1
|
Zolfagharypoor A, Ajdari A, Seirafianpour F, Pakbaz Y, Hosseinzadeh A, Mehrzadi S. Signaling pathways in skin cancers and the protective functions of melatonin. Biochimie 2025; 231:1-14. [PMID: 39577617 DOI: 10.1016/j.biochi.2024.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/30/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024]
Abstract
Melatonin, a hormone primarily synthesized in the pineal gland, has an essential role in the regulation of various physiological processes, such as the sleep-wake cycle, immune function, and antioxidative responses. Emerging evidence suggests that melatonin also exerts significant protective effects against skin cancers, particularly melanoma and non-melanoma skin cancers. This review aims to provide a comprehensive overview of melatonin's multifaceted mechanisms of action in preventing and treating skin cancers, focusing on its antioxidant, photoprotective, and radioprotective properties. Melatonin's capability to modulate skin cancer's related key signaling pathways underscores its complex yet potent anticancer mechanisms. Furthermore, synergistic effects between melatonin and conventional oncology treatments, such as radiotherapy, chemotherapy, and targeted therapies, hold promise for improving treatment outcomes while mitigating adverse effects. However, while melatonin shows great potential as an adjunct in oncology treatment regimens, further research is needed to optimize its clinical applications and fully understand its safety profile and potential side effects. Overall, elucidating melatonin's role in skin cancer prevention and treatment represents a promising avenue for advancing cancer therapeutics and improving patient outcomes.
Collapse
Affiliation(s)
- Azin Zolfagharypoor
- Medical School, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Atra Ajdari
- School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| | | | - Yeganeh Pakbaz
- Breast Health & Cancer Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Azam Hosseinzadeh
- Razi Drug Research Centre, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| | - Saeed Mehrzadi
- Razi Drug Research Centre, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| |
Collapse
|
2
|
Thoraval L, Varin-Simon J, Ohl X, Velard F, Reffuveille F, Tang-Fichaux M. Cutibacterium acnes and its complex host interaction in prosthetic joint infection: Current insights and future directions. Res Microbiol 2025; 176:104265. [PMID: 39701197 DOI: 10.1016/j.resmic.2024.104265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 11/26/2024] [Accepted: 12/17/2024] [Indexed: 12/21/2024]
Abstract
Cutibacterium acnes is a commensal Gram-positive anaerobic bacterium that can also act as an opportunistic pathogen in various diseases, particularly in prosthetic joint infections (PJI). Throughout this review, we delve into the current understanding of the intricate interactions between C. acnes and host cells and discuss bacterial persistence in the host. C. acnes colonization and subsequent PJI set-up represent complex processes involving bacterial adhesion, immune recognition, and host response mechanisms. We highlight existing knowledge and gaps in specific host-pathogen interactions and stress the importance of acquiring additional information to develop targeted strategies for preventing and treating C. acnes-related PIJ.
Collapse
Affiliation(s)
- Léa Thoraval
- Université de Reims Champagne-Ardenne, BIOS, Reims, France
| | | | - Xavier Ohl
- Université de Reims Champagne-Ardenne, CHU Reims, BIOS, Service D'Orthopédie et Traumatologie, Reims, France
| | | | - Fany Reffuveille
- Université de Reims Champagne-Ardenne, BIOS, UFR Pharmacie, Reims, France.
| | | |
Collapse
|
3
|
Amaro-da-Cruz A, Rubio-Tomás T, Álvarez-Mercado AI. Specific microbiome patterns and their association with breast cancer: the intestinal microbiota as a potential biomarker and therapeutic strategy. Clin Transl Oncol 2025; 27:15-41. [PMID: 38890244 PMCID: PMC11735593 DOI: 10.1007/s12094-024-03554-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/04/2024] [Indexed: 06/20/2024]
Abstract
Breast cancer (BC) is one of the most diagnosed cancers in women. Based on histological characteristics, they are classified as non-invasive, or in situ (tumors located within the milk ducts or milk lobules) and invasive. BC may develop from in situ carcinomas over time. Determining prognosis and predicting response to treatment are essential tools to manage this disease and reduce its incidence and mortality, as well as to promote personalized therapy for patients. However, over half of the cases are not associated with known risk factors. In addition, some patients develop resistance to treatment and relapse. Therefore, it is necessary to identify new biomarkers and treatment strategies that improve existing therapies. In this regard, the role of the microbiome is being researched as it could play a role in carcinogenesis and the efficacy of BC therapies. This review aims to describe specific microbiome patterns associated with BC. For this, a literature search was carried out in PubMed database using the MeSH terms "Breast Neoplasms" and "Gastrointestinal Microbiome", including 29 publications. Most of the studies have focused on characterizing the gut or breast tissue microbiome of the patients. Likewise, studies in animal models and in vitro that investigated the impact of gut microbiota (GM) on BC treatments and the effects of the microbiome on tumor cells were included. Based on the results of the included articles, BC could be associated with an imbalance in the GM. This imbalance varied depending on molecular type, stage and grade of cancer, menopause, menarche, body mass index, and physical activity. However, a specific microbial profile could not be identified as a biomarker. On the other hand, some studies suggest that the GM may influence the efficacy of BC therapies. In addition, some microorganisms and bacterial metabolites could improve the effects of therapies or influence tumor development.
Collapse
Affiliation(s)
- Alba Amaro-da-Cruz
- Department of Chemical Engineering, Faculty of Science, University of Granada, 18071, Granada, Spain
| | - Teresa Rubio-Tomás
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Crete, Greece
| | - Ana I Álvarez-Mercado
- Instituto de Investigación Biosanitaria ibs.GRANADA, Complejo Hospitalario Universitario de Granada, 18014, Granada, Spain.
- Institute of Nutrition and Food Technology, Biomedical Research Center, University of Granada, 18016, Armilla, Spain.
- Department of Pharmacology School of Pharmacy, University of Granada, 18071, Granada, Spain.
| |
Collapse
|
4
|
Hao T, Feng K, Jin H, Li J, Zhou C, Liu X, Zhao W, Yu F, Li T. Acceptor-Reactivity-Controlled Stereoconvergent Synthesis and Immunological Activity of a Unique Pentasaccharide from the Cell Wall Polysaccharide of Cutibacterium acnes C7. Angew Chem Int Ed Engl 2024; 63:e202405297. [PMID: 38651620 DOI: 10.1002/anie.202405297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/14/2024] [Accepted: 04/22/2024] [Indexed: 04/25/2024]
Abstract
Bacterial cell-surface polysaccharides are involved in various biological processes and have attracted widespread attention as potential targets for developing carbohydrate-based drugs. However, the accessibility to structurally well-defined polysaccharide or related active oligosaccharide domains remains challenging. Herein, we describe an efficiently stereocontrolled approach for the first total synthesis of a unique pentasaccharide repeating unit containing four difficult-to-construct 1,2-cis-glycosidic linkages from the cell wall polysaccharide of Cutibacterium acnes C7. The features of our approach include: 1) acceptor-reactivity-controlled glycosylation to stereoselectively construct two challenging rare 1,2-cis-ManA2,3(NAc)2 (β-2,3-diacetamido-2,3-dideoxymannuronic acid) linkages, 2) combination use of 6-O-tert-butyldiphenylsilyl (6-O-TBDPS)-mediated steric shielding effect and ether solvent effect to stereoselectively install a 1,2-cis-glucosidic linkage, 3) bulky 4,6-di-O-tert-butylsilylene (DTBS)-directed glycosylation to stereospecifically construct a 1,2-cis-galactosidic linkage, 4) stereoconvergent [2+2+1] and one-pot chemoselective glycosylation to rapidly assemble the target pentasaccharide. Immunological activity tests suggest that the pentasaccharide can induce the production of proinflammatory cytokine TNF-α in a dose-dependent manner.
Collapse
Affiliation(s)
- Tianhui Hao
- State Key Laboratory of Chemical Biology, Carbohydrate-Based Drug Research Center, Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ke Feng
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300350, China
| | - Hongzhen Jin
- School of Health and Life Sciences, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, 266113, China
| | - Jiawei Li
- State Key Laboratory of Chemical Biology, Carbohydrate-Based Drug Research Center, Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Chenkai Zhou
- State Key Laboratory of Chemical Biology, Carbohydrate-Based Drug Research Center, Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xingbang Liu
- State Key Laboratory of Chemical Biology, Carbohydrate-Based Drug Research Center, Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Wei Zhao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300350, China
| | - Fan Yu
- School of Health and Life Sciences, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, 266113, China
| | - Tiehai Li
- State Key Laboratory of Chemical Biology, Carbohydrate-Based Drug Research Center, Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
5
|
Pardi PC, Turri JAO, Bayer LHCM, Nóbrega GB, Filassi JR, Simões RDS, Mota BS, Sorpreso ICE, Baracat EC, Soares Júnior JM. Biological action of melatonin on target receptors in breast cancer. REVISTA DA ASSOCIACAO MEDICA BRASILEIRA (1992) 2024; 70:e20231260. [PMID: 38656007 DOI: 10.1590/1806-9282.20231260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/10/2023] [Indexed: 04/26/2024]
Affiliation(s)
- Paulo Celso Pardi
- Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas, Departamento de Obstetrícia e Ginecologia, Laboratório de Investigação Médica em Ginecologia Estrutural e Molecular (LIM-58), Disciplina de Ginecologia - São Paulo (SP), Brazil
| | - José Antonio Orellana Turri
- Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas, Departamento de Obstetrícia e Ginecologia, Laboratório de Investigação Médica em Ginecologia Estrutural e Molecular (LIM-58), Disciplina de Ginecologia - São Paulo (SP), Brazil
| | - Luiza Helena Costa Moreira Bayer
- Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas, Departamento de Obstetrícia e Ginecologia, Laboratório de Investigação Médica em Ginecologia Estrutural e Molecular (LIM-58), Disciplina de Ginecologia - São Paulo (SP), Brazil
| | - Gabriela Bezerra Nóbrega
- Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas, Departamento de Obstetrícia e Ginecologia, Setor de Mastologia, Disciplina de Ginecologia - São Paulo (SP), Brazil
| | - José Roberto Filassi
- Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas, Departamento de Obstetrícia e Ginecologia, Setor de Mastologia, Disciplina de Ginecologia - São Paulo (SP), Brazil
| | - Ricardo Dos Santos Simões
- Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas, Departamento de Obstetrícia e Ginecologia, Laboratório de Investigação Médica em Ginecologia Estrutural e Molecular (LIM-58), Disciplina de Ginecologia - São Paulo (SP), Brazil
| | - Bruna Salani Mota
- Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas, Departamento de Obstetrícia e Ginecologia, Setor de Mastologia, Disciplina de Ginecologia - São Paulo (SP), Brazil
| | - Isabel Cristina Espósito Sorpreso
- Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas, Departamento de Obstetrícia e Ginecologia, Laboratório de Investigação Médica em Ginecologia Estrutural e Molecular (LIM-58), Disciplina de Ginecologia - São Paulo (SP), Brazil
| | - Edmund Chada Baracat
- Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas, Departamento de Obstetrícia e Ginecologia, Laboratório de Investigação Médica em Ginecologia Estrutural e Molecular (LIM-58), Disciplina de Ginecologia - São Paulo (SP), Brazil
| | - José Maria Soares Júnior
- Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas, Departamento de Obstetrícia e Ginecologia, Laboratório de Investigação Médica em Ginecologia Estrutural e Molecular (LIM-58), Disciplina de Ginecologia - São Paulo (SP), Brazil
| |
Collapse
|
6
|
Voigt AY, Walter A, Young T, Graham JP, Bittencourt BMB, de Mingo Pulido A, Prieto K, Tsai KY, Sundberg JP, Oh J. Microbiome modulates immunotherapy response in cutaneous squamous cell carcinoma. Exp Dermatol 2023; 32:1624-1632. [PMID: 37350109 PMCID: PMC10592435 DOI: 10.1111/exd.14864] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/07/2023] [Accepted: 06/13/2023] [Indexed: 06/24/2023]
Abstract
The gut microbiome is increasingly recognized to alter cancer risk, progression and response to treatments such as immunotherapy, especially in cutaneous melanoma. However, whether the microbiome influences immune checkpoint inhibitor (ICI) immunotherapy response to non-melanoma skin cancer has not yet been defined. As squamous cell carcinomas (SCC) are in closest proximity to the skin microbiome, we hypothesized that the skin microbiome, which regulates cutaneous immunity, might affect SCC-associated anti-PD1 immunotherapy treatment response. We used ultraviolet radiation to induce SCC in SKH1 hairless mice. We then treated the mice with broad-band antibiotics to deplete the microbiome, followed by colonisation by candidate skin and gut bacteria or persistent antibiotic treatment, all in parallel with ICI treatment. We longitudinally monitored skin and gut microbiome dynamics by 16S rRNA gene sequencing and tumour burden by periodic tumour measurements and histologic assessment. Our study revealed that antibiotics-induced abrogation of the microbiome reduced the tumour burden, suggesting a functional role of the microbiome in non-melanoma skin cancer therapy response.
