, Nasrin R, Rahman A, Ahmed S, Khatun R, Uddin MKM, Rahman MM, Banu S. Performance of GenoType MTBDRsl assay for detection of second-line drugs and ethambutol resistance directly from sputum specimens of MDR-TB patients in Bangladesh. PLoS One 2021; 16:e0261329. [PMID: 34914803 PMCID: PMC8675706 DOI: 10.1371/journal.pone.0261329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 11/29/2021] [Indexed: 11/19/2022] Open
Abstract
Background Rapid and early detection of drug susceptibility among multidrug-resistant tuberculosis (MDR-TB) patients could guide the timely initiation of effective treatment and reduce transmission of drug-resistant TB. In the current study, we evaluated the diagnostic performance of GenoType MTBDRsl (MTBDRsl) ver1.0 assay for detection of resistance to ofloxacin (OFL), kanamycin (KAN) and ethambutol (EMB), and additionally the XDR-TB among MDR-TB patients in Bangladesh. Methods The MTBDRsl assay was performed directly on 218 smear-positive sputum specimens collected from MDR-TB patients and the results were compared with the phenotypic drug susceptibility testing (DST) performed on solid Lowenstein-Jensen (L-J) media. We also analyzed the mutation patterns of gyrA, rrs, and embB genes for detection of resistance to OFL, KAN and EMB, respectively. Results The sensitivity and specificity of the MTBDRsl compared to phenotypic L-J DST were 81.8% (95% CI, 69.1–90.9) and 98.8% (95% CI, 95.6–99.8), respectively for OFL (PPV: 95.7% & NPV: 94.1%); 65.1% (95% CI, 57.5–72.2) and 86.7% (95% CI, 73.2–94.9), respectively for EMB (PPV: 94.9% & NPV: 39.4%); and 100% for KAN. The diagnostic accuracy of KAN, OFL and EMB were 100, 94.5 and 69.6%, respectively. Moreover, the sensitivity, specificity and diagnostic accuracy of MtBDRsl for detection of XDR-TB was 100%. The most frequently observed mutations were at codon D94G (46.8%) of gyrA gene, A1401G (83.3%) of rrs gene, and M306V (41.5%) of the embB gene. Conclusion Considering the excellent performance in this study we suggest that MTBDRsl assay can be used as an initial rapid test for detection of KAN and OFL susceptibility, as well as XDR-TB directly from smear-positive sputum specimens of MDR-TB patients in Bangladesh.
Collapse
Affiliation(s)
| | - Rumana Nasrin
- Infectious Diseases Division, icddr,b, Dhaka, Bangladesh
| | - Arfatur Rahman
- Infectious Diseases Division, icddr,b, Dhaka, Bangladesh
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Shahriar Ahmed
- Infectious Diseases Division, icddr,b, Dhaka, Bangladesh
| | - Razia Khatun
- Infectious Diseases Division, icddr,b, Dhaka, Bangladesh
| | | | - Md. Mojibur Rahman
- Department of Epidemiology, Bangladesh University of Health Sciences, Darus Salam, Mirpur, Dhaka, Bangladesh
| | - Sayera Banu
- Infectious Diseases Division, icddr,b, Dhaka, Bangladesh
- * E-mail:
| |
Collapse
|
32
|
Rusu A, Lungu IA, Moldovan OL, Tanase C, Hancu G. Structural Characterization of the Millennial Antibacterial (Fluoro)Quinolones-Shaping the Fifth Generation. Pharmaceutics 2021; 13:pharmaceutics13081289. [PMID: 34452252 PMCID: PMC8399897 DOI: 10.3390/pharmaceutics13081289] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/12/2021] [Accepted: 08/14/2021] [Indexed: 12/12/2022] Open
Abstract
The evolution of the class of antibacterial quinolones includes the introduction in therapy of highly successful compounds. Although many representatives were withdrawn due to severe adverse reactions, a few representatives have proven their therapeutical value over time. The classification of antibacterial quinolones into generations is a valuable tool for physicians, pharmacists, and researchers. In addition, the transition from one generation to another has brought new representatives with improved properties. In the last two decades, several representatives of antibacterial quinolones received approval for therapy. This review sets out to chronologically outline the group of approved antibacterial quinolones since 2000. Special attention is given to eight representatives: besifloxacin, delafoxacin, finafloxacin, lascufloxacin, nadifloxacin and levonadifloxacin, nemonoxacin, and zabofloxacin. These compounds have been characterized regarding physicochemical properties, formulations, antibacterial activity spectrum and advantageous structural characteristics related to antibacterial efficiency. At present these new compounds (with the exception of nadifloxacin) are reported differently, most often in the fourth generation and less frequently in a new generation (the fifth). Although these new compounds' mechanism does not contain essential new elements, the question of shaping a new generation (the fifth) arises, based on higher potency and broad spectrum of activity, including resistant bacterial strains. The functional groups that ensured the biological activity, good pharmacokinetic properties and a safety profile were highlighted. In addition, these new representatives have a low risk of determining bacterial resistance. Several positive aspects are added to the fourth fluoroquinolones generation, characteristics that can be the basis of the fifth generation. Antibacterial quinolones class continues to acquire new compounds with antibacterial potential, among other effects. Numerous derivatives, hybrids or conjugates are currently in various stages of research.
Collapse
Affiliation(s)
- Aura Rusu
- Pharmaceutical and Therapeutical Chemistry Department, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania; (A.R.); (G.H.)
| | - Ioana-Andreea Lungu
- The Doctoral School of Medicine and Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania; (I.-A.L.); (O.-L.M.)
| | - Octavia-Laura Moldovan
- The Doctoral School of Medicine and Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania; (I.-A.L.); (O.-L.M.)
| | - Corneliu Tanase
- Pharmaceutical Botany Department, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania
- Correspondence: ; Tel.: +40-744-215-543
| | - Gabriel Hancu
- Pharmaceutical and Therapeutical Chemistry Department, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania; (A.R.); (G.H.)
| |
Collapse
|
33
|
Castro RAD, Borrell S, Gagneux S. The within-host evolution of antimicrobial resistance in Mycobacterium tuberculosis. FEMS Microbiol Rev 2021; 45:fuaa071. [PMID: 33320947 PMCID: PMC8371278 DOI: 10.1093/femsre/fuaa071] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 12/11/2020] [Indexed: 12/12/2022] Open
Abstract
Tuberculosis (TB) has been responsible for the greatest number of human deaths due to an infectious disease in general, and due to antimicrobial resistance (AMR) in particular. The etiological agents of human TB are a closely-related group of human-adapted bacteria that belong to the Mycobacterium tuberculosis complex (MTBC). Understanding how MTBC populations evolve within-host may allow for improved TB treatment and control strategies. In this review, we highlight recent works that have shed light on how AMR evolves in MTBC populations within individual patients. We discuss the role of heteroresistance in AMR evolution, and review the bacterial, patient and environmental factors that likely modulate the magnitude of heteroresistance within-host. We further highlight recent works on the dynamics of MTBC genetic diversity within-host, and discuss how spatial substructures in patients' lungs, spatiotemporal heterogeneity in antimicrobial concentrations and phenotypic drug tolerance likely modulates the dynamics of MTBC genetic diversity in patients during treatment. We note the general characteristics that are shared between how the MTBC and other bacterial pathogens evolve in humans, and highlight the characteristics unique to the MTBC.
