1
|
Zhao S, Qiao D, Zhang R, Jing T, An Y. CsMPDB 1.0: An interactive web application for visualizing and exploring the microRNAs and phasiRNAs of tea plant (Camellia sinensis var. sinensis 'Shuchazao'). Int J Biol Macromol 2025; 293:139209. [PMID: 39746417 DOI: 10.1016/j.ijbiomac.2024.139209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/20/2024] [Accepted: 12/24/2024] [Indexed: 01/04/2025]
Abstract
The microRNAs and phasiRNAs of plant are small non-coding RNAs with important functions through regulating gene expression at the post-transcriptional level. However, identifying miRNAs, phasiRNAs and their target genes from numerous sequencing raw data requires multiple software and command-line operations, which are time-consuming and labor-intensive for non-model plants. Therefore, we present CsMPDB (miRNAs and phasiRNAs database of Camellia sinensis), an interactive web application with multiple analysis modules developed to visualize and explore miRNA and phasiRNA in tea plants based on 259 sRNA-seq samples and 24 degradome-seq samples in NCBI. The source code for the CsMPDB was written in R/shiny. It is compatible, extendable, and portable to be easily set up on different operating systems, and can be accessed at http://myshiny.cpolar.io/CsMPDB. This application plays an important role in accelerating the functional study of sRNAs in the transcriptional regulation of tea plants, and has important reference value for the development of sRNA databases of other species.
Collapse
Affiliation(s)
- Shiqi Zhao
- School of Fishery, Zhejiang Ocean University, Zhoushan 316022, China
| | - Dahe Qiao
- Tea Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550025, Guizhou, China
| | - Runqi Zhang
- School of Fishery, Zhejiang Ocean University, Zhoushan 316022, China
| | - Tingting Jing
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China.
| | - Yanlin An
- Department of Food Science and Engineering, Moutai Institute, Renhuai 564507, China.
| |
Collapse
|
2
|
Zhang J, Tang C, Xie J, Li J, Zhang X, Wang C. Exogenous strigolactones alleviate low-temperature stress in peppers seedlings by reducing the degree of photoinhibition. BMC PLANT BIOLOGY 2024; 24:907. [PMID: 39349999 PMCID: PMC11441246 DOI: 10.1186/s12870-024-05622-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND The growth and yield of pepper, a typical temperature-loving vegetable, are limited by low-temperature environments. Using low-temperature sensitive 'Hangjiao No. 4' (Capsicum annuum L.) as experimental material, this study analyzed the changes in plant growth and photosynthesis under different treatments: normal control (NT), low-temperature stress alone (LT), low-temperature stress in strigolactone pretreated plants (SL_LT), and low-temperature stress in strigolactone biosynthesis inhibitor pretreated plants (Tis_LT). RESULTS SL pretreatment increased the net photosynthetic rate (Pn) and PSII actual photochemical efficiency (φPSII), reducing the inhibition of LT on the growth of pepper by 17.44% (dry weight of shoot). Due to promoting the accumulation of carotenoids, such as lutein, and the de-epoxidation of the xanthophyll cycle [(Z + A)/(Z + A + V)] by strigolactone after long-term low-temperature stress (120 h), non-photochemical quenching (NPQ) of pepper was increased to reduce the excess excitation energy [(1-qP)/NPQ] and the photoinhibition degree (Fv/Fm) of pepper seedlings under long-term low-temperature stress was alleviated. Twelve cDNA libraries were constructed from pepper leaves by transcriptome sequencing. There were 8776 differentially expressed genes (DEGs), including 4473 (51.0%) upregulated and 4303 (49.0%) downregulated genes. Gene ontology pathway annotation showed that based on LT, the DEGs of SL_LT and Tis_LT were significantly enriched in the cellular component, which is mainly related to the photosystem and thylakoids. Further analysis of the porphyrin and chlorophyll biosynthesis, carotenoid biosynthesis, photosynthesis-antenna protein, and photosynthetic metabolic pathways and the Calvin cycle under low-temperature stress highlighted 18, 15, 21, 29, and 31 DEGs for further study, which were almost all highly expressed under SL_LT treatment and moderately expressed under LT treatment, whereas Tis_LT showed low expression. CONCLUSION The positive regulatory effect of SLs on the low-temperature tolerance of pepper seedlings was confirmed. This study provided new insights for the development of temperature-tolerant pepper lines through breeding programs.
