1
|
Nogueira-Ferreira R, Santos I, Ferreira R, Fontoura D, Sousa-Mendes C, Falcão-Pires I, Lourenço A, Leite-Moreira A, Duarte IF, Moreira-Gonçalves D. Exercise training impacts skeletal muscle remodelling induced by metabolic syndrome in ZSF1 rats through metabolism regulation. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166709. [PMID: 37030522 DOI: 10.1016/j.bbadis.2023.166709] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 02/28/2023] [Accepted: 03/28/2023] [Indexed: 04/10/2023]
Abstract
Metabolic syndrome (MetS), characterized by a set of conditions that include obesity, hypertension, and dyslipidemia, is associated with increased cardiovascular risk. Exercise training (EX) has been reported to improve MetS management, although the underlying metabolic adaptations that drive its benefits remain poorly understood. This work aims to characterize the molecular changes induced by EX in skeletal muscle in MetS, focusing on gastrocnemius metabolic remodelling. 1H NMR metabolomics and molecular assays were employed to assess the metabolic profile of skeletal muscle tissue from lean male ZSF1 rats (CTL), obese sedentary male ZSF1 rats (MetS-SED), and obese male ZF1 rats submitted to 4 weeks of treadmill EX (5 days/week, 60 min/day, 15 m/min) (MetS-EX). EX did not counteract the significant increase of body weight and circulating lipid profile, but had an anti-inflammatory effect and improved exercise capacity. The decreased gastrocnemius mass observed in MetS was paralleled with glycogen degradation into small glucose oligosaccharides, with the release of glucose-1-phosphate, and an increase in glucose-6-phosphate and glucose levels. Moreover, sedentary MetS animals' muscle exhibited lower AMPK expression levels and higher amino acids' metabolism such as glutamine and glutamate, compared to lean animals. In contrast, the EX group showed changes suggesting an increase in fatty acid oxidation and oxidative phosphorylation. Additionally, EX mitigated MetS-induced fiber atrophy and fibrosis in the gastrocnemius muscle. EX had a positive effect on gastrocnemius metabolism by enhancing oxidative metabolism and, consequently, reducing susceptibility to fatigue. These findings reinforce the importance of prescribing EX programs to patients with MetS.
Collapse
Affiliation(s)
- Rita Nogueira-Ferreira
- UnIC@RISE, Department of Surgery and Physiology, Cardiovascular R&D Center, Faculty of Medicine of the University of Porto, Porto, Portugal.
| | - Inês Santos
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Rita Ferreira
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Dulce Fontoura
- UnIC@RISE, Department of Surgery and Physiology, Cardiovascular R&D Center, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Cláudia Sousa-Mendes
- UnIC@RISE, Department of Surgery and Physiology, Cardiovascular R&D Center, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Inês Falcão-Pires
- UnIC@RISE, Department of Surgery and Physiology, Cardiovascular R&D Center, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - André Lourenço
- UnIC@RISE, Department of Surgery and Physiology, Cardiovascular R&D Center, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Adelino Leite-Moreira
- UnIC@RISE, Department of Surgery and Physiology, Cardiovascular R&D Center, Faculty of Medicine of the University of Porto, Porto, Portugal; Department of Cardiothoracic Surgery, Centro Hospitalar Universitário São João, Porto, Portugal
| | - Iola F Duarte
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Daniel Moreira-Gonçalves
- CIAFEL, Faculty of Sport, University of Porto, Porto, Portugal; ITR - Laboratory for Integrative and Translational Research in Population Health, Porto, Portugal.
| |
Collapse
|
2
|
Epidemiological, mechanistic, and practical bases for assessment of cardiorespiratory fitness and muscle status in adults in healthcare settings. Eur J Appl Physiol 2023; 123:945-964. [PMID: 36683091 PMCID: PMC10119074 DOI: 10.1007/s00421-022-05114-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 12/08/2022] [Indexed: 01/24/2023]
Abstract
Given their importance in predicting clinical outcomes, cardiorespiratory fitness (CRF) and muscle status can be considered new vital signs. However, they are not routinely evaluated in healthcare settings. Here, we present a comprehensive review of the epidemiological, mechanistic, and practical bases of the evaluation of CRF and muscle status in adults in primary healthcare settings. We highlight the importance of CRF and muscle status as predictors of morbidity and mortality, focusing on their association with cardiovascular and metabolic outcomes. Notably, adults in the best quartile of CRF and muscle status have as low as one-fourth the risk of developing some of the most common chronic metabolic and cardiovascular diseases than those in the poorest quartile. The physiological mechanisms that underlie these epidemiological associations are addressed. These mechanisms include the fact that both CRF and muscle status reflect an integrative response to the body function. Indeed, muscle plays an active role in the development of many diseases by regulating the body's metabolic rate and releasing myokines, which modulate metabolic and cardiovascular functions. We also go over the most relevant techniques for assessing peak oxygen uptake as a surrogate of CRF and muscle strength, mass, and quality as surrogates of muscle status in adults. Finally, a clinical case of a middle-aged adult is discussed to integrate and summarize the practical aspects of the information presented throughout. Their clinical importance, the ease with which we can assess CRF and muscle status using affordable techniques, and the availability of reference values, justify their routine evaluation in adults across primary healthcare settings.
Collapse
|
3
|
Brugnara L, García AI, Murillo S, Ribalta J, Fernandez G, Marquez S, Rodriguez MA, Vinaixa M, Amigó N, Correig X, Kalko S, Pomes J, Novials A. Muscular carnosine is a marker for cardiorespiratory fitness and cardiometabolic risk factors in men with type 1 diabetes. Eur J Appl Physiol 2022; 122:1429-1440. [PMID: 35298695 DOI: 10.1007/s00421-022-04929-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 03/04/2022] [Indexed: 12/01/2022]
Abstract
PURPOSE Muscle is an essential organ for glucose metabolism and can be influenced by metabolic disorders and physical activity. Elevated muscle carnosine levels have been associated with insulin resistance and cardiometabolic risk factors. Little is known about muscle carnosine in type 1 diabetes (T1D) and how it is influenced by physical activity. The aim of this study was to characterize muscle carnosine in vivo by proton magnetic resonance spectroscopy (1H MRS) and evaluate the relationship with physical activity, clinical characteristics and lipoprotein subfractions. METHODS 16 men with T1D (10 athletes/6 sedentary) and 14 controls without diabetes (9/5) were included. Body composition by DXA, cardiorespiratory capacity (VO2peak) and serum lipoprotein profile by proton nuclear magnetic resonance (1H NMR) were obtained. Muscle carnosine scaled to water (carnosineW) and to creatine (carnosineCR), creatine and intramyocellular lipids (IMCL) were quantified in vivo using 1H MRS in a 3T MR scanner in soleus muscle. RESULTS Subjects with T1D presented higher carnosine CR levels compared to controls. T1D patients with a lower VO2peak presented higher carnosineCR levels compared to sedentary controls, but both T1D and control groups presented similar levels of carnosineCR at high VO2peak levels. CarnosineW followed the same trend. Integrated correlation networks in T1D demonstrated that carnosineW and carnosineCR were associated with cardiometabolic risk factors including total and abdominal fat, pro-atherogenic lipoproteins (very low-density lipoprotein subfractions), low VO2peak, and IMCL. CONCLUSIONS Elevated muscle carnosine levels in persons with T1D and their effect on atherogenic lipoproteins can be modulated by physical activity.
Collapse
Affiliation(s)
- Laura Brugnara
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Hospital Clínic de Barcelona, Carrer del Rosselló, 149, 08036, Barcelona, Spain.,Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Ana Isabel García
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Hospital Clínic de Barcelona, Carrer del Rosselló, 149, 08036, Barcelona, Spain.,Department of Radiology, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Serafín Murillo
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Hospital Clínic de Barcelona, Carrer del Rosselló, 149, 08036, Barcelona, Spain.,Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Josep Ribalta
- Departament de Medicina i Cirugia, Universitat Rovira i Virgili/Unitat de Recerca en Lípids i Arteriosclerosi, IISRV, Reus, Spain.,Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Guerau Fernandez
- Bioinformatics Unit, Genetics and Molecular Medicine Service, Hospital Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Susanna Marquez
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | | | - Maria Vinaixa
- Metabolomics Platform, Universitat Rovira i Virgili, IISRV, Reus, Spain
| | - Núria Amigó
- Metabolomics Platform, Universitat Rovira i Virgili, IISRV, Reus, Spain.,Biosfer Teslab, Reus, Spain.,Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Xavier Correig
- Metabolomics Platform, Universitat Rovira i Virgili, IISRV, Reus, Spain.,Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Susana Kalko
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Hospital Clínic de Barcelona, Carrer del Rosselló, 149, 08036, Barcelona, Spain.,Bioinformatics Core Facility (IDIBAPS), Barcelona, Spain
| | - Jaume Pomes
- Department of Radiology, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Anna Novials
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Hospital Clínic de Barcelona, Carrer del Rosselló, 149, 08036, Barcelona, Spain. .,Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain.
