1
|
Jessop M, Broadway BJ, Miller K, Guettler S. Regulation of PARP1/2 and the tankyrases: emerging parallels. Biochem J 2024; 481:1097-1123. [PMID: 39178157 DOI: 10.1042/bcj20230230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/31/2024] [Accepted: 08/06/2024] [Indexed: 08/25/2024]
Abstract
ADP-ribosylation is a prominent and versatile post-translational modification, which regulates a diverse set of cellular processes. Poly-ADP-ribose (PAR) is synthesised by the poly-ADP-ribosyltransferases PARP1, PARP2, tankyrase (TNKS), and tankyrase 2 (TNKS2), all of which are linked to human disease. PARP1/2 inhibitors have entered the clinic to target cancers with deficiencies in DNA damage repair. Conversely, tankyrase inhibitors have continued to face obstacles on their way to clinical use, largely owing to our limited knowledge of their molecular impacts on tankyrase and effector pathways, and linked concerns around their tolerability. Whilst detailed structure-function studies have revealed a comprehensive picture of PARP1/2 regulation, our mechanistic understanding of the tankyrases lags behind, and thereby our appreciation of the molecular consequences of tankyrase inhibition. Despite large differences in their architecture and cellular contexts, recent structure-function work has revealed striking parallels in the regulatory principles that govern these enzymes. This includes low basal activity, activation by intra- or inter-molecular assembly, negative feedback regulation by auto-PARylation, and allosteric communication. Here we compare these poly-ADP-ribosyltransferases and point towards emerging parallels and open questions, whose pursuit will inform future drug development efforts.
Collapse
Affiliation(s)
- Matthew Jessop
- Division of Structural Biology, The Institute of Cancer Research (ICR), London, U.K
- Division of Cancer Biology, The Institute of Cancer Research (ICR), London, U.K
| | - Benjamin J Broadway
- Division of Structural Biology, The Institute of Cancer Research (ICR), London, U.K
- Division of Cancer Biology, The Institute of Cancer Research (ICR), London, U.K
| | - Katy Miller
- Division of Structural Biology, The Institute of Cancer Research (ICR), London, U.K
- Division of Cancer Biology, The Institute of Cancer Research (ICR), London, U.K
| | - Sebastian Guettler
- Division of Structural Biology, The Institute of Cancer Research (ICR), London, U.K
- Division of Cancer Biology, The Institute of Cancer Research (ICR), London, U.K
| |
Collapse
|
2
|
Khamlich J, Douiyeh I, Saih A, Moussamih S, Regragui A, Kettani A, Safi A. Molecular docking, pharmacokinetic prediction and molecular dynamics simulations of tankyrase inhibitor compounds with the protein glucokinase, induced in the development of diabetes. J Biomol Struct Dyn 2024; 42:2846-2858. [PMID: 37199320 DOI: 10.1080/07391102.2023.2214217] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 04/19/2023] [Indexed: 05/19/2023]
Abstract
GCK is a protein that plays a crucial role in the sensing and regulation of glucose homeostasis, which associates it with disorders of carbohydrate metabolism and the development of several pathologies, including gestational diabetes. This makes GCK an important therapeutic target that has aroused the interest of researchers to discover GKA that are simultaneously effective in the long term and free of side effects. TNKS is a protein that interacts directly with GCK; recent studies have shown that it inhibits GCK action, which affects glucose detection and insulin secretion. This justifies our choice of TNKS inhibitors as ligands to test their effects on the GCK-TNKS complex. For this purpose, we investigated the interaction of the GCK-TNKS complex with 13 compounds (TNKS inhibitors and their analogues) using the molecular docking approach as a first step, after which the compounds that generated the best affinity scores were evaluated for drug similarity and pharmacokinetic properties. Subsequently, we selected the six compounds that generated high affinity and that were in accordance with the parameters of the drug rules as well as pharmacokinetic properties to ensure a molecular dynamics study. The results allowed us to favor the two compounds (XAV939 and IWR-1), knowing that even the tested compounds (TNKS 22, (2215914) and (46824343)) produced good results that can also be exploited. These results are therefore interesting and encouraging, and they can be exploited experimentally to discover a treatment for diabetes, including gestational diabetes.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Jihane Khamlich
- Laboratory Biochemistry Environment and Agri-food, Department of Biology, Faculty of Science and Technics Mohammedia, Hassan II University Casablanca, Casablanca, Morocco
- Laboratory of Biology and Health, URAC 34, Faculty of Sciences, Ben M'Sik Hassan II University of Casablanca, Casablanca, Morocco
| | - Imane Douiyeh
- Laboratory Biochemistry Environment and Agri-food, Department of Biology, Faculty of Science and Technics Mohammedia, Hassan II University Casablanca, Casablanca, Morocco
