1
|
Ding L, Wang Y, Zhang L, Luo C, Wu F, Huang Y, Zhen Y, Chen N, Wang L, Song L, Pool K, Blache D, Maloney SK, Liu D, Yang Z, Huang X, Li C, Yu X, Zhang Z, Chen Y, Xue C, Gu Y, Huang W, Yan L, Wei W, Wang Y, Zhang J, Zhang Y, Sun Y, Dai R, Wang S, Zhao X, Wang H, Zhou P, Yang Q, Wang M. The HTIRDB: A resource containing a transcriptional atlas for 105 different tissues from each of seven species of domestic herbivore. IMETA 2025; 4:e267. [PMID: 40027488 PMCID: PMC11865344 DOI: 10.1002/imt2.267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/20/2024] [Accepted: 12/25/2024] [Indexed: 03/05/2025]
Abstract
Here, we describe the Herbivore Transcriptome Integrated Resource Database (HTIRDB, https://yanglab.hzau.edu.cn/HTIRDB#/). The HTIRDB comprises the self-generated transcriptomic data from 100 to 105 tissues from two female domestic herbivores from six species (cattle, donkey, goat, horse, rabbit, and sika deer) and two breeds of sheep, and an extra 28,710 related published datasets. The HTIRDB user-friendly interface provides tools and functionalities that facilitate the exploration of gene expression between tissues and species. The tools for comparative transcriptomics can be used to identify housekeeping genes, tissue-specific genes, species-specific genes, and species-conserved genes. To date, the HTIRDB is the most extensive transcriptome data resource for domestic herbivores that is freely available.
Collapse
Affiliation(s)
- Luoyang Ding
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and TechnologyYangzhou UniversityYangzhouChina
| | - Yifan Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and TechnologyYangzhou UniversityYangzhouChina
- State Key Laboratory of Sheep Genetic Improvement and Healthy ProductionXinjiang Academy of Agricultural Reclamation SciencesShiheziChina
| | - Linna Zhang
- State Key Laboratory of Sheep Genetic Improvement and Healthy ProductionXinjiang Academy of Agricultural Reclamation SciencesShiheziChina
- Key Laboratory of Smart Farming for Agricultural Animals, Engineering Technology Research Center of Agricultural Big Data, College of InformaticsHuazhong Agricultural UniversityWuhanChina
| | - Chengfang Luo
- Key Laboratory of Smart Farming for Agricultural Animals, Engineering Technology Research Center of Agricultural Big Data, College of InformaticsHuazhong Agricultural UniversityWuhanChina
| | - Feifan Wu
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and TechnologyYangzhou UniversityYangzhouChina
| | - Yiming Huang
- State Key Laboratory of Sheep Genetic Improvement and Healthy ProductionXinjiang Academy of Agricultural Reclamation SciencesShiheziChina
- Key Laboratory of Smart Farming for Agricultural Animals, Engineering Technology Research Center of Agricultural Big Data, College of InformaticsHuazhong Agricultural UniversityWuhanChina
| | - Yongkang Zhen
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and TechnologyYangzhou UniversityYangzhouChina
- State Key Laboratory of Sheep Genetic Improvement and Healthy ProductionXinjiang Academy of Agricultural Reclamation SciencesShiheziChina
| | - Ning Chen
- State Key Laboratory of Sheep Genetic Improvement and Healthy ProductionXinjiang Academy of Agricultural Reclamation SciencesShiheziChina
| | - Limin Wang
- State Key Laboratory of Sheep Genetic Improvement and Healthy ProductionXinjiang Academy of Agricultural Reclamation SciencesShiheziChina
| | - Li Song
- College of Life ScienceGuizhou UniversityGuiyangChina
| | - Kelsey Pool
- UWA Institute of AgricultureThe University of Western AustraliaPerthWestern AustraliaAustralia
| | - Dominique Blache
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and TechnologyYangzhou UniversityYangzhouChina
- UWA Institute of AgricultureThe University of Western AustraliaPerthWestern AustraliaAustralia
| | - Shane K. Maloney
- UWA Institute of AgricultureThe University of Western AustraliaPerthWestern AustraliaAustralia
| | - Dongxu Liu
- Key Laboratory of Smart Farming for Agricultural Animals, Engineering Technology Research Center of Agricultural Big Data, College of InformaticsHuazhong Agricultural UniversityWuhanChina
| | - Zhiquan Yang
- Key Laboratory of Smart Farming for Agricultural Animals, Engineering Technology Research Center of Agricultural Big Data, College of InformaticsHuazhong Agricultural UniversityWuhanChina
| | - Xiaoyan Huang
- Key Laboratory of Smart Farming for Agricultural Animals, Engineering Technology Research Center of Agricultural Big Data, College of InformaticsHuazhong Agricultural UniversityWuhanChina
| | - Chuang Li
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and TechnologyYangzhou UniversityYangzhouChina
| | - Xiang Yu
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and TechnologyYangzhou UniversityYangzhouChina
| | - Zhenbin Zhang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and TechnologyYangzhou UniversityYangzhouChina
| | - Yifei Chen
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and TechnologyYangzhou UniversityYangzhouChina
| | - Chun Xue
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and TechnologyYangzhou UniversityYangzhouChina
| | - Yalan Gu
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and TechnologyYangzhou UniversityYangzhouChina
| | - Weidong Huang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and TechnologyYangzhou UniversityYangzhouChina
| | - Lu Yan
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and TechnologyYangzhou UniversityYangzhouChina
| | - Wenjun Wei
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and TechnologyYangzhou UniversityYangzhouChina
| | - Yusu Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and TechnologyYangzhou UniversityYangzhouChina
| | - Jinying Zhang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and TechnologyYangzhou UniversityYangzhouChina
| | - Yifan Zhang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and TechnologyYangzhou UniversityYangzhouChina
| | - Yiquan Sun
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and TechnologyYangzhou UniversityYangzhouChina
| | - Rui Dai
- Key Laboratory of Smart Farming for Agricultural Animals, Engineering Technology Research Center of Agricultural Big Data, College of InformaticsHuazhong Agricultural UniversityWuhanChina
| | - Shengbo Wang
- Key Laboratory of Smart Farming for Agricultural Animals, Engineering Technology Research Center of Agricultural Big Data, College of InformaticsHuazhong Agricultural UniversityWuhanChina
| | - Xinle Zhao
- Key Laboratory of Smart Farming for Agricultural Animals, Engineering Technology Research Center of Agricultural Big Data, College of InformaticsHuazhong Agricultural UniversityWuhanChina
| | - Haodong Wang
- Key Laboratory of Smart Farming for Agricultural Animals, Engineering Technology Research Center of Agricultural Big Data, College of InformaticsHuazhong Agricultural UniversityWuhanChina