| |
Collapse
|
4
|
Spaas J, Franssen WMA, Keytsman C, Blancquaert L, Vanmierlo T, Bogie J, Broux B, Hellings N, van Horssen J, Posa DK, Hoetker D, Baba SP, Derave W, Eijnde BO. Carnosine quenches the reactive carbonyl acrolein in the central nervous system and attenuates autoimmune neuroinflammation. J Neuroinflammation 2021; 18:255. [PMID: 34740381 PMCID: PMC8571880 DOI: 10.1186/s12974-021-02306-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 10/22/2021] [Indexed: 12/28/2022] Open
Abstract
Background Multiple sclerosis (MS) is a chronic autoimmune disease driven by sustained inflammation in the central nervous system. One of the pathological hallmarks of MS is extensive free radical production. However, the subsequent generation, potential pathological role, and detoxification of different lipid peroxidation-derived reactive carbonyl species during neuroinflammation are unclear, as are the therapeutic benefits of carbonyl quenchers. Here, we investigated the reactive carbonyl acrolein and (the therapeutic effect of) acrolein quenching by carnosine during neuroinflammation. Methods The abundance and localization of acrolein was investigated in inflammatory lesions of MS patients and experimental autoimmune encephalomyelitis (EAE) mice. In addition, we analysed carnosine levels and acrolein quenching by endogenous and exogenous carnosine in EAE. Finally, the therapeutic effect of exogenous carnosine was assessed in vivo (EAE) and in vitro (primary mouse microglia, macrophages, astrocytes). Results Acrolein was substantially increased in inflammatory lesions of MS patients and EAE mice. Levels of the dipeptide carnosine (β-alanyl-l-histidine), an endogenous carbonyl quencher particularly reactive towards acrolein, and the carnosine-acrolein adduct (carnosine-propanal) were ~ twofold lower within EAE spinal cord tissue. Oral carnosine treatment augmented spinal cord carnosine levels (up to > tenfold), increased carnosine-acrolein quenching, reduced acrolein-protein adduct formation, suppressed inflammatory activity, and alleviated clinical disease severity in EAE. In vivo and in vitro studies indicate that pro-inflammatory microglia/macrophages generate acrolein, which can be efficiently quenched by increasing carnosine availability, resulting in suppressed inflammatory activity. Other properties of carnosine (antioxidant, nitric oxide scavenging) may also contribute to the therapeutic effects. Conclusions Our results identify carbonyl (particularly acrolein) quenching by carnosine as a therapeutic strategy to counter inflammation and macromolecular damage in MS. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-021-02306-9.
Collapse
Affiliation(s)
- Jan Spaas
- University MS Center (UMSC) Hasselt - Pelt, Hasselt, Belgium. .,BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium. .,Department of Movement and Sports Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium.
| | - Wouter M A Franssen
- BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium.,REVAL Rehabilitation Research Center, Faculty of Rehabilitation Sciences, Hasselt University, Hasselt, Belgium
| | - Charly Keytsman
- University MS Center (UMSC) Hasselt - Pelt, Hasselt, Belgium.,BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium.,REVAL Rehabilitation Research Center, Faculty of Rehabilitation Sciences, Hasselt University, Hasselt, Belgium
| | - Laura Blancquaert
- Department of Movement and Sports Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Tim Vanmierlo
- University MS Center (UMSC) Hasselt - Pelt, Hasselt, Belgium.,Neuro-Immune Connections and Repair Lab, Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium.,Division of Translational Neuroscience, Department Psychiatry and Neuropsychology, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Jeroen Bogie
- University MS Center (UMSC) Hasselt - Pelt, Hasselt, Belgium.,BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
| | - Bieke Broux
- University MS Center (UMSC) Hasselt - Pelt, Hasselt, Belgium.,Neuro-Immune Connections and Repair Lab, Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium.,Department of Internal Medicine, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Niels Hellings
- University MS Center (UMSC) Hasselt - Pelt, Hasselt, Belgium.,Neuro-Immune Connections and Repair Lab, Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Jack van Horssen
- University MS Center (UMSC) Hasselt - Pelt, Hasselt, Belgium.,BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium.,Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, MS Center Amsterdam, Amsterdam University Medical Center, Location VUmc, Amsterdam, The Netherlands
| | - Dheeraj Kumar Posa
- Diabetes and Obesity Center, University of Louisville, Louisville, KY, USA
| | - David Hoetker
- Diabetes and Obesity Center, University of Louisville, Louisville, KY, USA
| | - Shahid P Baba
- Diabetes and Obesity Center, University of Louisville, Louisville, KY, USA
| | - Wim Derave
- Department of Movement and Sports Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Bert O Eijnde
- University MS Center (UMSC) Hasselt - Pelt, Hasselt, Belgium.,BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
| |
Collapse
|
5
|
Efficacy of high-intensity interval- or continuous aerobic-training on insulin resistance and muscle function in adults with metabolic syndrome: a clinical trial. Eur J Appl Physiol 2021; 122:331-344. [PMID: 34687360 DOI: 10.1007/s00421-021-04835-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 10/14/2021] [Indexed: 01/10/2023]
Abstract
PURPOSE We carried out a randomized, clinical trial in adults of both sexes with metabolic syndrome (MS) to assess the efficacy of high-intensity, low-volume interval training (HIIT) compared to moderate-intensity continuous training (MICT) on insulin resistance (IR), muscle mass, muscle activation, and serum musclin. METHODS Fasting glycemia, insulinemia, and glycated haemoglobin were determined by conventional methods, IR by Homeostatic model assessment (HOMA), lean mass by Dual-Energy X-ray Absorptiometry, muscle activation through carnosine by Proton Magnetic Resonance Spectroscopy, and musclin by Enzyme-Linked ImmunoSorbent Assay before and after a supervised, three-times/week, 12-week treadmill programme. HIIT (n = 29) consisted of six intervals with one-minute, high-intensity phases at 90% of peak oxygen consumption (VO2peak). MICT (n = 31) trained at 60% of VO2peak for 30 min. RESULTS Patients had a mean age of 50.8 ± 6.0 years, body mass index of 30.6 ± 4.0 kg/m2, and VO2peak of 29.0 ± 6.3 mL.kg-1.min-1. Compared to MICT, HIIT was not superior at reducing Ln HOMA-IR (adjusted mean difference: 0.083 [95%CI - 0.092 to 0.257]), carnosine or musclin or at increasing thigh lean mass. HIIT increased carnosine by 0.66 mmol/kg.ww (95% CI 0.08-1.24) after intervention. Both interventions reduced IR, body fat percentage and increased total lean mass/height2 and VO2peak. Musclin showed a non-significant reduction with a small effect size after both interventions. CONCLUSION Compared to MICT, HIIT is not superior at reducing IR, carnosine or musclin or at increasing skeletal muscle mass in adults with MS. Both training types improved IR, muscle mass and body composition. NCT03087721, March 22nd, 2017. TRIAL REGISTRATION NUMBER NCT03087721. Registered March 22nd, 2017.
Collapse
|
6
|
Sánchez YL, Yepes-Calderón M, Valbuena L, Milán AF, Trillos-Almanza MC, Granados S, Peña M, Estrada-Castrillón M, Aristizábal JC, Narvez-Sanchez R, Gallo-Villegas J, Calderón JC. Musclin Is Related to Insulin Resistance and Body Composition, but Not to Body Mass Index or Cardiorespiratory Capacity in Adults. Endocrinol Metab (Seoul) 2021; 36:1055-1068. [PMID: 34674511 PMCID: PMC8566119 DOI: 10.3803/enm.2021.1104] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/27/2021] [Accepted: 08/24/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND We studied whether musclin function in humans is related to glycemic control, body composition, and cardiorespiratory capacity. METHODS A cross-sectional study was performed in sedentary adults with or without metabolic syndrome (MS). Serum musclin was measured by enzyme-linked immunosorbent assay. Insulin resistance (IR) was evaluated by the homeostatic model assessment (HOMA-IR). Body composition was determined by dual-energy X-ray absorptiometry and muscle composition by measuring carnosine in the thigh, a surrogate of fiber types, through proton magnetic resonance spectroscopy. Cardiorespiratory capacity was assessed through direct ergospirometry. RESULTS The control (n=29) and MS (n=61) groups were comparable in age (51.5±6.5 years old vs. 50.7±6.1 years old), sex (72.4% vs. 70.5% women), total lean mass (58.5%±7.4% vs. 57.3%±6.8%), and peak oxygen consumption (VO2peak) (31.0±5.8 mL O2./kg.min vs. 29.2±6.3 mL O2/kg.min). Individuals with MS had higher body mass index (BMI) (30.6±4.0 kg/m2 vs. 27.4± 3.6 kg/m2), HOMA-IR (3.5 [95% confidence interval, CI, 2.9 to 4.6] vs. 1.7 [95% CI, 1.1 to 2.0]), and musclin (206.7 pg/mL [95% CI, 122.7 to 387.8] vs. 111.1 pg/mL [95% CI, 63.2 to 218.5]) values than controls (P˂0.05). Musclin showed a significant relationship with HOMA-IR (β=0.23; 95% CI, 0.12 to 0.33; P˂0.01), but not with VO2peak, in multiple linear regression models adjusted for age, sex, fat mass, lean mass, and physical activity. Musclin was significantly associated with insulin, glycemia, visceral fat, and regional muscle mass, but not with BMI, VCO2peak, maximum heart rate, maximum time of work, or carnosine. CONCLUSION In humans, musclin positively correlates with insulinemia, IR, and a body composition profile with high visceral adiposity and lean mass, but low body fat percentage. Musclin is not related to BMI or cardiorespiratory capacity.