Collapse
Affiliation(s)
- Jing Zhang
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou, 730070, China
| | - Chaonan Tang
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou, 730070, China
| | - Jianming Xie
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou, 730070, China.
| | - Jing Li
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou, 730070, China
| | - Xiaodan Zhang
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou, 730070, China
| | - Cheng Wang
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou, 730070, China
| |
Collapse
|
3
|
Gill AS, Wolyn DJ. Transcriptomic analysis of Asparagus officinalis cultivars with varying levels of freezing tolerance over fall acclimation and spring deacclimation periods. FRONTIERS IN PLANT SCIENCE 2024; 15:1442784. [PMID: 39220003 PMCID: PMC11361922 DOI: 10.3389/fpls.2024.1442784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 07/16/2024] [Indexed: 09/04/2024]
Abstract
Asparagus (Asparagus officinalis L.) is an important vegetable crop in southern Ontario, Canada, where winter air and soil temperatures below 0°C are common. Consequently, cultivars growing in this area must possess winterhardiness and freezing tolerance for survival. Asparagus acquires freezing tolerance in the fall through cold acclimation and loses freezing tolerance in the spring through deacclimation. To understand the molecular bases of these processes, transcriptomic analysis (RNA-Seq) was conducted on two cultivars, one adapted, 'Guelph Millennium' (GM), and one unadapted, 'UC157' (UC), to the winter conditions of southern Ontario. RNA extracted from bud and rhizome tissues, sampled on three dates during early spring and late fall, was subjected to sequencing. In the fall, the numbers of differentially expressed (DE) genes at the second and third harvests increased, relative to the first harvest, in dormant buds and rhizomes as freezing tolerance of cultivars increased, and the majority of DE genes were downregulated. In spring, freezing tolerance decreased as plants deacclimated and most genes DE at second and third harvests were upregulated in both cultivars. GM had lower LT50 (lethal temperature at which 50% of plants die) values and hence higher freezing tolerance than UC on specific sampling dates during both spring and fall, and expression patterns of specific genes were correlated with LT50 differences. Functional analysis revealed that these genes were involved in carbohydrate metabolic process, plant hormone signal transduction (auxin and gibberellin), proline metabolism, biosynthesis of secondary metabolites, circadian rhythm, and late embryogenesis abundant proteins and could be associated with cold acclimation and deacclimation processes. These findings will help researchers understand the molecular mechanisms of freezing tolerance in asparagus, leading to breeding and genetic strategies to improve the trait.
Collapse
Affiliation(s)
| | - David J. Wolyn
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
4
|
Wang H, Xu F. Identification and expression analysis of the GLK gene family in tea plant (Camellia sinensis) and a functional study of CsGLK54 under low-temperature stress. Sci Rep 2024; 14:12465. [PMID: 38816567 PMCID: PMC11139860 DOI: 10.1038/s41598-024-63323-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/28/2024] [Indexed: 06/01/2024] Open
Abstract
The Golden2-like (GLK) transcription factor family is a significant group of transcription factors in plantae. The currently available studies have shown that GLK transcription factors have been studied mainly in chloroplast growth and development, with fewer studies in abiotic stress regulation. In this study, all tea plant GLK transcription factors were identified for the first time in tea plants, and genome-wide identification, phylogenetic analysis, and thematic characterization were performed to identify 66 GLK transcription factors in tea plants. These genes are categorized into seven groups, and an amino acid sequence comparison analysis is performed. This study revealed that the structure of GLK genes in tea plants is highly conserved and that these genes are distributed across 14 chromosomes. Collinearity analysis revealed 17 pairs of genes with fragment duplications and one pair of genes with tandem duplications, and the analysis of Ka/Ks ratios indicated that most of the genes underwent negative purifying selection. Analysis of promoter cis-elements revealed that the promoters of tea plant GLK genes contain a large number of cis-acting elements related to phytohormones and stress tolerance. In addition, a large number of genes contain LTR elements, suggesting that tea plant GLK genes are involved in low-temperature stress. qRT‒PCR analysis revealed that the expression of CsGLK17, CsGLK38, CsGLK54, CsGLK11 and CsGLK60 significantly increased and that the expression of CsGLK7 and CsGLK13 decreased in response to low-temperature induction. Taken together, the results of the transcription profile analysis suggested that CsGLK54 may play an important regulatory role under low-temperature stress. The subcellular localization of CsGLK54 was in the nucleus. Furthermore, CsGLK54 positively regulated the transcription levels of the NbPOD and NbSOD genes under low-temperature stress, which led to an increase in POD and SOD enzyme activities and a decrease in MDA content. These findings provide valuable insights into the regulatory mechanism of low-temperature stress in tea plants.