Collapse
Affiliation(s)
- Anita Y. Voigt
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA
| | | | | | | | | | - Alvaro de Mingo Pulido
- Departments of Anatomic Pathology and Tumor Biology, Moffitt Cancer Center, Tampa, Florida, USA
| | - Karol Prieto
- Departments of Anatomic Pathology and Tumor Biology, Moffitt Cancer Center, Tampa, Florida, USA
| | - Kenneth Y. Tsai
- Departments of Anatomic Pathology and Tumor Biology, Moffitt Cancer Center, Tampa, Florida, USA
| | | | - Julia Oh
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA
| |
Collapse
|
7
|
Ramos E, Egea J, López-Muñoz F, Gil-Martín E, Romero A. Therapeutic Potential of Melatonin Counteracting Chemotherapy-Induced Toxicity in Breast Cancer Patients: A Systematic Review. Pharmaceutics 2023; 15:1616. [PMID: 37376065 DOI: 10.3390/pharmaceutics15061616] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/05/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
The purpose of this systematic review is to provide an overview of the existing knowledge on the therapeutic potential of melatonin to counteract the undesirable effects of chemotherapy in breast cancer patients. To this aim, we summarized and critically reviewed preclinical- and clinical-related evidence according to the PRISMA guidelines. Additionally, we developed an extrapolation of melatonin doses in animal studies to the human equivalent doses (HEDs) for randomized clinical trials (RCTs) with breast cancer patients. For the revision, 341 primary records were screened, which were reduced to 8 selected RCTs that met the inclusion criteria. We assembled the evidence drawn from these studies by analyzing the remaining gaps and treatment efficacy and suggested future translational research and clinical trials. Overall, the selected RCTs allow us to conclude that melatonin combined with standard chemotherapy lines would derive, at least, a better quality of life for breast cancer patients. Moreover, regular doses of 20 mg/day seemed to increase partial response and 1-year survival rates. Accordingly, this systematic review leads us to draw attention to the need for more RCTs to provide a comprehensive view of the promising actions of melatonin in breast cancer and, given the safety profile of this molecule, adequate translational doses should be established in further RCTs.
Collapse
Affiliation(s)
- Eva Ramos
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Javier Egea
- Molecular Neuroinflammation and Neuronal Plasticity Research Laboratory, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria-Hospital Universitario de la Princesa, 28006 Madrid, Spain
- Institute Teófilo Hernando for Drug Discovery, Department of Pharmacology, School of Medicine, Autonomous University of Madrid, 28029 Madrid, Spain
| | - Francisco López-Muñoz
- Faculty of Health, Camilo José Cela University of Madrid (UCJC), 28692 Madrid, Spain
- Neuropsychopharmacology Unit, Hospital 12 de Octubre Research Institute, 28041 Madrid, Spain
| | - Emilio Gil-Martín
- Department of Biochemistry, Genetics and Immunology, Faculty of Biology, University of Vigo, 36310 Vigo, Spain
| | - Alejandro Romero
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
8
|
Voigt AY, Walter A, Young T, Graham JP, Batista Bittencourt BM, de Mingo Pulido A, Prieto K, Tsai KY, Sundberg JP, Oh J. Microbiome modulates immunotherapy response in cutaneous squamous cell carcinoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.25.525369. [PMID: 36747869 PMCID: PMC9900860 DOI: 10.1101/2023.01.25.525369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The gut microbiome is increasingly recognized to alter cancer risk, progression, and response to treatments such as immunotherapy, especially in cutaneous melanoma. However, whether the microbiome influences immune checkpoint inhibitor (ICI) immunotherapy response to non-melanoma skin cancer has not yet been defined. As squamous cell carcinomas (SCC) are in closest proximity to the skin microbiome, we hypothesized that the skin microbiome, which regulates cutaneous immunity, might affect SCC-associated anti-PD1 immunotherapy treatment response. We used ultraviolet radiation to induce SCC in SKH1 hairless mice. We then treated the mice with broad-band antibiotics to deplete the microbiome, followed by colonization by candidate skin and gut bacteria or persistent antibiotic treatment, all in parallel with ICI treatment. We longitudinally monitored skin and gut microbiome dynamics by 16S rRNA gene sequencing, and tumor burden by periodic tumor measurements and histologic assessment. Our study revealed that antibiotics-induced abrogation of the microbiome reduced tumor burden, suggesting a functional role of the microbiome in non-melanoma skin cancer therapy response.
Collapse
|
9
|
Antitumor effect of melatonin on breast cancer in experimental models: A systematic review. Biochim Biophys Acta Rev Cancer 2023; 1878:188838. [PMID: 36403922 DOI: 10.1016/j.bbcan.2022.188838] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/11/2022] [Accepted: 11/12/2022] [Indexed: 11/19/2022]
Abstract
Breast cancer is the most frequent malignant neoplasm in females. While conventional treatments such as chemotherapy and radiotherapy are available, they are highly invasive and toxic to oncological patients. Melatonin is a promising molecule for the treatment of breast cancer with antitumor effects on tumorigenesis and tumor progression. The aim of this systematic review was to synthesize knowledge about the antitumor effect of melatonin on breast cancer in experimental models and propose the main mechanisms of action already described in relation to the processes regulated by melatonin. PubMed, Web of Science, and Embase databases were used. The inclusion criteria were in vitro and in vivo experimental studies that used different formulations of melatonin as a treatment for breast cancer, without year or language restrictions. Risk of bias for studies was assessed using the Systematic Review Center for Laboratory Animal Experimentation (SYRCLE) tool. Data from selected articles were presented as narrative descriptions and tables. Seventy-five articles on different breast cancer cell lines and experimental models treated with melatonin alone, or in combination with other compounds were included. Melatonin showed antitumor effects on proliferative pathways related to the cell cycle and tumorigenesis, tumor death, angiogenesis, and tumor metastasis, as well as on oxidative stress and immune regulatory pathways. These effects were either dependent or independent of melatonin receptors. Herein, we clarify the antitumor action of melatonin on different tumorigenic processes in breast cancer in experimental models. Systematic review registration: PROSPERO database (CRD42022309822/https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42022309822).
Collapse
|
10
|
Voigt AY, Emiola A, Johnson JS, Fleming ES, Nguyen H, Zhou W, Tsai KY, Fink C, Oh J. Skin Microbiome Variation with Cancer Progression in Human Cutaneous Squamous Cell Carcinoma. J Invest Dermatol 2022; 142:2773-2782.e16. [PMID: 35390349 PMCID: PMC9509417 DOI: 10.1016/j.jid.2022.03.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 03/10/2022] [Accepted: 03/14/2022] [Indexed: 12/13/2022]
Abstract
The skin microbiome plays a critical role in skin homeostasis and disorders. UVR is the major cause of nonmelanoma skin cancer, but other risk factors, including immune suppression, chronic inflammation, and antibiotic usage, suggest the microbiome as an additional, unexplored risk factor and potential disease biomarker. The overarching goal was to study the skin microbiome in squamous cell carcinoma (SCC) and premalignant actinic keratosis compared with that in healthy skin to identify skin cancer‒associated changes in the skin microbiome. We performed a high-resolution analysis of shotgun metagenomes of actinic keratosis and SCC in healthy skin, revealing the microbial community shifts specific to actinic keratosis and SCC. Most prominently, the relative abundance of pathobiont Staphylococcus aureus was increased at the expense of commensal Cutibacterium acnes in SCC compared with that in healthy skin, and enrichment of functional pathways in SCC reflected this shift. Notably, C. acnes associated with lesional versus healthy skin differed at the strain level, suggesting the specific functional changes associated with its depletion in SCC. Our study revealed a transitional microbial dysbiosis from healthy skin to actinic keratosis to SCC, supporting further investigation of the skin microbiome for use as a biomarker and providing hypotheses for studies investigating how these microbes might influence skin cancer progression.
