1
|
Twumasi Aboagye E, Adadey SM, Alves de Souza Rios L, Esoh KK, Wonkam-Tingang E, Xhakaza L, De Kock C, Schrauwen I, Amenga-Etego L, Lang D, Awandare GA, Leal SM, Mowla S, Wonkam A. Bi-Allelic MARVELD2 Variant Identified with Exome Sequencing in a Consanguineous Multiplex Ghanaian Family Segregating Non-Syndromic Hearing Loss. Int J Mol Sci 2025; 26:3337. [PMID: 40244166 PMCID: PMC11989440 DOI: 10.3390/ijms26073337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/20/2025] [Accepted: 03/28/2025] [Indexed: 04/18/2025] Open
Abstract
Genetic studies and phenotypic expansion of hearing loss (HL) for people living in Africa are greatly needed. We evaluated the clinical phenotypes of three affected siblings presenting non-syndromic (NS) HL and five unaffected members of a consanguineous Ghanaian family. Analysis of exome sequence data was performed for all affected and one unaffected family members. In-depth genetic and cellular characterization studies were performed to investigate biological significance of the implicated variant using bioinformatic tools and cell-based experimentation. Audiological examinations showed severe-to-profound, bilateral, symmetrical, and post-lingual onset. The whole-exome sequencing (WES) identified a homozygous frameshift variant: MARVEL domain containing 2 (MARVELD2):c.1058dup;p.(Val354Serfs*5) in all affected siblings. This frameshift variant leads to an early stop codon insertion and predicted to be targeted by nonsense medicated decay (mutant protein predicted to lack conserved C-terminal domain if translated). Cell immunofluorescence and immunocytochemistry studies exposed the functional impact of the mutant protein's expression, stability, localization, protein-protein binding, barrier function, and actin cytoskeleton architecture. The identified variant segregates with NSHL in the index Ghanaian family. The data support this nonsense variant as pathogenic, likely to impact the homeostasis of ions, solutes, and other molecules, compromising membrane barrier and signaling in the inner ear spaces.
Collapse
Affiliation(s)
- Elvis Twumasi Aboagye
- Department of Pathology, Division of Human Genetics, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa or (E.T.A.); (S.M.A.); (K.K.E.); (E.W.-T.); (L.X.); (C.D.K.)
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Legon, Accra LG 54, Ghana; (L.A.-E.); (G.A.A.)
| | - Samuel Mawuli Adadey
- Department of Pathology, Division of Human Genetics, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa or (E.T.A.); (S.M.A.); (K.K.E.); (E.W.-T.); (L.X.); (C.D.K.)
| | - Leonardo Alves de Souza Rios
- Department of Pathology, Division of Haematology, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa; (L.A.d.S.R.); (S.M.)
| | - Kevin K. Esoh
- Department of Pathology, Division of Human Genetics, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa or (E.T.A.); (S.M.A.); (K.K.E.); (E.W.-T.); (L.X.); (C.D.K.)
- McKusick-Nathans Institute & Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Edmond Wonkam-Tingang
- Department of Pathology, Division of Human Genetics, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa or (E.T.A.); (S.M.A.); (K.K.E.); (E.W.-T.); (L.X.); (C.D.K.)
| | - Lettilia Xhakaza
- Department of Pathology, Division of Human Genetics, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa or (E.T.A.); (S.M.A.); (K.K.E.); (E.W.-T.); (L.X.); (C.D.K.)
| | - Carmen De Kock
- Department of Pathology, Division of Human Genetics, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa or (E.T.A.); (S.M.A.); (K.K.E.); (E.W.-T.); (L.X.); (C.D.K.)
| | - Isabelle Schrauwen
- Department of Translational Neurosciences, University of Arizona College of Medicine Phoenix, Phoenix, AZ 85004, USA;
| | - Lucas Amenga-Etego
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Legon, Accra LG 54, Ghana; (L.A.-E.); (G.A.A.)
| | - Dirk Lang
- Department of Human Biology, Division of Cell Biology, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa;
| | - Gordon A. Awandare
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Legon, Accra LG 54, Ghana; (L.A.-E.); (G.A.A.)
| | - Suzanne M. Leal
- Center for Statistical Genetics, Gertrude H. Sergievsky Center, Department of Neurology, Columbia University Medical Centre, New York, NY 10032, USA;
- Taub Institute, Columbia University Medical Center, New York, NY 10032, USA
| | - Shaheen Mowla
- Department of Pathology, Division of Haematology, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa; (L.A.d.S.R.); (S.M.)
| | - Ambroise Wonkam
- Department of Pathology, Division of Human Genetics, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa or (E.T.A.); (S.M.A.); (K.K.E.); (E.W.-T.); (L.X.); (C.D.K.)
- McKusick-Nathans Institute & Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
2
|
Quinn S, Walsh N, Streata I, Ververi A, Kulshrestha S, Puri RD, Riza AL, Walsh A, Gorman K, Crushell E, Green A, Kenny J, Lynch SA. Catalogue of inherited autosomal recessive disorders found amongst the Roma population of Europe. Eur J Med Genet 2025; 73:104989. [PMID: 39709002 DOI: 10.1016/j.ejmg.2024.104989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 12/10/2024] [Accepted: 12/19/2024] [Indexed: 12/23/2024]
Abstract
BACKGROUND The Roma population are an endogamous, genetically isolated, minority population who migrated from North-Western India to Europe from the 10th Century throughout the Byzantine period and continues to the present day. Approximately 10-12 million Romani people reside in segregated settlements in Europe, and smaller populations live in North America and China. In addition to the endogamy, they also practice consanguinity. This has resulted in a higher frequency of rare autosomal recessive disorders some of which are unique to the Roma population. Some disorders result from founder variants whilst others are private variants, occurring within one nuclear family. Most are found as homozygous variants but compound heterozygosity is seen in a number of conditions. OBJECTIVE Clinicians and scientists with experience in managing and diagnosing rare diseases in this population in Ireland, Romania and Greece have developed a comprehensive catalogue of autosomal recessive inherited disorders found in the Roma population. Our aim is that this catalogue will aid rapid diagnosis and highlight the differential diagnoses to consider in challenging cases. METHODS We performed a detailed literature search to identify relevant publications and disease variants described in patients whose ethnicity was described as Roma. In addition, we interrogated data from local clinicians and colleagues in Ireland and Romania to collect additional unpublished variants which have yet to be reported in the medical literature. Where possible, we have mapped these disorders back to their European country of origin. Furthermore, we searched the variants allele frequencies on ClinVar. We analysed exome data from New Delhi, India to trace any of these founder variants back their origins. RESULTS We identified 90 distinct autosomal recessive disorders, manifesting as 91 distinct phenotypes and 111 pathogenic disease variants. These include both published (n = 91) and unpublished (n = 20) findings identified in the Roma population in Europe. The Indian exome data revealed that only 12/111 variants were identified. CONCLUSION We have assembled a catalogue of inherited autosomal recessive disorders and 111 pathogenic variants found in the Roma population. We hope that this will assist the medical and scientific community to make prompt diagnoses and consider adaptation of a targeted genetic approach to facilitate timely and cost-effective diagnoses in this population.