Collapse
Affiliation(s)
- Rhastin A D Castro
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051 Basel, Basel, Switzerland
- University of Basel, Petersplatz 1, 4001 Basel, Basel, Switzerland
| | - Sonia Borrell
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051 Basel, Basel, Switzerland
- University of Basel, Petersplatz 1, 4001 Basel, Basel, Switzerland
| | - Sebastien Gagneux
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051 Basel, Basel, Switzerland
- University of Basel, Petersplatz 1, 4001 Basel, Basel, Switzerland
| |
Collapse
|
34
|
Zabeti H, Dexter N, Safari AH, Sedaghat N, Libbrecht M, Chindelevitch L. INGOT-DR: an interpretable classifier for predicting drug resistance in M. tuberculosis. Algorithms Mol Biol 2021; 16:17. [PMID: 34376217 PMCID: PMC8353837 DOI: 10.1186/s13015-021-00198-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 07/23/2021] [Indexed: 12/13/2022] Open
Abstract
Motivation Prediction of drug resistance and identification of its mechanisms in bacteria such as Mycobacterium tuberculosis, the etiological agent of tuberculosis, is a challenging problem. Solving this problem requires a transparent, accurate, and flexible predictive model. The methods currently used for this purpose rarely satisfy all of these criteria. On the one hand, approaches based on testing strains against a catalogue of previously identified mutations often yield poor predictive performance; on the other hand, machine learning techniques typically have higher predictive accuracy, but often lack interpretability and may learn patterns that produce accurate predictions for the wrong reasons. Current interpretable methods may either exhibit a lower accuracy or lack the flexibility needed to generalize them to previously unseen data. Contribution In this paper we propose a novel technique, inspired by group testing and Boolean compressed sensing, which yields highly accurate predictions, interpretable results, and is flexible enough to be optimized for various evaluation metrics at the same time. Results We test the predictive accuracy of our approach on five first-line and seven second-line antibiotics used for treating tuberculosis. We find that it has a higher or comparable accuracy to that of commonly used machine learning models, and is able to identify variants in genes with previously reported association to drug resistance. Our method is intrinsically interpretable, and can be customized for different evaluation metrics. Our implementation is available at github.com/hoomanzabeti/INGOT_DR and can be installed via The Python Package Index (Pypi) under ingotdr. This package is also compatible with most of the tools in the Scikit-learn machine learning library.
Collapse
|
35
|
Muzondiwa D, Hlanze H, Reva ON. The Epistatic Landscape of Antibiotic Resistance of Different Clades of Mycobacterium tuberculosis. Antibiotics (Basel) 2021; 10:857. [PMID: 34356778 PMCID: PMC8300818 DOI: 10.3390/antibiotics10070857] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/08/2021] [Accepted: 07/13/2021] [Indexed: 11/16/2022] Open
Abstract
Drug resistance (DR) remains a global challenge in tuberculosis (TB) control. In order to develop molecular-based diagnostic methods to replace the traditional culture-based diagnostics, there is a need for a thorough understanding of the processes that govern TB drug resistance. The use of whole-genome sequencing coupled with statistical and computational methods has shown great potential in unraveling the complexity of the evolution of DR-TB. In this study, we took an innovative approach that sought to determine nonrandom associations between polymorphic sites in Mycobacterium tuberculosis (Mtb) genomes. Attributable risk statistics were applied to identify the epistatic determinants of DR in different clades of Mtb and the possible evolutionary pathways of DR development. It was found that different lineages of Mtb exploited different evolutionary trajectories towards multidrug resistance and compensatory evolution to reduce the DR-associated fitness cost. Epistasis of DR acquisition is a new area of research that will aid in the better understanding of evolutionary biological processes and allow predicting upcoming multidrug-resistant pathogens before a new outbreak strikes humanity.
Collapse
Affiliation(s)
| | | | - Oleg N. Reva
- Centre for Bioinformatics and Computational Biology, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0002, South Africa; (D.M.); (H.H.)
| |
Collapse
|
36
|
Apostolopoulos N, Prenger-Berninghoff E, Wildermuth B, Moser I, Hillemann D, Nobach D, Herden C, Ewers C, Thom N. Mycobacterium setense isolated from a cat with atypical mycobacterial panniculitis. TIERAERZTLICHE PRAXIS AUSGABE KLEINTIERE HEIMTIERE 2021; 49:390-396. [PMID: 34169497 DOI: 10.1055/a-1528-1763] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Atypical mycobacterial panniculitis was diagnosed in a cat. Mycobacterium setense was identified as causative agent by 16 S rRNA gene sequence analysis. This a gram-positive rod-shaped acid-fast bacterium belonging to Mycobacterium fortuitum group was never reported before in diseased animals. Resistance to doxycycline and clarithromycin was detected. During treatment with pradofloxacin, additional resistance to fluoroquinolones developed which was due to a mutation in the gyrase gene gyrA (S90W exchange). Despite of antimicrobial treatment for 33 months the patient did not fully recover. Species identification and susceptibility testing for choosing adequate antimicrobial treatment is recommended in cases of feline mycobacterial panniculitis.