Collapse
Affiliation(s)
- Yeliana L. Sánchez
- Physiology and Biochemistry Research Group-PHYSIS, Faculty of Medicine, University of Antioquia, Medellin,
Colombia
| | - Manuela Yepes-Calderón
- Physiology and Biochemistry Research Group-PHYSIS, Faculty of Medicine, University of Antioquia, Medellin,
Colombia
| | - Luis Valbuena
- Physiology and Biochemistry Research Group-PHYSIS, Faculty of Medicine, University of Antioquia, Medellin,
Colombia
- Indeportes Antioquia, Medellin,
Colombia
| | - Andrés F. Milán
- Physiology and Biochemistry Research Group-PHYSIS, Faculty of Medicine, University of Antioquia, Medellin,
Colombia
| | - María C. Trillos-Almanza
- Physiology and Biochemistry Research Group-PHYSIS, Faculty of Medicine, University of Antioquia, Medellin,
Colombia
| | - Sergio Granados
- Physiology and Biochemistry Research Group-PHYSIS, Faculty of Medicine, University of Antioquia, Medellin,
Colombia
| | - Miguel Peña
- Physiology and Biochemistry Research Group-PHYSIS, Faculty of Medicine, University of Antioquia, Medellin,
Colombia
| | | | - Juan C. Aristizábal
- Physiology and Biochemistry Research Group-PHYSIS, Faculty of Medicine, University of Antioquia, Medellin,
Colombia
| | - Raúl Narvez-Sanchez
- Physiology and Biochemistry Research Group-PHYSIS, Faculty of Medicine, University of Antioquia, Medellin,
Colombia
| | - Jaime Gallo-Villegas
- Physiology and Biochemistry Research Group-PHYSIS, Faculty of Medicine, University of Antioquia, Medellin,
Colombia
- Sports Medicine Postgraduate Program, and GRINMADE Research Group, SICOR Center, Faculty of Medicine, University of Antioquia, Medellin,
Colombia
| | - Juan C. Calderón
- Physiology and Biochemistry Research Group-PHYSIS, Faculty of Medicine, University of Antioquia, Medellin,
Colombia
| |
Collapse
|
7
|
Mayneris-Perxachs J, Meikle P, Mousa A, Naderpoor N, Fernández-Real JM, de Courten B. Novel Relationship Between Plasmalogen Lipid Signatures and Carnosine in Humans. Mol Nutr Food Res 2021; 65:e2100164. [PMID: 34328693 DOI: 10.1002/mnfr.202100164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/25/2021] [Indexed: 11/08/2022]
Abstract
INTRODUCTION Carnosine is a naturally occurring dipeptide abundant in the skeletal and cardiac muscle and brain, which has been shown to improve glucose metabolism and cardiovascular risk. This study showed that carnosine supplementation had positive changes on plasma lipidome. Here, this study aimed to establish the relationship of muscle carnosine and serum carnosinase-1 with cardiometabolic risk factors and the lipidome. METHODS AND RESULTS This study profiles >450 lipid species in 65 overweight/obese nondiabetic individuals. Intensive metabolic testing is conducted using direct gold-standard measures of adiposity, insulin sensitivity and secretion, as well as measurement of serum inflammatory cytokines and adipokines. Muscle carnosine is negatively associated with 2-h glucose concentrations, whereas serum carnosinase-1 levels are negatively associated with insulin sensitivity and positively with IL-18. O-PLS and machine learning analyses reveal a strong association of muscle carnosine with ether lipids, particularly arachidonic acid-containing plasmalogens. Carnosinase-1 levels are positively associated with total phosphatidylethanolamines, but negatively with lysoalkylphosphatidylcholines, trihexosylceramides, and gangliosides. In particular, alkylphosphatidylethanolamine species containing arachidonic acid are positively associated with carnosinase-1. CONCLUSION These associations reinforce the role of muscle carnosine and serum carnosinase-1 in the interplay among low-grade chronic inflammation, glucose homeostasis, and insulin sensitivity.
Collapse
Affiliation(s)
- Jordi Mayneris-Perxachs
- Department of Endocrinology, Diabetes and Nutrition, Hospital of Girona "Dr Josep Trueta," University of Girona, Girona Biomedical Research Institute (IdibGi), Girona, Spain.,CIBERobn Pathophysiology of Obesity and Nutrition, Instituto de Salud Carlos III, Madrid, Spain
| | - Peter Meikle
- Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Aya Mousa
- Monash Centre for Health Research and Implementation, Monash University, Melbourne, Australia
| | - Negar Naderpoor
- Monash Centre for Health Research and Implementation, Monash University, Melbourne, Australia
| | - José Manuel Fernández-Real
- Department of Endocrinology, Diabetes and Nutrition, Hospital of Girona "Dr Josep Trueta," University of Girona, Girona Biomedical Research Institute (IdibGi), Girona, Spain.,CIBERobn Pathophysiology of Obesity and Nutrition, Instituto de Salud Carlos III, Madrid, Spain.,Department of Medical Sciences, Faculty of Medicine, University of Girona, Girona, Spain
| | - Barbora de Courten
- Department of Medicine, School of Clinical Sciences, Monash University, Melbourne, Australia
| |
Collapse
|
8
|
Szczerbinski L, Golonko A, Taylor M, Puchta U, Konopka P, Paszko A, Citko A, Szczerbinski K, Gorska M, Zabielski P, Błachnio-Zabielska A, Larsen S, Kretowski A. Metabolomic Profile of Skeletal Muscle and Its Change Under a Mixed-Mode Exercise Intervention in Progressively Dysglycemic Subjects. Front Endocrinol (Lausanne) 2021; 12:778442. [PMID: 34938272 PMCID: PMC8685540 DOI: 10.3389/fendo.2021.778442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/16/2021] [Indexed: 11/13/2022] Open
Abstract
Skeletal muscles play an essential role in whole-body glucose homeostasis. They are a key organ system engaged in the development of insulin resistance, and also a crucial tissue mediating the beneficial metabolic effects of physical activity. However, molecular mechanisms underlying both these processes in skeletal muscle remain unclear. The aim of our study was to compare metabolomic profiles in skeletal muscle of patients at different stages of dysglycemia, from normoglycemia through prediabetes to T2D, and its changes under a mixed-mode (strength and endurance) exercise intervention. We performed targeted metabolomics comprising several major metabolite classes, including amino acids, biogenic amines and lipid subgroups in skeletal muscles of male patients. Dysglycemic groups differed significantly at baseline in lysophosphatidylcholines, phosphatidylcholines, sphingomyelins, glutamine, ornithine, and carnosine. Following the exercise intervention, we detected significant changes in lipids and metabolites related to lipid metabolism, including in ceramides and acylcarnitines. With their larger and more significant change over the intervention and among dysglycemic groups, these findings suggest that lipid species may play a predominant role in both the pathogenesis of type 2 diabetes and its protection by exercise. Simultaneously, we demonstrated that amino acid metabolism, especially glutamate dysregulation, is correlated to the development of insulin resistance and parallels disturbances in lipid metabolites.