Collapse
Affiliation(s)
- Shauna Quinn
- Department of Clinical Genetics, Our Lady's Children's Hospital, Children's' Health Ireland, Dublin, Ireland.
| | - Nicola Walsh
- Department of Clinical Genetics, Our Lady's Children's Hospital, Children's' Health Ireland, Dublin, Ireland
| | - Ioana Streata
- Laboratory of Human Genomics, University of Medicine and Pharmacy of Craiova, Regional Centre of Medical Genetics Dolj, Emergency Clinical County Hospital Craiova, Romania
| | - Athina Ververi
- Centre of Genetics of Rare Diseases, Papageorgiou University of Applied Sciences, Agios Pavlos, 76 Saint Paul, Thessaloniki, Greece
| | - Samarth Kulshrestha
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi, India
| | - Ratna Dua Puri
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi, India
| | - Anca Lelia Riza
- Laboratory of Human Genomics, University of Medicine and Pharmacy of Craiova, Regional Centre of Medical Genetics Dolj, Emergency Clinical County Hospital Craiova, Romania
| | - Aoibhinn Walsh
- Department of Paediatrics, Temple Street Children's University Hospital, Children's Health Ireland, Dublin, Ireland
| | - Kathleen Gorman
- Department of Neurology, Temple Street Children's University Hospital, Children's Health Ireland, Dublin, Ireland; Academic Centre on Rare Diseases, University College Dublin, Dublin, Ireland
| | - Ellen Crushell
- Academic Centre on Rare Diseases, University College Dublin, Dublin, Ireland; National Centre for Inherited Metabolic Disorders, Children's Health Ireland, Temple Street Dublin, Ireland
| | - Andrew Green
- Department of Clinical Genetics, Our Lady's Children's Hospital, Children's' Health Ireland, Dublin, Ireland
| | - Janna Kenny
- Department of Clinical Genetics, Our Lady's Children's Hospital, Children's' Health Ireland, Dublin, Ireland
| | - Sally Ann Lynch
- Department of Clinical Genetics, Our Lady's Children's Hospital, Children's' Health Ireland, Dublin, Ireland; Academic Centre on Rare Diseases, University College Dublin, Dublin, Ireland; National Centre for Inherited Metabolic Disorders, Children's Health Ireland, Temple Street Dublin, Ireland.
| |
Collapse
|
3
|
Shi X, Liu X, Zong Y, Zhao Z, Sun Y. Novel compound heterozygous variants in MARVELD2 causing autosomal recessive hearing loss in two Chinese families. Mol Genet Genomic Med 2024; 12:e2502. [PMID: 39078259 PMCID: PMC11287821 DOI: 10.1002/mgg3.2502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/18/2024] [Accepted: 07/18/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND Hereditary hearing loss is an important component of congenital hearing loss. MARVELD2 (OMIM ID:610572), located in the DFNB49 locus, which encodes a tight junction protein tricellulin playing an important role in the sensory epithelial barrier of the inner ear, may contribute to nonsyndromic autosomal recessive hereditary hearing loss. METHODS Two Han Chinese pedigrees with hearing loss underwent clinical and genetic analyses. Variants were detected by targeted next-generation sequencing and sequencing data were compared with the Human Genome Reference (GRCh 37/hg 19) to identify mutant genes and loci. Furthermore, online tools such as RDDC, SpliceAI, and REVEL were used to predict risks from different variants. RESULTS Both two probands failed neonatal hearing screening and were diagnosed with sensorineural hearing loss. A total of 3 mutations were detected in the two families, c.1331+1G>A, c.1325A>G, and c.782G>A. According to ACMG/AMP guidelines, they were judged to be pathogenic, uncertain significance, and uncertain significance, respectively. CONCLUSIONS These findings contribute to a better understanding of the relationship between different variants of MARVELD2 and hearing. This could further expand the spectrum of deafness gene mutations and contribute to deafness patient management and genetic counseling.
Collapse
Affiliation(s)
- Xinyu Shi
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and RegenerationWuhanChina
| | - Xiaozhou Liu
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and RegenerationWuhanChina
| | - Yanjun Zong
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and RegenerationWuhanChina
| | - Zhengdong Zhao
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and RegenerationWuhanChina
| | - Yu Sun
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and RegenerationWuhanChina
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
4
|
Pál M, Nagy D, Neller A, Farkas K, Leprán-Török D, Nagy N, Füstös D, Nagy R, Németh A, Szilvássy J, Rovó L, Kiss JG, Széll M. Genetic Etiology of Nonsyndromic Hearing Loss in Hungarian Patients. Int J Mol Sci 2023; 24:ijms24087401. [PMID: 37108562 PMCID: PMC10138659 DOI: 10.3390/ijms24087401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/04/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Hearing loss is the most prevalent sensory disorder worldwide. The majority of congenital nonsyndromic hearing loss (NSHL) cases are caused by hereditary factors. Previously, the majority of NSHL studies focused on the GJB2 gene; however, with the availability of next-generation sequencing (NGS) methods, the number of novel variants associated with NSHL has increased. The purpose of this study was to design effective genetic screening for a Hungarian population based on a pilot study with 139 NSHL patients. A stepwise, comprehensive genetic approach was developed, including bidirectional capillary sequencing, multiplex ligation-dependent probe amplification (MLPA), and an NGS panel of 108 hearing loss genes. With our results, a genetic diagnosis was possible for 92 patients. Sanger sequencing and MLPA identified the genetic background of 50% of these diagnosed cases, and the NGS panel identified another 16%. The vast majority (92%) of the diagnosed cases showed autosomal recessive inheritance and 76% were attributed to GJB2. The implementation of this stepwise analysis markedly increased our diagnostic yield and proved to be cost-effective as well.