- Laboratory of Biology and Health, URAC 34, Faculty of Sciences, Ben M'Sik Hassan II University of Casablanca, Casablanca, Morocco
| | - Asmae Saih
- Laboratory of Biology and Health, URAC 34, Faculty of Sciences, Ben M'Sik Hassan II University of Casablanca, Casablanca, Morocco
| | - Samya Moussamih
- Laboratory of Immunology and Biodiversity, Faculty of Sciences Ain chock, Hassan II University of Casablanca, Casablanca, Morocco
| | - Anas Regragui
- Faculty of Medicine and Pharmacy Casablanca (FMPC), Hassan II University, Casablanca, Morocco
| | - Anass Kettani
- Laboratory of Biology and Health, URAC 34, Faculty of Sciences, Ben M'Sik Hassan II University of Casablanca, Casablanca, Morocco
- Mohammed VI Center for Research & Innovation, Rabat, Morocco & Mohammed VI University of Health Sciences, Casablanca, Morocco
| | - Amal Safi
- Laboratory Biochemistry Environment and Agri-food, Department of Biology, Faculty of Science and Technics Mohammedia, Hassan II University Casablanca, Casablanca, Morocco
| |
Collapse
|
3
|
Han X, Hirschel A, Tsapekos M, Perez D, Vollmer D. In Vitro Assessment of Gold Nanoparticles on Telomerase Activity and Telomere Length in Human Fibroblasts. Int J Mol Sci 2023; 24:14273. [PMID: 37762576 PMCID: PMC10532081 DOI: 10.3390/ijms241814273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Telomerase activity coincides with lengthening of the ends of chromosomes known as telomeres. Telomere length is used as a marker for cellular aging. Telomeres shorten over time as cells divide, and certain bioactive compounds such as gold nanoparticles (AuNPs) may slow the shortening of telomeres by increasing telomerase activity. The objective of the present study is to assess the effect of AuNPs on telomerase activity and telomere length in human fibroblasts. Telomerase activity was measured using enzyme-linked immunosorbent assay (ELISA) in primary human lung fibroblasts (IMR90) and using quantitative PCR-based telomeric repeat amplification protocol (Q-TRAP) in primary human dermal fibroblasts, neonatal (HDFn). Telomere length was determined by Telomere Analysis Technology (TAT®)assay in HDFn. In IMR90, all AuNP treatments showed significant increases in telomerase activity when compared to earlier passages. HDFn treated with AuNPs at 0 ppm, 0.05 ppm, 0.5 ppm, or 5 ppm did not show significant differences in telomerase activity compared to the control group. Significant differences in telomere length in HDFn were observed at 2 weeks of 0.05 and 0.5 ppm AuNPs under oxidative culture conditions as compared to the control group. The study showed preliminary evidence that AuNPs may increase telomerase activity and decelerate the shortening of telomeres in human fibroblasts, suggesting its potential anti-aging effects, which warrants further investigation.
Collapse
Affiliation(s)
- Xuesheng Han
- Scientific Research Division, 4Life Research, Sandy, UT 84070, USA (D.V.)
| | - Alice Hirschel
- Scientific Research Division, 4Life Research, Sandy, UT 84070, USA (D.V.)
| | | | | | - David Vollmer
- Scientific Research Division, 4Life Research, Sandy, UT 84070, USA (D.V.)
| |
Collapse
|
4
|
Zimmerlin L, Zambidis ET. Pleiotropic roles of tankyrase/PARP proteins in the establishment and maintenance of human naïve pluripotency. Exp Cell Res 2020; 390:111935. [PMID: 32151493 PMCID: PMC7171895 DOI: 10.1016/j.yexcr.2020.111935] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 02/25/2020] [Accepted: 02/29/2020] [Indexed: 12/19/2022]
Abstract
Tankyrase 1 (TNKS1; PARP-5a) and Tankyrase 2 (TNKS2; PARP-5b) are poly-ADP-ribosyl-polymerase (PARP)-domain-containing proteins that regulate the activities of a wide repertoire of target proteins via post-translational addition of poly-ADP-ribose polymers (PARylation). Although tankyrases were first identified as regulators of human telomere elongation, important and expansive roles of tankyrase activity have recently emerged in the development and maintenance of stem cell states. Herein, we summarize the current state of knowledge of the various tankyrase-mediated activities that may promote human naïve and 'extended' pluripotency'. We review the putative role of tankyrase and PARP inhibition in trophectoderm specification, telomere elongation, DNA repair and chromosomal segregation, metabolism, and PTEN-mediated apoptosis. Importantly, tankyrases possess PARP-independent activities that include regulation of MDC1-associated DNA repair by homologous recombination (HR) and autophagy/pexophagy, which is an essential mechanism of protein synthesis in the preimplantation embryo. Additionally, tankyrases auto-regulate themselves via auto-PARylation which augments their cellular protein levels and potentiates their non-PARP tankyrase functions. We propose that these non-PARP-related activities of tankyrase proteins may further independently affect both naïve and extended pluripotency via mechanisms that remain undetermined. We broadly outline a hypothetical framework for how inclusion of a tankyrase/PARP inhibitor in small molecule cocktails may stabilize and potentiate naïve and extended pluripotency via pleiotropic routes and mechanisms.