Collapse
Affiliation(s)
- Anita Y Voigt
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA
| | - Akintunde Emiola
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA
| | - Jethro S Johnson
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA; Oxford Centre for Microbiome Studies, Kennedy Institute of Rheumatology, Oxford, United Kingdom
| | | | - Hoan Nguyen
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA
| | - Wei Zhou
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA
| | - Kenneth Y Tsai
- Department of Pathology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA; Department of Tumor Biology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
| | - Christine Fink
- Department of Dermatology, Venereology, and Allergology, University Medical Center, Ruprecht-Karl University of Heidelberg, Heidelberg, Germany
| | - Julia Oh
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA.
| |
Collapse
|
11
|
Pan L, Huang Z, Li G, Zhan Q, Zheng W, Chen L, Zhang X. A novel and feasible mouse model of modified inoculation method by subcutaneous EMT6 cells injection for subclinical breast cancer. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2022. [DOI: 10.1016/j.jrras.2022.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
12
|
Kraaijvanger R, Veltkamp M. The Role of Cutibacterium acnes in Sarcoidosis: From Antigen to Treatable Trait? Microorganisms 2022; 10:1649. [PMID: 36014067 PMCID: PMC9415339 DOI: 10.3390/microorganisms10081649] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 11/19/2022] Open
Abstract
Cutibacterium acnes (C. acnes, formerly Propionibacterium acnes) is considered to be a non-pathogenic resident of the human skin, as well as mucosal surfaces. However, it also has been demonstrated that C. acnes plays a pathogenic role in diseases such as acne vulgaris or implant infections after orthopedic surgery. Besides a role in infectious disease, this bacterium also seems to harbor immunomodulatory effects demonstrated by studies using C. acnes to enhance anti-tumor activity in various cancers or vaccination response. Sarcoidosis is a systemic inflammatory disorder of unknown causes. Cultures of C. acnes in biopsy samples of sarcoidosis patients, its presence in BAL fluid, tissue samples as well as antibodies against this bacterium found in serum of patients with sarcoidosis suggest an etiological role in this disease. In this review we address the antigenic as well as immunomodulatory potential of C. acnes with a focus on sarcoidosis. Furthermore, a potential role for antibiotic treatment in patients with sarcoidosis will be explored.
Collapse
Affiliation(s)
- Raisa Kraaijvanger
- Interstitial Lung Diseases Centre of Excellence, Department of Pulmonology, St. Antonius Hospital, 3435 CM Nieuwegein, The Netherlands
| | - Marcel Veltkamp
- Interstitial Lung Diseases Centre of Excellence, Department of Pulmonology, St. Antonius Hospital, 3435 CM Nieuwegein, The Netherlands
- Division of Hearth and Lungs, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
13
|
Hong J, He Y, Fu R, Si Y, Xu B, Xu J, Li X, Mao F. The relationship between night shift work and breast cancer incidence: A systematic review and meta-analysis of observational studies. Open Med (Wars) 2022; 17:712-731. [PMID: 35702390 PMCID: PMC8995855 DOI: 10.1515/med-2022-0470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/01/2022] [Accepted: 03/14/2022] [Indexed: 11/18/2022] Open
Abstract
The purpose of this study was to investigate the relationship between night shift work and breast cancer (BC) incidence. A search was performed in PubMed, EBSCO, Web of Science, and Cochrane Library databases before June 2021. The exposure factor of this study is night shift work, the primary outcome is the risk of BC. A total of 33 observational studies composed of 4,331,782 participants were included. Night shift work increases the risk of BC in the female population (hazard ratio [HR] = 1.20, 95% confidence interval [Cl] = 1.10–1.31, p < 0.001), especially receptor-positive BC, including estrogen receptor (ER)+ BC (HR = 1.35, p < 0.001), progesterone receptor (PR)+ BC (HR = 1.30, p = 0.003), and human epidermal growth factor receptor 2 (HER2)+ BC (HR = 1.42, p < 0.001), but has no effect on HER2− BC (HR = 1.10, p = 0.515) and ER−/PR− BC (HR = 0.98, p = 0.827). The risk of BC was positively correlated with night shift working duration, frequency, and cumulative times. For women who start night work before menopause, night work will increase the incidence of BC (HR = 1.17, p = 0.020), but for women who start night work after menopause, night work does not affect BC (HR = 1.04, p = 0.293). Night work can increase the incidence of BC in the female population. The effect of long working hours, frequency, and the cumulative number of night shifts on BC is influenced by menopausal status.
Collapse
Affiliation(s)
- Jiaze Hong
- The Second Clinical Medical College, Zhejiang Chinese Medical University , Hangzhou , Zhejiang , China
| | - Yujing He
- The Second Clinical Medical College, Zhejiang Chinese Medical University , Hangzhou , Zhejiang , China
| | - Rongrong Fu
- The First Clinical Medical College, Zhejiang Chinese Medical University , Hangzhou , Zhejiang , China
| | - Yuexiu Si
- School of Basic Medical Sciences, Zhejiang Chinese Medical University , Hangzhou , Zhejiang , China
| | - Binbin Xu
- Department of Nutrition, HwaMei Hospital, University of Chinese Academy of Sciences , Ningbo , Zhejiang , China
| | - Jiaxuan Xu
- The Second Clinical Medical College, Zhejiang Chinese Medical University , Hangzhou , Zhejiang , China
| | - Xiangyuan Li
- The Second Clinical Medical College, Zhejiang Chinese Medical University , Hangzhou , Zhejiang , China
| | - Feiyan Mao
- Department of General Surgery, HwaMei Hospital, University of Chinese Academy of Sciences , Northwest Street 41, Haishu District, Ningbo, 315010 , Zhejiang , China
| |
Collapse
|
14
|
Prasad SK, Bhat S, Shashank D, C R A, R S, Rachtanapun P, Devegowda D, Santhekadur PK, Sommano SR. Bacteria-Mediated Oncogenesis and the Underlying Molecular Intricacies: What We Know So Far. Front Oncol 2022; 12:836004. [PMID: 35480118 PMCID: PMC9036991 DOI: 10.3389/fonc.2022.836004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/22/2022] [Indexed: 01/10/2023] Open
Abstract
Cancers are known to have multifactorial etiology. Certain bacteria and viruses are proven carcinogens. Lately, there has been in-depth research investigating carcinogenic capabilities of some bacteria. Reports indicate that chronic inflammation and harmful bacterial metabolites to be strong promoters of neoplasticity. Helicobacter pylori-induced gastric adenocarcinoma is the best illustration of the chronic inflammation paradigm of oncogenesis. Chronic inflammation, which produces excessive reactive oxygen species (ROS) is hypothesized to cause cancerous cell proliferation. Other possible bacteria-dependent mechanisms and virulence factors have also been suspected of playing a vital role in the bacteria-induced-cancer(s). Numerous attempts have been made to explore and establish the possible relationship between the two. With the growing concerns on anti-microbial resistance and over-dependence of mankind on antibiotics to treat bacterial infections, it must be deemed critical to understand and identify carcinogenic bacteria, to establish their role in causing cancer.
Collapse
Affiliation(s)
- Shashanka K Prasad
- Department of Biotechnology and Bioinformatics, Faculty of Life Sciences, Jagadguru Sri Shivarathreeshwara (JSS) Academy of Higher Education and Research (JSSAHER), Mysuru, India
| | - Smitha Bhat
- Department of Biotechnology and Bioinformatics, Faculty of Life Sciences, Jagadguru Sri Shivarathreeshwara (JSS) Academy of Higher Education and Research (JSSAHER), Mysuru, India
| | - Dharini Shashank
- Department of General Surgery, Adichunchanagiri Institute of Medical Sciences, Mandya, India
| | - Akshatha C R
- Department of Medical Oncology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | - Sindhu R
- Department of Microbiology, Faculty of Life Sciences, Jagadguru Sri Shivarathreeshwara (JSS) Academy of Higher Education and Research (JSSAHER), Mysuru, India
| | - Pornchai Rachtanapun
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
- Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai, Thailand
| | - Devananda Devegowda
- Centre of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education and Research (JSSAHER), Mysuru, India
| | - Prasanna K Santhekadur
- Centre of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education and Research (JSSAHER), Mysuru, India
| | - Sarana Rose Sommano
- Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai, Thailand
- Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
15
|
Sadoughi F, Dana PM, Asemi Z, Shafabakhash R, Mohammadi S, Heidar Z, Mirzamoradi M, Targhazeh N, Mirzaei H. Molecular and cellular mechanisms of melatonin in breast cancer. Biochimie 2022; 202:26-33. [PMID: 35341930 DOI: 10.1016/j.biochi.2022.03.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/04/2022] [Accepted: 03/22/2022] [Indexed: 01/10/2023]
Abstract
Breast cancer is considered as one of the most important health problems due to its poor prognosis and high rate of mortality and new diagnosed cases. Annually, a great number of deaths are reported in men and women; this means that despite all the improvements in cancer diagnosis and treatment, still, an intense need for more effective approaches exists. Melatonin is a multivalent compound which has a hand in several cellular and molecular processes and therefore, is an appropriate candidate for treatment of many diseases like cancer. Currently, considerable properties of this agent have oriented the research towards investigating its effects specifically in breast cancer. In this review, we gathered a bunch of evidence in order to give a new sight for breast cancer treatment utilizing melatonin. We expect that in coming years, melatonin will become one of the most common therapeutic drugs with lesser side-effects than other chemotherapeutic drugs.
Collapse
Affiliation(s)
- Fatemeh Sadoughi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R., Iran.
| | - Parisa Maleki Dana
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R., Iran.
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R., Iran.
| | - Rana Shafabakhash
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R., Iran.
| | - Sotoudeh Mohammadi
- Clinical Research Development Center, Mahdiyeh Educational Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Zahra Heidar
- Clinical Research Development Center, Mahdiyeh Educational Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Masoumeh Mirzamoradi
- Clinical Research Development Center, Mahdiyeh Educational Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Niloufar Targhazeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R., Iran.
| |
Collapse
|
16
|
Esposito MV, Fosso B, Nunziato M, Casaburi G, D'Argenio V, Calabrese A, D'Aiuto M, Botti G, Pesole G, Salvatore F. Microbiome composition indicate dysbiosis and lower richness in tumor breast tissues compared to healthy adjacent paired tissue, within the same women. BMC Cancer 2022; 22:30. [PMID: 34980006 PMCID: PMC8722097 DOI: 10.1186/s12885-021-09074-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 11/30/2021] [Indexed: 12/15/2022] Open
Abstract
Background Breast cancer (BC) is the most common malignancy in women, in whom it reaches 20% of the total neoplasia incidence. Most BCs are considered sporadic and a number of factors, including familiarity, age, hormonal cycles and diet, have been reported to be BC risk factors. Also the gut microbiota plays a role in breast cancer development. In fact, its imbalance has been associated to various human diseases including cancer although a consequential cause-effect phenomenon has never been proven. Methods The aim of this work was to characterize the breast tissue microbiome in 34 women affected by BC using an NGS-based method, and analyzing the tumoral and the adjacent non-tumoral tissue of each patient. Results The healthy and tumor tissues differed in bacterial composition and richness: the number of Amplicon Sequence Variants (ASVs) was higher in healthy tissues than in tumor tissues (p = 0.001). Moreover, our analyses, able to investigate from phylum down to species taxa for each sample, revealed major differences in the two richest phyla, namely, Proteobacteria and Actinobacteria. Notably, the levels of Actinobacteria and Proteobacteria were, respectively, higher and lower in healthy with respect to tumor tissues. Conclusions Our study provides information about the breast tissue microbial composition, as compared with very closely adjacent healthy tissue (paired samples within the same woman); the differences found are such to have possible diagnostic and therapeutic implications; further studies are necessary to clarify if the differences found in the breast tissue microbiome are simply an association or a concausative pathogenetic effect in BC. A comparison of different results on similar studies seems not to assess a universal microbiome signature, but single ones depending on the environmental cohorts’ locations. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-09074-y.