Collapse
Affiliation(s)
| | | | | | - Irmgard Moser
- Friedrich-Loeffler-Institut, National Reference Laboratory for Bovine Tuberculosis, Institute of Molecular Pathogenesis, Jena, Germany
| | - Doris Hillemann
- National Reference Laboratory for Mycobacteria, Research Center Borstel, Borstel, Germany
| | - Daniel Nobach
- Institute for Veterinary Pathology, Justus-Liebig-University, Giessen, Germany
| | - Christiane Herden
- Institute for Veterinary Pathology, Justus-Liebig-University, Giessen, Germany
| | - Christa Ewers
- Institute of Hygiene and Infectious Diseases of Animals, Justus-Liebig-University, Giessen, Germany
| | - Nina Thom
- Small Animal Clinic, Veterinary Faculty, Justus-Liebig-University, Giessen, Germany
| |
Collapse
|
37
|
Maruri F, Guo Y, Blackman A, van der Heijden YF, Rebeiro PF, Sterling TR. Resistance-Conferring Mutations on Whole-Genome Sequencing of Fluoroquinolone-resistant and -Susceptible Mycobacterium tuberculosis Isolates: A Proposed Threshold for Identifying Resistance. Clin Infect Dis 2021; 72:1910-1918. [PMID: 32348473 PMCID: PMC8315129 DOI: 10.1093/cid/ciaa496] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 04/24/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Fluoroquinolone resistance in Mycobacterium tuberculosis (Mtb) is conferred by DNA gyrase mutations, but not all fluoroquinolone-resistant Mtb isolates have mutations detected. The optimal allele frequency threshold to identify resistance-conferring mutations by whole-genome sequencing is unknown. METHODS Phenotypically ofloxacin-resistant and lineage-matched ofloxacin-susceptible Mtb isolates underwent whole-genome sequencing at an average coverage depth of 868 reads. Polymorphisms within the quinolone-resistance-determining region (QRDR) of gyrA and gyrB were identified. The allele frequency threshold using the Genome Analysis Toolkit pipeline was ~8%; allele-level data identified the predominant variant allele frequency and mutational burden (ie, sum of all variant allele frequencies in the QRDR) in gyrA, gyrB, and gyrA + gyrB for each isolate. Receiver operating characteristic (ROC) curves assessed the optimal measure of allele frequency and potential thresholds for identifying phenotypically resistant isolates. RESULTS Of 42 ofloxacin-resistant Mtb isolates, area under the ROC curve (AUC) was highest for predominant variant allele frequency, so that measure was used to evaluate optimal mutation detection thresholds. AUCs for 8%, 2.5%, and 0.8% thresholds were 0.8452, 0.9286, and 0.9069, respectively. Sensitivity and specificity were 69% and 100% for 8%, 86% and 100% for 2.5%, 91% and 91% for 0.8%. The sensitivity of the 2.5% and 0.8% thresholds were significantly higher than the 8% threshold (P = .016 and .004, respectively) but not significantly different between one another (P = .5). CONCLUSIONS A predominant mutation allele frequency threshold of 2.5% had the highest AUC for detecting DNA gyrase mutations that confer ofloxacin resistance, and was therefore the optimal threshold.
Collapse
Affiliation(s)
- Fernanda Maruri
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Vanderbilt Tuberculosis Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Yan Guo
- Department of Internal Medicine, University of New Mexico, Albuquerque, New Mexico, USA
| | - Amondrea Blackman
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Vanderbilt Tuberculosis Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Yuri F van der Heijden
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Vanderbilt Tuberculosis Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- The Aurum Institute, Johannesburg, South Africa
| | - Peter F Rebeiro
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Vanderbilt Tuberculosis Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Timothy R Sterling
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Vanderbilt Tuberculosis Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| |
Collapse
|
38
|
Al-Mutairi NM, Ahmad S, Mokaddas E. Increasing prevalence of resistance to second-line drugs among multidrug-resistant Mycobacterium tuberculosis isolates in Kuwait. Sci Rep 2021; 11:7765. [PMID: 33833390 PMCID: PMC8032671 DOI: 10.1038/s41598-021-87516-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 03/30/2021] [Indexed: 11/13/2022] Open
Abstract
Molecular methods detect genetic mutations associated with drug resistance. This study detected resistance-conferring mutations in gyrA/gyrB for fluoroquinolones and rrs/eis genes for second-line injectable drugs (SLIDs) among multidrug-resistant Mycobacterium tuberculosis (MDR-TB) isolates in Kuwait. Fifty pansusceptible M. tuberculosis and 102 MDR-TB strains were tested. Phenotypic susceptibility testing was performed by MGIT 960 system using SIRE drug kit. GenoType MTBDRsl version 1 (gMTBDRslv1) and GenoType MTBDRsl version 2 (gMTBDRslv2) tests were used for mutation detection. Results were validated by PCR-sequencing of respective genes. Fingerprinting was performed by spoligotyping. No mutations were detected in pansusceptible isolates. gMTBDRslv1 detected gyrA mutations in 12 and rrs mutations in 8 MDR-TB isolates. gMTBDRsl2 additionally detected gyrB mutations in 2 and eis mutation in 1 isolate. Mutations in both gyrA/gyrB and rrs/eis were not detected. gMTBDRslv1 also detected ethambutol resistance-conferring embB mutations in 59 isolates. Although XDR-TB was not detected, frequency of resistance-conferring mutations for fluoroquinolones or SLIDs was significantly higher among isolates collected during 2013–2019 versus 2006–2012. Application of both tests is warranted for proper management of MDR-TB patients in Kuwait as gMTBDRslv2 detected resistance to fluoroquinolones and/or SLIDs in 3 additional isolates while gMTBDRslv1 additionally detected resistance to ethambutol in 58% of MDR-TB isolates.
Collapse
Affiliation(s)
- Noura M Al-Mutairi
- Department of Microbiology, Faculty of Medicine, Health Sciences Centre, Kuwait University, P. O. Box 24923, 13110, Safat, Kuwait
| | - Suhail Ahmad
- Department of Microbiology, Faculty of Medicine, Health Sciences Centre, Kuwait University, P. O. Box 24923, 13110, Safat, Kuwait.