Collapse
Affiliation(s)
- Lukasz Szczerbinski
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, Bialystok, Poland
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
- *Correspondence: Lukasz Szczerbinski,
| | - Aleksandra Golonko
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Mark Taylor
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
- Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, CA, United States
| | - Urszula Puchta
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, Bialystok, Poland
| | - Paulina Konopka
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Adam Paszko
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Anna Citko
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Karol Szczerbinski
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, Bialystok, Poland
| | - Maria Gorska
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, Bialystok, Poland
| | - Piotr Zabielski
- Department of Medical Biology, Medical University of Bialystok, Bialystok, Poland
| | | | - Steen Larsen
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Adam Kretowski
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, Bialystok, Poland
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
9
|
Meys R, Stoffels AAF, de Brandt J, van Hees HWH, Franssen FME, Sillen MJH, Wouters EFM, Burtin C, Klijn P, Bij de Vaate E, van den Borst B, Otker JM, Donkers J, Schleich FN, Hayot M, Pomiès P, Everaert I, Derave W, Spruit MA. Beta-alanine supplementation in patients with COPD receiving non-linear periodised exercise training or neuromuscular electrical stimulation: protocol of two randomised, double-blind, placebo-controlled trials. BMJ Open 2020; 10:e038836. [PMID: 32928863 PMCID: PMC7488791 DOI: 10.1136/bmjopen-2020-038836] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
INTRODUCTION Exercise intolerance is common in patients with chronic obstructive pulmonary disease (COPD) and, although multifactorial, it is largely caused by lower-limb muscle dysfunction. Research has shown that patients with severe to very severe COPD have significantly lower levels of muscle carnosine, which acts as a pH buffer and antioxidant. Beta-alanine (BA) supplementation has been shown to consistently elevate muscle carnosine in a variety of populations and may therefore improve exercise tolerance and lower-limb muscle function. The primary objective of the current studies is to assess the beneficial effects of BA supplementation in enhancing exercise tolerance on top of two types of exercise training (non-linear periodised exercise (NLPE) training or neuromuscular electrical stimulation (NMES)) in patients with COPD. METHODS AND ANALYSIS Two randomised, double-blind, placebo-controlled trials have been designed. Patients will routinely receive either NLPE (BASE-TRAIN trial) or NMES (BASE-ELECTRIC trial) as part of standard exercise-based care during their 8-to-10 week pulmonary rehabilitation (PR) programme. A total of 222 patients with COPD (2×77 = 154 patients in the BASE-TRAIN trial and 2×34 = 68 patients in the BASE-ELECTRIC trial) will be recruited from two specialised PR centres in The Netherlands. For study purposes, patients will receive 3.2 g of oral BA supplementation or placebo per day. Exercise tolerance is the primary outcome, which will be assessed using the endurance shuttle walk test (BASE-TRAIN) or the constant work rate cycle test (BASE-ELECTRIC). Furthermore, quadriceps muscle strength and endurance, cognitive function, carnosine levels (in muscle), BA levels (in blood and muscle), markers of oxidative stress and inflammation (in blood, muscles and lungs), physical activity and quality of life will be measured. ETHICS AND DISSEMINATION Both trials were approved by CMO Regio Arnhem-Nijmegen, The Netherlands (NL70781.091.19. and NL68757.091.19). TRIAL REGISTRATION NUMBER NTR8427 (BASE-TRAIN) and NTR8419 (BASE-ELECTRIC).
Collapse
Affiliation(s)
- Roy Meys
- Department of Research and Development, CIRO, Horn, The Netherlands
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht, The Netherlands
- Department of Respiratory Medicine, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands
| | - Anouk A F Stoffels
- Department of Research and Development, CIRO, Horn, The Netherlands
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht, The Netherlands
- Department of Respiratory Medicine, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands
- Department of Pulmonary Diseases, Radboud UMC Dekkerswald, Nijmegen, The Netherlands
| | - Jana de Brandt
- Reval Rehabilitation Research, Biomedical Research Institute, Faculty of Rehabilitation Sciences, Hasselt University, DIepenbeek, Belgium
| | | | - Frits M E Franssen
- Department of Research and Development, CIRO, Horn, The Netherlands
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht, The Netherlands
- Department of Respiratory Medicine, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands
| | | | - Emiel F M Wouters
- Department of Research and Development, CIRO, Horn, The Netherlands
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht, The Netherlands
- Department of Respiratory Medicine, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands
| | - Chris Burtin
- Reval Rehabilitation Research, Biomedical Research Institute, Faculty of Rehabilitation Sciences, Hasselt University, DIepenbeek, Belgium
| | - Peter Klijn
- Department of Pulmonology, Merem Pulmonary Rehabilitation Centre, Hilversum, The Netherlands
- Department of Pulmonary Medicine, Amsterdam UMC, Amsterdam, The Netherlands
| | - Eline Bij de Vaate
- Department of Pulmonology, Merem Pulmonary Rehabilitation Centre, Hilversum, The Netherlands
| | - Bram van den Borst
- Department of Pulmonary Diseases, Radboud UMC Dekkerswald, Nijmegen, The Netherlands
| | - Jacqueline M Otker
- Patient Advisory Council, Lung Foundation Netherlands, Amersfoort, The Netherlands
- Client Council, CIRO, Horn, The Netherlands
| | | | - Florence N Schleich
- Department of Respiratory Medicine, CHU Sart-Tilman Liege, GIGA I3, Liege, Belgium
| | - Maurice Hayot
- PhyMedExp, INSERM - CNRS, University of Montpellier - Montpellier CHU, Montpellier, France
| | - Pascal Pomiès
- PhyMedExp, INSERM - CNRS, University of Montpellier - Montpellier CHU, Montpellier, France
| | - Inge Everaert
- Department of Movement and Sport Sciences, University Ghent, Ghent, Belgium
| | - Wim Derave
- Department of Movement and Sport Sciences, University Ghent, Ghent, Belgium
| | - Martijn A Spruit
- Department of Research and Development, CIRO, Horn, The Netherlands
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht, The Netherlands
- Department of Respiratory Medicine, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands
- Reval Rehabilitation Research, Biomedical Research Institute, Faculty of Rehabilitation Sciences, Hasselt University, DIepenbeek, Belgium
| |
Collapse
|
10
|
Ozawa H, Hirayama A, Ishikawa T, Kudo R, Maruyama M, Shoji F, Doke T, Ishimoto T, Maruyama S, Soga T, Tomita M. Comprehensive Dipeptide Profiling and Quantitation by Capillary Electrophoresis and Liquid Chromatography Coupled with Tandem Mass Spectrometry. Anal Chem 2020; 92:9799-9806. [DOI: 10.1021/acs.analchem.0c01258] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Hitoshi Ozawa
- Institute for Advanced Biosciences, Keio University, 246-2 Mizukami,
Kakuganji, Tsuruoka, Yamagata 997-0052, Japan
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Kanagawa 252-0882, Japan
| | - Akiyoshi Hirayama
- Institute for Advanced Biosciences, Keio University, 246-2 Mizukami,
Kakuganji, Tsuruoka, Yamagata 997-0052, Japan
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Kanagawa 252-0882, Japan
| | - Takamasa Ishikawa
- Institute for Advanced Biosciences, Keio University, 246-2 Mizukami,
Kakuganji, Tsuruoka, Yamagata 997-0052, Japan
| | - Ryuhei Kudo
- Institute for Advanced Biosciences, Keio University, 246-2 Mizukami,
Kakuganji, Tsuruoka, Yamagata 997-0052, Japan
- Nissin Pharmaceutical Co., Ltd., 2-3-1 Shogehigashi, Tendo, Yamagata 994-0069, Japan
| | - Midori Maruyama
- Institute for Advanced Biosciences, Keio University, 246-2 Mizukami,
Kakuganji, Tsuruoka, Yamagata 997-0052, Japan
| | - Futaba Shoji
- Institute for Advanced Biosciences, Keio University, 246-2 Mizukami,
Kakuganji, Tsuruoka, Yamagata 997-0052, Japan
| | - Tomohito Doke
- Department of Nephrology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Takuji Ishimoto
- Department of Nephrology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Shoichi Maruyama
- Department of Nephrology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, 246-2 Mizukami,
Kakuganji, Tsuruoka, Yamagata 997-0052, Japan
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Kanagawa 252-0882, Japan
| | - Masaru Tomita
- Institute for Advanced Biosciences, Keio University, 246-2 Mizukami,
Kakuganji, Tsuruoka, Yamagata 997-0052, Japan
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Kanagawa 252-0882, Japan
| |
Collapse
|
11
|
Everaert I, He J, Hanssens M, Stautemas J, Bakker K, Albrecht T, Zhang S, Van der Stede T, Vanhove K, Hoetker D, Howsam M, Tessier FJ, Yard B, Baba SP, Baelde HJ, Derave W. Carnosinase-1 overexpression, but not aerobic exercise training, affects the development of diabetic nephropathy in BTBR ob/ob mice. Am J Physiol Renal Physiol 2020; 318:F1030-F1040. [PMID: 32150446 DOI: 10.1152/ajprenal.00329.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Manipulation of circulating histidine-containing dipeptides (HCD) has been shown to affect the development of diabetes and early-stage diabetic nephropathy (DN). The aim of the present study was to investigate whether such interventions, which potentially alter levels of circulating HCD, also affect the development of advanced-stage DN. Two interventions, aerobic exercise training and overexpression of the human carnosinase-1 (hCN1) enzyme, were tested. BTBR ob/ob mice were either subjected to aerobic exercise training (20 wk) or genetically manipulated to overexpress hCN1, and different diabetes- and DN-related markers were compared with control ob/ob and healthy (wild-type) mice. An acute exercise study was performed to elucidate the effect of obesity, acute running, and hCN1 overexpression on plasma HCD levels. Chronic aerobic exercise training did not affect the development of diabetes or DN, but hCN1 overexpression accelerated hyperlipidemia and aggravated the development of albuminuria, mesangial matrix expansion, and glomerular hypertrophy of ob/ob mice. In line, plasma, kidney, and muscle HCD were markedly lower in ob/ob versus wild-type mice, and plasma and kidney HCD in particular were lower in ob/ob hCN1 versus ob/ob mice but were unaffected by aerobic exercise. In conclusion, advanced glomerular damage is accelerated in mice overexpressing the hCN1 enzyme but not protected by chronic exercise training. Interestingly, we showed, for the first time, that the development of DN is closely linked to renal HCD availability. Further research will have to elucidate whether the stimulation of renal HCD levels can be a therapeutic strategy to reduce the risk for developing DN.