Collapse
Affiliation(s)
- Hongtao Wang
- Key Laboratory of Landscape Architecture, College of Landscape Architecture, Nanjing Forestry University, Nanjing, 210037, China.
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.
| | - Fangfang Xu
- College of Forestry, Xinyang Agriculture and Forestry University, Xinyang, 464000, China
| |
Collapse
|
5
|
Waseem M, Peng J, Basharat S, Peng Q, Li Y, Yang G, Cheng S, Liu P. A comprehensive analysis of transcriptomic data for comparison of cold tolerance in two Brassica napus genotypes. PHYSIOLOGIA PLANTARUM 2024; 176:e14213. [PMID: 38353135 DOI: 10.1111/ppl.14213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/01/2024] [Accepted: 02/04/2024] [Indexed: 02/16/2024]
Abstract
Brassica napus is an important oil crop and cold stress severely limits its productivity. To date, several studies have reported the regulatory genes and pathways involved in cold-stress responses in B. napus. However, transcriptome-scale identification of the regulatory genes is still lacking. In this study, we performed comparative transcriptome analysis of cold-tolerant C18 (CT - C18) and cold-sensitive C6 (CS - C6) Brassica napus genotypes under cold stress for 7 days, with the primary purpose of identifying cold-responsive transcription in B. napus. A total of 6061 TFs belonging to 58 families were annotated in the B. napus genome, of which 3870 were expressed under cold stress in both genotypes. Among these, 451 TFs were differentially expressed (DE), with 21 TF genes expressed in both genotypes. Most TF members of the MYB (26), bHLH (23), and NAC (17) families were significantly expressed in the CT - C18 genotype compared with the CS - C6 B. napus genotype. GO classification showed a significant role in transcription regulation, DNA-binding transcription factor activity, response to chitin, and the ethylene-activated signaling pathway. KEGG pathway annotation revealed these TFs are involved in regulating more pathways, resulting in more tolerance. In conclusion, the results provide insights into the molecular regulation mechanisms of B. napus in response to freezing treatment, expanding our understanding of the complex molecular mechanisms in plants' response to freezing stress.
Collapse
Affiliation(s)
- Muhammad Waseem
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication) Hainan University, Sanya, Hainan
- School of Tropical Agriculture and Forestry (School of Agriculture and Rural Affairs, School of Rural Revitalization), Hainan University, Haikou, Hainan
- Fang Zhiyuan Academician Team Innovation Center of Hainan Province
| | - Jiantao Peng
- School of Tropical Agriculture and Forestry (School of Agriculture and Rural Affairs, School of Rural Revitalization), Hainan University, Haikou, Hainan
| | - Sana Basharat
- Department of Botany, University of Agriculture, Faisalabad, Pakistan
| | - Qiqi Peng
- College of Agronomy, Guangxi University, Guangxi, China
| | - Yun Li
- College of Agronomy, Guangxi University, Guangxi, China
| | - Guangsheng Yang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication) Hainan University, Sanya, Hainan
- School of Tropical Agriculture and Forestry (School of Agriculture and Rural Affairs, School of Rural Revitalization), Hainan University, Haikou, Hainan
| | - Shanhan Cheng
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication) Hainan University, Sanya, Hainan