| | - Eiman Mokaddas
- Department of Microbiology, Faculty of Medicine, Health Sciences Centre, Kuwait University, P. O. Box 24923, 13110, Safat, Kuwait.,Kuwait National TB Control Laboratory, Shuwaikh, Kuwait
| |
Collapse
|
39
|
Maitre T, Guglielmetti L, Veziris N. Defining optimal fluoroquinolone exposure against Mycobacterium tuberculosis: contribution of murine studies. Eur Respir J 2021; 57:57/4/2004315. [PMID: 33795357 DOI: 10.1183/13993003.04315-2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 12/04/2020] [Indexed: 11/05/2022]
Affiliation(s)
- Thomas Maitre
- Sorbonne Université, INSERM, U1135, Centre d'Immunologie et des Maladies Infectieuses, Cimi-Paris, équipe 13, Paris, France
| | - Lorenzo Guglielmetti
- Sorbonne Université, INSERM, U1135, Centre d'Immunologie et des Maladies Infectieuses, Cimi-Paris, équipe 13, Paris, France.,APHP, Groupe Hospitalier Universitaire Sorbonne Université, Hôpital Pitié-Salpêtrière, Centre National de Référence des Mycobactéries et de la Résistance des Mycobactéries aux Antituberculeux, Paris, France
| | - Nicolas Veziris
- Sorbonne Université, INSERM, U1135, Centre d'Immunologie et des Maladies Infectieuses, Cimi-Paris, équipe 13, Paris, France.,APHP, Groupe Hospitalier Universitaire Sorbonne Université, Hôpital Pitié-Salpêtrière, Centre National de Référence des Mycobactéries et de la Résistance des Mycobactéries aux Antituberculeux, Paris, France.,APHP, Groupe Hospitalier Universitaire Sorbonne Université, Hôpital Saint-Antoine, Département de Bactériologie, Paris, France
| |
Collapse
|
40
|
Momen G, Aainouss A, Lamaammal A, Chettioui F, Blaghen M, Messoudi M, Belghmi K, Mouslim J, El Mzibri M, El Messaoudi MD, Khyatti M, Chaoui I. Molecular characterization of mutations associated with resistance to second line drugs in Mycobacterium tuberculosis patients from Casablanca, Morocco. Rev Inst Med Trop Sao Paulo 2021; 63:e19. [PMID: 33787739 PMCID: PMC7997671 DOI: 10.1590/s1678-9946202163019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/22/2021] [Indexed: 12/02/2022] Open
Abstract
The emergence and spread of extensively drug-resistant tuberculosis (XDR-TB) is a
serious threat to global health. Therefore, its rapid diagnosis is crucial. The
present study aimed to characterize mutations conferring resistance to second
line drugs (SLDs) within multidrug Mycobacterium tuberculosis
(MDR-MTB) isolates and to estimate the occurrence of XDR-TB in Casablanca,
Morocco. A panel of 200 MDR-TB isolates was collected at the Pasteur Institute
between 2015-2018. Samples were subjected to drug susceptibility testing to
Ofloxacin (OFX), Kanamycin (KAN) and Amikacin (AMK). The mutational status of
gyrA, gyrB, rrs,
tlyA and eis was assessed by sequencing
these target genes. Drug susceptibility testing for SLDs showed that among the
200 MDR strains, 20% were resistant to OFX, 2.5% to KAN and 1.5% to AMK.
Overall, 14.5% of MDR strains harbored mutations in gyrA,
gyrB, rrs and tlyA genes.
From the 40 OFXR isolates, 67.5% had mutations in QRDR of
gyrA and gyrB genes, the most frequent one
being Ala90Val in gyrA gene. Of note, none of the isolates
harbored simultaneously mutations in gyrA and
gyrB genes. In eight out of the 200 MDR-TB isolates
resistant either to KAN or AMK, only 25% had A1401G or Lys89Glu change in
rrs and tlyA genes respectively. This
study is very informative and provides data on the alarming rate of
fluoroquinolone resistance which warrants the need to implement appropriate drug
regimens to prevent the emergence and spread of more severe forms of
Mycobacterium tuberculosis drug resistance.
Collapse
Affiliation(s)
- Ghizlane Momen
- Institut Pasteur du Maroc, Laboratoire des Mycobactéries, Casablanca, Morocco.,Faculté des Sciences, Laboratoire de Microbiologie, Pharmacologie, Biotechnologie et Environnement, Casablanca, Morocco
| | - Achraf Aainouss
- Institut Pasteur du Maroc, Laboratoire des Mycobactéries, Casablanca, Morocco.,Faculté des Sciences Ben M'Sik, Laboratoire d'Ecologie et Environment, Casablanca, Morocco
| | | | - Fouad Chettioui
- Institut Pasteur du Maroc, Laboratoire des Mycobactéries, Casablanca, Morocco
| | - Mohamed Blaghen
- Faculté des Sciences, Laboratoire de Microbiologie, Pharmacologie, Biotechnologie et Environnement, Casablanca, Morocco
| | - Malika Messoudi
- Institut Pasteur du Maroc, Laboratoire des Mycobactéries, Casablanca, Morocco
| | - Khalid Belghmi
- Institut Pasteur du Maroc, Laboratoire des Mycobactéries, Casablanca, Morocco
| | - Jamal Mouslim
- Faculté des Sciences Ben M'Sik, Laboratoire d'Ecologie et Environment, Casablanca, Morocco
| | - Mohammed El Mzibri
- Centre National de l'Energie, des Sciences et Techniques Nucléaires, Département des Sciences du Vivant, Unité de Recherches Médicales et Biologiques, Rabat, Morocco
| | | | - Meriem Khyatti
- Institut Pasteur du Maroc, Laboratoire des Mycobactéries, Casablanca, Morocco
| | - Imane Chaoui
- Centre National de l'Energie, des Sciences et Techniques Nucléaires, Département des Sciences du Vivant, Unité de Recherches Médicales et Biologiques, Rabat, Morocco
| |
Collapse
|
41
|
Cheng S, Hide M, Pheng SH, Kerléguer A, Delvallez G, Sam S, Mao TE, Nguyen TVA, Bañuls AL. Resistance to Second-Line Anti-TB Drugs in Cambodia: A Phenotypic and Genetic Study. Infect Drug Resist 2021; 14:1089-1104. [PMID: 33762833 PMCID: PMC7982564 DOI: 10.2147/idr.s289907] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/06/2021] [Indexed: 12/25/2022] Open
Abstract
Background Due to the emergence of Mycobacterium tuberculosis (M.tb) clinical isolates resistant to most potent first-line drugs (FLD), second-line drugs (SLD) are being prescribed more frequently. We explore the genetic characteristics and molecular mechanisms of M.tb isolates phenotypically resistant to SLD, including pre-extensively drug-resistant (pre-XDR) and extensively drug-resistant (XDR) isolates. Methods Drug-resistant (DR) M.tb isolates collected from 2012 to 2017 were tested using sequencing and phenotypic drug susceptibility testing. Genotypes were determined to explore their links with SLD resistance patterns. Results Of the 272 DR M.tb isolates, 6 non-multidrug resistant (non-MDR) isolates were fluoroquinolones (FQ)-resistant, 3 were XDR and 16 were pre-XDR (14 resistant to FQ and 2 to second-line injectable drugs). The most frequent mutations in FQ-resistant and second-line injectable drugs resistant isolates were gyrA D94G (15/23) and rrs a1401g (3/5), respectively. Seventy-five percent of pre-XDR isolates and 100% of XDR isolates harbored mutations conferring resistance to pyrazinamide. All XDR isolates belonged to the Beijing genotype, of which one, named XDR+, was resistant to all drugs tested. One cluster including pre-XDR and XDR isolates was observed. Conclusion This is the first description of SLD resistance in Cambodia. The data suggest that the proportion of XDR and pre-XDR isolates remains low but is on the rise compared to previous reports. The characterization of the XDR+ isolate in a patient who refused treatment underlines the risk of transmission in the population. In addition, genotypic results show, as expected, that the Beijing family is the main involved in pre-XDR and XDR isolates and that the spread of the Beijing pre-XDR strain is capable of evolving into XDR strain. This study strongly indicates the need for rapid interventions in terms of diagnostic and treatment to prevent the spread of the pre-XDR and XDR strains and the emergence of more resistant ones.