Collapse
Affiliation(s)
- Margit Pál
- Department of Medical Genetics, Albert Szent-Györgyi Medical School, University of Szeged, 6725 Szeged, Hungary
- ELKH-SZTE Functional Clinical Genetics Research Group, Eötvös Loránd Research Network, 6720 Szeged, Hungary
| | - Dóra Nagy
- Department of Medical Genetics, Albert Szent-Györgyi Medical School, University of Szeged, 6725 Szeged, Hungary
- Institute of Medical Genetics, Kepler University Hospital Med Campus IV, Johannes Kepler University Linz, 4020 Linz, Austria
| | - Alexandra Neller
- Department of Medical Genetics, Albert Szent-Györgyi Medical School, University of Szeged, 6725 Szeged, Hungary
- ELKH-SZTE Functional Clinical Genetics Research Group, Eötvös Loránd Research Network, 6720 Szeged, Hungary
| | - Katalin Farkas
- Department of Medical Genetics, Albert Szent-Györgyi Medical School, University of Szeged, 6725 Szeged, Hungary
| | - Dóra Leprán-Török
- Department of Medical Genetics, Albert Szent-Györgyi Medical School, University of Szeged, 6725 Szeged, Hungary
| | - Nikoletta Nagy
- Department of Medical Genetics, Albert Szent-Györgyi Medical School, University of Szeged, 6725 Szeged, Hungary
- ELKH-SZTE Functional Clinical Genetics Research Group, Eötvös Loránd Research Network, 6720 Szeged, Hungary
| | - Dalma Füstös
- Department of Medical Genetics, Albert Szent-Györgyi Medical School, University of Szeged, 6725 Szeged, Hungary
| | - Roland Nagy
- Department of Oto-Rhino-Laryngology and Head-Neck Surgery, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary
| | - Adrienne Németh
- Department of Oto-Rhino-Laryngology and Head-Neck Surgery, University of Pécs, 7621 Pécs, Hungary
| | - Judit Szilvássy
- Department of Otorhinolaryngology and Head-Neck Surgery, University of Debrecen, 4032 Debrecen, Hungary
| | - László Rovó
- Department of Oto-Rhino-Laryngology and Head-Neck Surgery, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary
| | - József Géza Kiss
- Department of Oto-Rhino-Laryngology and Head-Neck Surgery, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary
| | - Márta Széll
- Department of Medical Genetics, Albert Szent-Györgyi Medical School, University of Szeged, 6725 Szeged, Hungary
- ELKH-SZTE Functional Clinical Genetics Research Group, Eötvös Loránd Research Network, 6720 Szeged, Hungary
| |
Collapse
|
5
|
de Lima JD, de Paula AGP, Yuasa BS, de Souza Smanioto CC, da Cruz Silva MC, Dos Santos PI, Prado KB, Winter Boldt AB, Braga TT. Genetic and Epigenetic Regulation of the Innate Immune Response to Gout. Immunol Invest 2023; 52:364-397. [PMID: 36745138 DOI: 10.1080/08820139.2023.2168554] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Gout is a disease caused by uric acid (UA) accumulation in the joints, causing inflammation. Two UA forms - monosodium urate (MSU) and soluble uric acid (sUA) have been shown to interact physically with inflammasomes, especially with the nod-like receptor (NLR) family pyrin domain containing 3 (NLRP3), albeit the role of the immune response to UA is poorly understood, given that asymptomatic hyperuricemia does also exist. Macrophage phagocytosis of UA activate NLRP3, lead to cytokines release, and ultimately, lead to chemoattract neutrophils and lymphocytes to the gout flare joint spot. Genetic variants of inflammasome genes and of genes encoding their molecular partners may influence hyperuricemia and gout susceptibility, while also influencing other comorbidities such as metabolic syndrome and cardiovascular diseases. In this review, we summarize the inflammatory responses in acute and chronic gout, specifically focusing on innate immune cell mechanisms and genetic and epigenetic characteristics of participating molecules. Unprecedently, a novel UA binding protein - the neuronal apoptosis inhibitor protein (NAIP) - is suggested as responsible for the asymptomatic hyperuricemia paradox.Abbreviation: β2-integrins: leukocyte-specific adhesion molecules; ABCG2: ATP-binding cassete family/breast cancer-resistant protein; ACR: American college of rheumatology; AIM2: absent in melanoma 2, type of pattern recognition receptor; ALPK1: alpha-protein kinase 1; ANGPTL2: angiopoietin-like protein 2; ASC: apoptosis-associated speck-like protein; BIR: baculovirus inhibitor of apoptosis protein repeat; BIRC1: baculovirus IAP repeat-containing protein 1; BIRC2: baculoviral IAP repeat-containing protein 2; C5a: complement anaphylatoxin; cAMP: cyclic adenosine monophosphate; CARD: caspase activation and recruitment domains; CARD8: caspase recruitment domain-containing protein 8; CASP1: caspase 1; CCL3: chemokine (C-C motif) ligand 3; CD14: cluster of differentiation 14; CD44: cluster of differentiation 44; Cg05102552: DNA-methylation site, usually cytosine followed by guanine nucleotides; contains arbitrary identification code; CIDEC: cell death-inducing DNA fragmentation factor-like effector family; CKD: chronic kidney disease; CNV: copy number variation; CPT1A: carnitine palmitoyl transferase - type 1a; CXCL1: chemokine (CXC motif) ligand 1; DAMPs: damage associated molecular patterns; DC: dendritic cells; DNMT(1): maintenance DNA methyltransferase; eQTL: expression quantitative trait loci; ERK1: extracellular signal-regulated kinase 1; ERK2: extracellular signal-regulated kinase 2; EULAR: European league against rheumatism; GMCSF: granulocyte-macrophage colony-stimulating factor; GWAS: global wide association studies; H3K27me3: tri-methylation at the 27th lysine residue of the histone h3 