- School of Tropical Agriculture and Forestry (School of Agriculture and Rural Affairs, School of Rural Revitalization), Hainan University, Haikou, Hainan
- Fang Zhiyuan Academician Team Innovation Center of Hainan Province
| | - Pingwu Liu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication) Hainan University, Sanya, Hainan
- School of Tropical Agriculture and Forestry (School of Agriculture and Rural Affairs, School of Rural Revitalization), Hainan University, Haikou, Hainan
- Fang Zhiyuan Academician Team Innovation Center of Hainan Province
| |
Collapse
|
6
|
Samarina L, Wang S, Malyukova L, Bobrovskikh A, Doroshkov A, Koninskaya N, Shkhalakhova R, Matskiv A, Fedorina J, Fizikova A, Manakhova K, Loshkaryova S, Tutberidze T, Ryndin A, Khlestkina E. Long-term cold, freezing and drought: overlapping and specific regulatory mechanisms and signal transduction in tea plant ( Camellia sinensis (L.) Kuntze). FRONTIERS IN PLANT SCIENCE 2023; 14:1145793. [PMID: 37235017 PMCID: PMC10206121 DOI: 10.3389/fpls.2023.1145793] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/11/2023] [Indexed: 05/28/2023]
Abstract
Introduction Low temperatures and drought are two main environmental constraints reducing the yield and geographical distribution of horticultural crops worldwide. Understanding the genetic crosstalk between stress responses has potential importance for crop improvement. Methods In this study, Illumina RNA-seq and Pac-Bio genome resequencing were used to annotate genes and analyze transcriptome dynamics in tea plants under long-term cold, freezing, and drought. Results The highest number of differentially expressed genes (DEGs) was identified under long-term cold (7,896) and freezing (7,915), with 3,532 and 3,780 upregulated genes, respectively. The lowest number of DEGs was observed under 3-day drought (47) and 9-day drought (220), with five and 112 genes upregulated, respectively. The recovery after the cold had 6.5 times greater DEG numbers as compared to the drought recovery. Only 17.9% of cold-induced genes were upregulated by drought. In total, 1,492 transcription factor genes related to 57 families were identified. However, only 20 transcription factor genes were commonly upregulated by cold, freezing, and drought. Among the 232 common upregulated DEGs, most were related to signal transduction, cell wall remodeling, and lipid metabolism. Co-expression analysis and network reconstruction showed 19 genes with the highest co-expression connectivity: seven genes are related to cell wall remodeling (GATL7, UXS4, PRP-F1, 4CL, UEL-1, UDP-Arap, and TBL32), four genes are related to calcium-signaling (PXL1, Strap, CRT, and CIPK6), three genes are related to photo-perception (GIL1, CHUP1, and DnaJ11), two genes are related to hormone signaling (TTL3 and GID1C-like), two genes are involved in ROS signaling (ERO1 and CXE11), and one gene is related to the phenylpropanoid pathway (GALT6). Discussion Based on our results, several important overlapping mechanisms of long-term stress responses include cell wall remodeling through lignin biosynthesis, o-acetylation of polysaccharides, pectin biosynthesis and branching, and xyloglucan and arabinogalactan biosynthesis. This study provides new insight into long-term stress responses in woody crops, and a set of new target candidate genes were identified for molecular breeding aimed at tolerance to abiotic stresses.