| | - Ping Zhou
- State Key Laboratory of Sheep Genetic Improvement and Healthy ProductionXinjiang Academy of Agricultural Reclamation SciencesShiheziChina
| | - Qing‐Yong Yang
- State Key Laboratory of Sheep Genetic Improvement and Healthy ProductionXinjiang Academy of Agricultural Reclamation SciencesShiheziChina
- Key Laboratory of Smart Farming for Agricultural Animals, Engineering Technology Research Center of Agricultural Big Data, College of InformaticsHuazhong Agricultural UniversityWuhanChina
| | - Mengzhi Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and TechnologyYangzhou UniversityYangzhouChina
- State Key Laboratory of Sheep Genetic Improvement and Healthy ProductionXinjiang Academy of Agricultural Reclamation SciencesShiheziChina
| |
Collapse
|
2
|
Wang Y, Huang Y, Zhen Y, Wang J, Wang L, Chen N, Wu F, Zhang L, Shen Y, Bi C, Li S, Pool K, Blache D, Maloney SK, Liu D, Yang Z, Li C, Yu X, Zhang Z, Chen Y, Xue C, Gu Y, Huang W, Yan L, Wei W, Wang Y, Zhang J, Zhang Y, Sun Y, Wang S, Zhao X, Luo C, Wang H, Ding L, Yang QY, Zhou P, Wang M. De novo transcriptome assembly database for 100 tissues from each of seven species of domestic herbivore. Sci Data 2024; 11:488. [PMID: 38734729 PMCID: PMC11088706 DOI: 10.1038/s41597-024-03338-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 05/02/2024] [Indexed: 05/13/2024] Open
Abstract
Domesticated herbivores are an important agricultural resource that play a critical role in global food security, particularly as they can adapt to varied environments, including marginal lands. An understanding of the molecular basis of their biology would contribute to better management and sustainable production. Thus, we conducted transcriptome sequencing of 100 to 105 tissues from two females of each of seven species of herbivore (cattle, sheep, goats, sika deer, horses, donkeys, and rabbits) including two breeds of sheep. The quality of raw and trimmed reads was assessed in terms of base quality, GC content, duplication sequence rate, overrepresented k-mers, and quality score distribution with FastQC. The high-quality filtered RNA-seq raw reads were deposited in a public database which provides approximately 54 billion high-quality paired-end sequencing reads in total, with an average mapping rate of ~93.92%. Transcriptome databases represent valuable resources that can be used to study patterns of gene expression, and pathways that are related to key biological processes, including important economic traits in herbivores.
Collapse
Affiliation(s)
- Yifan Wang
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi, 832000, P. R. China
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, P. R. China
- College of Life Science, Guizhou University, Guiyang, 550025, P. R. China
| | - Yiming Huang
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi, 832000, P. R. China
- Hubei Key Laboratory of Agricultural Bioinformatics and Hubei Engineering Technology Research Center of Agricultural Big Data, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Yongkang Zhen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Jiasheng Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Limin Wang
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi, 832000, P. R. China
| | - Ning Chen
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi, 832000, P. R. China
| | - Feifan Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Linna Zhang
- Hubei Key Laboratory of Agricultural Bioinformatics and Hubei Engineering Technology Research Center of Agricultural Big Data, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Yizhao Shen
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, 071033, P. R. China
| | - Congliang Bi
- College of Life Science, Linyi University, Linyi, 276005, P. R. China
| | - Song Li
- College of Life Science, Guizhou University, Guiyang, 550025, P. R. China
| | - Kelsey Pool
- UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6009, Australia
| | - Dominique Blache
- UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6009, Australia
| | - Shane K Maloney
- UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6009, Australia
| | - Dongxu Liu
- Hubei Key Laboratory of Agricultural Bioinformatics and Hubei Engineering Technology Research Center of Agricultural Big Data, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Zhiquan Yang
- Hubei Key Laboratory of Agricultural Bioinformatics and Hubei Engineering Technology Research Center of Agricultural Big Data, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Chuang Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Xiang Yu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Zhenbin Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Yifei Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Chun Xue
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Yalan Gu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Weidong Huang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Lu Yan
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Wenjun Wei
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Yusu Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Jinying Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Yifan Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Yiquan Sun
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Shengbo Wang
- Hubei Key Laboratory of Agricultural Bioinformatics and Hubei Engineering Technology Research Center of Agricultural Big Data, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Xinle Zhao
- Hubei Key Laboratory of Agricultural Bioinformatics and Hubei Engineering Technology Research Center of Agricultural Big Data, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Chengfang Luo
- Hubei Key Laboratory of Agricultural Bioinformatics and Hubei Engineering Technology Research Center of Agricultural Big Data, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Haodong Wang
- Hubei Key Laboratory of Agricultural Bioinformatics and Hubei Engineering Technology Research Center of Agricultural Big Data, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Luoyang Ding
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, P. R. China.
- UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6009, Australia.
| | - Qing-Yong Yang
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi, 832000, P. R. China.
- Hubei Key Laboratory of Agricultural Bioinformatics and Hubei Engineering Technology Research Center of Agricultural Big Data, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, P. R. China.
| | - Ping Zhou
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi, 832000, P. R. China.
| | - Mengzhi Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, P. R. China.