Collapse
Affiliation(s)
- Sokleaph Cheng
- Institut Pasteur du Cambodge and Ministry of Health, Phnom Penh, Cambodia.,Medical Biology Laboratory, Institut Pasteur du Cambodge, Phnom Penh, Cambodia.,LMI Drug Resistance in South East Asia, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Mallorie Hide
- LMI Drug Resistance in South East Asia, Institut Pasteur du Cambodge, Phnom Penh, Cambodia.,MIVEGEC, University of Montpellier, Institute of Research for Development, Centre National de la Recherche Scientifique, Montpellier, France.,CREES (Centre de Recherche En Écologie Et Évolution de la Santé), Montpellier, France
| | - Sok Heng Pheng
- National Center for Tuberculosis and Leprosy Control, Phnom Penh, Cambodia
| | - Alexandra Kerléguer
- Medical Biology Laboratory, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Gauthier Delvallez
- Medical Biology Laboratory, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Sophan Sam
- Cambodian Health Committee, Phnom Penh, Cambodia
| | - Tan Eang Mao
- National Center for Tuberculosis and Leprosy Control, Phnom Penh, Cambodia
| | - Thi Van Anh Nguyen
- LMI Drug Resistance in South East Asia, Institut Pasteur du Cambodge, Phnom Penh, Cambodia.,Department of Bacteriology, National Institute of Hygiene and Epidemiology, Hanoi, Martinique, Vietnam
| | - Anne-Laure Bañuls
- LMI Drug Resistance in South East Asia, Institut Pasteur du Cambodge, Phnom Penh, Cambodia.,MIVEGEC, University of Montpellier, Institute of Research for Development, Centre National de la Recherche Scientifique, Montpellier, France.,CREES (Centre de Recherche En Écologie Et Évolution de la Santé), Montpellier, France
| |
Collapse
|
42
|
Cao Y, Parmar H, Gaur RL, Lieu D, Raghunath S, Via N, Battaglia S, Cirillo DM, Denkinger C, Georghiou S, Kwiatkowski R, Persing D, Alland D, Chakravorty S. Xpert MTB/XDR: a 10-Color Reflex Assay Suitable for Point-of-Care Settings To Detect Isoniazid, Fluoroquinolone, and Second-Line-Injectable-Drug Resistance Directly from Mycobacterium tuberculosis-Positive Sputum. J Clin Microbiol 2021; 59:e02314-20. [PMID: 33298611 PMCID: PMC8106700 DOI: 10.1128/jcm.02314-20] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/22/2020] [Indexed: 11/20/2022] Open
Abstract
We describe the design, development, analytical performance, and a limited clinical evaluation of the 10-color Xpert MTB/XDR assay (CE-IVD only, not for sale in the United States). This assay is intended as a reflex test to detect resistance to isoniazid (INH), fluoroquinolones (FLQ), ethionamide (ETH), and second-line injectable drugs (SLIDs) in unprocessed sputum samples and concentrated sputum sediments which are positive for Mycobacterium tuberculosis The Xpert MTB/XDR assay simultaneously amplifies eight genes and promoter regions in M. tuberculosis and analyzes melting temperatures (Tm s) using sloppy molecular beacon (SMB) probes to identify mutations associated with INH, FLQ, ETH, and SLID resistance. Results can be obtained in under 90 min using 10-color GeneXpert modules. The assay can differentiate low- versus high-level resistance to INH and FLQ as well as cross-resistance versus individual resistance to SLIDs by identifying mutation-specific Tm s or Tm patterns generated by the SMB probes. The assay has a limit of detection comparable to that of the Xpert MTB/RIF assay and successfully detected 16 clinically significant mutations in a challenge set of clinical isolate DNA. In a clinical study performed at two sites with 100 sputum and 214 clinical isolates, the assay showed a sensitivity of 94% to 100% and a specificity of 100% for all drugs except for ETH compared to that of sequencing. The sensitivity and specificity were in the same ranges as those of phenotypic drug-susceptibility testing. Used in combination with a primary tuberculosis diagnostic test, this assay should expand the capacity for detection of drug-resistant tuberculosis near the point of care.
Collapse
Affiliation(s)
- Yuan Cao
- New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Heta Parmar
- New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | | | | | | | - Nova Via
- Cepheid Inc., Sunnyvale, California, USA
| | | | | | | | | | | | | | - David Alland
- New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Soumitesh Chakravorty
- New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
- Cepheid Inc., Sunnyvale, California, USA
| |
Collapse
|
43
|
Khokhlov AL, Mariandyshev AO, Shcherbakova VS, Ozerova IV, Kazaishvili YG, Igumnova OV, Bolgarina AA, Rudoy BA. [Effect of physicochemical properties on the pharmacokinetic parameters of the new representative of benzothiazinones antituberculosis drug macozinonе]. TERAPEVT ARKH 2020; 92:165-171. [PMID: 33720590 DOI: 10.26442/00403660.2020.12.200482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 02/07/2021] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Tuberculosis (TB) is one of the top ten causes of death worldwide. Improvement of the treatment options via development of new drugs and treatment regimens that would be more convenient for patients is one of key options of improving the effecacy of the TB prevention and careis. Since the creation of new treatment regimens by minimizing the number of the drugs used and reducing the duration of treatment is the most promising and correct direction, macozinone, a new candidate of the benzothiazinone series, can become the basis for development of new chemotherapy regimens for drug-resistant forms of TB including the combination of macozinone with the most effective modern anti-TB drugs. AIM Comparative evaluation of the pharmacokinetic properties of macozinone capsules 80 mg and the new dosage form a dispersible tablet for preparation of oral solution. MATERIALS AND METHODS Solubility of the substance macozinone in biorelevant media in vitro, permeability of macozinone in the test Caco-2 in vitro, as well as pharmacokinetics of macozinone in dogs in vivo were evaluated. RESULTS The solubility assessment in biorelevant media showed that the average limit of macozinone substance dissolution in the pH 5.0 acetate buffer solution was from 6 to 9 mg/l, in FaSSIF medium (fasted) from 2.5 to 4 mg/l, and in FeSSIF medium (after meals) from 16.8 to 29 mg/l. It is established that the cell permeability of the pharmaceutical substance macozinone in the CACO-2 test system is on average 2.510-6cm/s in the forward direction from the apical to basolateral cell membrane, and 1.510-6cm/s in the reverse direction, which corresponds to low permeability. The main pharmacokinetic parameters of macozinone dispersable tablets 160 mg, after dosing with food and on an empty stomach, as well as capsules 80 mg, when administered on an empty stomach in vivo studies in dogs are presented. DISCUSSION The specific physicochemical properties of macozinone, the problems of developing the new dosage form, as well as ways of solving some of them are presented. CONCLUSION In the process of new dosage forms development, the existing chemical properties of the macozinone substance should be considered. One of the promising ways of increasing bioavailability and, consiquently, efficacy is development a fundamentally new drug form with modified release within the absorption window.