Collapse
Affiliation(s)
- Ludovic Zimmerlin
- Institute for Cell Engineering, And Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, 733 N. Broadway, Miller Research Building, Room 755, Baltimore, MD, 21205, United States.
| | - Elias T Zambidis
- Institute for Cell Engineering, And Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, 733 N. Broadway, Miller Research Building, Room 755, Baltimore, MD, 21205, United States.
| |
Collapse
|
5
|
Structural Features of Nucleoprotein CST/Shelterin Complex Involved in the Telomere Maintenance and Its Association with Disease Mutations. Cells 2020; 9:cells9020359. [PMID: 32033110 PMCID: PMC7072152 DOI: 10.3390/cells9020359] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/23/2020] [Accepted: 01/24/2020] [Indexed: 12/29/2022] Open
Abstract
Telomere comprises the ends of eukaryotic linear chromosomes and is composed of G-rich (TTAGGG) tandem repeats which play an important role in maintaining genome stability, premature aging and onsets of many diseases. Majority of the telomere are replicated by conventional DNA replication, and only the last bit of the lagging strand is synthesized by telomerase (a reverse transcriptase). In addition to replication, telomere maintenance is principally carried out by two key complexes known as shelterin (TRF1, TRF2, TIN2, RAP1, POT1, and TPP1) and CST (CDC13/CTC1, STN1, and TEN1). Shelterin protects the telomere from DNA damage response (DDR) and regulates telomere length by telomerase; while, CST govern the extension of telomere by telomerase and C strand fill-in synthesis. We have investigated both structural and biochemical features of shelterin and CST complexes to get a clear understanding of their importance in the telomere maintenance. Further, we have analyzed ~115 clinically important mutations in both of the complexes. Association of such mutations with specific cellular fault unveils the importance of shelterin and CST complexes in the maintenance of genome stability. A possibility of targeting shelterin and CST by small molecule inhibitors is further investigated towards the therapeutic management of associated diseases. Overall, this review provides a possible direction to understand the mechanisms of telomere borne diseases, and their therapeutic intervention.
Collapse
|
6
|
Ye C, Qi L, Li X, Wang J, Yu J, Zhou B, Guo C, Chen J, Zheng S. Targeting the NAD + salvage pathway suppresses APC mutation-driven colorectal cancer growth and Wnt/β-catenin signaling via increasing Axin level. Cell Commun Signal 2020; 18:16. [PMID: 32005247 PMCID: PMC6995173 DOI: 10.1186/s12964-020-0513-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 01/17/2020] [Indexed: 02/05/2023] Open
Abstract
Background The role and mechanism of the nicotinamide adenine dinucleotide (NAD+) salvage pathway in cancer cell proliferation is poorly understood. Nicotinamide phosphoribosyltransferase (NAMPT), which converts nicotinamide into NAD+, is the rate-limiting enzyme in the NAD+ salvage pathway. Here, we assessed the role of NAMPT in the proliferation of colorectal cancer. Methods Real-time PCR, immunohistochemistry, western blotting, and analyses of datasets from Oncomine and Gene Expression Omnibus were conducted to assess the expression of NAMPT at the mRNA and protein levels in colorectal cancer. The Kaplan Meier plotter online tool was used to evaluate the prognostic role of NAMPT. Knockdown of NAMPT was performed to assess the role of NAMPT in colorectal cancer cell proliferation and tumorigenesis both in vitro and in vivo. Overexpression of NAMPT was used to evaluate impact of NAMPT on colorectal cancer cell proliferation in vitro. NAD+ quantitation, immunofluorescence, dual luciferase assay and western blot were used to explore the mechanism of colorectal cancer proliferation. Transwell migration and invasion assays were conducted to assess the role of NAMPT in cell migration and invasion abilities of colorectal cancer cells. Results Our study indicated that the inhibition of NAMPT decreased proliferation capacity of colorectal cancer cells both in vitro and in vivo. Conversely, overexpression of NAMPT could promote cell proliferation in vitro. NAMPT inhibition induced β-catenin degradation by increasing Axin expression levels; this resulted in the inhibition of Wnt/β-catenin signaling and cell proliferation in colorectal cancer. The addition of nicotinamide mononucleotide, the enzymatic product of NAMPT, effectively reversed β-catenin protein degradation and inhibited growth. Similarly, the knockdown of Axin also decreased the cell death induced by the inhibition of NAMPT. In addition, we showed that colorectal cancer tissues harbored significantly higher levels of NAMPT than the levels harbored by paired normal tissues, especially in colorectal cancer stages I and II. And the overexpression of NAMPT was associated with unfavorable survival results. Conclusions Our findings reveal that NAMPT plays an important role in colorectal cancer proliferation via Wnt/β-catenin pathway, which could have vital implications for the diagnosis, prognosis and treatment of colorectal cancer.