Collapse
Affiliation(s)
- Inge Everaert
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - Junling He
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Maxime Hanssens
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - Jan Stautemas
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - Kim Bakker
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Thomas Albrecht
- Fifth Medical Department, Universitätsklinikum Mannheim, Mannheim, Germany
| | - Shiqi Zhang
- Fifth Medical Department, Universitätsklinikum Mannheim, Mannheim, Germany
| | | | - Kenneth Vanhove
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - David Hoetker
- Diabetes and Obesity Center, University of Louisville, Louisville, Kentucky
| | - Michael Howsam
- Inserm, CHU Lille, Pasteur Institute of Lille, University of Lille, Lille, France
| | - Frédéric J Tessier
- Inserm, CHU Lille, Pasteur Institute of Lille, University of Lille, Lille, France
| | - Benito Yard
- Fifth Medical Department, Universitätsklinikum Mannheim, Mannheim, Germany
| | - Shahid P Baba
- Diabetes and Obesity Center, University of Louisville, Louisville, Kentucky
| | - Hans J Baelde
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Wim Derave
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
12
|
Lengkidworraphiphat P, Wongpoomchai R, Taya S, Jaturasitha S. Effect of genotypes on macronutrients and antioxidant capacity of chicken breast meat. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2020; 33:1817-1823. [PMID: 32054163 PMCID: PMC7649080 DOI: 10.5713/ajas.19.0736] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 12/21/2019] [Indexed: 11/27/2022]
Abstract
OBJECTIVE The increasing consumer awareness of food, which can provide health benefits and potentially aid disease prevention, has become the driving force of the functional food market. Accordingly, the aim of this study was to investigate the effects of chicken genotype on the macronutrient content, bioactive peptide content, and antioxidant capacity within different breast meat. METHODS In this experiment, three genotypes of chicken, Thai indigenous, black-boned, and broiler (control), were reared with commercial feed under the same conditions. Thirty chickens were slaughtered at typical market age and the breasts were separated from the carcass to determine macronutrient content using the AOAC method. The antioxidant capacities of the chicken breasts were evaluated by in vitro antioxidant assays and the protein pattern was investigated using gel electrophoresis. Carnosine and anserine, which have antioxidant properties in animal tissue, were determined using high performance liquid chromatography. RESULTS The results showed that breast meat from Thai indigenous chickens had a greater macronutrient content and higher antioxidant capacity compared with the other genotypes (p<0.05). The protein pattern was similar between genotypes, however Thai indigenous chickens had the greatest myosin and actin content (p<0.05). In addition, carnosine and anserine values were greatest in the black-boned and Thai indigenous chickens compared with the broiler genotype (p<0.05). CONCLUSION Thai indigenous chicken breast meat may be classified as a functional food as it has good nutritional value and is rich in antioxidant peptides.
Collapse
Affiliation(s)
| | - Rawiwan Wongpoomchai
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.,Science and Technology Research Institute, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sirinya Taya
- Science and Technology Research Institute, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sanchai Jaturasitha
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand.,Science and Technology Research Institute, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
13
|
Narvaez-Sanchez R, Calderón JC, Vega G, Trillos MC, Ospina S. Skeletal muscle as a protagonist in the pregnancy metabolic syndrome. Med Hypotheses 2019; 126:26-37. [PMID: 31010495 DOI: 10.1016/j.mehy.2019.02.049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 02/12/2019] [Accepted: 02/27/2019] [Indexed: 12/13/2022]
Abstract
The pregnant woman normally shows clinical manifestations similar to a metabolic syndrome (MS), due to her metabolic and hemodynamic adaptations in order to share nutrients with the child. If those adjustments are surpassed, a kind of pregnancy MS (PregMS) could appear, characterized by excessive insulin resistance and vascular maladaptation. Skeletal muscle (SKM) must be a protagonist in the PregMS: SKM strength and mass have been associated inversely with MS incidence in non-pregnant patients, and in pregnant women muscular activity modulates metabolic and vascular adaptations that favor better outcomes. Of note, a sedentary lifestyle affects exactly in the other way. Those effects may be explained not only by the old paradigm of SKM being a great energy consumer and store, but because it is an endocrine organ whose chronic activity or deconditioning correspondingly releases myokines modulating insulin sensitivity and cardiovascular adaptation, by direct or indirect mechanisms not well understood. In this document, we present evidence to support the concept of a PregMS and hypothesize on the role of the SKM mass, fiber types composition and myokines in its pathophysiology. Also, we discuss some exercise interventions in pregnancy as a way to test our hypotheses.
Collapse
Affiliation(s)
- Raul Narvaez-Sanchez
- Physiology and Biochemistry Research Group PHYSIS, Faculty of Medicine, University of Antioquia, Medellin, Colombia; Red iberoamericana de trastornos vasculares y del embarazo, RIVATREM, Colombia.
| | - Juan C Calderón
- Physiology and Biochemistry Research Group PHYSIS, Faculty of Medicine, University of Antioquia, Medellin, Colombia. http://www.udea.edu.co/physis
| | - Gloria Vega
- Physiology and Biochemistry Research Group PHYSIS, Faculty of Medicine, University of Antioquia, Medellin, Colombia. http://www.udea.edu.co/physis
| | - Maria Camila Trillos
- Physiology and Biochemistry Research Group PHYSIS, Faculty of Medicine, University of Antioquia, Medellin, Colombia. http://www.udea.edu.co/physis
| | - Sara Ospina
- Physiology and Biochemistry Research Group PHYSIS, Faculty of Medicine, University of Antioquia, Medellin, Colombia. http://www.udea.edu.co/physis
| |
Collapse
|
14
|
Elbarbary NS, Ismail EAR, El-Naggar AR, Hamouda MH, El-Hamamsy M. The effect of 12 weeks carnosine supplementation on renal functional integrity and oxidative stress in pediatric patients with diabetic nephropathy: a randomized placebo-controlled trial. Pediatr Diabetes 2018; 19:470-477. [PMID: 28744992 DOI: 10.1111/pedi.12564] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 06/16/2017] [Accepted: 06/27/2017] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Oxidative stress is a significant contributor to the pathogenesis of diabetic nephropathy. Carnosine is a natural radical oxygen species scavenger. We investigated the effect of carnosine as an adjuvant therapy on urinary albumin excretion (UAE), the tubular damage marker alpha 1-microglobulin (A1M), and oxidative stress in pediatric patients with type 1 diabetes and nephropathy. METHODS This randomized placebo-controlled trial included 90 patients with diabetic nephropathy, despite oral angiotensin-converting enzyme inhibitors (ACE-Is), who were randomly assigned to receive either 12 weeks of carnosine 1 g/day (n = 45), or matching placebo (n = 45). Both groups were followed-up with assessment of hemoglobin A1c (HbA1c), UAE, A1M, total antioxidant capacity (TAC) and malondialdhyde (MDA). RESULTS Baseline clinical and laboratory parameters were consistent between carnosine and placebo groups (P > .05). After 12 weeks, carnosine treatment resulted in significant decrease of HbA1c (8.2 ± 2.1% vs 7.4 ± 1.3%), UAE (91.7 vs 38.5 mg/g creatinine), A1M (16.5 ± 6.8 mg/L vs 9.3 ± 6.6 mg/L), MDA levels (25.5 ± 8.1 vs 18.2 ± 7.7 nmol/mL) while TAC levels were increased compared with baseline levels (P < .001) and compared with placebo (P < .001). No adverse reactions due to carnosine supplementation were reported. Baseline TAC was inversely correlated to HbA1c (r = -0.58, P = .04) and A1M (r = -0.682, P = .015) among carnosine group. CONCLUSIONS Oral supplementation with L-Carnosine for 12 weeks resulted in a significant improvement of oxidative stress, glycemic control and renal function. Thus, carnosine could be a safe and effective strategy for treatment of pediatric patients with diabetic nephropathy.