Collapse
|
44
|
Welekidan LN, Skjerve E, Dejene TA, Gebremichael MW, Brynildsrud O, Tønjum T, Yimer SA. Frequency and patterns of first- and second-line drug resistance-conferring mutations in Mycobacterium tuberculosis isolated from pulmonary tuberculosis patients in a cross-sectional study in Tigray Region, Ethiopia. J Glob Antimicrob Resist 2020; 24:6-13. [PMID: 33279682 DOI: 10.1016/j.jgar.2020.11.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 10/23/2020] [Accepted: 11/17/2020] [Indexed: 10/22/2022] Open
Abstract
OBJECTIVES Tuberculosis (TB) is a preventable and treatable infectious disease, but the continuing emergence and spread of multidrug-resistant TB is threatening global TB control efforts. This study aimed to describe the frequency and patterns of drug resistance-conferring mutations of Mycobacterium tuberculosis (MTB) isolates detected from pulmonary TB patients in Tigray Region, Ethiopia. METHODS A cross-sectional study design was employed to collect sputum samples from pulmonary TB patients between July 2018 to August 2019. Culture and identification tests were done at Tigray Health Research Institute (THRI). Mutations conferring rifampicin (RIF), isoniazid (INH) and fluoroquinolone (FQ) resistance were determined in 227 MTB isolates using GenoType MTBDRplus and GenoType MTBDRsl. RESULTS Mutations conferring resistance to RIF, INH and FQs were detected in 40/227 (17.6%), 41/227 (18.1%) and 2/38 (5.3%) MTB isolates, respectively. The majority of mutations for RIF, INH and FQs occurred at codons rpoB S531L (70%), katG S315T (78%) and gyrA D94Y/N (100%), respectively. This study revealed a significant number of unknown mutations in the rpoB, katG and inhA genes. CONCLUSION High rates of mutations conferring resistance to RIF, INH and FQs were observed in this study. A large number of isolates showed unknown mutations, which require further DNA sequencing analysis. Periodic drug resistance surveillance and scaling-up of drug resistance testing facilities are imperative to prevent the transmission of drug-resistant TB in the community.
Collapse
Affiliation(s)
- Letemichael Negash Welekidan
- Department of Para Clinical Sciences, Norwegian University of Life Sciences, P.O. Box 369, 0102 Oslo, Norway; Department of Production Animal Medicine, Norwegian University of Life Sciences, P.O. Box 369, 0102 Oslo, Norway; Department of Medical Microbiology and Immunology, Division of Biomedical Sciences, College of Health Sciences, Mekelle University, P.O. Box 1871, Mekelle, Ethiopia.
| | - Eystein Skjerve
- Department of Production Animal Medicine, Norwegian University of Life Sciences, P.O. Box 369, 0102 Oslo, Norway
| | - Tsehaye Asmelash Dejene
- Department of Medical Microbiology and Immunology, Division of Biomedical Sciences, College of Health Sciences, Mekelle University, P.O. Box 1871, Mekelle, Ethiopia
| | | | - Ola Brynildsrud
- Department of Para Clinical Sciences, Norwegian University of Life Sciences, P.O. Box 369, 0102 Oslo, Norway; Department of Bacteriology and Immunology, Norwegian Institute of Public Health, P.O. Box 222, 0213 Oslo, Norway
| | - Tone Tønjum
- Department of Microbiology, Unit for Genome Dynamics, University of Oslo, P.O. Box 1072, 0316 Oslo, Norway; Department of Microbiology, Unit for Genome Dynamics, Oslo University Hospital, P.O. Box 4950, 0424 Oslo, Norway
| | - Solomon Abebe Yimer
- Department of Microbiology, Unit for Genome Dynamics, Oslo University Hospital, P.O. Box 4950, 0424 Oslo, Norway; Coalition for Epidemic Preparedness Innovations, Oslo, Norway
| |
Collapse
|
45
|
Bush NG, Diez-Santos I, Abbott LR, Maxwell A. Quinolones: Mechanism, Lethality and Their Contributions to Antibiotic Resistance. Molecules 2020; 25:E5662. [PMID: 33271787 PMCID: PMC7730664 DOI: 10.3390/molecules25235662] [Citation(s) in RCA: 192] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/27/2020] [Accepted: 11/28/2020] [Indexed: 12/05/2022] Open
Abstract
Fluoroquinolones (FQs) are arguably among the most successful antibiotics of recent times. They have enjoyed over 30 years of clinical usage and become essential tools in the armoury of clinical treatments. FQs target the bacterial enzymes DNA gyrase and DNA topoisomerase IV, where they stabilise a covalent enzyme-DNA complex in which the DNA is cleaved in both strands. This leads to cell death and turns out to be a very effective way of killing bacteria. However, resistance to FQs is increasingly problematic, and alternative compounds are urgently needed. Here, we review the mechanisms of action of FQs and discuss the potential pathways leading to cell death. We also discuss quinolone resistance and how quinolone treatment can lead to resistance to non-quinolone antibiotics.