| |
Collapse
|
3
|
Polani S, Dean M, Lichter-Peled A, Hendrickson S, Tsang S, Fang X, Feng Y, Qiao W, Avni G, Kahila Bar-Gal G. Sequence Variant in the TRIM39-RPP21 Gene Readthrough is Shared Across a Cohort of Arabian Foals Diagnosed with Juvenile Idiopathic Epilepsy. JOURNAL OF GENETIC MUTATION DISORDERS 2022; 1:103. [PMID: 35465405 PMCID: PMC9031527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Juvenile idiopathic epilepsy (JIE) is a self-limiting neurological disorder with a suspected genetic predisposition affecting young Arabian foals of the Egyptian lineage. The condition is characterized by tonic-clonic seizures with intermittent post-ictal blindness, in which most incidents are sporadic and unrecognized. This study aimed to identify genetic components shared across a local cohort of Arabian foals diagnosed with JIE via a combined whole genome and targeted resequencing approach: Initial whole genome comparisons between a small cohort of nine diagnosed foals (cases) and 27 controls from other horse breeds identified variants uniquely shared amongst the case cohort. Further validation via targeted resequencing of these variants, that pertain to non-intergenic regions, on additional eleven case individuals revealed a single 19bp deletion coupled with a triple-C insertion (Δ19InsCCC) within the TRIM39-RPP21 gene readthrough that was uniquely shared across all case individuals, and absent from three additional Arabian controls. Furthermore, we have confirmed recent findings refuting potential linkage between JIE and other inherited diseases in the Arabian lineage, and refuted the potential linkage between JIE and genes predisposing a similar disorder in human newborns. This is the first study to report a genetic variant to be shared in a sub-population cohort of Arabian foals diagnosed with JIE. Further evaluation of the sensitivity and specificity of the Δ19InsCCC allele within additional cohorts of the Arabian horse is warranted in order to validate its credibility as a marker for JIE, and to ascertain whether it has been introduced into other horse breeds by Arabian ancestry.
Collapse
Affiliation(s)
- S Polani
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environmental Sciences, The Hebrew University of Jerusalem, Rehovot, Israel
| | - M Dean
- National Cancer Institute, Division of Cancer Epidemiology & Genetics, Laboratory of Translational Genomics, USA
| | - A Lichter-Peled
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environmental Sciences, The Hebrew University of Jerusalem, Rehovot, Israel
| | - S Hendrickson
- Department of Biology, Shepherd University, Shepherdstown, USA
| | | | - X Fang
- BGI-Shenzhen, Shenzhen, China
| | - Y Feng
- BGI-Shenzhen, Shenzhen, China
| | - W Qiao
- BGI-Shenzhen, Shenzhen, China
| | - G Avni
- Medisoos Equine Clinic, Kibutz Magal, Israel
| | - G Kahila Bar-Gal
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environmental Sciences, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
4
|
Jo A, Lee HE, Kim HS. Identification and expression analysis of a novel miRNA derived from ERV-E1 LTR in Equus caballus. Gene 2018; 687:238-245. [PMID: 30453070 DOI: 10.1016/j.gene.2018.11.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/09/2018] [Accepted: 11/15/2018] [Indexed: 12/12/2022]
Abstract
Horses (Equus caballus) have been domesticated and bred to enhance speed, strength, and agility. Members of the Equus caballus Endogenous Retrovirus (EqERV) family affect several of these abilities in horses. EqERV elements have been integrated in the horse genome during evolution and generate repeat elements such as long terminal repeats (LTRs). LTR sequences are involved in retrovirus replication and play an essential function in post-transcriptional control mechanisms, such as by providing binding sites for microRNAs (miRNAs) or generating miRNA precursors. In this study, we identified a novel miRNA derived from EqERV-E1 LTR using various bioinformatics tools. To examine the relationship between EqERV-E1 LTR and similar elements, we used BLAST2seq and phylogenetic analysis. LTR sequences were located in the untranslated region (UTR) of mRNAs and also formed the stem-loop secondary structure. The sequence was registered in the DDBJ database as LTR derived miRNA under the accession number corresponding to LC383797 (referred to eca-miR-1804). Quantitative polymerase chain reaction (qPCR) to confirm the expression of eca-miR-1804 and the similar miR-1255a, showed an almost identical expression pattern in eight different equine tissues. Therefore, these data imply that the LTR could function as an miRNA, which is expressed in the examined equine tissues. In addition, the current study provides inputs for additional functional studies concerning the LTR of other EqERV families.
Collapse
Affiliation(s)
- Ara Jo
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea; Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea
| | - Hee-Eun Lee
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea; Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea
| | - Heui-Soo Kim
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea; Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
5
|
Transcriptome analysis of immune genes in peripheral blood mononuclear cells of young foals and adult horses. PLoS One 2018; 13:e0202646. [PMID: 30183726 PMCID: PMC6124769 DOI: 10.1371/journal.pone.0202646] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 08/07/2018] [Indexed: 12/14/2022] Open
Abstract
During the neonatal period, the ability to generate immune effector and memory responses to vaccines or pathogens is often questioned. This study was undertaken to obtain a global view of the natural differences in the expression of immune genes early in life. Our hypothesis was that transcriptome analyses of peripheral blood mononuclear cells (PBMCs) of foals (on day 1 and day 42 after birth) and adult horses would show differential gene expression profiles that characterize natural immune processes. Gene ontology enrichment analysis provided assessment of biological processes affected by age, and a list of 897 genes with ≥2 fold higher (p<0.01) expression in day 42 when compared to day 1 foal samples. Up-regulated genes included B cell and T cell receptor diversity genes; DNA replication enzymes; natural killer cell receptors; granzyme B and perforin; complement receptors; immunomodulatory receptors; cell adhesion molecules; and cytokines/chemokines and their receptors. The list of 1,383 genes that had higher (p<0.01) expression on day 1 when compared to day 42 foal samples was populated by genes with roles in innate immunity such as antimicrobial proteins; pathogen recognition receptors; cytokines/chemokines and their receptors; cell adhesion molecules; co-stimulatory molecules; and T cell receptor delta chain. Within the 742 genes with increased expression between day 42 foal and adult samples, B cell immunity was the main biological process (p = 2.4E-04). Novel data on markedly low (p<0.0001) TLR3 gene expression, and high (p≤0.01) expression of IL27, IL13RA1, IREM-1, SIRL-1, and SIRPα on day 1 compared to day 42 foal samples point out potential mechanisms of increased susceptibility to pathogens in early life. The results portray a progression from innate immune gene expression predominance early in life to adaptive immune gene expression increasing with age with a putative overlay of immune suppressing genes in the neonatal phase. These results provide insight to the unique attributes of the equine neonatal and young immune system, and offer many avenues of future investigation.