protein; H3K4me1: mono-methylation at the 4th lysine residue of the histone h3 protein; H3K4me3: tri-methylation at the 4th lysine residue of the histone h3 protein; HOTAIR: human gene located between hoxc11 and hoxc12 on chromosome 12; IκBα: cytoplasmatic protein/Nf-κb transcription inhibitor; IAP: inhibitory apoptosis protein; IFNγ: interferon gamma; IL-1β: interleukin 1 beta; IL-12: interleukin 12; IL-17: interleukin 17; IL18: interleukin 18; IL1R1: interleukin-1 receptor; IL-1Ra: interleukin-1 receptor antagonist; IL-22: interleukin 22; IL-23: interleukin 23; IL23R: interleukin 23 receptor; IL-33: interleukin 33; IL-6: interleukin 6; IMP: inosine monophosphate; INSIG1: insulin-induced gene 1; JNK1: c-jun n-terminal kinase 1; lncRNA: long non-coding ribonucleic acid; LRR: leucine-rich repeats; miR: mature non-coding microRNAs measuring from 20 to 24 nucleotides, animal origin; miR-1: miR followed by arbitrary identification code; miR-145: miR followed by arbitrary identification code; miR-146a: miR followed by arbitrary identification code, "a" stands for mir family; "a" family presents similar mir sequence to "b" family, but different precursors; miR-20b: miR followed by arbitrary identification code; "b" stands for mir family; "b" family presents similar mir sequence to "a" family, but different precursors; miR-221: miR - followed by arbitrary identification code; miR-221-5p: miR followed by arbitrary identification code; "5p" indicates different mature miRNAs generated from the 5' arm of the pre-miRNA hairpin; miR-223: miR followed by arbitrary identification code; miR-223-3p: mir followed by arbitrary identification code; "3p" indicates different mature miRNAs generated from the 3' arm of the pre-miRNA hairpin; miR-22-3p: miR followed by arbitrary identification code, "3p" indicates different mature miRNAs generated from the 3' arm of the pre-miRNA hairpin; MLKL: mixed lineage kinase domain-like pseudo kinase; MM2P: inductor of m2-macrophage polarization; MSU: monosodium urate; mTOR: mammalian target of rapamycin; MyD88: myeloid differentiation primary response 88; n-3-PUFAs: n-3-polyunsaturated fatty-acids; NACHT: acronym for NAIP (neuronal apoptosis inhibitor protein), C2TA (MHC class 2 transcription activator), HET-E (incompatibility locus protein from podospora anserina) and TP1 (telomerase-associated protein); NAIP: neuronal apoptosis inhibitory protein (human); Naip1: neuronal apoptosis inhibitory protein type 1 (murine); Naip5: neuronal apoptosis inhibitory protein type 5 (murine); Naip6: neuronal apoptosis inhibitory protein type 6 (murine); NBD: nucleotide-binding domain; Nek7: smallest NIMA-related kinase; NET: neutrophil extracellular traps; Nf-κB: nuclear factor kappa-light-chain-enhancer of activated b cells; NFIL3: nuclear-factor, interleukin 3 regulated protein; NIIMA: network of immunity in infection, malignancy, and autoimmunity; NLR: nod-like receptor; NLRA: nod-like receptor NLRA containing acidic domain; NLRB: nod-like receptor NLRA containing BIR domain; NLRC: nod-like receptor NLRA containing CARD domain; NLRC4: nod-like receptor family CARD domain containing 4; NLRP: nod-like receptor NLRA containing PYD domain; NLRP1: nucleotide-binding oligomerization domain, leucine-rich repeat, and pyrin domain containing 1; NLRP12: nucleotide-binding oligomerization domain, leucine-rich repeat, and pyrin domain containing 12; NLRP3: nod-like receptor family pyrin domain containing 3; NOD2: nucleotide-binding oligomerization domain; NRBP1: nuclear receptor-binding protein; Nrf2: nuclear factor erythroid 2-related factor 2; OR: odds ratio; P2X: group of membrane ion channels activated by the binding of extracellular; P2X7: p2x purinoceptor 7 gene; p38: member of the mitogen-activated protein kinase family; PAMPs: pathogen associated molecular patters; PBMC: peripheral blood mononuclear cells; PGGT1B: geranylgeranyl transferase type-1 subunit beta; PHGDH: phosphoglycerate dehydrogenase; PI3-K: phospho-inositol; PPARγ: peroxisome proliferator-activated receptor gamma; PPARGC1B: peroxisome proliferative activated receptor, gamma, coactivator 1 beta; PR3: proteinase 3 antigen; Pro-CASP1: inactive precursor of caspase 1; Pro-IL1β: inactive precursor of interleukin 1 beta; PRR: pattern recognition receptors; PYD: pyrin domain; RAPTOR: regulatory associated protein of mTOR complex 1; RAS: renin-angiotensin system; REDD1: regulated in DNA damage and development 1; ROS: reactive oxygen species; rs000*G: single nuclear polymorphism, "*G" is related to snp where replaced nucleotide is guanine, usually preceded by an id number; SLC2A9: solute carrier family 2, member 9; SLC7A11: solute carrier family 7, member 11; SMA: smooth muscular atrophy; Smac: second mitochondrial-derived activator of caspases; SNP: single nuclear polymorphism; Sp3: specificity protein 3; ST2: serum stimulation-2; STK11: serine/threonine kinase 11; sUA: soluble uric acid; Syk: spleen tyrosine kinase; TAK1: transforming growth factor beta activated kinase; Th1: type 1 helper T cells; Th17: type 17 helper T cells; Th2: type 2 helper T cells; Th22: type 22 helper T cells; TLR: tool-like receptor; TLR2: toll-like receptor 2; TLR4: toll-like receptor 4; TNFα: tumor necrosis factor alpha; TNFR1: tumor necrosis factor receptor 1; TNFR2: tumor necrosis factor receptor 2; UA: uric acid; UBAP1: ubiquitin associated protein; ULT: urate-lowering therapy; URAT1: urate transporter 1; VDAC1: voltage-dependent anion-selective channel 1.