Collapse
Affiliation(s)
- Lidiia Samarina
- Federal Research Centre the Subtropical Scientific Centre, Russian Academy of Sciences, Sochi, Russia
- Center of Genetics and Life Sciences, Sirius University of Science and Technology, Sirius, Russia
| | - Songbo Wang
- Federal Research Centre the Subtropical Scientific Centre, Russian Academy of Sciences, Sochi, Russia
| | - Lyudmila Malyukova
- Federal Research Centre the Subtropical Scientific Centre, Russian Academy of Sciences, Sochi, Russia
| | - Alexandr Bobrovskikh
- Institute of Cytology and Genetics Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
| | - Alexey Doroshkov
- Institute of Cytology and Genetics Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
| | - Natalia Koninskaya
- Federal Research Centre the Subtropical Scientific Centre, Russian Academy of Sciences, Sochi, Russia
| | - Ruset Shkhalakhova
- Federal Research Centre the Subtropical Scientific Centre, Russian Academy of Sciences, Sochi, Russia
| | - Alexandra Matskiv
- Federal Research Centre the Subtropical Scientific Centre, Russian Academy of Sciences, Sochi, Russia
| | - Jaroslava Fedorina
- Federal Research Centre the Subtropical Scientific Centre, Russian Academy of Sciences, Sochi, Russia
- Center of Genetics and Life Sciences, Sirius University of Science and Technology, Sirius, Russia
| | - Anastasia Fizikova
- Federal Research Centre the Subtropical Scientific Centre, Russian Academy of Sciences, Sochi, Russia
- Center of Genetics and Life Sciences, Sirius University of Science and Technology, Sirius, Russia
| | - Karina Manakhova
- Federal Research Centre the Subtropical Scientific Centre, Russian Academy of Sciences, Sochi, Russia
- Center of Genetics and Life Sciences, Sirius University of Science and Technology, Sirius, Russia
| | - Svetlana Loshkaryova
- Federal Research Centre the Subtropical Scientific Centre, Russian Academy of Sciences, Sochi, Russia
| | - Tsiala Tutberidze
- Federal Research Centre the Subtropical Scientific Centre, Russian Academy of Sciences, Sochi, Russia
| | - Alexey Ryndin
- Federal Research Centre the Subtropical Scientific Centre, Russian Academy of Sciences, Sochi, Russia
| | - Elena Khlestkina
- Center of Genetics and Life Sciences, Sirius University of Science and Technology, Sirius, Russia
- Federal Research Center, N. I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), Saint Petersburg, Russia
| |
Collapse
|
7
|
Zhu J, Zhang H, Huang K, Guo R, Zhao J, Xie H, Zhu J, Gu H, Chen H, Li G, Wei C, Liu S. Comprehensive analysis of the laccase gene family in tea plant highlights its roles in development and stress responses. BMC PLANT BIOLOGY 2023; 23:129. [PMID: 36882726 PMCID: PMC9990228 DOI: 10.1186/s12870-023-04134-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Laccase (LAC) is the pivotal enzyme responsible for the polymerization of monolignols and stress responses in plants. However, the roles of LAC genes in plant development and tolerance to diverse stresses are still largely unknown, especially in tea plant (Camellia sinensis), one of the most economically important crops worldwide. RESULTS In total, 51 CsLAC genes were identified, they were unevenly distributed on different chromosomes and classified into six groups based on phylogenetic analysis. The CsLAC gene family had diverse intron-exon patterns and a highly conserved motif distribution. Cis-acting elements in the promoter demonstrated that promoter regions of CsLACs encode various elements associated with light, phytohormones, development and stresses. Collinearity analysis identified some orthologous gene pairs in C. sinensis and many paralogous gene pairs among C. sinensis, Arabidopsis and Populus. Tissue-specific expression profiles revealed that the majority of CsLACs had high expression in roots and stems and some members had specific expression patterns in other tissues, and the expression patterns of six genes by qRT‒PCR were highly consistent with the transcriptome data. Most CsLACs showed significant variation in their expression level under abiotic (cold and drought) and biotic (insect and fungus) stresses via transcriptome data. Among them, CsLAC3 was localized in the plasma membrane and its expression level increased significantly at 13 d under gray blight treatment. We found that 12 CsLACs were predicted to be targets of cs-miR397a, and most CsLACs showed opposite expression patterns compared to cs-miR397a under gray blight infection. Additionally, 18 highly polymorphic SSR markers were developed, these markers can be widely used for diverse genetic studies of tea plants. CONCLUSIONS This study provides a comprehensive understanding of the classification, evolution, structure, tissue-specific profiles, and (a)biotic stress responses of CsLAC genes. It also provides valuable genetic resources for functional characterization towards enhancing tea plant tolerance to multiple (a)biotic stresses.