Collapse
|
6
|
Mason VC, Schaefer RJ, McCue ME, Leeb T, Gerber V. eQTL discovery and their association with severe equine asthma in European Warmblood horses. BMC Genomics 2018; 19:581. [PMID: 30071827 PMCID: PMC6090848 DOI: 10.1186/s12864-018-4938-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 07/11/2018] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Severe equine asthma, also known as recurrent airway obstruction (RAO), is a debilitating, performance limiting, obstructive respiratory condition in horses that is phenotypically similar to human asthma. Past genome wide association studies (GWAS) have not discovered coding variants associated with RAO, leading to the hypothesis that causative variant(s) underlying the signals are likely non-coding, regulatory variant(s). Regions of the genome containing variants that influence the number of expressed RNA molecules are expression quantitative trait loci (eQTLs). Variation associated with RAO that also regulates a gene's expression in a disease relevant tissue could help identify candidate genes that influence RAO if that gene's expression is also associated with RAO disease status. RESULTS We searched for eQTLs by analyzing peripheral blood mononuclear cells (PBMCs) from two half-sib families and one unrelated cohort of 82 European Warmblood horses that were previously treated in vitro with: no stimulation (MCK), lipopolysaccharides (LPS), recombinant cyathostomin antigen (RCA), and hay-dust extract (HDE). We identified high confidence eQTLs that did not violate linear modeling assumptions and were not significant due to single outlier individuals. We identified a mean of 4347 high confidence eQTLs in four treatments of PBMCs, and discovered two trans regulatory hotspots regulating genes involved in related biological pathways. We corroborated previous RAO associated single nucleotide polymorphisms (SNPs), and increased the resolution of past GWAS by analyzing 1,056,195 SNPs in 361 individuals. We identified four RAO-associated SNPs that only regulate gene expression of dexamethasone-induced protein (DEXI), however we found no significant association between DEXI gene expression and presence of RAO. CONCLUSIONS Thousands of genetic variants regulate gene expression in PBMCs of European Warmblood horses in cis and trans. Most high confidence eSNPs are significantly enriched near the transcription start sites of their target genes. Two trans regulatory hotspots on chromosome 11 and 13 regulate many genes involved in transmembrane cell signaling and neurological development respectively when PBMCs are treated with HDE. None of the top fifteen RAO associated SNPs strongly influence disease status through gene expression regulation.
Collapse
Affiliation(s)
- Victor C. Mason
- Department of Clinical Veterinary Medicine, Swiss Institute of Equine Medicine, Vetsuisse Faculty, University of Bern, and Agroscope, Länggassstrasse 124, 3012 Bern, Switzerland
| | - Robert J. Schaefer
- Department of Veterinary Population Medicine, University of Minnesota, 1365 Gortner Ave, Saint Paul, MN 55108 USA
| | - Molly E. McCue
- Department of Veterinary Population Medicine, University of Minnesota, 1365 Gortner Ave, Saint Paul, MN 55108 USA
| | - Tosso Leeb
- Department of Clinical Research and Veterinary Public Health, Institute of Genetics, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109A, 3012 Bern, Switzerland
| | - Vinzenz Gerber
- Department of Clinical Veterinary Medicine, Swiss Institute of Equine Medicine, Vetsuisse Faculty, University of Bern, and Agroscope, Länggassstrasse 124, 3012 Bern, Switzerland
| |
Collapse
|
7
|
Merrick BA, Chang JS, Phadke DP, Bostrom MA, Shah RR, Wang X, Gordon O, Wright GM. HAfTs are novel lncRNA transcripts from aflatoxin exposure. PLoS One 2018; 13:e0190992. [PMID: 29351317 PMCID: PMC5774710 DOI: 10.1371/journal.pone.0190992] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 12/22/2017] [Indexed: 12/28/2022] Open
Abstract
The transcriptome can reveal insights into precancer biology. We recently conducted RNA-Seq analysis on liver RNA from male rats exposed to the carcinogen, aflatoxin B1 (AFB1), for 90 days prior to liver tumor onset. Among >1,000 differentially expressed transcripts, several novel, unannotated Cufflinks-assembled transcripts, or HAfTs (Hepatic Aflatoxin Transcripts) were found. We hypothesized PCR-cloning and RACE (rapid amplification of cDNA ends) could further HAfT identification. Sanger data was obtained for 6 transcripts by PCR and 16 transcripts by 5’- and 3’-RACE. BLAST alignments showed, with two exceptions, HAfT transcripts were lncRNAs, >200nt without apparent long open reading frames. Six rat HAfT transcripts were classified as ‘novel’ without RefSeq annotation. Sequence alignment and genomic synteny showed each rat lncRNA had a homologous locus in the mouse genome and over half had homologous loci in the human genome, including at least two loci (and possibly three others) that were previously unannotated. While HAfT functions are not yet clear, coregulatory roles may be possible from their adjacent orientation to known coding genes with altered expression that include 8 HAfT-gene pairs. For example, a unique rat HAfT, homologous to Pvt1, was adjacent to known genes controlling cell proliferation. Additionally, PCR and RACE Sanger sequencing showed many alternative splice variants and refinements of exon sequences compared to Cufflinks assembled transcripts and gene prediction algorithms. Presence of multiple splice variants and short tandem repeats found in some HAfTs may be consequential for secondary structure, transcriptional regulation, and function. In summary, we report novel, differentially expressed lncRNAs after exposure to the genotoxicant, AFB1, prior to neoplastic lesions. Complete cloning and sequencing of such transcripts could pave the way for a new set of sensitive and early prediction markers for chemical hepatocarcinogens.