Collapse
Affiliation(s)
| | | | - Abdel Rahman El-Naggar
- Department of Clinical Pharmacy, Faculty of Pharmacy, Modern technology and Information University, Cairo, Egypt
| | - Mahitab Hany Hamouda
- Department of Clinical Pharmacy, Faculty of Pharmacy, Modern technology and Information University, Cairo, Egypt
| | - Manal El-Hamamsy
- Department of Clinical Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
15
|
Menon K, Mousa A, de Courten B. Effects of supplementation with carnosine and other histidine-containing dipeptides on chronic disease risk factors and outcomes: protocol for a systematic review of randomised controlled trials. BMJ Open 2018; 8:e020623. [PMID: 29567852 PMCID: PMC5875615 DOI: 10.1136/bmjopen-2017-020623] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
INTRODUCTION Ageing of populations globally, coupled with the obesity epidemic, has resulted in the rising prevalence of chronic diseases including diabetes, cardiovascular diseases, cancers and neurodegenerative disorders. Prevention of risk factors that contribute to these diseases is key in managing the global burden of chronic diseases. Recent studies suggest that carnosine, a dipeptide with anti-inflammatory, antioxidative and antiglycating properties may have a role in the prevention of chronic diseases; however, no previous reviews have examined the effects of carnosine and other histidine-containing peptides (HCDs) on chronic disease risk factors and outcomes. We aim to conduct a comprehensive systematic review to examine the effects of supplementation with carnosine and other HCDs on chronic disease risk factors and outcomes and to identify relevant knowledge gaps. METHODS AND ANALYSIS Electronic databases including Medline, Cumulative Index of Nursing and Allied Health, Embase and all Evidence-Based Medicine will be systematically searched to identify randomised controlled trials (RCTs) and systematic reviews of RCTs, comparing supplementation with carnosine and/or other HCDs versus placebo, usual care or other pharmacological or non-pharmacological interventions. One reviewer will screen titles and abstracts for eligibility according to prespecified inclusion criteria, after which two independent reviewers will perform data extraction and quality appraisal. Meta-analyses, metaregression and subgroup analyses will be conducted where appropriate. ETHICS AND DISSEMINATION Ethics approval is not required as this review does not involve primary data collection. This review will generate level-one evidence regarding the effects of carnosine supplementation on chronic disease risk factors and outcomes and will be disseminated through peer-reviewed publications and at conference meetings to inform future research on the efficacy of carnosine supplementation for the prevention of chronic diseases. PROSPERO REGISTRATION NUMBER CRD42017075354.
Collapse
Affiliation(s)
- Kirthi Menon
- Monash Centre for Health Research and Implementation, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Aya Mousa
- Monash Centre for Health Research and Implementation, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Barbora de Courten
- Monash Centre for Health Research and Implementation, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
16
|
Affiliation(s)
- Guilherme Giannini Artioli
- Musculoskeletal Physiology Research Group, Sport, Health and Performance Enhancement (SHAPE) Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Craig Sale
- Musculoskeletal Physiology Research Group, Sport, Health and Performance Enhancement (SHAPE) Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Rebecca Louise Jones
- School of Sport Science and Physical Activity, Institute for Sport and Physical Activity Research, University of Bedfordshire, Bedford, UK
| |
Collapse
|
17
|
Baye E, Ukropec J, de Courten MP, Vallova S, Krumpolec P, Kurdiova T, Aldini G, Ukropcova B, de Courten B. Effect of carnosine supplementation on the plasma lipidome in overweight and obese adults: a pilot randomised controlled trial. Sci Rep 2017; 7:17458. [PMID: 29234057 PMCID: PMC5727174 DOI: 10.1038/s41598-017-17577-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 11/22/2017] [Indexed: 12/20/2022] Open
Abstract
Carnosine has been shown to reduce oxidation and glycation of low density lipoprotein hence improving dyslipidaemia in rodents. The effect of carnosine on human plasma lipidome has thus far not been investigated. We aimed to determine whether carnosine supplementation improves the plasma lipidome in overweight and obese individuals. Lipid analysis was performed by liquid chromatography mass spectrometry in 24 overweight and obese adults: 13 were randomly assigned to 2 g carnosine daily and 11 to placebo, and treated for 12 weeks. Carnosine supplementation maintained trihexosylceramide (0.01 ± 0.19 vs -0.28 ± 0.34 nmol/ml, p = 0.04), phosphatidylcholine (77 ± 167 vs -81 ± 196 nmol/ml, p = 0.01) and free cholesterol (20 ± 80 vs -69 ± 80 nmol/ml, p = 0.006) levels compared to placebo. Trihexosylceramide was inversely related with fasting insulin (r = -0.6, p = 0.002), insulin resistance (r = -0.6, p = 0.003), insulin secretion (r = -0.4, p = 0.05) and serum carnosinase 1 activity (r = -0.3, p = 0.05). Both phosphatidylcholine and free cholesterol did not correlate with any cardiometabolic parameters. Our data suggest that carnosine may have beneficial effects on the plasma lipidome. Future larger clinical trials are needed to confirm this.
Collapse
Affiliation(s)
- Estifanos Baye
- Monash Centre for Health Research and Implementation, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Jozef Ukropec
- Institute of Experimental Endocrinology, Biomedical Research Centre, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Maximilian Pj de Courten
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, Melbourne, Australia
| | - Silvia Vallova
- Institute of Pathological Physiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Patrik Krumpolec
- Institute of Experimental Endocrinology, Biomedical Research Centre, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Timea Kurdiova
- Institute of Experimental Endocrinology, Biomedical Research Centre, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Giancarlo Aldini
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Milan, Italy
| | - Barbara Ukropcova
- Institute of Experimental Endocrinology, Biomedical Research Centre, Slovak Academy of Sciences, Bratislava, Slovakia.,Institute of Pathological Physiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Barbora de Courten
- Monash Centre for Health Research and Implementation, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia.
| |
Collapse
|
18
|
de Oliveira FA, Shahin MH, Gong Y, McDonough CW, Beitelshees AL, Gums JG, Chapman AB, Boerwinkle E, Turner ST, Frye RF, Fiehn O, Kaddurah-Daouk R, Johnson JA, Cooper-DeHoff RM. Novel plasma biomarker of atenolol-induced hyperglycemia identified through a metabolomics-genomics integrative approach. Metabolomics 2016; 12:129. [PMID: 28217400 PMCID: PMC5310671 DOI: 10.1007/s11306-016-1076-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
INTRODUCTION While atenolol is an effective antihypertensive agent, its use is also associated with adverse events including hyperglycemia and incident diabetes that may offset the benefits of blood pressure lowering. By combining metabolomic and genomic data acquired from hypertensive individuals treated with atenolol, it may be possible to better understand the pathways that most impact the development of an adverse glycemic state. OBJECTIVE To identify biomarkers that can help predict susceptibility to blood glucose excursions during exposure to atenolol. METHODS Plasma samples acquired from 234 Caucasian participants treated with atenolol in the Pharmacogenomic Evaluation of Antihypertensive Responses trial were analyzed by gas chromatography Time-Of-Flight Mass Spectroscopy. Metabolomics and genomics data were integrated by first correlating participant's metabolomic profiles to change in glucose after treatment with atenolol, and then incorporating genotype information from genes involved in metabolite pathways associated with glucose response. RESULTS Our findings indicate that the baseline level of β-alanine was associated with glucose change after treatment with atenolol (Q = 0.007, β = 2.97 mg/dL). Analysis of genomic data revealed that carriers of the G allele for SNP rs2669429 in gene DPYS, which codes for dihydropyrimidinase, an enzyme involved in β-alanine formation, had significantly higher glucose levels after treatment with atenolol when compared with non-carriers (Q = 0.05, β = 2.76 mg/dL). This finding was replicated in participants who received atenolol as an add-on therapy (P = 0.04, β = 1.86 mg/dL). CONCLUSION These results suggest that β-alanine and rs2669429 may be predictors of atenolol-induced hyperglycemia in Caucasian individuals and further investigation is warranted.