Collapse
Affiliation(s)
- Chenyang Ye
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, 310009, Hangzhou, China
| | - Lina Qi
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, 310009, Hangzhou, China
| | - Xiaofen Li
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, 310009, Hangzhou, China.,Department of Abdominal Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ji Wang
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Zhejiang, 310016, Hangzhou, China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Zhejiang, 310016, Hangzhou, China
| | - Jiekai Yu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, 310009, Hangzhou, China
| | - Biting Zhou
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, 310009, Hangzhou, China
| | - Cheng Guo
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, 310009, Hangzhou, China
| | - Jiani Chen
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, 310009, Hangzhou, China
| | - Shu Zheng
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, 310009, Hangzhou, China. .,Reseach Center for Air Pollution and Health, School of Medicine, Zhejiang University, Zhejiang, 310009, Hangzhou, China.
| |
Collapse
|
7
|
Abstract
SIGNIFICANCE NAD+ and NADP+ are important cosubstrates in redox reactions and participate in regulatory networks operating in adjustment of metabolic pathways. Moreover, NAD+ is a cosubstrate in post-translational modification of proteins and is involved in DNA repair. NADPH is indispensable for reductive syntheses and the redox chemistry involved in attaining and maintaining correct protein conformation. Recent Advances: Within a couple of decades, a wealth of information has been gathered on NAD(H)+/NADP(H) redox imaging, regulatory role of redox potential in assembly of spatial protein structures, and the role of ADP-ribosylation of regulatory proteins affecting both gene expression and metabolism. All these have a bearing also on disease, healthy aging, and longevity. CRITICAL ISSUES Knowledge of the signal propagation pathways of NAD+-dependent post-translational modifications is still fragmentary for explaining the mechanism of cellular stress effects and nutritional state on these actions. Evaluation of the cosubstrate and regulator roles of NAD(H) and NADP(H) still suffers from some controversies in experimental data. FUTURE DIRECTIONS Activating or inhibiting interventions in NAD+-dependent protein modifications for medical purposes has shown promise, but restraining tumor growth by inhibiting DNA repair in tumors by means of interference in sirtuins is still in the early stage. The same is true for the use of this technology in improving health and healthy aging. New genetically encoded specific NAD and NADP probes are expected to modernize the research on redox biology.