Collapse
Affiliation(s)
- B. Alex Merrick
- Biomolecular Screening Branch, Division National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America
- * E-mail:
| | - Justin S. Chang
- Biomolecular Screening Branch, Division National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America
| | - Dhiral P. Phadke
- Sciome, LLC, Research Triangle Park, North Carolina, United States of America
| | - Meredith A. Bostrom
- Genomics Laboratory, David H. Murdock Research Institute, Kannapolis, North Carolina, United State of America
| | - Ruchir R. Shah
- Sciome, LLC, Research Triangle Park, North Carolina, United States of America
| | - Xinguo Wang
- Genomics Laboratory, David H. Murdock Research Institute, Kannapolis, North Carolina, United State of America
| | - Oksana Gordon
- Genomics Laboratory, David H. Murdock Research Institute, Kannapolis, North Carolina, United State of America
| | - Garron M. Wright
- Genomics Laboratory, David H. Murdock Research Institute, Kannapolis, North Carolina, United State of America
| |
Collapse
|
8
|
Pacholewska A, Kraft MF, Gerber V, Jagannathan V. Differential Expression of Serum MicroRNAs Supports CD4⁺ T Cell Differentiation into Th2/Th17 Cells in Severe Equine Asthma. Genes (Basel) 2017; 8:E383. [PMID: 29231896 PMCID: PMC5748701 DOI: 10.3390/genes8120383] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 11/21/2017] [Accepted: 12/01/2017] [Indexed: 01/06/2023] Open
Abstract
MicroRNAs (miRNAs) regulate post-transcriptional gene expression and may be exported from cells via exosomes or in partnership with RNA-binding proteins. MiRNAs in body fluids can act in a hormone-like manner and play important roles in disease initiation and progression. Hence, miRNAs are promising candidates as biomarkers. To identify serum miRNA biomarkers in the equine model of asthma we investigated small RNA derived from the serum of 34 control and 37 asthmatic horses. These samples were used for next generation sequencing, novel miRNA identification and differential miRNA expression analysis. We identified 11 significantly differentially expressed miRNAs between case and control horses: eca-miR-128, eca-miR-744, eca-miR-197, eca-miR-103, eca-miR-107a, eca-miR-30d, eca-miR-140-3p, eca-miR-7, eca-miR-361-3p, eca-miR-148b-3p and eca-miR-215. Pathway enrichment using experimentally validated target genes of the human homologous miRNAs showed a significant enrichment in the regulation of epithelial-to-mesenchymal transition (key player in airway remodeling in asthma) and the phosphatidylinositol (3,4,5)-triphosphate (PIP3) signaling pathway (modulator of CD4⁺ T cell maturation and function). Downregulated miR-128 and miR-744 supports a Th2/Th17 type immune response in severe equine asthma.
Collapse
Affiliation(s)
- Alicja Pacholewska
- Department of Clinical Veterinary Medicine, Swiss Institute of Equine Medicine, Vetsuisse Faculty, University of Bern and Agroscope, Länggassstrasse 124, 3012 Bern, Switzerland.
- Department of Clinical Research and Veterinary Public Health, Institute of Genetics, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109A, 3012 Bern, Switzerland.
| | - Matthias F Kraft
- Department of Clinical Veterinary Medicine, Swiss Institute of Equine Medicine, Vetsuisse Faculty, University of Bern and Agroscope, Länggassstrasse 124, 3012 Bern, Switzerland.
- Department of Clinical Research and Veterinary Public Health, Institute of Genetics, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109A, 3012 Bern, Switzerland.
| | - Vincent Gerber
- Department of Clinical Veterinary Medicine, Swiss Institute of Equine Medicine, Vetsuisse Faculty, University of Bern and Agroscope, Länggassstrasse 124, 3012 Bern, Switzerland.
| | - Vidhya Jagannathan
- Department of Clinical Research and Veterinary Public Health, Institute of Genetics, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109A, 3012 Bern, Switzerland.
| |
Collapse
|
9
|
Viļuma A, Mikko S, Hahn D, Skow L, Andersson G, Bergström TF. Genomic structure of the horse major histocompatibility complex class II region resolved using PacBio long-read sequencing technology. Sci Rep 2017; 7:45518. [PMID: 28361880 PMCID: PMC5374520 DOI: 10.1038/srep45518] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 02/27/2017] [Indexed: 11/10/2022] Open
Abstract
The mammalian Major Histocompatibility Complex (MHC) region contains several gene families characterized by highly polymorphic loci with extensive nucleotide diversity, copy number variation of paralogous genes, and long repetitive sequences. This structural complexity has made it difficult to construct a reliable reference sequence of the horse MHC region. In this study, we used long-read single molecule, real-time (SMRT) sequencing technology from Pacific Biosciences (PacBio) to sequence eight Bacterial Artificial Chromosome (BAC) clones spanning the horse MHC class II region. The final assembly resulted in a 1,165,328 bp continuous gap free sequence with 35 manually curated genomic loci of which 23 were considered to be functional and 12 to be pseudogenes. In comparison to the MHC class II region in other mammals, the corresponding region in horse shows extraordinary copy number variation and different relative location and directionality of the Eqca-DRB, -DQA, -DQB and -DOB loci. This is the first long-read sequence assembly of the horse MHC class II region with rigorous manual gene annotation, and it will serve as an important resource for association studies of immune-mediated equine diseases and for evolutionary analysis of genetic diversity in this region.
Collapse
Affiliation(s)
- Agnese Viļuma
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences (SLU), Box 7023, 750 07 Uppsala, Sweden
| | - Sofia Mikko
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences (SLU), Box 7023, 750 07 Uppsala, Sweden
| | - Daniela Hahn
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences (SLU), Box 7023, 750 07 Uppsala, Sweden
| | - Loren Skow
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine, Texas A&M University, College Station, TX 77843, USA
| | - Göran Andersson
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences (SLU), Box 7023, 750 07 Uppsala, Sweden
| | - Tomas F Bergström
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences (SLU), Box 7023, 750 07 Uppsala, Sweden
| |
Collapse
|
10
|
Mansour TA, Scott EY, Finno CJ, Bellone RR, Mienaltowski MJ, Penedo MC, Ross PJ, Valberg SJ, Murray JD, Brown CT. Tissue resolved, gene structure refined equine transcriptome. BMC Genomics 2017; 18:103. [PMID: 28107812 PMCID: PMC5251313 DOI: 10.1186/s12864-016-3451-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 12/21/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Transcriptome interpretation relies on a good-quality reference transcriptome for accurate quantification of gene expression as well as functional analysis of genetic variants. The current annotation of the horse genome lacks the specificity and sensitivity necessary to assess gene expression especially at the isoform level, and suffers from insufficient annotation of untranslated regions (UTR) usage. We built an annotation pipeline for horse and used it to integrate 1.9 billion reads from multiple RNA-seq data sets into a new refined transcriptome. RESULTS This equine transcriptome integrates eight different tissues from 59 individuals and improves gene structure and isoform resolution, while providing considerable tissue-specific information. We utilized four levels of transcript filtration in our pipeline, aimed at producing several transcriptome versions that are suitable for different downstream analyses. Our most refined transcriptome includes 36,876 genes and 76,125 isoforms, with 6474 candidate transcriptional loci novel to the equine transcriptome. CONCLUSIONS We have employed a variety of descriptive statistics and figures that demonstrate the quality and content of the transcriptome. The equine transcriptomes that are provided by this pipeline show the best tissue-specific resolution of any equine transcriptome to date and are flexible for several downstream analyses. We encourage the integration of further equine transcriptomes with our annotation pipeline to continue and improve the equine transcriptome.