Collapse
Affiliation(s)
- Jordana Dinorá de Lima
- Microbiology, Parasitology and Pathology Program, Universidade Federal do Parana (UFPR), Curitiba, Brazil
| | | | - Bruna Sadae Yuasa
- Microbiology, Parasitology and Pathology Program, Universidade Federal do Parana (UFPR), Curitiba, Brazil
| | | | - Maria Clara da Cruz Silva
- Microbiology, Parasitology and Pathology Program, Universidade Federal do Parana (UFPR), Curitiba, Brazil
| | | | - Karin Braun Prado
- Genetics Program, Universidade Federal do Parana (UFPR), Curitiba, Brazil
| | - Angelica Beate Winter Boldt
- Program of Internal Medicine, Universidade Federal do Parana (UFPR), Curitiba, Brazil
- Genetics Program, Universidade Federal do Parana (UFPR), Curitiba, Brazil
| | - Tárcio Teodoro Braga
- Microbiology, Parasitology and Pathology Program, Universidade Federal do Parana (UFPR), Curitiba, Brazil
- Biosciences and Biotechnology Program, Instituto Carlos Chagas (ICC), Fiocruz-Parana, Brazil
| |
Collapse
|
6
|
Wang C, DeMeo DL, Kim ES, Cardenas A, Fong KC, Lee LO, Spiro A, Whitsel EA, Horvath S, Hou L, Baccarelli AA, Li Y, Stewart JD, Manson JE, Grodstein F, Kubzansky LD, Schwartz JD. Epigenome-Wide Analysis of DNA Methylation and Optimism in Women and Men. Psychosom Med 2023; 85:89-97. [PMID: 36201768 PMCID: PMC9771983 DOI: 10.1097/psy.0000000000001147] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Higher optimism is associated with reduced mortality and a lower risk of age-related chronic diseases. DNA methylation (DNAm) may provide insight into mechanisms underlying these relationships. We hypothesized that DNAm would differ among older individuals who are more versus less optimistic. METHODS Using cross-sectional data from two population-based cohorts of women with diverse races/ethnicities ( n = 3816) and men (only White, n = 667), we investigated the associations of optimism with epigenome-wide leukocyte DNAm. Random-effects meta-analyses were subsequently used to pool the individual results. Significantly differentially methylated cytosine-phosphate-guanines (CpGs) were identified by the "number of independent degrees of freedom" approach: effective degrees of freedom correction using the number of principal components (PCs), explaining >95% of the variation of the DNAm data (PC-correction). We performed regional analyses using comb-p and pathway analyses using the Ingenuity Pathway Analysis software. RESULTS We found that essentially all CpGs (total probe N = 359,862) were homogeneous across sex and race/ethnicity in the DNAm-optimism association. In the single CpG site analyses based on homogeneous CpGs, we identified 13 significantly differentially methylated probes using PC-correction. We found four significantly differentially methylated regions and two significantly differentially methylated pathways. The annotated genes from the single CpG site and regional analyses are involved in psychiatric disorders, cardiovascular disease, cognitive impairment, and cancer. Identified pathways were related to cancer, and neurodevelopmental and neurodegenerative disorders. CONCLUSION Our findings provide new insights into possible mechanisms underlying optimism and health.
Collapse
Affiliation(s)
- Cuicui Wang
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Dawn L. DeMeo
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Eric S. Kim
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
- Lee Kum Sheung Center for Health and Happiness, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
- Department of Psychology, University of British Columbia, BC V6T 1Z4, Canada
| | - Andres Cardenas
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, CA 94720, USA
- Department of Population Medicine, Division of Chronic Disease Research Across the Lifecourse, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA 02215, USA
| | - Kelvin C. Fong
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
- School of the Environment, Yale University, New Haven, CT 06511, USA
| | - Lewina O. Lee
- National Center for Posttraumatic Stress Disorder, VA Boston Healthcare System, Boston, MA 02130, USA
- Department Psychiatry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Avron Spiro
- Department Psychiatry, Boston University School of Medicine, Boston, MA 02118, USA
- Massachusetts Veterans Epidemiology Research and Information Center, Veterans Affairs Boston Healthcare System, Boston, MA 02130, USA
- Department of Epidemiology, Boston University School of Public Health, Boston, MA 02118, USA
| | - Eric A. Whitsel
- Department of Epidemiology, Gillings School of Global Public Health, Chapel Hill, NC 27599, USA
- Department of Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Steve Horvath
- Department of Human Genetics, University of California, Los Angeles, CA 90095, USA
- Department of Biostatistics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Lifang Hou
- Department of Preventive Medicine, Northwestern Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Andrea A. Baccarelli
- Department of Environmental Health Sciences, Columbia Mailman School of Public Health, New York, NY 10032, USA
| | - Yun Li
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Computer Science, University of North Carolina, Chapel Hill, NC, 27599 USA
| | - James D. Stewart
- Cardiovascular Program, Department of Epidemiology, University of North Carolina Gillings School of Global Public Health, Chapel Hill, NC, 27599, USA
| | - JoAnn E. Manson
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Francine Grodstein
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Laura D. Kubzansky
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
- Lee Kum Sheung Center for Health and Happiness, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Joel D. Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| |
Collapse
|
7
|
Pavlenkova Z, Varga L, Borecka S, Karhanek M, Huckova M, Skopkova M, Profant M, Gasperikova D. Comprehensive molecular-genetic analysis of mid-frequency sensorineural hearing loss. Sci Rep 2021; 11:22488. [PMID: 34795337 PMCID: PMC8602250 DOI: 10.1038/s41598-021-01876-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/27/2021] [Indexed: 12/14/2022] Open
Abstract
The genetic heterogeneity of sensorineural hearing loss (SNHL) is a major hurdle to the detection of disease-causing variants. We aimed to identify underlying causal genes associated with mid-frequency hearing loss (HL), which contributes to less than about 1% of SNHL cases, by whole exome sequencing (WES). Thirty families segregating mid-frequency SNHL, in whom biallelic GJB2 mutations had been previously excluded, were selected from among 851 families in our DNA repository of SNHL. DNA samples from the probands were subjected to WES analysis and searched for candidate variants associated with SNHL. We were able to identify the genetic aetiology in six probands (20%). In total, we found three pathogenic and three likely pathogenic variants in four genes (COL4A5, OTOGL, TECTA, TMPRSS3). One more proband was a compound heterozygote for a pathogenic variant and a variant of uncertain significance (VUS) in MYO15A gene. To date, MYO15A and TMPRSS3 have not yet been described in association with mid-frequency SNHL. In eight additional probands, eight candidate VUS variants were detected in five genes (DIAPH1, MYO7A, TECTA, TMC1, TSPEAR). Seven of these 16 variants have not yet been published or mentioned in the available databases. The most prevalent gene was TECTA, identified in 23% of all tested families. Furthermore, we confirmed the hypothesis that a substantive portion of cases with this conspicuous audiogram shape is a consequence of a genetic disorder.