Collapse
Affiliation(s)
| | | | | | - Anthony Maxwell
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK; (N.G.B.); (I.D.-S.); (L.R.A.)
| |
Collapse
|
46
|
Li G, Guo Q, Liu H, Wan L, Jiang Y, Li M, Zhao LL, Zhao X, Liu Z, Wan K. Detection of Resistance to Fluoroquinolones and Second-Line Injectable Drugs Among Mycobacterium tuberculosis by a Reverse Dot Blot Hybridization Assay. Infect Drug Resist 2020; 13:4091-4104. [PMID: 33204126 PMCID: PMC7666996 DOI: 10.2147/idr.s270209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/07/2020] [Indexed: 01/23/2023] Open
Abstract
Background Reliable and timely determination of second-line drug resistance is essential for early initiation effective anti-tubercular treatment among multi-drug resistant (MDR) patients and blocking the spread of MDR and extensively drug-resistant tuberculosis. Molecular methods have the potency to provide accurate and rapid drug susceptibility results. We aimed to establish and evaluate the accuracy of a reverse dot blot hybridization (RDBH) assay to simultaneously detect the resistance of fluoroquinolones (FQs), kanamycin (KN), amikacin (AMK), capreomycin (CPM) and second-line injectable drugs (SLIDs) in Mycobacterium tuberculosis. Methods We established and evaluated the accuracy of the RDBH assay by comparing to the phenotypic drug susceptibility testing (DST) and sequencing in 170 M. tuberculosis, of which 94 and 27 were respectively resistant to ofloxacin (OFX) and SLIDs. Results The results show that, compared to phenotypic DST, the sensitivity and specificity of the RDBH assay for resistance detection were 63.8% and 100.0% for OFX, 60.0% and 100.0% for KN, 61.5% and 98.1% for AMK, 50.0% and 99.3% for CPM, and 55.6% and 100% for SLIDs, respectively; compared to sequencing, the sensitivity and specificity of the RDBH assay were 95.2% and 100.0% for OFX, 93.8% and 100.0% for SLIDs or KN (both based on mutations in rrs 1400 region and eis promoter), and 91.6% and 100.0% for AMK or CPM (both based on mutations in rrs 1400 region), respectively. The turnaround time of the RDBH assay was 7 h for testing 42 samples. Conclusion Our data suggested that compared to sequencing, the RDBH assay could serve as a rapid and reliable method for testing the resistance of M. tuberculosis against OFX and SLIDs, enabling early administration of appropriate treatment regimens among MDR tuberculosis patients.
Collapse
Affiliation(s)
- Guilian Li
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, People's Republic of China
| | - Qian Guo
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, People's Republic of China.,Department of Molecular Biology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, People's Republic of China
| | - Haican Liu
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, People's Republic of China
| | - Li Wan
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, People's Republic of China
| | - Yi Jiang
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, People's Republic of China
| | - Machao Li
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, People's Republic of China
| | - Li-Li Zhao
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, People's Republic of China
| | - Xiuqin Zhao
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, People's Republic of China
| | - Zhiguang Liu
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, People's Republic of China
| | - Kanglin Wan
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, People's Republic of China
| |
Collapse
|
47
|
Catanzaro DG, Colman RE, Linger Y, Georghiou SB, Kukhtin AV, Seifert M, Holmberg RC, Mshaiel H, Chiles P, Hillery N, Cooney CG, Rodwell TC. Laboratory Evaluation of a Lateral-Flow Cell for Molecular Detection of First-Line and Second-Line Antituberculosis Drug Resistance. J Clin Microbiol 2020; 58:e01417-20. [PMID: 32817085 PMCID: PMC7587100 DOI: 10.1128/jcm.01417-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 08/12/2020] [Indexed: 01/05/2023] Open
Abstract
Despite the WHO's call for universal drug susceptibility testing for all patients being evaluated for tuberculosis (TB), a lack of rapid diagnostic tests which can fully describe TB resistance patterns is a major challenge in ensuring that all persons diagnosed with drug-resistant TB are started on an appropriate treatment regime. We evaluated the accuracy of the Akonni Biosystems XDR-TB TruArray and lateral-flow cell (XDR-LFC), a novel multiplex assay to simultaneously detect mutations across seven genes that confer resistance to both first- and second-line anti-TB drugs. The XDR-LFC includes 271 discrete three-dimensional gel elements with target-specific probes for identifying mutations in katG, inhA promoter, and ahpC promoter (isoniazid), rpoB (rifampin), gyrA (fluoroquinolones), rrs and eis promoter (kanamycin), and rrs (capreomycin and amikacin). We evaluated XDR-LFC performance with 87 phenotypically and genotypically characterized clinical Mycobacterium tuberculosis isolates. The overall assay levels of accuracy for mutation detection in specific genes were 98.6% for eis promoter and 100.0% for the genes katG, inhA promoter, ahpC promoter, rpoB, gyrA, and rrs The sensitivity and specificity against phenotypic reference were 100% and 100% for isoniazid, 98.4% and 50% for rifampin (specificity increased to 100% once the strains with documented low-level resistance mutations in rpoB were excluded), 96.2% and 100% for fluoroquinolones, 92.6% and 100% for kanamycin, 93.9% and 97.4% for capreomycin, and 80% and 100% for amikacin. The XDR-LFC solution appears to be a promising new tool for accurate detection of resistance to both first- and second-line anti-TB drugs.
Collapse
Affiliation(s)
- Donald G Catanzaro
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, USA
| | - Rebecca E Colman
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | | | | | | | - Marva Seifert
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | | | - Haifa Mshaiel
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Peter Chiles
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Naomi Hillery
- Department of Family Medicine and Public Health, University of California, San Diego, La Jolla, California, USA
| | | | - Timothy C Rodwell
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
48
|
Singh PK, Singh U, Jain A. Emergence of Specific gyrA Mutations Associated High-Level Fluoroquinolone-Resistant Mycobacterium tuberculosis among Multidrug-Resistant Tuberculosis Cases in North India. Microb Drug Resist 2020; 27:647-651. [PMID: 32991238 DOI: 10.1089/mdr.2020.0240] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Aim: This study aims to determine the frequency and pattern of gyrA/B mutations in multidrug-resistant (MDR) Mycobacterium tuberculosis (MTB) strains and also to assess the association between different gyrA/B mutations with phenotypic resistance to moxifloxacin (MOX) at clinical breakpoint (CB) drug concentration. Method: A total of 106 clinical MTB isolates carrying gyrA/B mutations were included consecutively. Culture-based MOX susceptibility was tested at CB (1.0 μg/mL) followed by its correlation with gyrA/B mutations using Genotype MTBDRsl assay. The mutations associated with phenotypic resistance were further analyzed on a large dataset of 1,825 MDR tuberculosis (TB) patients. Result: D94G and A90V mutations within gyrA were significantly associated with resistance and susceptible phenotype (p < 0.001), respectively. Of 1,825 MDR patients, gyrA/B mutations were found in 58.8% cases, of which fluoroquinolone (FQ) resistance was concluded among 97.9%, 0.8%, and 1.3% patients due to mutation in gyrA, gyrB, and in both the genes, respectively. D94G alone (45.9%) followed by A90V (21.2%) mutations in gyrA gene was most frequent. Conclusion: Our study showed that MDR-TB has emerged in northern India with additional FQ resistance. Different selection pressure and transmission may result in prevailing accumulation of specific gyrA mutations causing high-level FQ resistance, therefore, current control measures need to be strengthened.