Collapse
Affiliation(s)
- T A Mansour
- Department of Population Health and Reproduction, University of California, Davis, Davis, USA.,Department of Clinical Pathology, College of Medicine, Mansoura University, Egypt, Mansoura, Egypt
| | - E Y Scott
- Department of Animal Science, University of California, Davis, Davis, USA
| | - C J Finno
- Department of Population Health and Reproduction, University of California, Davis, Davis, USA
| | - R R Bellone
- Department of Population Health and Reproduction, University of California, Davis, Davis, USA.,Veterinary Genetics Laboratory, University of California, Davis, Davis, USA
| | - M J Mienaltowski
- Department of Animal Science, University of California, Davis, Davis, USA
| | - M C Penedo
- Veterinary Genetics Laboratory, University of California, Davis, Davis, USA
| | - P J Ross
- Department of Animal Science, University of California, Davis, Davis, USA
| | - S J Valberg
- Large Animal Clinical Sciences, Michigan State University, College of Veterinary Medicine, East Lansing, USA
| | - J D Murray
- Department of Population Health and Reproduction, University of California, Davis, Davis, USA.,Department of Animal Science, University of California, Davis, Davis, USA
| | - C T Brown
- Department of Population Health and Reproduction, University of California, Davis, Davis, USA.
| |
Collapse
|
11
|
Pacholewska A, Marti E, Leeb T, Jagannathan V, Gerber V. LPS-induced modules of co-expressed genes in equine peripheral blood mononuclear cells. BMC Genomics 2017; 18:34. [PMID: 28056766 PMCID: PMC5217269 DOI: 10.1186/s12864-016-3390-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 12/07/2016] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Lipopolysaccharide (endotoxin, LPS) is a strong inducer of the innate immune response. It is widespread in our environment, e.g. in house dust and contributes to asthma. Compared to humans, horses are even more sensitive to LPS. However, data on LPS effects on the equine transcriptome are very limited. Using RNA-seq we analysed LPS-induced differences in the gene expression in equine peripheral blood mononuclear cells at the gene and gene-network level in two half-sib families and one group of unrelated horses. RESULTS 24 h-LPS challenge of equine immune cells resulted in substantial changes in the transcriptomic profile (1,265 differentially expressed genes) showing partial overlap with human data. One of the half-sib families showed a specific response different from the other two groups of horses. We also identified co-expressed gene modules that clearly differentiated 24 h-LPS- from non-stimulated samples. These modules consisted of 934 highly interconnected genes and included genes involved in the immune response (e.g. IL6, CCL22, CXCL6, CXCL2), however, none of the top ten hub genes of the modules have been annotated as responsive to LPS in gene ontology. CONCLUSIONS Using weighted gene co-expression network analysis we identified ten co-expressed gene modules significantly regulated by in vitro stimulation with LPS. Apart from 47 genes (5%) all other genes highly interconnected within the most up- and down-regulated modules were also significantly differentially expressed (FDR < 0.05). The LPS-regulated module hub genes have not yet been described as having a role in the immune response to LPS (e.g. VAT1 and TTC25).
Collapse
Affiliation(s)
- Alicja Pacholewska
- Department of Clinical Veterinary Medicine, Swiss Institute of Equine Medicine, Vetsuisse Faculty, University of Bern, and Agroscope, Länggassstrasse 124, 3012, Bern, Switzerland. .,Department of Clinical Research and Veterinary Public Health, Institute of Genetics, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109A, 3012, Bern, Switzerland.
| | - Eliane Marti
- Department of Clinical Research and Veterinary Public Health, Division of Experimental Clinical Research, Vetsuisse Faculty, University of Bern, Länggassstrasse 124, 3012, Bern, Switzerland
| | - Tosso Leeb
- Department of Clinical Research and Veterinary Public Health, Institute of Genetics, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109A, 3012, Bern, Switzerland
| | - Vidhya Jagannathan
- Department of Clinical Research and Veterinary Public Health, Institute of Genetics, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109A, 3012, Bern, Switzerland
| | - Vincent Gerber
- Department of Clinical Veterinary Medicine, Swiss Institute of Equine Medicine, Vetsuisse Faculty, University of Bern, and Agroscope, Länggassstrasse 124, 3012, Bern, Switzerland
| |
Collapse
|
12
|
Ryu R, Jeong TS, Kim YJ, Choi JY, Cho SJ, Kwon EY, Jung UJ, Ji HS, Shin DH, Choi MS. Beneficial Effects of Pterocarpan-High Soybean Leaf Extract on Metabolic Syndrome in Overweight and Obese Korean Subjects: Randomized Controlled Trial. Nutrients 2016; 8:E734. [PMID: 27869712 PMCID: PMC5133118 DOI: 10.3390/nu8110734] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 11/03/2016] [Accepted: 11/16/2016] [Indexed: 12/12/2022] Open
Abstract
Pterocarpans are known to have antifungal and anti-inflammatory properties. However, little is known about the changes in transcriptional profiles in response to a pterocarpan-high soybean leaf extract (PT). Therefore, this study investigated the effects of PT on blood glucose and lipid levels, as well as on the inflammation-related gene expression based on a peripheral blood mononuclear cells (PBMCs) mRNA sequencing analysis in Korean overweight and obese subjects with mild metabolic syndrome. The participants were randomly assigned to two groups and were administered either placebo (starch, 3 g/day) or PT (2 g/day) for 12 weeks. The PT intervention did not change body weight, body fat percentage and body mass index (BMI). However, PT significantly decreased the glycosylated hemoglobin (HbA1c), plasma glucose, free fatty acid, total cholesterol, and non-HDL cholesterol levels after 12 weeks. Furthermore, PT supplementation significantly lowered the homeostatic index of insulin resistance, as well as the plasma levels of inflammatory markers. Finally, the mRNA sequencing analysis revealed that PT downregulated genes related to immune responses. PT supplementation is beneficial for the improvement of metabolic syndrome by altering the fasting blood and plasma glucose, HbA1c, plasma lipid levels and inflammation-related gene expression in PBMCs.