Collapse
Affiliation(s)
- Maria Valeria Esposito
- Department of Molecular Medicine and Medical Biotechnologies, University Federico II, Via Sergio Pansini, 5, 80131, Napoli, NA, Italy.,CEINGE - Biotecnologie Avanzate, Via Gaetano Salvatore, 486, 80145, Napoli, Italy
| | - Bruno Fosso
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Consiglio Nazionale delle Ricerche, Via Giovanni Amendola, 122/O, 70126, Bari, BA, Italy
| | - Marcella Nunziato
- Department of Molecular Medicine and Medical Biotechnologies, University Federico II, Via Sergio Pansini, 5, 80131, Napoli, NA, Italy.,CEINGE - Biotecnologie Avanzate, Via Gaetano Salvatore, 486, 80145, Napoli, Italy
| | | | - Valeria D'Argenio
- Department of Molecular Medicine and Medical Biotechnologies, University Federico II, Via Sergio Pansini, 5, 80131, Napoli, NA, Italy.,CEINGE - Biotecnologie Avanzate, Via Gaetano Salvatore, 486, 80145, Napoli, Italy.,Department of Human Sciences and Quality of Life Promotion, San Raffaele Open University, Via di Val Cannuta, 247, 00166, Rome, Italy
| | - Alessandra Calabrese
- Department of Senology, Istituto Nazionale Tumori - IRCCS, 'Fondazione Pascale', Via Mariano Semmola, 53, 80131, Napoli, NA, Italy
| | - Massimiliano D'Aiuto
- Department of Senology, Istituto Nazionale Tumori - IRCCS, 'Fondazione Pascale', Via Mariano Semmola, 53, 80131, Napoli, NA, Italy.,Clinica Villa Fiorita, Via Filippo Saporito, 24, 81031, Aversa, CE, Italy
| | - Gerardo Botti
- Scientific Directorate, Istituto Nazionale Tumori, Fondazione G. Pascale, IRCCS, Via Mariano Semmola, 53, 80131, Napoli, NA, Italy
| | - Graziano Pesole
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Consiglio Nazionale delle Ricerche, Via Giovanni Amendola, 122/O, 70126, Bari, BA, Italy. .,Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari "A. Moro", Piazza Umberto I, 1, BA, 70121, Bari, Italy.
| | - Francesco Salvatore
- Department of Molecular Medicine and Medical Biotechnologies, University Federico II, Via Sergio Pansini, 5, 80131, Napoli, NA, Italy. .,CEINGE - Biotecnologie Avanzate, Via Gaetano Salvatore, 486, 80145, Napoli, Italy.
| |
Collapse
|
17
|
Anim-Koranteng C, Shah HE, Bhawnani N, Ethirajulu A, Alkasabera A, Onyali CB, Mostafa JA. Melatonin-A New Prospect in Prostate and Breast Cancer Management. Cureus 2021; 13:e18124. [PMID: 34692334 PMCID: PMC8525668 DOI: 10.7759/cureus.18124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/20/2021] [Indexed: 12/22/2022] Open
Abstract
Cancer is a known cause of mortality globally. The management of cancer has been influenced periodically by diverse scientific research for early detection to promote remission and improve quality of life. One of these advancements is the prospect of melatonin (n-acetyl-5-methoxytryptamine) in managing prostate and breast cancers. Melatonin exerts its oncostatic effect by inhibiting angiogenesis, preventing cancer spread and growth, and improving the sensitivity of cancer cells to radiation and chemotherapy in both prostate and breast cancer. This review aims to highlight some of the current studies on melatonin's effect on prostate and breast cancers. We reviewed articles and two randomized controlled trials (RCT) that highlighted the mechanism of melatonin in combating tumorigenesis of these cancers. Articles and RCT studies were obtained by searching PubMed using regular and Medical Subject Heading (MeSH) keyword search strategy. The majority of the articles reviewed supported the use of melatonin in cancer management since inhibition of angiogenesis, cancer proliferation, invasion of normal cells by tumor cells, and improvement in chemotherapeutic and radiation therapy were achieved with its use. In addition, melatonin was also protective against prostate and breast cancers in the general population. Despite the benefits of melatonin in cancer management, most of the studies done were in vivo and in vitro studies, and more studies in human subjects are encouraged to confirm the positive therapeutic use of melatonin.
Collapse
Affiliation(s)
| | - Hira E Shah
- Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Nitin Bhawnani
- Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Aarthi Ethirajulu
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Almothana Alkasabera
- General Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | | | - Jihan A Mostafa
- Psychiatry, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| |
Collapse
|
18
|
Shin MR, Lee JH, Lee JA, Kim MJ, Park HJ, Park BW, Seo SB, Roh SS. Immunomodulatory and anti-inflammatory effects of Phellinus linteus mycelium. BMC Complement Med Ther 2021; 21:269. [PMID: 34702240 PMCID: PMC8547106 DOI: 10.1186/s12906-021-03441-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 10/08/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The present study extensively aimed to evaluate the underlying mechanism of the immunomodulatory and anti-inflammatory effects of Phellinus linteus mycelium (PLM). METHODS To assess whether PLM influences the production of markers related to inflammation, Lipopolysaccharide (LPS)-stimulated RAW264.7 cells were treated with PLM (50, 100, 200, and 500 μg/mL). Splenocyte, thymus, peritoneal exudate cells (PEC), and peripheral blood mononuclear cells (PBMC) were isolated from the Balb/c mice treated with Korean red ginseng or PLM once a day for 5 weeks. Moreover, all mice except normal mice were stimulated with 10% proteose peptone (PP) treated 3 days before the sacrifice and 2% starch treated 2 days before the sacrifice. Subsequently, the cytotropic substance was evaluated by using flow cytometry analysis and ELISA assay. RESULTS PLM200 treatment significantly suppressed the production of nitric oxide (NO) and prostaglandin E2 (PGE2) and inhibited the release of proinflammatory cytokines such as interleukin (IL)-6, IL-1β, and tumor necrosis factor (TNF)-α dose-dependently in the LPS-stimulated RAW264.7 cells. PLM200 supplementation showed a significant increase in IL-2, IL-12, and interferon (IFN)-γ production and upregulated the ratio of IFN-γ (T-helper type 1, Th1) to IL-4 (T-helper type 2, Th2) in splenocytes. After PLM200 treatment, the significant elevation of CD4+CD25+, CD4+&CD8+, and CD4+CD69+ treatment were detected in thymus. Moreover, CD4+ and CD4+CD69+ in PBMC and CD69+ in PEC were also shown in a significant increase. CONCLUSIONS Taken together, these results showed an immunomodulatory effect of PLM about an elevated INF-γ/IL4 ratio, as an index of Th1/Th2, as well as the anti-inflammatory effect in the LPS-stimulated RAW264.7 cells. Therefore, our findings demonstrate that PLM possesses immunostimulatory and anti-inflammatory effects.
Collapse
Affiliation(s)
- Mi-Rae Shin
- Department of Herbology, College of Korean Medicine, Daegu Haany University, 136, Shinchendong–ro, Suseong-gu, Deagu, 42158 Republic of Korea
| | - Ji Hye Lee
- College of Korean Medicine, Semyung University, 65, Semyung-Ro, Jecheon, Chungbuk 27136 Republic of Korea
| | - Jin A Lee
- Department of Herbology, College of Korean Medicine, Daegu Haany University, 136, Shinchendong–ro, Suseong-gu, Deagu, 42158 Republic of Korea
| | - Min Ju Kim
- Department of Herbology, College of Korean Medicine, Daegu Haany University, 136, Shinchendong–ro, Suseong-gu, Deagu, 42158 Republic of Korea
| | - Hae-Jin Park
- DHU Bio Convergence Testing Center, 1, Hanuidae-ro, Gyeongsan-si, Gyeongsangbuk-do 38610 Republic of Korea
| | - Byeong Wook Park
- Hankook Shinyak Pharm. Co. Ltd, 39-83 Zhongshan-gil, Yangchon-myeon, Nonsan-si, Chungcheongnam-do 33023 Republic of Korea
| | - Seung Bo Seo
- Hankook Shinyak Pharm. Co. Ltd, 39-83 Zhongshan-gil, Yangchon-myeon, Nonsan-si, Chungcheongnam-do 33023 Republic of Korea
| | - Seong-Soo Roh
- Department of Herbology, College of Korean Medicine, Daegu Haany University, 136, Shinchendong–ro, Suseong-gu, Deagu, 42158 Republic of Korea
| |
Collapse
|
19
|
Brüggemann H, Salar-Vidal L, Gollnick HPM, Lood R. A Janus-Faced Bacterium: Host-Beneficial and -Detrimental Roles of Cutibacterium acnes. Front Microbiol 2021; 12:673845. [PMID: 34135880 PMCID: PMC8200545 DOI: 10.3389/fmicb.2021.673845] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/29/2021] [Indexed: 12/18/2022] Open
Abstract
The bacterial species Cutibacterium acnes (formerly known as Propionibacterium acnes) is tightly associated with humans. It is the dominant bacterium in sebaceous regions of the human skin, where it preferentially colonizes the pilosebaceous unit. Multiple strains of C. acnes that belong to phylogenetically distinct types can co-exist. In this review we summarize and discuss the current knowledge of C. acnes regarding bacterial properties and traits that allow host colonization and play major roles in host-bacterium interactions and also regarding the host responses that C. acnes can trigger. These responses can have beneficial or detrimental consequences for the host. In the first part of the review, we highlight and critically review disease associations of C. acnes, in particular acne vulgaris, implant-associated infections and native infections. Here, we also analyse the current evidence for a direct or indirect role of a C. acnes-related dysbiosis in disease development or progression, i.e., reduced C. acnes strain diversity and/or the predominance of a certain phylotype. In the second part of the review, we highlight historical and recent findings demonstrating beneficial aspects of colonization by C. acnes such as colonization resistance, immune system interactions, and oxidant protection, and discuss the molecular mechanisms behind these effects. This new insight led to efforts in skin microbiota manipulation, such as the use of C. acnes strains as probiotic options to treat skin disorders.