Collapse
Affiliation(s)
- Ilmo E Hassinen
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| |
Collapse
|
8
|
Braidy N, Berg J, Clement J, Khorshidi F, Poljak A, Jayasena T, Grant R, Sachdev P. Role of Nicotinamide Adenine Dinucleotide and Related Precursors as Therapeutic Targets for Age-Related Degenerative Diseases: Rationale, Biochemistry, Pharmacokinetics, and Outcomes. Antioxid Redox Signal 2019; 30:251-294. [PMID: 29634344 PMCID: PMC6277084 DOI: 10.1089/ars.2017.7269] [Citation(s) in RCA: 153] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 02/22/2018] [Accepted: 02/22/2018] [Indexed: 12/20/2022]
Abstract
Significance: Nicotinamide adenine dinucleotide (NAD+) is an essential pyridine nucleotide that serves as an essential cofactor and substrate for a number of critical cellular processes involved in oxidative phosphorylation and ATP production, DNA repair, epigenetically modulated gene expression, intracellular calcium signaling, and immunological functions. NAD+ depletion may occur in response to either excessive DNA damage due to free radical or ultraviolet attack, resulting in significant poly(ADP-ribose) polymerase (PARP) activation and a high turnover and subsequent depletion of NAD+, and/or chronic immune activation and inflammatory cytokine production resulting in accelerated CD38 activity and decline in NAD+ levels. Recent studies have shown that enhancing NAD+ levels can profoundly reduce oxidative cell damage in catabolic tissue, including the brain. Therefore, promotion of intracellular NAD+ anabolism represents a promising therapeutic strategy for age-associated degenerative diseases in general, and is essential to the effective realization of multiple benefits of healthy sirtuin activity. The kynurenine pathway represents the de novo NAD+ synthesis pathway in mammalian cells. NAD+ can also be produced by the NAD+ salvage pathway. Recent Advances: In this review, we describe and discuss recent insights regarding the efficacy and benefits of the NAD+ precursors, nicotinamide (NAM), nicotinic acid (NA), nicotinamide riboside (NR), and nicotinamide mononucleotide (NMN), in attenuating NAD+ decline in degenerative disease states and physiological aging. Critical Issues: Results obtained in recent years have shown that NAD+ precursors can play important protective roles in several diseases. However, in some cases, these precursors may vary in their ability to enhance NAD+ synthesis via their location in the NAD+ anabolic pathway. Increased synthesis of NAD+ promotes protective cell responses, further demonstrating that NAD+ is a regulatory molecule associated with several biochemical pathways. Future Directions: In the next few years, the refinement of personalized therapy for the use of NAD+ precursors and improved detection methodologies allowing the administration of specific NAD+ precursors in the context of patients' NAD+ levels will lead to a better understanding of the therapeutic role of NAD+ precursors in human diseases.
Collapse
Affiliation(s)
- Nady Braidy
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
| | - Jade Berg
- Australasian Research Institute, Sydney Adventist Hospital, Sydney, Australia
| | | | - Fatemeh Khorshidi
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
| | - Anne Poljak
- Mark Wainwright Analytical Centre, University of New South Wales, Sydney, Australia
- School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Tharusha Jayasena
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
| | - Ross Grant
- Australasian Research Institute, Sydney Adventist Hospital, Sydney, Australia
- School of Medical Sciences, University of New South Wales, Sydney, Australia
- Sydney Medical School, University of Sydney, Sydney, Australia
| | - Perminder Sachdev
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
- Neuropsychiatric Institute, Euroa Centre, Prince of Wales Hospital, Sydney, Australia
| |
Collapse
|
9
|
Vida A, Márton J, Mikó E, Bai P. Metabolic roles of poly(ADP-ribose) polymerases. Semin Cell Dev Biol 2016; 63:135-143. [PMID: 28013023 DOI: 10.1016/j.semcdb.2016.12.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 12/20/2016] [Indexed: 12/19/2022]
Abstract
Poly(ADP-ribosyl)ation (PARylation) is an evolutionarily conserved reaction that had been associated with numerous cellular processes such as DNA repair, protein turnover, inflammatory regulation, aging or metabolic regulation. The metabolic regulatory tasks of poly(ADP-ribose) polymerases (PARPs) are complex, it is based on the regulation of metabolic transcription factors (e.g. SIRT1, nuclear receptors, SREBPs) and certain cellular energy sensors. PARP over-activation can cause damage to mitochondrial terminal oxidation, while the inhibition of PARP-1 or PARP-2 can induce mitochondrial oxidation by enhancing the mitotropic tone of gene transcription and signal transduction. These PARP-mediated processes impact on higher order metabolic regulation that modulates lipid metabolism, circadian oscillations and insulin secretion and signaling. PARP-1, PARP-2 and PARP-7 are related to metabolic diseases such as diabetes, alcoholic and non-alcoholic fatty liver disease (AFLD, NAFLD), or on a broader perspective to Warburg metabolism in cancer or the metabolic diseases accompanying aging.
Collapse
Affiliation(s)
- András Vida
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032, Hungary; MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, H-4032, Hungary
| | - Judit Márton
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032, Hungary
| | - Edit Mikó
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032, Hungary; MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, H-4032, Hungary
| | - Péter Bai
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032, Hungary; MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, H-4032, Hungary; Research Center for Molecular Medicine, Faculty of Medicine University of Debrecen, 4032, Hungary.
| |
Collapse
|
10
|
Haikarainen T, Waaler J, Ignatev A, Nkizinkiko Y, Venkannagari H, Obaji E, Krauss S, Lehtiö L. Development and structural analysis of adenosine site binding tankyrase inhibitors. Bioorg Med Chem Lett 2016; 26:328-333. [DOI: 10.1016/j.bmcl.2015.12.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 12/01/2015] [Accepted: 12/07/2015] [Indexed: 01/08/2023]
|