Collapse
Affiliation(s)
- Ri Ryu
- Department of Food Science and Nutrition, Kyungpook National University, 80 Daehakro, Bukgu, Daegu 41566, Korea.
- Center for Food and Nutritional Genomics Research, Kyungpook National University, Daegu 702-701, Korea.
| | - Tae-Sook Jeong
- Industrial Bio-Materials Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Korea.
| | - Ye Jin Kim
- Department of Food Science and Nutrition, Kyungpook National University, 80 Daehakro, Bukgu, Daegu 41566, Korea.
- Center for Food and Nutritional Genomics Research, Kyungpook National University, Daegu 702-701, Korea.
| | - Ji-Young Choi
- Center for Food and Nutritional Genomics Research, Kyungpook National University, Daegu 702-701, Korea.
| | - Su-Jung Cho
- Center for Food and Nutritional Genomics Research, Kyungpook National University, Daegu 702-701, Korea.
| | - Eun-Young Kwon
- Center for Food and Nutritional Genomics Research, Kyungpook National University, Daegu 702-701, Korea.
| | - Un Ju Jung
- Department of Food Science and Nutrition, Pukyong National University, Busan 608-737, Korea.
| | - Hyeon-Seon Ji
- Industrial Bio-Materials Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Korea.
- College of Pharmacy, Chungnam National University, Daejeon 305-764, Korea.
| | - Dong-Ha Shin
- Insect Biotech Co., Ltd., Daejeon 305-811, Korea.
| | - Myung-Sook Choi
- Department of Food Science and Nutrition, Kyungpook National University, 80 Daehakro, Bukgu, Daegu 41566, Korea.
- Center for Food and Nutritional Genomics Research, Kyungpook National University, Daegu 702-701, Korea.
| |
Collapse
|
13
|
Pacholewska A, Mach N, Mata X, Vaiman A, Schibler L, Barrey E, Gerber V. Novel equine tissue miRNAs and breed-related miRNA expressed in serum. BMC Genomics 2016; 17:831. [PMID: 27782799 PMCID: PMC5080802 DOI: 10.1186/s12864-016-3168-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 10/18/2016] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND MiRNAs regulate multiple genes at the post-transcriptional level and therefore play an important role in many biological processes. It has been suggested that miRNA exported outside the cells contribute to inter-cellular communication. Consequently, circulating miRNAs are of particular interest and are promising biomarkers for many diseases. The number of miRNAs annotated in the horse genome is much lower compared to model organisms like human and mouse. We therefore aimed to identify novel equine miRNAs for tissue types and breed in serum. RESULTS We analysed 71 small RNA-seq libraries derived from nine tissues (gluteus medius, platysma, masseter muscle, heart, liver, cartilage, bone, total blood and serum) using miRDeep2 and miRdentify tools. Known miRNAs represented between 2.3 and 62.9 % of the reads in 71 libraries. A total of 683 novel miRNAs were identified. Breed and tissue type affected the number of miRNAs detected and interestingly, affected its average intensity. A total of 50 miRNAs in serum proved to be potential biomarkers to differentiate specific breed types, of which miR-122, miR-200, miR-483 were over-expressed and miR-328 was under-expressed in ponies compared to Warmbloods. The different miRNAs profiles, as well as the differences in their expression levels provide a foundation for more hypotheses based on the novel miRNAs discovered. CONCLUSIONS We identified 683 novel equine miRNAs expressed in seven solid tissues, blood and serum. Additionally, our approach evidenced that such data supported identification of specific miRNAs as markers of functions related to breeds or disease tissues.
Collapse
Affiliation(s)
- Alicja Pacholewska
- Department of Clinical Veterinary Medicine, Swiss Institute of Equine Medicine, Vetsuisse Faculty, University of Bern, and Agroscope, Länggassstrasse 124, 3012, Bern, Switzerland. .,Department of Clinical Research and Veterinary Public Health, Institute of Genetics, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109A, 3012, Bern, Switzerland.
| | - Núria Mach
- Animal Genetics and Integrative Biology unit (GABI), INRA, AgroParis Tech, University of Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Xavier Mata
- Animal Genetics and Integrative Biology unit (GABI), INRA, AgroParis Tech, University of Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Anne Vaiman
- Animal Genetics and Integrative Biology unit (GABI), INRA, AgroParis Tech, University of Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Laurent Schibler
- Animal Genetics and Integrative Biology unit (GABI), INRA, AgroParis Tech, University of Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Eric Barrey
- Animal Genetics and Integrative Biology unit (GABI), INRA, AgroParis Tech, University of Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Vincent Gerber
- Department of Clinical Veterinary Medicine, Swiss Institute of Equine Medicine, Vetsuisse Faculty, University of Bern, and Agroscope, Länggassstrasse 124, 3012, Bern, Switzerland
| |
Collapse
|
14
|
Menzi F, Besuchet-Schmutz N, Fragnière M, Hofstetter S, Jagannathan V, Mock T, Raemy A, Studer E, Mehinagic K, Regenscheit N, Meylan M, Schmitz-Hsu F, Drögemüller C. A transposable element insertion in APOB causes cholesterol deficiency in Holstein cattle. Anim Genet 2016; 47:253-7. [PMID: 26763170 PMCID: PMC4849205 DOI: 10.1111/age.12410] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2015] [Indexed: 11/29/2022]
Abstract
Cholesterol deficiency, a new autosomal recessive inherited genetic defect in Holstein cattle, has been recently reported to have an influence on the rearing success of calves. The affected animals show unresponsive diarrhea accompanied by hypocholesterolemia and usually die within the first weeks or months of life. Here, we show that whole genome sequencing combined with the knowledge about the pedigree and inbreeding status of a livestock population facilitates the identification of the causative mutation. We resequenced the entire genomes of an affected calf and a healthy partially inbred male carrying one copy of the critical 2.24‐Mb chromosome 11 segment in its ancestral state and one copy of the same segment with the cholesterol deficiency mutation. We detected a single structural variant, homozygous in the affected case and heterozygous in the non‐affected carrier male. The genetic makeup of this key animal provides extremely strong support for the causality of this mutation. The mutation represents a 1.3kb insertion of a transposable LTR element (ERV2‐1) in the coding sequence of the APOB gene, which leads to truncated transcripts and aberrant splicing. This finding was further supported by RNA sequencing of the liver transcriptome of an affected calf. The encoded apolipoprotein B is an essential apolipoprotein on chylomicrons and low‐density lipoproteins, and therefore, the mutation represents a loss of function mutation similar to autosomal recessive inherited familial hypobetalipoproteinemia‐1 (FHBL1) in humans. Our findings provide a direct gene test to improve selection against this deleterious mutation in Holstein cattle.