Collapse
Affiliation(s)
| | - Llanos Salar-Vidal
- Department of Clinical Microbiology, Fundacion Jimenez Diaz University Hospital, Madrid, Spain
| | - Harald P. M. Gollnick
- Department of Dermatology and Venerology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Rolf Lood
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| |
Collapse
|
20
|
Melatonin in Cancer Treatment: Current Knowledge and Future Opportunities. Molecules 2021; 26:molecules26092506. [PMID: 33923028 PMCID: PMC8123278 DOI: 10.3390/molecules26092506] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/13/2021] [Accepted: 04/19/2021] [Indexed: 02/07/2023] Open
Abstract
Melatonin is a pleotropic molecule with numerous biological activities. Epidemiological and experimental studies have documented that melatonin could inhibit different types of cancer in vitro and in vivo. Results showed the involvement of melatonin in different anticancer mechanisms including apoptosis induction, cell proliferation inhibition, reduction in tumor growth and metastases, reduction in the side effects associated with chemotherapy and radiotherapy, decreasing drug resistance in cancer therapy, and augmentation of the therapeutic effects of conventional anticancer therapies. Clinical trials revealed that melatonin is an effective adjuvant drug to all conventional therapies. This review summarized melatonin biosynthesis, availability from natural sources, metabolism, bioavailability, anticancer mechanisms of melatonin, its use in clinical trials, and pharmaceutical formulation. Studies discussed in this review will provide a solid foundation for researchers and physicians to design and develop new therapies to treat and prevent cancer using melatonin.
Collapse
|
21
|
Mehrzadi S, Pourhanifeh MH, Mirzaei A, Moradian F, Hosseinzadeh A. An updated review of mechanistic potentials of melatonin against cancer: pivotal roles in angiogenesis, apoptosis, autophagy, endoplasmic reticulum stress and oxidative stress. Cancer Cell Int 2021; 21:188. [PMID: 33789681 PMCID: PMC8011077 DOI: 10.1186/s12935-021-01892-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/23/2021] [Indexed: 12/19/2022] Open
Abstract
Cancers are serious life-threatening diseases which annually are responsible for millions of deaths across the world. Despite many developments in therapeutic approaches for affected individuals, the rate of morbidity and mortality is high. The survival rate and life quality of cancer patients is still low. In addition, the poor prognosis of patients and side effects of the present treatments underscores that finding novel and effective complementary and alternative therapies is a critical issue. Melatonin is a powerful anticancer agent and its efficiency has been widely documented up to now. Melatonin applies its anticancer abilities through affecting various mechanisms including angiogenesis, apoptosis, autophagy, endoplasmic reticulum stress and oxidative stress. Regarding the implication of mentioned cellular processes in cancer pathogenesis, we aimed to further evaluate the anticancer effects of melatonin via these mechanisms.
Collapse
Affiliation(s)
- Saeed Mehrzadi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Pourhanifeh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Alireza Mirzaei
- Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Farid Moradian
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azam Hosseinzadeh
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
22
|
New insights into antimetastatic signaling pathways of melatonin in skeletomuscular sarcoma of childhood and adolescence. Cancer Metastasis Rev 2020; 39:303-320. [PMID: 32086631 DOI: 10.1007/s10555-020-09845-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Melatonin is an indole produced by the pineal gland at night under normal light or dark conditions, and its levels, which are higher in children than in adults, begin to decrease prior to the onset of puberty and continue to decline thereafter. Apart from circadian regulatory actions, melatonin has significant apoptotic, angiogenic, oncostatic, and antiproliferative effects on various cancer cells. Particularly, the ability of melatonin to inhibit skeletomuscular sarcoma, which most commonly affects children, teenagers, and young adults, is substantial. In the past few decades, the vast majority of references have focused on the concept of epithelial-mesenchymal transition involvement in invasion and migration to allow carcinoma cells to dissociate from each other and to degrade the extracellular matrix. Recently, researchers have applied this idea to sarcoma cells of mesenchymal origin, e.g., osteosarcoma and Ewing sarcoma, with their ability to initiate the invasion-metastasis cascade. Similarly, interest of the effects of melatonin has shifted from carcinomas to sarcomas. Herein, in this state-of-the-art review, we compiled the knowledge related to the molecular mechanism of antimetastatic actions of melatonin on skeletomuscular sarcoma as in childhood and during adolescence. Utilization of melatonin as an adjuvant with chemotherapeutic drugs for synergy and fortification of the antimetastatic effects for the reinforcement of therapeutic actions are considered.
Collapse
|
23
|
Kong X, Gao R, Wang Z, Wang X, Fang Y, Gao J, Reiter RJ, Wang J. Melatonin: A Potential Therapeutic Option for Breast Cancer. Trends Endocrinol Metab 2020; 31:859-871. [PMID: 32893084 DOI: 10.1016/j.tem.2020.08.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 07/01/2020] [Accepted: 08/03/2020] [Indexed: 02/08/2023]
Abstract
Melatonin has significant inhibitory effects in numerous cancers, especially breast cancer. In estrogen receptor (ER)-positive human breast cancer, the oncostatic actions of melatonin are mainly achieved by suppressing ER mRNA expression and ER transcriptional activity via the MT1 receptor. Melatonin also regulates the transactivation of nuclear receptors, estrogen-metabolizing enzymes, and the expression of related genes. Furthermore, melatonin suppresses tumor aerobic glycolysis, critical cell-signaling pathways relevant to cell proliferation, survival, metastasis, and overcomes drug resistance. Studies in animal and human models indicate that disruption of the circadian nocturnal melatonin signal promotes the growth, metabolism, and signaling of human breast cancer, resulting in resistance to hormone therapy and chemotherapy, which may be reversed by melatonin.
Collapse
Affiliation(s)
- Xiangyi Kong
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Ran Gao
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zhongzhao Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xiangyu Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yi Fang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Jidong Gao
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, Guangdong, 518116, China.
| | - Russel J Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229, USA.
| | - Jing Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
24
|
Sawant SS, Patil SM, Gupta V, Kunda NK. Microbes as Medicines: Harnessing the Power of Bacteria in Advancing Cancer Treatment. Int J Mol Sci 2020; 21:ijms21207575. [PMID: 33066447 PMCID: PMC7589870 DOI: 10.3390/ijms21207575] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/10/2020] [Accepted: 10/11/2020] [Indexed: 02/06/2023] Open
Abstract
Conventional anti-cancer therapy involves the use of chemical chemotherapeutics and radiation and are often non-specific in action. The development of drug resistance and the inability of the drug to penetrate the tumor cells has been a major pitfall in current treatment. This has led to the investigation of alternative anti-tumor therapeutics possessing greater specificity and efficacy. There is a significant interest in exploring the use of microbes as potential anti-cancer medicines. The inherent tropism of the bacteria for hypoxic tumor environment and its ability to be genetically engineered as a vector for gene and drug therapy has led to the development of bacteria as a potential weapon against cancer. In this review, we will introduce bacterial anti-cancer therapy with an emphasis on the various mechanisms involved in tumor targeting and tumor suppression. The bacteriotherapy approaches in conjunction with the conventional cancer therapy can be effective in designing novel cancer therapies. We focus on the current progress achieved in bacterial cancer therapies that show potential in advancing existing cancer treatment options and help attain positive clinical outcomes with minimal systemic side-effects.
Collapse
|
25
|
Tanaka M, Abe S. Different activities of antitumor immunomodulators to induce neutrophil adherence response. Drug Discov Ther 2020; 13:299-305. [PMID: 31956227 DOI: 10.5582/ddt.2019.01065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Functions of neutrophils, major participant in host defense mechanisms, are known to be regulated by various types of immunomodulators. Capacity of immunomodulators which are reported to show antitumor effect in vivo to induce neutorophil adherence response in vitro was investigated. Several bacterial immunomodulators (OK-432, Corynebacterium parvum, B.C.G.) and components of bacteria cell walls (lipopolysaccharide (LPS), lipid A, lipoteicoic acid, N-cell wall skelton (N-CWS), muramyl dipeptide (MDP)) and fungal polysaccharides (lentinan, zymosan A, etc.) were tested. Neutrophils prepared from peripheral blood of healthy men were incubated with each immunomodulator at 37°C for 60 min in 96 well plastic plates, then neutrophils adherent to substratum were stained by crystal violet and their optical density at 570 nm was measured as a parameter of neutrophil adherence. Although purified polysaccharides mainly prepared from fungi did not induce the adherent response, not only bacterial bodies and their components but also tumor necrosis factor-α (TNF-α) clearly induced it. On the base of these results, functional classification and typing of immunomodulators by different activities in neutrophil adherence was discussed.
Collapse
Affiliation(s)
- Motoharu Tanaka
- Department of Health and Nutrition, Faculty of Human Science, Tokiwa University, Mito, Ibaraki, Japan
| | - Shigeru Abe
- Teikyo University Institute of Medical Mycology, Tokyo, Japan.,Department of Sport and Medical Science, Faculty of Medical Technology, Teikyo University, Tokyo, Japan
| |
Collapse
|
26
|
Mirza-Aghazadeh-Attari M, Reiter RJ, Rikhtegar R, Jalili J, Hajalioghli P, Mihanfar A, Majidinia M, Yousefi B. Melatonin: An atypical hormone with major functions in the regulation of angiogenesis. IUBMB Life 2020; 72:1560-1584. [PMID: 32329956 DOI: 10.1002/iub.2287] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 03/10/2020] [Accepted: 03/26/2020] [Indexed: 02/06/2023]
Abstract
Melatonin (N-acetyl-5-methoxytryptamine), a pleotropic molecule with a wide distribution, has received considerable attention in recent years, mostly because of its various major effects on tissues or cells since it has both receptor-dependent and receptor-independent actions over a wide range of concentrations. These biological and physiological functions of melatonin include regulation of circadian rhythms by modulating the expression of core oscillator genes, scavenging the reactive oxygen species and reactive nitrogen species, modulating the immune system and inflammatory response, and exerting cytoprotective and antiapoptotic effects. Given the multiple critical roles of melatonin, dysregulation of its production or any disruption in signaling through its receptors may have contributed in the development of a wide range of disorders including type 2 diabetes, aging, immune-mediated diseases, hypertension, and cancer. Herein, we focus on the modulatory effects of melatonin on angiogenesis and its implications as a therapeutic strategy in cancer and related diseases.