Collapse
Affiliation(s)
- Felipe A de Oliveira
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics, College of Pharmacy, University of Florida, PO Box 100486, Gainesville, FL 32610-0486, USA
| | - Mohamed H Shahin
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics, College of Pharmacy, University of Florida, PO Box 100486, Gainesville, FL 32610-0486, USA
| | - Yan Gong
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics, College of Pharmacy, University of Florida, PO Box 100486, Gainesville, FL 32610-0486, USA
| | - Caitrin W McDonough
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics, College of Pharmacy, University of Florida, PO Box 100486, Gainesville, FL 32610-0486, USA
| | | | - John G Gums
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics, College of Pharmacy, University of Florida, PO Box 100486, Gainesville, FL 32610-0486, USA; Department of Community Health and Family Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | | | - Eric Boerwinkle
- Human Genetics Center and Institute for Molecular Medicine, University of Texas Health Science Center, Houston, TX, USA
| | | | - Reginald F Frye
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics, College of Pharmacy, University of Florida, PO Box 100486, Gainesville, FL 32610-0486, USA
| | - Oliver Fiehn
- Genome Center, University of California at Davis, Davis, CA, USA; Biochemistry Department, King Abdullah University, Jeddah, Saudi Arabia
| | - Rima Kaddurah-Daouk
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
| | - Julie A Johnson
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics, College of Pharmacy, University of Florida, PO Box 100486, Gainesville, FL 32610-0486, USA
| | - Rhonda M Cooper-DeHoff
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics, College of Pharmacy, University of Florida, PO Box 100486, Gainesville, FL 32610-0486, USA
| |
Collapse
|
19
|
Stegen S, Stegen B, Aldini G, Altomare A, Cannizzaro L, Orioli M, Gerlo S, Deldicque L, Ramaekers M, Hespel P, Derave W. Plasma carnosine, but not muscle carnosine, attenuates high-fat diet-induced metabolic stress. Appl Physiol Nutr Metab 2016; 40:868-76. [PMID: 26307517 DOI: 10.1139/apnm-2015-0042] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
There is growing in vivo evidence that the dipeptide carnosine has protective effects in metabolic diseases. A critical unanswered question is whether its site of action is tissues or plasma. This was investigated using oral carnosine versus β-alanine supplementation in a high-fat diet rat model. Thirty-six male Sprague-Dawley rats received a control diet (CON), a high-fat diet (HF; 60% of energy from fat), the HF diet with 1.8% carnosine (HFcar), or the HF diet with 1% β-alanine (HFba), as β-alanine can increase muscle carnosine without increasing plasma carnosine. Insulin sensitivity, inflammatory signaling, and lipoxidative stress were determined in skeletal muscle and blood. In a pilot study, urine was collected. The 3 HF groups were significantly heavier than the CON group. Muscle carnosine concentrations increased equally in the HFcar and HFba groups, while elevated plasma carnosine levels and carnosine-4-hydroxy-2-nonenal adducts were detected only in the HFcar group. Elevated plasma and urine N(ε)-(carboxymethyl)lysine in HF rats was reduced by ∼50% in the HFcar group but not in the HFba group. Likewise, inducible nitric oxide synthase mRNA was decreased by 47% (p < 0.05) in the HFcar group, but not in the HFba group, compared with HF rats. We conclude that plasma carnosine, but not muscle carnosine, is involved in preventing early-stage lipoxidation in the circulation and inflammatory signaling in the muscle of rats.
Collapse
Affiliation(s)
- Sanne Stegen
- a Department of Movement and Sport Sciences, Ghent University, Watersportlaan 2, 9000 Ghent, Belgium
| | - Bram Stegen
- a Department of Movement and Sport Sciences, Ghent University, Watersportlaan 2, 9000 Ghent, Belgium
| | - Giancarlo Aldini
- b Department of Pharmaceutical Sciences, Università degli Studi di Milano, via Mangiagalli 25, 20133 Milan, Italy
| | - Alessandra Altomare
- b Department of Pharmaceutical Sciences, Università degli Studi di Milano, via Mangiagalli 25, 20133 Milan, Italy
| | - Luca Cannizzaro
- b Department of Pharmaceutical Sciences, Università degli Studi di Milano, via Mangiagalli 25, 20133 Milan, Italy
| | - Marica Orioli
- b Department of Pharmaceutical Sciences, Università degli Studi di Milano, via Mangiagalli 25, 20133 Milan, Italy
| | - Sarah Gerlo
- c VIB Department of Medical Protein Research, Ghent University, Albert Baertsoenkaai 3, 9000 Ghent, Belgium
| | - Louise Deldicque
- d Department of Kinesiology, Research Group in Exercise Physiology, KU Leuven, Tervuursevest 101, Box 1500, 3001 Leuven, Belgium
| | - Monique Ramaekers
- d Department of Kinesiology, Research Group in Exercise Physiology, KU Leuven, Tervuursevest 101, Box 1500, 3001 Leuven, Belgium
| | - Peter Hespel
- d Department of Kinesiology, Research Group in Exercise Physiology, KU Leuven, Tervuursevest 101, Box 1500, 3001 Leuven, Belgium
| | - Wim Derave
- a Department of Movement and Sport Sciences, Ghent University, Watersportlaan 2, 9000 Ghent, Belgium
| |
Collapse
|
20
|
de Courten B, Jakubova M, de Courten MP, Kukurova IJ, Vallova S, Krumpolec P, Valkovic L, Kurdiova T, Garzon D, Barbaresi S, Teede HJ, Derave W, Krssak M, Aldini G, Ukropec J, Ukropcova B. Effects of carnosine supplementation on glucose metabolism: Pilot clinical trial. Obesity (Silver Spring) 2016; 24:1027-34. [PMID: 27040154 DOI: 10.1002/oby.21434] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 09/17/2015] [Accepted: 11/24/2015] [Indexed: 01/17/2023]
Abstract
OBJECTIVE Carnosine is a naturally present dipeptide in humans and an over-the counter food additive. Evidence from animal studies supports the role for carnosine in the prevention and treatment of diabetes and cardiovascular disease, yet there is limited human data. This study investigated whether carnosine supplementation in individuals with overweight or obesity improves diabetes and cardiovascular risk factors. METHODS In a double-blind randomized pilot trial in nondiabetic individuals with overweight and obesity (age 43 ± 8 years; body mass index 31 ± 4 kg/m(2) ), 15 individuals were randomly assigned to 2 g carnosine daily and 15 individuals to placebo for 12 weeks. Insulin sensitivity and secretion, glucose tolerance (oral glucose tolerance test), blood pressure, plasma lipid profile, skeletal muscle ((1) H-MRS), and urinary carnosine levels were measured. RESULTS Carnosine concentrations increased in urine after supplementation (P < 0.05). An increase in fasting insulin and insulin resistance was hampered in individuals receiving carnosine compared to placebo, and this remained significant after adjustment for age, sex, and change in body weight (P = 0.02, P = 0.04, respectively). Two-hour glucose and insulin were both lower after carnosine supplementation compared to placebo in individuals with impaired glucose tolerance (P < 0.05). CONCLUSIONS These pilot intervention data suggest that carnosine supplementation may be an effective strategy for prevention of type 2 diabetes.
Collapse
Affiliation(s)
- Barbora de Courten
- Monash Centre for Health, Research and Implementation, School of Public Health and Preventive Medicine, Melbourne, Australia
- Diabetes and Vascular Medicine Unit, Monash Health, Clayton, Victoria, Australia
| | - Michaela Jakubova
- Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovakia
- Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Maximilian Pj de Courten
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, Melbourne, Australia
| | - Ivica Just Kukurova
- High Field MR Centre, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
- Christian Doppler Laboratory for Clinical Molecular MR Imaging, Vienna, Austria
| | - Silvia Vallova
- Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovakia
- Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Patrik Krumpolec
- Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Ladislav Valkovic
- High Field MR Centre, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
- Christian Doppler Laboratory for Clinical Molecular MR Imaging, Vienna, Austria
| | - Timea Kurdiova
- Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Davide Garzon
- Department of Pharmaceutical Sciences, Universitàdegli Studi Di Milano, Milan, Italy
| | - Silvia Barbaresi
- Department of Movement and Sport Sciences, Ghent University, Ghent, Belgium
| | - Helena J Teede
- Monash Centre for Health, Research and Implementation, School of Public Health and Preventive Medicine, Melbourne, Australia
- Diabetes and Vascular Medicine Unit, Monash Health, Clayton, Victoria, Australia
| | - Wim Derave
- Department of Movement and Sport Sciences, Ghent University, Ghent, Belgium
| | - Martin Krssak
- High Field MR Centre, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
- Christian Doppler Laboratory for Clinical Molecular MR Imaging, Vienna, Austria
- Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Giancarlo Aldini
- Department of Pharmaceutical Sciences, Universitàdegli Studi Di Milano, Milan, Italy
| | - Jozef Ukropec
- Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Barbara Ukropcova
- Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovakia
- Faculty of Medicine, Comenius University, Bratislava, Slovakia
| |
Collapse
|
21
|
Baye E, Ukropcova B, Ukropec J, Hipkiss A, Aldini G, de Courten B. Physiological and therapeutic effects of carnosine on cardiometabolic risk and disease. Amino Acids 2016; 48:1131-49. [PMID: 26984320 DOI: 10.1007/s00726-016-2208-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 02/25/2016] [Indexed: 12/12/2022]
Abstract
Obesity, type 2 diabetes (T2DM) and cardiovascular disease (CVD) are the most common preventable causes of morbidity and mortality worldwide. They represent major public health threat to our society. Increasing prevalence of obesity and T2DM contributes to escalating morbidity and mortality from CVD and stroke. Carnosine (β-alanyl-L-histidine) is a dipeptide with anti-inflammatory, antioxidant, anti-glycation, anti-ischaemic and chelating roles and is available as an over-the-counter food supplement. Animal evidence suggests that carnosine may offer many promising therapeutic benefits for multiple chronic diseases due to these properties. Carnosine, traditionally used in exercise physiology to increase exercise performance, has potential preventative and therapeutic benefits in obesity, insulin resistance, T2DM and diabetic microvascular and macrovascular complications (CVD and stroke) as well as number of neurological and mental health conditions. However, relatively little evidence is available in humans. Thus, future studies should focus on well-designed clinical trials to confirm or refute a potential role of carnosine in the prevention and treatment of chronic diseases in humans, in addition to advancing knowledge from the basic science and animal studies.