Collapse
Affiliation(s)
- Zuzana Pavlenkova
- Department of Otorhinolaryngology-Head and Neck Surgery, Faculty of Medicine and University Hospital, Comenius University, Bratislava, Slovakia.,DIABGENE Laboratory, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Lukas Varga
- Department of Otorhinolaryngology-Head and Neck Surgery, Faculty of Medicine and University Hospital, Comenius University, Bratislava, Slovakia. .,DIABGENE Laboratory, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia.
| | - Silvia Borecka
- DIABGENE Laboratory, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Miloslav Karhanek
- Laboratory of Bioinformatics, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Miloslava Huckova
- DIABGENE Laboratory, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Martina Skopkova
- DIABGENE Laboratory, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Milan Profant
- Department of Otorhinolaryngology-Head and Neck Surgery, Faculty of Medicine and University Hospital, Comenius University, Bratislava, Slovakia
| | - Daniela Gasperikova
- DIABGENE Laboratory, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
8
|
Naz S. Molecular genetic landscape of hereditary hearing loss in Pakistan. Hum Genet 2021; 141:633-648. [PMID: 34308486 DOI: 10.1007/s00439-021-02320-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/17/2021] [Indexed: 01/13/2023]
Abstract
Approximately 14.5 million Pakistani individuals have a hearing loss and half of these cases may be due to genetic causes. Though significant progress has been made in uncovering genetic variants for recessively inherited nonsyndromic deafness, Pendred syndrome, and Usher syndromes, the same is not true for dominantly inherited hearing loss, most syndromic cases and deafness with complex inheritance patterns. Variants of 57 genes have been reported to cause nonsyndromic recessive deafness in Pakistan, though most are rare. Variants of just five genes GJB2, HGF, MYO7A, SLC26A4, and TMC1 together explain 57% of profound deafness while those of GJB2, MYO15A, OTOF, SLC26A4, TMC1, and TMPRSS3 account for 47% of moderate to severe hearing loss. In contrast, although variants of at least 39 genes have been implicated in different deafness syndromes, their prevalence in the population and the spectrum of mutations have not been explored. Furthermore, research on genetics of deafness has mostly focused on individuals from the Punjab province and needs to be extended to other regions of Pakistan. Identifying the genes and their variants causing deafness in all ethnic groups is important as it will pinpoint rare as well as recurrent mutations. This information may ultimately help in offering genetic counseling and future treatments.
Collapse
Affiliation(s)
- Sadaf Naz
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore, 54590, Pakistan.
| |
Collapse
|
9
|
Lipphardt V, Rappold GA, Surdu M. Representing vulnerable populations in genetic studies: The case of the Roma. SCIENCE IN CONTEXT 2021; 34:69-100. [PMID: 36050807 DOI: 10.1017/s0269889722000023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Moreau () has raised concerns about the use of DNA data obtained from vulnerable populations, such as the Uighurs in China. We discuss another case, situated in Europe and with a research history dating back 100 years: genetic investigations of Roma. In our article, we focus on problems surrounding representativity in these studies. We claim that many of the circa 440 publications in our sample neglect the methodological and conceptual challenges of representativity. Moreover, authors do not account for problematic misrepresentations of Roma resulting from the conceptual frameworks and sampling schemes they use. We question the representation of Roma as a "genetic isolate" and the underlying rationales, with a strong focus on sampling strategies. We discuss our results against the optimistic prognosis that the "new genetics" could help to overcome essentialist understandings of groups.
Collapse
|
10
|
Sadeghi Z, Chavoshi Tarzjani SP, Miri Moosavi RS, Saber S, Ebrahimi A. A Rare Mutation in the MARVELD2 Gene Can Cause Nonsyndromic Hearing Loss. Int Med Case Rep J 2020; 13:291-296. [PMID: 32884365 PMCID: PMC7434373 DOI: 10.2147/imcrj.s257654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 07/10/2020] [Indexed: 11/23/2022] Open
Abstract
The MARVELD2 gene which is located on the 5q13.2 may cause nonsyndromic hearing loss (NSHL) with autosomal recessive inherited pattern. So far c.1331+1G>A (IVS4+1G>A); NM_001038603.3, variant in deafness, has only reported previously in one Pakistani family in 2008 and it is reported for the first time in Iran and second time in the world. The case is a 21-year-old Iranian woman who has NSHL referred for genetic consultation, and her parents had a consanguineous marriage. To study the responsible genes for the mentioned disorder, whole exome sequencing (WES) was performed for the case. The result of WES analysis revealed a transition at the splice donor variant site of the MARVELD2 gene. The NGS result was confirmed by Sanger sequencing.
Collapse
Affiliation(s)
- Zahra Sadeghi
- Department of Genetics, Tehran-North Branch, Islamic Azad University, Tehran, Iran.,Jordan Medical and Genetic Laboratory, Tehran, Iran
| | | | | | - Siamak Saber
- Jordan Medical and Genetic Laboratory, Tehran, Iran
| | | |
Collapse
|
11
|
Variant c.2158-2A>G in MANBA is an important and frequent cause of hereditary hearing loss and beta-mannosidosis among the Czech and Slovak Roma population- evidence for a new ethnic-specific variant. Orphanet J Rare Dis 2020; 15:222. [PMID: 32847582 PMCID: PMC7448337 DOI: 10.1186/s13023-020-01508-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/13/2020] [Indexed: 11/26/2022] Open
Abstract
Background The Roma are a European ethnic minority threatened by several recessive diseases. Variants in MANBA cause a rare lysosomal storage disorder named beta-mannosidosis whose clinical manifestation includes deafness and mental retardation. Since 1986, only 23 patients with beta-mannosidosis and biallelic MANBA variants have been described worldwide. Results We now report on further 10 beta-mannosidosis patients of Roma origin from eight families in the Czech and Slovak Republics with hearing loss, mental retardation and homozygous pathogenic variants in MANBA. MANBA variant c.2158-2A>G screening among 345 anonymized normal hearing controls from Roma populations revealed a carrier/heterozygote frequency of 3.77%. This is about 925 times higher than the frequency of this variant in the gnomAD public database and classifies the c.2158-2A>G variant as a prevalent, ethnic-specific variant causing hearing loss and mental retardation in a homozygous state. The frequency of heterozygotes/carriers is similar to another pathogenic variant c.71G>A (p.W24*) in GJB2, regarded as the most frequent variant causing deafness in Roma populations. Conlcusion Beta-mannosidosis, due to a homozygous c.2158-2A>G MANBA variant, is an important and previously unknown cause of hearing loss and mental retardation among Central European Roma.