Collapse
Affiliation(s)
- Mohammad Mirza-Aghazadeh-Attari
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Russel J Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Reza Rikhtegar
- Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Jalili
- Radiology Department, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parisa Hajalioghli
- Radiology Department, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ainaz Mihanfar
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
27
|
Al Obaydi MF, Hamed WM, Al Kury LT, Talib WH. Terfezia boudieri: A Desert Truffle With Anticancer and Immunomodulatory Activities. Front Nutr 2020; 7:38. [PMID: 32322585 PMCID: PMC7156637 DOI: 10.3389/fnut.2020.00038] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 03/17/2020] [Indexed: 12/24/2022] Open
Abstract
Desert truffles have high nutritional value and grow wild in the Mediterranean basin and Western Asia. Although, many studies were performed to evaluate truffles nutritious values and phytochemical composition, studies are limited to evaluate their anticancer and/ or immunomodulatory effects. Our study was conducted to evaluate the anticancer and immunomodulatory effects of Terfezia boudieri (desert truffle). Different solvent extracts were prepared from the truffle and MTT assay was used to measure their anticancer activity against cancer cell lines (T47D, MCF-7, MDA-MB231, HCT-116, and Hela). Total phenolic content in each extract was determined by using Folin-Ciocalteu reagent and qualitative phytochemical screening was performed using standard methods. The degree of apoptosis induction (using caspase 3 assay) and vascular endothelial growth factor expression were detected using standard kits. Also, ELISA was used to measure levels of IFN-γ, IL-2, IL-4, and IL-10 secreted by splenocytes after treatment with the extracts. The effect of the extracts on splenocytes proliferation was measured using MTT assay. Macrophage function was evaluated using nitro blue tetrazolium assay and pinocytosis function was evaluated using neutral red method. Terpenoids, phytosterols, and carbohydrates were present in all the solvent extracts, while tannins, alkaloids and flavonoids were detected only in aqueous/methanol and aqueous extracts. The highest total phenolic content was observed in aqueous and aqueous methanol extracts. The growth of cancer cell lines was inhibited by T. boudieri extracts in a dose dependent manner. N-hexane extract was the most potent against most cell lines. Aqueous/methanol extract showed high apoptosis induction and angiogenesis suppression effects. An increase in TH1 cytokines (IFN-γ, IL-2) level and a decrease in TH2 cytokine (IL-4) level were evident after lymphocytes stimulation by aqueous/methanol, n-hexane and ethyl acetate extracts of T. boudieri. Ethyl acetate extract of T. boudieri were the most potent extracts to stimulate lymphocytes proliferation while all other extracts showed moderate stimulation. Aqueous/methanol extract was the most active extract to stimulate phagocytosis. Ethyl acetate extract was the most active extract to stimulate pinocytosis. The use of T. boudieri provides variable health benefits. N-hexane, ethyl acetate, and aqueous/methanol extracts exhibited anticancer activities and are potent stimulators of innate and acquired immunity. Further testing is needed to identify the biologically active compounds and detect them quantitatively using GC-MS analysis.
Collapse
Affiliation(s)
- Maha Farid Al Obaydi
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman, Jordan
| | - Wafaa M Hamed
- Pharmacy Department, AlNoor University College, Mosul, Iraq
| | - Lina T Al Kury
- Department of Health Sciences, College of Natural and Health Sciences, Zayed University, Abu Dhabi, United Arab Emirates
| | - Wamidh H Talib
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman, Jordan
| |
Collapse
|
28
|
Ashrafi M, Xu Y, Muhamadali H, White I, Wilkinson M, Hollywood K, Baguneid M, Goodacre R, Bayat A. A microbiome and metabolomic signature of phases of cutaneous healing identified by profiling sequential acute wounds of human skin: An exploratory study. PLoS One 2020; 15:e0229545. [PMID: 32106276 PMCID: PMC7046225 DOI: 10.1371/journal.pone.0229545] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/08/2020] [Indexed: 01/13/2023] Open
Abstract
Profiling skin microbiome and metabolome has been utilised to gain further insight into wound healing processes. The aims of this multi-part temporal study in 11 volunteers were to analytically profile the dynamic wound tissue and headspace metabolome and sequence microbial communities in acute wound healing at days 0, 7, 14, 21 and 28, and to investigate their relationship to wound healing, using non-invasive quantitative devices. Metabolites were obtained using tissue extraction, sorbent and polydimethylsiloxane patches and analysed using GCMS. PCA of wound tissue metabolome clearly separated time points with 10 metabolites of 346 being involved in separation. Analysis of variance-simultaneous component analysis identified a statistical difference between the wound headspace metabolome, sites (P = 0.0024) and time points (P<0.0001), with 10 out of the 129 metabolites measured involved with this separation between sites and time points. A reciprocal relationship between Staphylococcus spp. and Propionibacterium spp. was observed at day 21 (P<0.05) with a statistical correlation between collagen and Propionibacterium (r = 0.417; P = 0.038) and Staphylococcus (r = -0.434; P = 0.03). Procrustes analysis showed a statistically significant similarity between wound headspace and tissue metabolome with non-invasive wound devices. This exploratory study demonstrates the temporal and dynamic nature of acute wound metabolome and microbiome presenting a novel class of biomarkers that correspond to wound healing, with further confirmatory studies now necessary.
Collapse
Affiliation(s)
- Mohammed Ashrafi
- Plastic & Reconstructive Surgery Research, Division of Musculoskeletal & Dermatological Sciences, NIHR Manchester Biomedical Research Centre (BRC), University of Manchester, Manchester, United Kingdom
- Manchester University NHS Foundation Trust, Wythenshawe Hospital, Manchester, United Kingdom
- Bioengineering Group, School of Materials, University of Manchester, Manchester, United Kingdom
| | - Yun Xu
- School of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Howbeer Muhamadali
- School of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Iain White
- School of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom
- Laboratory for Environmental and Life Sciences, University of Nova Gorica, Nova Gorica, Slovenia
| | - Maxim Wilkinson
- School of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom
| | - Katherine Hollywood
- Manchester Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom
| | - Mohamed Baguneid
- Manchester University NHS Foundation Trust, Wythenshawe Hospital, Manchester, United Kingdom
| | - Royston Goodacre
- School of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Ardeshir Bayat
- Plastic & Reconstructive Surgery Research, Division of Musculoskeletal & Dermatological Sciences, NIHR Manchester Biomedical Research Centre (BRC), University of Manchester, Manchester, United Kingdom
- Manchester University NHS Foundation Trust, Wythenshawe Hospital, Manchester, United Kingdom
- Bioengineering Group, School of Materials, University of Manchester, Manchester, United Kingdom
- * E-mail:
| |
Collapse
|
29
|
Zaki NFW, Sabri YM, Farouk O, Abdelfatah A, Spence DW, Bahammam AS, Pandi-Perumal SR. Depressive Symptoms, Sleep Profiles and Serum Melatonin Levels in a Sample of Breast Cancer Patients. Nat Sci Sleep 2020; 12:135-149. [PMID: 32104121 PMCID: PMC7025675 DOI: 10.2147/nss.s206768] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 12/02/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Chronobiological changes have been detected in various physiological functions of patients with breast cancer, suggesting dysregulation in the pineal gland and melatonin secretion. This study aimed to assess and measure serum melatonin levels pre- and postoperatively in patients who had been diagnosed for the first time with breast cancer. METHODS A sample of first-time breast cancer patients, consisting of 45 women aged 25-65 years, was evaluated and psychometric assessment was completed using the Beck Depression Inventory (BDI), Insomnia Severity Index (White, Weinberg et al) and the Epworth Sleepiness Scale (Cardoso, Spence et al). The Morningness-Eveningness questionnaire (MEQ) was used to assess the chronotype. Serum melatonin levels were measured by radioimmunoassay. RESULTS Morning and moderately morning chronotypes were prevalent among the sample (25%, 45.8%, respectively). The finding of a mean BDI score of 13.5±11.2 indicated that depressive symptoms were prevalent among the sample. Despite the finding that a mean of the participants apparently had no symptoms of daytime sleepiness (the mean and standard deviations of the ESS were 7.5±4.4), scores on the ISI (a mean of 16.7±SD 7.3) indicated that insomnia symptoms were prevalent in the sample. Melatonin levels showed an inverse relationship with insomnia severity as measured by the ISI and depression severity, as assessed by the BDI. The postoperative melatonin levels were higher than the preoperative levels. Additionally, the psychometric profile differed among various pathological types of breast cancer according to their hormone receptor profile. CONCLUSION Serum melatonin levels correlated significantly with self-reported sleep quality and psychometric profiles of depression in the present sample of breast cancer patients. The melatonin assay, which is relatively easy to carry out, provided a convenient, objective measure of an important biological correlate of sleep quality and depression. This assay thus represented a confirmatory alternative to the self-report instruments, which may sometimes be unreliable. Future studies should further evaluate the utility of melatonin measures in psychiatric and sleep complaints of breast cancer patients.
Collapse
Affiliation(s)
- Nevin FW Zaki
- Sleep Research Unit, Department of Psychiatry, Faculty of Medicine, Mansoura University, Mansoura, Egypt
- Department of Psychiatry, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Yomna M Sabri
- Department of Psychiatry, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Omar Farouk
- Mansoura University Oncology Center, Mansoura, Egypt
| | - Amany Abdelfatah
- Clinical Pathology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | | | - Ahmed S Bahammam
- University Sleep Disorders Center, College of Medicine, King Saud University, Riyadh, Saudi Arabia
- The Strategic Technologies Program of the National Plan for Sciences and Technology and Innovation in the Kingdom of Saudi Arabia, Riyadh, Saudi Arabia
| | | |
Collapse
|
30
|
A ketogenic diet combined with melatonin overcomes cisplatin and vincristine drug resistance in breast carcinoma syngraft. Nutrition 2019; 72:110659. [PMID: 31986320 DOI: 10.1016/j.nut.2019.110659] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/19/2019] [Accepted: 11/04/2019] [Indexed: 12/14/2022]
Abstract
OBJECTIVES Chemotherapy is one of the major treatments of cancer. However, the emergence of resistance to chemotherapeutic agents is still a major obstacle in the successful management of resistant tumors. Therefore, development of new mechanisms to overcome drug resistance is essential and may be further developed into effective therapies that can flip the switch from drug resistance to susceptibility. The aim of this study was to evaluate a combination consisting of a ketogenic diet and melatonin to determine whether it would inhibit cisplatin- and vincristine-resistant breast cancer. METHODS In the in vitro part of the study, drug-resistant cell lines were treated with melatonin and real-time polymerase chain reaction was used to measure levels of gene expression involved in apoptosis and resistance. On the protein level, the activity of caspase-3 and the level of vascular endothelin growth factor protein were determined. In the in vivo part, tumor-bearing mice received one of the following treatments: ketogenic diet, melatonin, combination of melatonin and ketogenic diet, vehicle, or chemotherapy. RESULTS Successful inhibition of resistant cell lines was achieved by melatonin. This inhibition was mediated by induction of apoptosis, inhibition of angiogenesis, and downregulation of resistance genes. A synergistic anticancer effect was observed between melatonin and the ketogenic diet against resistant breast tumors inoculated in mice with a cure rate of 70%. CONCLUSIONS The combination of melatonin and a ketogenic diet represents a promising option to overcome drug resistance in cancer chemotherapy. However, further testing on the protein level using flow cytometry is important to better understand the mechanisms of action.