Collapse
Affiliation(s)
- Jiaxin Zhu
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, China
| | - Hongxiu Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, China
| | - Kelin Huang
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, China
| | - Rui Guo
- Lu'an Institute of Product Quality Supervision and Inspection, Lu'an City, China
| | - Jingjuan Zhao
- Lu'an Institute of Product Quality Supervision and Inspection, Lu'an City, China
| | - Hui Xie
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, China
| | - Junyan Zhu
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, China
| | - Honglian Gu
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, China
| | - Hongrong Chen
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, China
| | - Guoqiang Li
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, China
| | - Chaoling Wei
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, China
| | - Shengrui Liu
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, China.
| |
Collapse
|
8
|
Evolutionary Landscape of Tea Circular RNAs and Its Contribution to Chilling Tolerance of Tea Plant. Int J Mol Sci 2023; 24:ijms24021478. [PMID: 36674993 PMCID: PMC9861842 DOI: 10.3390/ijms24021478] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/29/2022] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
Chilling stress threatens the yield and distribution pattern of global crops, including the tea plant (Camellia sinensis), one of the most important cash crops around the world. Circular RNA (circRNA) plays roles in regulating plant growth and biotic/abiotic stress responses. Understanding the evolutionary characteristics of circRNA and its feedbacks to chilling stress in the tea plant will help to elucidate the vital roles of circRNAs. In the current report, we systematically identified 2702 high-confidence circRNAs under chilling stress in the tea plant, and interestingly found that the generation of tea plant circRNAs was associated with the length of their flanking introns. Repetitive sequences annotation and DNA methylation analysis revealed that the longer flanking introns of circRNAs present more repetitive sequences and higher methylation levels, which suggested that repeat-elements-mediated DNA methylation might promote the circRNAs biogenesis in the tea plant. We further detected 250 differentially expressed circRNAs under chilling stress, which were functionally enriched in GO terms related to cold/stress responses. Constructing a circRNA-miRNA-mRNA interaction network discovered 139 differentially expressed circRNAs harboring potential miRNA binding sites, which further identified 14 circRNAs that might contribute to tea plant chilling responses. We further characterized a key circRNA, CSS-circFAB1, which was significantly induced under chilling stress. FISH and silencing experiments revealed that CSS-circFAB1 was potentially involved in chilling tolerance of the tea plant. Our study emphasizes the importance of circRNA and its preliminary role against low-temperature stress, providing new insights for tea plant cold tolerance breeding.
Collapse
|
9
|
Xu Y, Liu J, Ji X, Zhao G, Zhao T, Wang X, Wang L, Gao S, Hao Y, Gao Y, Gao Y, Weng X, Jia L, Chen Z. Integrative analysis of microRNAs and mRNAs reveals the regulatory networks of triterpenoid saponin metabolism in Soapberry ( Sapindus mukorossi Gaertn.). FRONTIERS IN PLANT SCIENCE 2023; 13:1037784. [PMID: 36699854 PMCID: PMC9869041 DOI: 10.3389/fpls.2022.1037784] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/19/2022] [Indexed: 06/13/2023]
Abstract
Triterpenoid saponin are important secondary metabolites and bioactive constituents of soapberry (Sapindus mukorossi Gaertn.) and are widely used in medicine and toiletry products. However, little is known about the roles of miRNAs in the regulation of triterpenoid saponin biosynthesis in soapberry. In this study, a total of 3036 miRNAs were identified, of which 1372 miRNAs were differentially expressed at different stages of pericarp development. Important KEGG pathways, such as terpenoid backbone biosynthesis, sesquiterpenoid and triterpenoid biosynthesis, and basal transcription factors were highlighted, as well the roles of some key miRNAs, such as ath-miR5021, han-miR3630-3p, and ppe-miR858, which may play important roles in regulating triterpenoid saponin biosynthesis. In addition, 58 miRNAs might participate in saponin biosynthesis pathways by predicting the targets of those miRNAs to 53 saponin biosynthesis structural genes. And 75 miRNAs were identified to potentially play vital role in saponin accumulation by targeting transcript factor genes, bHLH, bZIP, ERF, MYB, and WRKY, respectively, which are candidate regulatory genes in the pathway of saponin biosynthesis. The results of weighted gene coexpression network analysis (WGCNA) suggested that two saponin-specific miRNA modules and 10 hub miRNAs may participate in saponin biosynthesis. Furthermore, multiple miRNA-mRNA regulatory networks potentially involved in saponin biosynthesis were generated, e.g., ath-miR5021-SmIDI2/SmGPS5/SmbAS1/SmCYP71D-3/SmUGT74G-2, han-miR3630-3p-SmCYP71A-14/SmbHLH54/SmMYB135/SmWRKY32, and ppe-miR858-SmMYB5/SmMYB32. qRT-PCR analysis validated the expression patterns of nine miRNAs and 12 corresponding target genes. This study represents the first comprehensive analysis of miRNAs in soapberry and lays the foundation for further understanding of miRNA-based regulation in triterpenoid saponin biosynthesis.