Collapse
|
12
|
Novel Mutations in CLPP, LARS2, CDH23, and COL4A5 Identified in Familial Cases of Prelingual Hearing Loss. Genes (Basel) 2020; 11:genes11090978. [PMID: 32842620 PMCID: PMC7564084 DOI: 10.3390/genes11090978] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/12/2020] [Accepted: 08/18/2020] [Indexed: 12/30/2022] Open
Abstract
We report the underlying genetic causes of prelingual hearing loss (HL) segregating in eight large consanguineous families, ascertained from the Punjab province of Pakistan. Exome sequencing followed by segregation analysis revealed seven potentially pathogenic variants, including four novel alleles c.257G>A, c.6083A>C, c.89A>G, and c.1249A>G of CLPP, CDH23, COL4A5, and LARS2, respectively. We also identified three previously reported HL-causing variants (c.4528C>T, c.35delG, and c.1219T>C) of MYO15A, GJB2, and TMPRSS3 segregating in four families. All identified variants were either absent or had very low frequencies in the control databases. Our in silico analyses and 3-dimensional (3D) molecular modeling support the deleterious impact of these variants on the encoded proteins. Variants identified in MYO15A, GJB2, TMPRSS3, and CDH23 were classified as “pathogenic” or “likely pathogenic”, while the variants in CLPP and LARS2 fall in the category of “uncertain significance” based on the American College of Medical Genetics and Genomics/Association for Molecular Pathology (ACMG/AMP) variant pathogenicity guidelines. This paper highlights the genetic diversity of hearing disorders in the Pakistani population and reports the identification of four novel mutations in four HL families.
Collapse
|
13
|
Schrauwen I, Melegh BI, Chakchouk I, Acharya A, Nasir A, Poston A, Cornejo-Sanchez DM, Szabo Z, Karosi T, Bene J, Melegh B, Leal SM. Hearing impairment locus heterogeneity and identification of PLS1 as a new autosomal dominant gene in Hungarian Roma. Eur J Hum Genet 2019; 27:869-878. [PMID: 30872814 PMCID: PMC6777543 DOI: 10.1038/s41431-019-0372-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 01/24/2019] [Accepted: 02/08/2019] [Indexed: 01/07/2023] Open
Abstract
Roma are a socially and culturally distinct isolated population with genetically divergent subisolates, residing mainly across Central, Southern, and Eastern Europe. We evaluated the genetic etiology of hearing impairment (HI) in 15 Hungarian Roma families through exome sequencing. A family with autosomal dominant non-syndromic HI segregating a rare variant in the Calponin-homology 2 domain of PLS1, or Plastin 1 [p.(Leu363Phe)] was identified. Young adult Pls1 knockout mice have progressive HI and show morphological defects to their inner hair cells. There is evidence that PLS1 is important in the preservation of adult stereocilia and normal hearing. Four families segregated the European ancestral variant c.35delG [p.(Gly12fs)] in GJB2, and one family was homozygous for p.(Trp24*), an Indian subcontinent ancestral variant which is common amongst Roma from Slovakia, Czech Republic, and Spain. We also observed variants in known HI genes USH1G, USH2A, MYH9, MYO7A, and a splice site variant in MANBA (c.2158-2A>G) in a family with HI, intellectual disability, behavioral problems, and respiratory inflammation, which was previously reported in a Czech Roma family with similar features. Lastly, using multidimensional scaling and ADMIXTURE analyses, we delineate the degree of Asian/European admixture in the HI families understudy, and show that Roma individuals carrying the GJB2 p.(Trp24*) and MANBA c.2158-2A>G variants have a more pronounced South Asian background, whereas the other hearing-impaired Roma display an ancestral background similar to Europeans. We demonstrate a diverse genetic HI etiology in the Hungarian Roma and identify a new gene PLS1, for autosomal dominant human non-syndromic HI.
Collapse
Affiliation(s)
- Isabelle Schrauwen
- Department of Molecular and Human Genetics, Center for Statistical Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Béla I Melegh
- Department of Medical Genetics, University of Pecs, Medical School, and Szentagothai Research Centre, Pecs, Hungary
| | - Imen Chakchouk
- Department of Molecular and Human Genetics, Center for Statistical Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Anushree Acharya
- Department of Molecular and Human Genetics, Center for Statistical Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Abdul Nasir
- Synthetic Protein Engineering Lab (SPEL), Department of Molecular Science and Technology, Ajou University, Suwon, 443-749, South Korea
| | - Alexis Poston
- Department of Molecular and Human Genetics, Center for Statistical Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Diana M Cornejo-Sanchez
- Department of Molecular and Human Genetics, Center for Statistical Genetics, Baylor College of Medicine, Houston, TX, USA
- Grupo Mapeo Genético, Facultad de Medicina, Universidad de Antioquia. Medellín, 050010470, Antioquia, Colombia
| | - Zsolt Szabo
- Department of Otolaryngology and Head and Neck Surgery, B-A-Z County Central Hospital and University Teaching Hospital, Miskolc, Hungary
| | - Tamás Karosi
- Department of Otolaryngology and Head and Neck Surgery, B-A-Z County Central Hospital and University Teaching Hospital, Miskolc, Hungary
| | - Judit Bene
- Department of Medical Genetics, University of Pecs, Medical School, and Szentagothai Research Centre, Pecs, Hungary
| | - Béla Melegh
- Department of Medical Genetics, University of Pecs, Medical School, and Szentagothai Research Centre, Pecs, Hungary
| | - Suzanne M Leal
- Department of Molecular and Human Genetics, Center for Statistical Genetics, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
14
|
Gallego-Martinez A, Requena T, Roman-Naranjo P, Lopez-Escamez JA. Excess of Rare Missense Variants in Hearing Loss Genes in Sporadic Meniere Disease. Front Genet 2019; 10:76. [PMID: 30828346 PMCID: PMC6385525 DOI: 10.3389/fgene.2019.00076] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 01/28/2019] [Indexed: 12/25/2022] Open
Abstract
Meniere's disease (MD) is a clinical spectrum of rare disorders characterized by vertigo attacks, associated with sensorineural hearing loss (SNHL) and tinnitus involving low to medium frequencies. Although it shows familial aggregation with incomplete phenotypic forms and variable expressivity, most cases are considered sporadic. The aim of this study was to investigate the burden for rare variation in SNHL genes in patients with sporadic MD. We conducted a targeted-sequencing study including SNHL and familial MD genes in 890 MD patients to compare the frequency of rare variants in cases using three independent public datasets as controls. Patients with sporadic MD showed a significant enrichment of missense variants in SNHL genes that was not found in the controls. The list of genes includes GJB2, USH1G, SLC26A4, ESRRB, and CLDN14. A rare synonymous variant with unknown significance was found in the MARVELD2 gene in several unrelated patients with MD. There is a burden of rare variation in certain SNHL genes in sporadic MD. Furthermore, the interaction of common and rare variants in SNHL genes may have an additive effect on MD phenotype. This study will contribute to design a gene panel for the genetic diagnosis of MD.