Collapse
|
31
|
Knackstedt R, Knackstedt T, Gatherwright J. The role of topical probiotics in skin conditions: A systematic review of animal and human studies and implications for future therapies. Exp Dermatol 2019; 29:15-21. [DOI: 10.1111/exd.14032] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/27/2019] [Accepted: 08/26/2019] [Indexed: 02/06/2023]
|
32
|
Wang Z, Li Y, Xing L, Sun F, Yang Z, Wang F, Tan H. Effects of the anti-angiogenic carbohydrate-peptide conjugate, chitooligosaccharide-ES2 on endothelial cells and tumor-bearing mice. Carbohydr Polym 2019; 208:302-313. [DOI: 10.1016/j.carbpol.2018.12.089] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/19/2018] [Accepted: 12/27/2018] [Indexed: 12/20/2022]
|
33
|
Talib W, Halees R, Issa R. Varthemia iphionoides and Pelargonium graveolens Extracts as a Treatment of Breast Cancer Implanted in Diabetic Mice. Pharmacogn Mag 2019. [DOI: 10.4103/pm.pm_18_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
34
|
de Castro TB, Bordin-Junior NA, de Almeida EA, de Campos Zuccari DAP. Evaluation of melatonin and AFMK levels in women with breast cancer. Endocrine 2018; 62:242-249. [PMID: 29797213 DOI: 10.1007/s12020-018-1624-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 05/02/2018] [Indexed: 12/29/2022]
Abstract
PURPOSE Changes in the circadian rhythm may contribute to the development of cancer and are correlated with the high risk of breast cancer (BC) in night workers. Melatonin is a hormone synthesized by the pineal gland at night in the absence of light. Levels of melatonin and the metabolite of oxidative metabolism AFMK (acetyl-N-formyl-5-methoxykynurenamine), are suggested as potential biomarkers of BC risk. The aims of this study were to evaluate levels of melatonin and AFMK in women recently diagnosed with BC, women under adjuvant chemotherapy, and night-shift nurses, and compare them with healthy women to evaluate the relation of these compounds with BC risk. METHODS Blood samples were collected from 47 women with BC, 9 healthy women, 10 healthy night shift nurses, and 6 patients under adjuvant chemotherapy. Compound levels were measured by mass spectrometry. RESULTS AND CONCLUSIONS Our results showed that women with BC had lower levels of melatonin compared to control group women, and even lower in night-shift nurses and in patients under adjuvant chemotherapy. There was no significant difference of AFMK levels between the groups. In addition to this, high levels of melatonin and AFMK were related to patients with metastasis, and high levels of AFMK were related to the presence of lymph node-positive, tumor > 20 mm and patients who sleep with light at night. Our results showed a reduction of melatonin levels in BC patients, suggesting a relation with the disease, and in addition, point to the importance of melatonin supplementation in women that work at night to reduce the BC risk.
Collapse
Affiliation(s)
- Tialfi Bergamin de Castro
- São Paulo State University - UNESP, Cristóvão Colombo, 2265, São José do Rio Preto, 15054-000, São Paulo, Brazil
| | - Newton Antônio Bordin-Junior
- São José do Rio Preto Medical School - FAMERP, Av. Brigadeiro Faria Lima, 5416, São José do Rio Preto, 15090-000, São Paulo, Brazil
| | - Eduardo Alves de Almeida
- Regional University of Blumenau Foundation - FURB, Antônio da Veiga, 140, Blumenau, 89030-903, Santa Catarina, Brazil
| | - Debora Aparecida Pires de Campos Zuccari
- São Paulo State University - UNESP, Cristóvão Colombo, 2265, São José do Rio Preto, 15054-000, São Paulo, Brazil.
- São José do Rio Preto Medical School - FAMERP, Av. Brigadeiro Faria Lima, 5416, São José do Rio Preto, 15090-000, São Paulo, Brazil.
| |
Collapse
|
35
|
Li Y, Li S, Zhou Y, Meng X, Zhang JJ, Xu DP, Li HB. Melatonin for the prevention and treatment of cancer. Oncotarget 2018; 8:39896-39921. [PMID: 28415828 PMCID: PMC5503661 DOI: 10.18632/oncotarget.16379] [Citation(s) in RCA: 254] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 03/09/2017] [Indexed: 12/17/2022] Open
Abstract
The epidemiological studies have indicated a possible oncostatic property of melatonin on different types of tumors. Besides, experimental studies have documented that melatonin could exert growth inhibition on some human tumor cells in vitro and in animal models. The underlying mechanisms include antioxidant activity, modulation of melatonin receptors MT1 and MT2, stimulation of apoptosis, regulation of pro-survival signaling and tumor metabolism, inhibition on angiogenesis, metastasis, and induction of epigenetic alteration. Melatonin could also be utilized as adjuvant of cancer therapies, through reinforcing the therapeutic effects and reducing the side effects of chemotherapies or radiation. Melatonin could be an excellent candidate for the prevention and treatment of several cancers, such as breast cancer, prostate cancer, gastric cancer and colorectal cancer. This review summarized the anticancer efficacy of melatonin, based on the results of epidemiological,experimental and clinical studies, and special attention was paid to the mechanisms of action.
Collapse
Affiliation(s)
- Ya Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Sha Li
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yue Zhou
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Xiao Meng
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Jiao-Jiao Zhang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Dong-Ping Xu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China.,South China Sea Bioresource Exploitation and Utilization Collaborative Innovation Center, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
36
|
Abstract
The skin supports a delicate ecosystem of microbial elements. Although the skin typically acts as a barrier, these microbes interact with the internal body environment and imbalances from the "healthy" state that have been linked to several dermatologic diseases. Understanding the changes in microbial flora in disease states allows for the potential to treat by restoring equilibrium. With the rising popularity of holistic and natural consumerism, prebiotics, probiotics, symbiotic, and other therapies are under study to find alternative treatments to these skin disorders through manipulation or supplementation of the microbiome.
Collapse
Affiliation(s)
- Shenara Musthaq
- Department of Dermatology, SUNY Downstate Medical Center, Brooklyn, NY
| | - Anna Mazuy
- Early Clinical Evaluation Department, Galderma-Nestlé Skin Health R&D, Les Templiers, Sophia Antipolis, France
| | - Jeannette Jakus
- Department of Dermatology, SUNY Downstate Medical Center, Brooklyn, NY.
| |
Collapse
|
37
|
Talib WH. Melatonin and Cancer Hallmarks. Molecules 2018; 23:molecules23030518. [PMID: 29495398 PMCID: PMC6017729 DOI: 10.3390/molecules23030518] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 02/09/2018] [Accepted: 02/19/2018] [Indexed: 02/07/2023] Open
Abstract
Melatonin is a natural indoleamine produced by the pineal gland that has many functions, including regulation of the circadian rhythm. Many studies have reported the anticancer effect of melatonin against a myriad of cancer types. Cancer hallmarks include sustained proliferation, evading growth suppressors, metastasis, replicative immortality, angiogenesis, resisting cell death, altered cellular energetics, and immune evasion. Melatonin anticancer activity is mediated by interfering with various cancer hallmarks. This review summarizes the anticancer role of melatonin in each cancer hallmark. The studies discussed in this review should serve as a solid foundation for researchers and physicians to support basic and clinical studies on melatonin as a promising anticancer agent.
Collapse
Affiliation(s)
- Wamidh H Talib
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman 11931-166, Jordan.
| |
Collapse
|
38
|
Petersson F, Kilsgård O, Shannon O, Lood R. Platelet activation and aggregation by the opportunistic pathogen Cutibacterium (Propionibacterium) acnes. PLoS One 2018; 13:e0192051. [PMID: 29385206 PMCID: PMC5792000 DOI: 10.1371/journal.pone.0192051] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 01/16/2018] [Indexed: 11/19/2022] Open
Abstract
Cutibacterium (Propionibacterium) acnes, considered a part of the skin microbiota, is one of the most commonly isolated anaerobic bacteria from medical implants in contact with plasma. However, the precise interaction of C. acnes with blood cells and plasma proteins has not been fully elucidated. Herein, we have investigated the molecular interaction of C. acnes with platelets and plasma proteins. We report that the ability of C. acnes to aggregate platelets is dependent on phylotype, with a significantly lower ability amongst type IB isolates, and the interaction of specific donor-dependent plasma proteins (or concentrations thereof) with C. acnes. Pretreatment of C. acnes with plasma reduces the lag time before aggregation demonstrating that pre-deposition of plasma proteins on C. acnes is an important step in platelet aggregation. Using mass spectrometry we identified several plasma proteins deposited on C. acnes, including IgG, fibrinogen and complement factors. Inhibition of IgG, fibrinogen or complement decreased C. acnes-mediated platelet aggregation, demonstrating the importance of these plasma proteins for aggregation. The interaction of C. acnes and platelets was visualized using fluorescence microscopy, verifying the presence of IgG and fibrinogen as components of the aggregates, and co-localization of C. acnes and platelets in the aggregates. Here, we have demonstrated the ability of C. acnes to activate and aggregate platelets in a bacterium and donor-specific fashion, as well as added mechanistic insights into this interaction.