Collapse
Affiliation(s)
- Pravin Kumar Singh
- Department of Microbiology, King George's Medical University, Lucknow, India
| | - Urmila Singh
- Department of Microbiology, King George's Medical University, Lucknow, India
| | - Amita Jain
- Department of Microbiology, King George's Medical University, Lucknow, India
| |
Collapse
|
49
|
Kabir S, Tahir Z, Mukhtar N, Sohail M, Saqalein M, Rehman A. Fluoroquinolone resistance and mutational profile of gyrA in pulmonary MDR tuberculosis patients. BMC Pulm Med 2020; 20:138. [PMID: 32393213 PMCID: PMC7216623 DOI: 10.1186/s12890-020-1172-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 04/29/2020] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Fluoroquinolones (FQs) are potential drugs that inhibit DNA synthesis and are used in the treatment of multidrug-resistant tuberculosis (TB) and short-term anti-TB regimens. In recent years, a high proportion of FQ resistance has been observed in Mycobacterium tuberculosis isolates. The development of FQ resistance in multidrug-resistant TB negatively impacts patient treatment outcome and is a serious threat to control of TB. METHODS The study included a total of 562 samples from patients with pulmonary TB that had been on anti-tuberculosis therapy. MTBDRsl assays were performed for the molecular detection of mutations. Sequence analysis was performed for the characterization and mutational profiling of FQ-resistant isolates. RESULTS FQ resistance was observed in 104 samples (18.5%), most of which were previously treated and treatment failure cases. A total of 102 isolates had mutations in DNA gyrase subunit A (gyrA), while mutations in gyrB were observed in only two isolates. Mutational analysis revealed that the mutations mostly alter codons 94 (replacing aspartic acid with glycine, D94G) and 90 (replacing alanine with valine, A90V). In MDR and treatment failure cases, resistance to FQs was most commonly associated with the D94G mutation. In contract, a high proportion of A90V mutations were observed in isolates that were newly diagnosed. CONCLUSION The findings suggest that genotypic assays for FQ resistance should be carried out at the time of initial diagnosis, before starting treatment, in order to rule out mutations that impact the potential use of FQs in treatment and to control drug resistance.
Collapse
Affiliation(s)
- Saba Kabir
- Department of Microbiology and Molecular Genetics (MMG), University of the Punjab, New Campus Lahore, Lahore, 54590, Pakistan
| | | | - Nadia Mukhtar
- University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muhammad Sohail
- Department of Microbiology and Molecular Genetics (MMG), University of the Punjab, New Campus Lahore, Lahore, 54590, Pakistan
| | | | - Abdul Rehman
- Department of Microbiology and Molecular Genetics (MMG), University of the Punjab, New Campus Lahore, Lahore, 54590, Pakistan.
| |
Collapse
|
50
|
Matsui T, Pinhata JMW, Rabello MCDS, Brandão AP, Ferrazoli L, Leão SC, Viana-Niero C, de Oliveira RS. Frequency of first and second-line drug resistance-associated mutations among resistant Mycobacterium tuberculosis clinical isolates from São Paulo, Brazil. Mem Inst Oswaldo Cruz 2020; 115:e200055. [PMID: 32401997 PMCID: PMC7207153 DOI: 10.1590/0074-02760200055] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/06/2020] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Tuberculosis (TB) is an infectious disease caused by the bacterium Mycobacterium tuberculosis, and the number of new cases of multidrug resistant TB (MDR-TB), pre extensively drug-resistant TB (pre-XDR-TB) and extensively drug-resistant TB (XDR-TB) has increased considerably worldwide. OBJECTIVES Herein, using 156 M. tuberculosis isolates from 106 patients previously classified as MDR or pre-XDR or XDR isolates, we investigated the genetic mutation profiles associated with phenotypic resistances in patients with MDR-TB, pre-XDR-TB and XDR-TB, treatment outcomes and resistance evolution. METHODS Molecular analyses were performed by partial sequencing of the rpoB, katG, gyrA, gyrB, rrs genes and analysis of the fabG-inhA promoter region. Clinical, epidemiologic and demographic data were obtained from the TB Notification database system of São Paulo (TB-WEB) and the Information System for Special Tuberculosis Treatments (SITE-TB). FINDINGS Drug resistance was attributed to previously known mutations and a novel Asp449Val mutation in gyrB was observed in four isolates from the same patient. Ten patients had more than one isolate evaluated and eight of these patients displayed resistance progression. MAIN CONCLUSIONS The present study is the first to report the frequency of mutations related to second-line drug resistance in MDR-TB, pre-XDR-TB and XDR-TB isolates. The results could lead to the improvement of available technologies for the rapid detection of drug resistant TB.
Collapse
Affiliation(s)
- Tania Matsui
- Universidade Federal de São Paulo, Departamento de Microbiologia, Imunologia e Parasitologia, São Paulo, SP, Brasil
- Instituto Adolfo Lutz, Centro de Bacteriologia, Núcleo de Tuberculose e Micobacterioses, São Paulo, SP, Brasil
| | | | | | - Angela Pires Brandão
- Instituto Adolfo Lutz, Centro de Bacteriologia, Núcleo de Tuberculose e Micobacterioses, São Paulo, SP, Brasil
| | - Lucilaine Ferrazoli
- Instituto Adolfo Lutz, Centro de Bacteriologia, Núcleo de Tuberculose e Micobacterioses, São Paulo, SP, Brasil
| | - Sylvia Cardoso Leão
- Universidade Federal de São Paulo, Departamento de Microbiologia, Imunologia e Parasitologia, São Paulo, SP, Brasil
| | - Cristina Viana-Niero
- Universidade Federal de São Paulo, Departamento de Microbiologia, Imunologia e Parasitologia, São Paulo, SP, Brasil
| | | |
Collapse
|