Collapse
Affiliation(s)
- Alvaro Gallego-Martinez
- Otology and Neurotology Group CTS 495, Department of Genomic Medicine, Centre for Genomics and Oncological Research (GENyO), Pfizer, University of Granada, Andalusian Regional Government, Granada, Spain
| | - Teresa Requena
- Otology and Neurotology Group CTS 495, Department of Genomic Medicine, Centre for Genomics and Oncological Research (GENyO), Pfizer, University of Granada, Andalusian Regional Government, Granada, Spain
| | - Pablo Roman-Naranjo
- Otology and Neurotology Group CTS 495, Department of Genomic Medicine, Centre for Genomics and Oncological Research (GENyO), Pfizer, University of Granada, Andalusian Regional Government, Granada, Spain
| | - Jose A. Lopez-Escamez
- Otology and Neurotology Group CTS 495, Department of Genomic Medicine, Centre for Genomics and Oncological Research (GENyO), Pfizer, University of Granada, Andalusian Regional Government, Granada, Spain
- Department of Otolaryngology, Instituto de Investigación Biosanitaria (ibs. GRANADA), Hospital Universitario Virgen de las Nieves, Universidad de Granada, Granada, Spain
| |
Collapse
|
15
|
Zheng J, Meng WF, Zhang CF, Liu HQ, Yao J, Wang H, Chen Y, Guan MX. New SNP variants of MARVELD2 (DFNB49) associated with non-syndromic hearing loss in Chinese population. J Zhejiang Univ Sci B 2018; 20:164-169. [PMID: 30406641 DOI: 10.1631/jzus.b1700185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Non-syndromic hearing loss (NSHL) is a common defect in humans. Variants of MARVELD2 at the DFNB49 locus have been shown to cause bilateral, moderate to profound NSHL. However, the role of MARVELD2 in NSHL susceptibility in the Chinese population has not been studied. Here we conducted a case-control study in an eastern Chinese population to profile the spectrum and frequency of MARVELD2 variants, as well as the association of MARVELD2 gene variants with NSHL. Our results showed that variants identified in the Chinese population are significantly different from those reported in Slovak, Hungarian, and Czech Roma, as well as Pakistani families. We identified 11 variants in a cohort of 283 NSHL cases. Through Sanger sequencing and bioinformatics analysis, we found that c.730G>A variant has detrimental effects in the eastern Chinese population, and may have relatively high correlation with NSHL pathogenicity.
Collapse
Affiliation(s)
- Jing Zheng
- Division of Medical Genetics and Genomics, the Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.,Institute of Genetics, Zhejiang University, Hangzhou 310058, China
| | - Wen-Fang Meng
- Division of Medical Genetics and Genomics, the Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.,Institute of Genetics, Zhejiang University, Hangzhou 310058, China
| | - Chao-Fan Zhang
- Institute of Genetics, Zhejiang University, Hangzhou 310058, China
| | - Han-Qing Liu
- Institute of Genetics, Zhejiang University, Hangzhou 310058, China
| | - Juan Yao
- Attardi Institute of Mitochondrial Biomedicine, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Hui Wang
- Attardi Institute of Mitochondrial Biomedicine, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Ye Chen
- Division of Medical Genetics and Genomics, the Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.,Institute of Genetics, Zhejiang University, Hangzhou 310058, China
| | - Min-Xin Guan
- Division of Medical Genetics and Genomics, the Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.,Institute of Genetics, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
16
|
Taghipour-Sheshdeh A, Nemati-Zargaran F, Zarepour N, Tahmasebi P, Saki N, Tabatabaiefar MA, Mohammadi-Asl J, Hashemzadeh-Chaleshtori M. A novel pathogenic variant in the MARVELD2 gene causes autosomal recessive non-syndromic hearing loss in an Iranian family. Genomics 2018; 111:840-848. [PMID: 29752989 DOI: 10.1016/j.ygeno.2018.05.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 04/28/2018] [Accepted: 05/08/2018] [Indexed: 10/16/2022]
Abstract
BACKGROUND AND AIMS Hearing loss (HL) is the most common sensorineural disorder and one of the most common human defects. HL can be classified according to main criteria, including: the site (conductive, sensorineural and mixed), onset (pre-lingual and post-lingual), accompanying signs and symptoms (syndromic and non-syndromic), severity (mild, moderate, severe and profound) and mode of inheritance (Autosomal recessive, autosomal dominant, X-linked and mitochondrial). Autosomal recessive non-syndromic HL (ARNSHL) forms constitute a major share of the HL cases. In the present study, next-generation sequencing (NGS) was applied to investigate the underlying etiology of HL in a multiplex ARNSHL family from Khuzestan province, southwest Iran. METHODS In this descriptive study, 20 multiplex ARNSHL families from Khuzestan province, southwest of Iran were recruited. After DNA extraction, genetic linkage analysis (GLA) was applied to screen for a panel of more prevalent loci. One family, which was not linked to these loci, was subjected to Otogenetics deafness Next Generation Sequencing (NGS) panel. RESULTS NGS results showed a novel deletion-insertion variant (c.1555delinsAA) in the MARVELD2 gene. The variant which is a frameshift in the seventh exon of the MARVELD2 gene fulfills the criteria of being categorized as pathogenic according to the American College of Medical Genetics and Genomics (ACMG) guideline. CONCLUSION NGS is very promising to identify the molecular etiology of highly heterogeneous diseases such as HL. MARVELD2 might be important in the etiology of HL in this region of Iran.
Collapse
Affiliation(s)
- Afsaneh Taghipour-Sheshdeh
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Fatemeh Nemati-Zargaran
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Narges Zarepour
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Parisa Tahmasebi
- Department of Biology, Faculty of Sciences, Ilam University, Ilam, Iran
| | - Nader Saki
- Hearing Research Center, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Amin Tabatabaiefar
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran; Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Noncommunicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Javad Mohammadi-Asl
- Department of Medical Genetics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Morteza Hashemzadeh-Chaleshtori
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|