Collapse
Affiliation(s)
- Frida Petersson
- Division of Infection Medicine, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Ola Kilsgård
- Division of Infection Medicine, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
- Department of Immunotechnology, Faculty of Engineering Lund, Lund University, Lund, Sweden
| | - Oonagh Shannon
- Division of Infection Medicine, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Rolf Lood
- Division of Infection Medicine, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
- * E-mail:
| |
Collapse
|
39
|
Wang T, Liu B, Guan Y, Gong M, Zhang W, Pan J, Liu Y, Liang R, Yuan Y, Ye L. Melatonin inhibits the proliferation of breast cancer cells induced by bisphenol A via targeting estrogen receptor-related pathways. Thorac Cancer 2018; 9:368-375. [PMID: 29330934 PMCID: PMC5832473 DOI: 10.1111/1759-7714.12587] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 12/04/2017] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Background: Bisphenol A (BPA) is an estrogen-like chemical widely contained in daily supplies. There is evidence that environmental exposure to BPA could contribute to the development of hormone-related cancers. As is reported in numerous studies, melatonin, an endogenous hormone secreted by the pineal gland, could markedly inhibit estrogen-induced proliferation of breast cancer (BC) cells. In this study, we intended to reveal the effects of melatonin on BPA-induced proliferation of estrogen receptor-positive BC cells. METHODS Methods: We used methyl thiazolyl tetrazolium, luciferase reporter gene and western blotting assays to testify the effect of melatonin on BPA-mediated proliferation of MCF-7 and T47D cells. RESULTS Methyl thiazolyl tetrazolium and colony formation assays showed that melatonin could significantly abolish BPA-elevated cell proliferation. Meanwhile, BPA-upregulated phosphorylation of ERK and AKT was decreased by melatonin treatment. Mechanistically, we found that BPA was capable of upregulating the protein levels of steroid receptor coactivators (SRC-1, SRC-3), as well as promoting the estrogen response element activity. However, the addition of melatonin could remarkably block the elevation of steroid receptor coactivators expression and estrogen response element activity triggered by BPA. CONCLUSION Conclusions: Therefore, these results demonstrated that melatonin could abrogate BPA-induced proliferation of BC cells. Therapeutically, melatonin could be regarded as a potential medication for BPA-associated BC.
Collapse
Affiliation(s)
- Tianjiao Wang
- State Key Laboratory of Medicinal Chemical Biology, Department of Biochemistry, College of Life Sciences, Nankai University, Tianjin, China.,Department of General Surgery, The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University Cancer Center, Dalian, China
| | - Bowen Liu
- State Key Laboratory of Medicinal Chemical Biology, Department of Biochemistry, College of Life Sciences, Nankai University, Tianjin, China
| | - Yanan Guan
- Department of General Surgery, The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University Cancer Center, Dalian, China
| | - Miaomiao Gong
- Department of General Surgery, The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University Cancer Center, Dalian, China
| | - Weiying Zhang
- State Key Laboratory of Medicinal Chemical Biology, Department of Biochemistry, College of Life Sciences, Nankai University, Tianjin, China
| | - Jinjin Pan
- Department of General Surgery, The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University Cancer Center, Dalian, China
| | - Yanan Liu
- Department of General Surgery, The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University Cancer Center, Dalian, China
| | - Rui Liang
- Department of General Surgery, The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University Cancer Center, Dalian, China
| | - Yuhui Yuan
- Department of General Surgery, The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University Cancer Center, Dalian, China
| | - Lihong Ye
- State Key Laboratory of Medicinal Chemical Biology, Department of Biochemistry, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
40
|
Goradel NH, Asghari MH, Moloudizargari M, Negahdari B, Haghi-Aminjan H, Abdollahi M. Melatonin as an angiogenesis inhibitor to combat cancer: Mechanistic evidence. Toxicol Appl Pharmacol 2017; 335:56-63. [DOI: 10.1016/j.taap.2017.09.022] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 09/13/2017] [Accepted: 09/28/2017] [Indexed: 12/15/2022]
|
41
|
Mota Garcia T, Hiyoshi A, Udumyan R, Sjöqvist H, Fall K, Montgomery S. Acne in late adolescence is not associated with a raised risk of subsequent malignant melanoma among men. Cancer Epidemiol 2017; 51:44-48. [PMID: 29032321 DOI: 10.1016/j.canep.2017.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 09/06/2017] [Accepted: 10/01/2017] [Indexed: 12/31/2022]
Abstract
BACKGROUND To evaluate the association of acne in late adolescence with the risk for subsequent malignant melanoma (MM) in men. METHODS Swedish register-based cohort study of 242,096 males born between 1952 and 1956, who took part in compulsory assessments for Swedish military conscription in late adolescence between 1969 and 1975, with subsequent diagnoses of MM (n=1,058) up to December 31, 2009. Covariates included measures of childhood circumstances and information from adolescence on presence of acne, physical fitness, cognitive function, body mass index (BMI), and a summary of diagnoses. Cox regression was used for the analysis. RESULTS In total 1,058 men were diagnosed with MM. Acne was not associated with subsequent MM, with an adjusted hazard ratio (and 95% confidence interval) of 0.95 (0.61 to 1.49). Men with parents who were agricultural workers, and men who lived in northern Sweden, had lower physical fitness, or lower cognitive function had a lower risk of MM. Overweight and obesity was associated with a raised risk, with an adjusted hazard ratio of 1.39 (1.14, 1.71). CONCLUSIONS Acne in late adolescence is unlikely to represent a raised risk for subsequent MM in men. Overweight or obesity was identified as a raised risk for MM, possibly due to the associated increased skin surface area.
Collapse
Affiliation(s)
- Teresa Mota Garcia
- Faculty of Health Sciences of the University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Ayako Hiyoshi
- Clinical Epidemiology and Biostatistics, School of Medical Sciences, Örebro University, SE 701 82 Örebro, Sweden.
| | - Ruzan Udumyan
- Clinical Epidemiology and Biostatistics, School of Medical Sciences, Örebro University, SE 701 82 Örebro, Sweden
| | - Hugo Sjöqvist
- Clinical Epidemiology and Biostatistics, School of Medical Sciences, Örebro University, SE 701 82 Örebro, Sweden; Department of Statistics, Örebro University, 701 82, Örebro, Sweden
| | - Katja Fall
- Clinical Epidemiology and Biostatistics, School of Medical Sciences, Örebro University, SE 701 82 Örebro, Sweden; Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, SE 171 77, Stockholm, Sweden
| | - Scott Montgomery
- Clinical Epidemiology and Biostatistics, School of Medical Sciences, Örebro University, SE 701 82 Örebro, Sweden; Clinical Epidemiology Unit, Department of Medicine, Karolinska University Hospital, Solna, Karolinska Institutet, SE 171 76 Stockholm, Sweden; Department of Epidemiology and Public Health, University College, WC1E 6BT London, UK
| |
Collapse
|
42
|
Antitumor effect of thymoquinone combined with resveratrol on mice transplanted with breast cancer. ASIAN PAC J TROP MED 2017; 10:400-408. [PMID: 28552110 DOI: 10.1016/j.apjtm.2017.03.026] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 02/14/2017] [Accepted: 03/15/2017] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE To test the anticancer potential activity of the combination of thymoquinone (TQ) and resveratrol (RES) against breast cancer in mice. METHODS The antiproliferative activity of TQ, RES and their combination was assessed against three breast cancer cell lines and one normal cells using MTT assay. The combination index was calculated using isobolographic method. Balb/C mice were inoculated with EMT6/P cells and in vivo antitumor activity was evaluated. RESULTS The combination therapy also caused significant decrease in tumor size with a percentage cure of 60%. The combination therapy induced geographic necrosis, enhanced apoptosis, and decreased VEGF expression. Serum levels of IFN-γ were elevated in mice treated with combination therapy with no liver or kidney toxicity. CONCLUSIONS The combination of TQ and RES against breast cancer in mice can work synergistically. The anticancer effect of this combination is mediated by apoptosis induction, angiogenesis inhibition and immune modulation.
Collapse
|
43
|
Gelaleti GB, Borin TF, Maschio-Signorini LB, Moschetta MG, Hellmén E, Viloria-Petit AM, Zuccari DAPC. Melatonin and IL-25 modulate apoptosis and angiogenesis mediators in metastatic (CF-41) and non-metastatic (CMT-U229) canine mammary tumour cells. Vet Comp Oncol 2017; 15:1572-1584. [PMID: 28322030 DOI: 10.1111/vco.12303] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 11/04/2016] [Accepted: 12/11/2016] [Indexed: 12/22/2022]
Abstract
BACKGROUND Melatonin has oncostatic actions and IL-25 is active in inflammatory processes that induce apoptosis in tumor cells AIM: The aim of this study was to evaluate melatonin and IL-25 in metastatic (CF-41) and non-metastatic (CMT-U229) canine mammary tumor cells cultured as monolayers and tridimensional structures. MATERIALS AND METHODS The cells were treated with melatonin, IL-25 and IL-17B silencing gene and performed cell viability, gene and protein expression of caspase-3 and VEGFA (Vascular endothelial growth factor A) and an apoptosis membrane protein array. RESULTS Treatment with 1 mM of melatonin reduced cell viability of both tumor cell lines, all treatments alone and combined significantly increased caspase-3 cleaved and proteins involved in the apoptotic pathway and reduced pro-angiogenic VEGFA, confirming the effectiveness of these potential promising treatments. CONCLUSION This is the first study evaluating the potential use of these strategies in CF-41 and CMT-U229 cell lines and together encourages subsequent in vitro and in vivo studies for further exploration of clinical applications.
Collapse
Affiliation(s)
- G B Gelaleti
- Programa de Pós-Graduação em Genética, Universidade Estadual Paulista 'Júlio de Mesquita Filho' (UNESP/IBILCE), São José do Rio Preto, Brazil.,Faculdade de Medicina de São José do Rio Preto (FAMERP), Laboratório de Investigação Molecular do Câncer (LIMC), São José do Rio Preto, Brazil
| | - T F Borin
- Georgia Cancer Center, Tumor Imaging Angiogenesis Laboratory, Augusta University, Augusta, Georgia
| | - L B Maschio-Signorini
- Faculdade de Medicina de São José do Rio Preto (FAMERP), Laboratório de Investigação Molecular do Câncer (LIMC), São José do Rio Preto, Brazil
| | - M G Moschetta
- Faculdade de Medicina de São José do Rio Preto (FAMERP), Laboratório de Investigação Molecular do Câncer (LIMC), São José do Rio Preto, Brazil
| | - E Hellmén
- Department of Anatomy, Physiology and Biochemistry, Faculty of Veterinary Medicine, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - A M Viloria-Petit
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Canada
| | - D A P C Zuccari
- Programa de Pós-Graduação em Genética, Universidade Estadual Paulista 'Júlio de Mesquita Filho' (UNESP/IBILCE), São José do Rio Preto, Brazil.,Faculdade de Medicina de São José do Rio Preto (FAMERP), Laboratório de Investigação Molecular do Câncer (LIMC), São José do Rio Preto, Brazil
| |
Collapse
|