Collapse
Affiliation(s)
- Estifanos Baye
- Monash Centre for Health Research and Implementation, School of Public Health and Preventive Medicine, Monash University, 43-51 Kanooka Grove, Clayton, Melbourne, VIC, 3168, Australia.,Department of Public Health, College of Medicine and Health Sciences, Wollo University, Dessie, Ethiopia
| | - Barbara Ukropcova
- Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovakia.,Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Jozef Ukropec
- Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Alan Hipkiss
- School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Giancarlo Aldini
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Milan, Italy
| | - Barbora de Courten
- Monash Centre for Health Research and Implementation, School of Public Health and Preventive Medicine, Monash University, 43-51 Kanooka Grove, Clayton, Melbourne, VIC, 3168, Australia. .,Diabetes and Vascular Medicine Unit, Monash Health, Clayton, VIC, 3168, Australia.
| |
Collapse
|
22
|
de Courten B, Kurdiova T, de Courten MPJ, Belan V, Everaert I, Vician M, Teede H, Gasperikova D, Aldini G, Derave W, Ukropec J, Ukropcova B. Muscle Carnosine Is Associated with Cardiometabolic Risk Factors in Humans. PLoS One 2015; 10:e0138707. [PMID: 26439389 PMCID: PMC4595442 DOI: 10.1371/journal.pone.0138707] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 09/02/2015] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Carnosine is a naturally present dipeptide abundant in skeletal muscle and an over-the counter food additive. Animal data suggest a role of carnosine supplementation in the prevention and treatment of obesity, insulin resistance, type 2 diabetes and cardiovascular disease but only limited human data exists. METHODS AND RESULTS Samples of vastus lateralis muscle were obtained by needle biopsy. We measured muscle carnosine levels (high-performance liquid chromatography), % body fat (bioimpedance), abdominal subcutaneous and visceral adiposity (magnetic resonance imaging), insulin sensitivity (euglycaemic hyperinsulinemic clamp), resting energy expenditure (REE, indirect calorimetry), free-living ambulatory physical activity (accelerometers) and lipid profile in 36 sedentary non-vegetarian middle aged men (45±7 years) with varying degrees of adiposity and glucose tolerance. Muscle carnosine content was positively related to % body fat (r = 0.35, p = 0.04) and subcutaneous (r = 0.38, p = 0.02) but not visceral fat (r = 0.17, p = 0.33). Muscle carnosine content was inversely associated with insulin sensitivity (r = -0.44, p = 0.008), REE (r = -0.58, p<0.001) and HDL-cholesterol levels (r = -0.34, p = 0.048). Insulin sensitivity and physical activity were the best predictors of muscle carnosine content after adjustment for adiposity. CONCLUSION Our data shows that higher carnosine content in human skeletal muscle is positively associated with insulin resistance and fasting metabolic preference for glucose. Moreover, it is negatively associated with HDL-cholesterol and basal energy expenditure. Intervention studies targeting insulin resistance, metabolic and cardiovascular disease risk factors are necessary to evaluate its putative role in the prevention and management of type 2 diabetes and cardiovascular disease.
Collapse
Affiliation(s)
- Barbora de Courten
- Monash Centre for Health, Research and Implementation, School of Public health and Preventive Medicine, Melbourne, Australia
| | - Timea Kurdiova
- Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovakia
| | | | - Vitazoslav Belan
- Department of Radiology, University Hospital Bratislava, Comenius University, Bratislava, Slovakia
| | - Inge Everaert
- Department of Movement and Sport Sciences, Ghent University, Belgium
| | - Marek Vician
- Surgery Department, Slovak Medical University, Bratislava, Slovakia
| | - Helena Teede
- Monash Centre for Health, Research and Implementation, School of Public health and Preventive Medicine, Melbourne, Australia
| | - Daniela Gasperikova
- Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Giancarlo Aldini
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Milano, Italy
| | - Wim Derave
- Department of Movement and Sport Sciences, Ghent University, Belgium
| | - Jozef Ukropec
- Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Barbara Ukropcova
- Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovakia
- Faculty of Medicine, Comenius University, Bratislava, Slovakia
| |
Collapse
|
23
|
Peters V, Lanthaler B, Amberger A, Fleming T, Forsberg E, Hecker M, Wagner AH, Yue WW, Hoffmann GF, Nawroth P, Zschocke J, Schmitt CP. Carnosine metabolism in diabetes is altered by reactive metabolites. Amino Acids 2015; 47:2367-76. [PMID: 26081982 DOI: 10.1007/s00726-015-2024-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 06/04/2015] [Indexed: 01/25/2023]
Abstract
Carnosinase 1 (CN1) contributes to diabetic nephropathy by cleaving histidine-dipeptides which scavenge reactive oxygen and carbonyl species and increase nitric oxide (NO) production. In diabetic mice renal CN1 activity is increased, the regulatory mechanisms are unknown. We therefore analysed the in vitro and in vivo regulation of CN1 activity using recombinant and human CN1, and the db/db mouse model of diabetes. Glucose, leptin and insulin did not modify recombinant and human CN1 activity in vitro, glucose did not alter renal CN1 activity of WT or db/db mice ex vivo. Reactive metabolite methylglyoxal and Fenton reagent carbonylated recombinant CN1 and doubled CN1 efficiency. NO S-nitrosylated CN1 and decreased CN1 efficiency for carnosine by 70 % (p < 0.01), but not for anserine. Both CN1 cysteine residues were nitrosylated, the cysteine at position 102 but not at position 229 regulated CN1 activities. In db/db mice, renal CN1 mRNA and protein levels were similar as in non-diabetic controls, CN1 efficiency 1.9 and 1.6 fold higher for carnosine and anserine. Renal carbonyl stress was strongly increased and NO production halved, CN1 highly carbonylated and less S-nitrosylated compared to WT mice. GSH and NO2/3 concentrations were reduced and inversely related with carnosine degradation rate (r = -0.82/-0.85). Thus, reactive metabolites of diabetes upregulate CN1 activity by post-translational modifications, and thus decrease the availability of reactive metabolite-scavenging histidine dipeptides in the kidney in a positive feedback loop. Interference with this vicious circle may represent a new therapeutic target for mitigation of DN.
Collapse
Affiliation(s)
- Verena Peters
- Centre for Paediatric and Adolescence Medicine, University of Heidelberg, Heidelberg, Germany
| | - Barbara Lanthaler
- Division of Human Genetics, Medical University Innsbruck, Innsbruck, Austria
| | - Albert Amberger
- Division of Human Genetics, Medical University Innsbruck, Innsbruck, Austria
| | - Thomas Fleming
- Internal Medicine, University Heidelberg, Heidelberg, Germany
| | - Elisabete Forsberg
- Department of Endocrinology, Karolinska University Hospital, Stockholm, Sweden
| | - Markus Hecker
- Institute for Physiology and Pathophysiology, University Heidelberg, Heidelberg, Germany
| | - Andreas H Wagner
- Institute for Physiology and Pathophysiology, University Heidelberg, Heidelberg, Germany
| | - Wyatt W Yue
- Structural Genomics Consortium, University of Oxford, Oxford, UK
| | - Georg F Hoffmann
- Centre for Paediatric and Adolescence Medicine, University of Heidelberg, Heidelberg, Germany
| | - Peter Nawroth
- Internal Medicine, University Heidelberg, Heidelberg, Germany
| | - Johannes Zschocke
- Division of Human Genetics, Medical University Innsbruck, Innsbruck, Austria.
| | - Claus P Schmitt
- Centre for Paediatric and Adolescence Medicine, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|