Collapse
Affiliation(s)
- F Menzi
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109a CH-3001, Bern, Switzerland
| | - N Besuchet-Schmutz
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109a CH-3001, Bern, Switzerland
| | - M Fragnière
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109a CH-3001, Bern, Switzerland
| | - S Hofstetter
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109a CH-3001, Bern, Switzerland
| | - V Jagannathan
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109a CH-3001, Bern, Switzerland
| | - T Mock
- Clinic for Ruminants, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109a CH-3001, Bern, Switzerland
| | - A Raemy
- Clinic for Ruminants, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109a CH-3001, Bern, Switzerland
| | - E Studer
- Clinic for Ruminants, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109a CH-3001, Bern, Switzerland
| | - K Mehinagic
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122 CH-3001, Bern, Switzerland
| | - N Regenscheit
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122 CH-3001, Bern, Switzerland
| | - M Meylan
- Clinic for Ruminants, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109a CH-3001, Bern, Switzerland
| | - F Schmitz-Hsu
- Swissgenetics, Meielenfeldweg 12 CH-3052, Zollikofen, Switzerland
| | - C Drögemüller
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109a CH-3001, Bern, Switzerland
| |
Collapse
|
15
|
A Non-Synonymous HMGA2 Variant Decreases Height in Shetland Ponies and Other Small Horses. PLoS One 2015; 10:e0140749. [PMID: 26474182 PMCID: PMC4608717 DOI: 10.1371/journal.pone.0140749] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 09/30/2015] [Indexed: 11/19/2022] Open
Abstract
The identification of quantitative trait loci (QTL) such as height and their underlying causative variants is still challenging and often requires large sample sizes. In humans hundreds of loci with small effects control the heritable portion of height variability. In domestic animals, typically only a few loci with comparatively large effects explain a major fraction of the heritability. We investigated height at withers in Shetland ponies and mapped a QTL to ECA 6 by genome-wide association (GWAS) using a small cohort of only 48 animals and the Illumina equine SNP70 BeadChip. Fine-mapping revealed a shared haplotype block of 793 kb in small Shetland ponies. The HMGA2 gene, known to be associated with height in horses and many other species, was located in the associated haplotype. After closing a gap in the equine reference genome we identified a non-synonymous variant in the first exon of HMGA2 in small Shetland ponies. The variant was predicted to affect the functionally important first AT-hook DNA binding domain of the HMGA2 protein (c.83G>A; p.G28E). We assessed the functional impact and found impaired DNA binding of a peptide with the mutant sequence in an electrophoretic mobility shift assay. This suggests that the HMGA2 variant also affects DNA binding in vivo and thus leads to reduced growth and a smaller stature in Shetland ponies. The identified HMGA2 variant also segregates in several other pony breeds but was not found in regular-sized horse breeds. We therefore conclude that we identified a quantitative trait nucleotide for height in horses.
Collapse
|
16
|
RNA sequencing as a powerful tool in searching for genes influencing health and performance traits of horses. J Appl Genet 2015; 57:199-206. [PMID: 26446669 DOI: 10.1007/s13353-015-0320-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 04/19/2015] [Accepted: 09/22/2015] [Indexed: 12/31/2022]
Abstract
RNA sequencing (RNA-seq) by next-generation technology is a powerful tool which creates new possibilities in whole-transcriptome analysis. In recent years, with the use of the RNA-seq method, several studies expanded transcriptional gene profiles to understand interactions between genotype and phenotype, supremely contributing to the field of equine biology. To date, in horses, massive parallel sequencing of cDNA has been successfully used to identify and quantify mRNA levels in several normal tissues, as well as to annotate genes. Moreover, the RNA-seq method has been applied to identify the genetic basis of several diseases or to investigate organism adaptation processes to the training conditions. The use of the RNA-seq approach has also confirmed that horses can be useful as a large animal model for human disease, especially in the field of immune response. The presented review summarizes the achievements of profiling gene expression in horses (Equus caballus).
Collapse
|
17
|
Impaired Cell Cycle Regulation in a Natural Equine Model of Asthma. PLoS One 2015; 10:e0136103. [PMID: 26292153 PMCID: PMC4546272 DOI: 10.1371/journal.pone.0136103] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 07/29/2015] [Indexed: 12/14/2022] Open
Abstract
Recurrent airway obstruction (RAO) is a common and potentially debilitating lower airway disease in horses, which shares many similarities with human asthma. In susceptible horses RAO exacerbation is caused by environmental allergens and irritants present in hay dust. The objective of this study was the identification of genes and pathways involved in the pathology of RAO by global transcriptome analyses in stimulated peripheral blood mononuclear cells (PBMCs). We performed RNA-seq on PBMCs derived from 40 RAO affected and 45 control horses belonging to three cohorts of Warmblood horses: two half-sib families and one group of unrelated horses. PBMCs were stimulated with hay dust extract, lipopolysaccharides, a recombinant parasite antigen, or left unstimulated. The total dataset consisted of 561 individual samples. We detected significant differences in the expression profiles between RAO and control horses. Differential expression (DE) was most marked upon stimulation with hay dust extract. An important novel finding was a strong upregulation of CXCL13 together with many genes involved in cell cycle regulation in stimulated samples from RAO affected horses, in addition to changes in the expression of several HIF-1 transcription factor target genes. The RAO condition alters systemic changes observed as differential expression profiles of PBMCs. Those changes also depended on the cohort and stimulation of the samples and were dominated by genes involved in immune cell trafficking, development, and cell cycle regulation. Our findings indicate an important role of CXCL13, likely macrophage or Th17 derived, and the cell cycle regulator CDC20 in the immune response in RAO.
Collapse
|
18
|
Correction: The transcriptome of equine peripheral blood mononuclear cells. PLoS One 2015; 10:e0127372. [PMID: 25915618 PMCID: PMC4410916 DOI: 10.1371/journal.pone.0127372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|