Collapse
Affiliation(s)
- Yuanyuan Xu
- Key Laboratory of Silviculture and Conservation of the Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, China
- National Energy R&D Center for Non-food Biomass, Beijing Forestry University, Beijing, China
- National Innovation Alliance of Sapindus Industry, Beijing Forestry University, Beijing, China
| | - Jiming Liu
- Key Laboratory of Silviculture and Conservation of the Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, China
- National Energy R&D Center for Non-food Biomass, Beijing Forestry University, Beijing, China
- National Innovation Alliance of Sapindus Industry, Beijing Forestry University, Beijing, China
| | - Xiangqin Ji
- Bioinformatics Analysis Department, Hangzhou KaiTai Biotechnology Co., Ltd, Hangzhou, Zhejiang, China
| | - Guochun Zhao
- Key Laboratory of Silviculture and Conservation of the Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, China
- National Energy R&D Center for Non-food Biomass, Beijing Forestry University, Beijing, China
- National Innovation Alliance of Sapindus Industry, Beijing Forestry University, Beijing, China
| | - Tianyun Zhao
- Key Laboratory of Silviculture and Conservation of the Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, China
- National Energy R&D Center for Non-food Biomass, Beijing Forestry University, Beijing, China
- National Innovation Alliance of Sapindus Industry, Beijing Forestry University, Beijing, China
| | - Xin Wang
- Key Laboratory of Silviculture and Conservation of the Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, China
- National Energy R&D Center for Non-food Biomass, Beijing Forestry University, Beijing, China
- National Innovation Alliance of Sapindus Industry, Beijing Forestry University, Beijing, China
| | - Lixian Wang
- Key Laboratory of Silviculture and Conservation of the Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, China
- National Energy R&D Center for Non-food Biomass, Beijing Forestry University, Beijing, China
- National Innovation Alliance of Sapindus Industry, Beijing Forestry University, Beijing, China
| | - Shilun Gao
- Key Laboratory of Silviculture and Conservation of the Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, China
- National Energy R&D Center for Non-food Biomass, Beijing Forestry University, Beijing, China
- National Innovation Alliance of Sapindus Industry, Beijing Forestry University, Beijing, China
| | - Yingying Hao
- Key Laboratory of Silviculture and Conservation of the Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, China
- National Energy R&D Center for Non-food Biomass, Beijing Forestry University, Beijing, China
- National Innovation Alliance of Sapindus Industry, Beijing Forestry University, Beijing, China
| | - Yuhan Gao
- Key Laboratory of Silviculture and Conservation of the Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, China
- National Energy R&D Center for Non-food Biomass, Beijing Forestry University, Beijing, China
- National Innovation Alliance of Sapindus Industry, Beijing Forestry University, Beijing, China
| | - Yuan Gao
- Planning and Design Institute of Forest Products Industry, National Forestry and Grassland Administration, Beijing, China
| | - Xuehuang Weng
- Research and Development Department, Yuanhua Forestry Biological Technology Co., Ltd., Sanming, Fujian, China
| | - Liming Jia
- Key Laboratory of Silviculture and Conservation of the Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, China
- National Energy R&D Center for Non-food Biomass, Beijing Forestry University, Beijing, China
- National Innovation Alliance of Sapindus Industry, Beijing Forestry University, Beijing, China
| | - Zhong Chen
- Key Laboratory of Silviculture and Conservation of the Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, China
- National Energy R&D Center for Non-food Biomass, Beijing Forestry University, Beijing, China
- National Innovation Alliance of Sapindus Industry, Beijing Forestry University, Beijing, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
| |
Collapse
|
10
|
Integrative Omics Analysis of Three Oil Palm Varieties Reveals (Tanzania × Ekona) TE as a Cold-Resistant Variety in Response to Low-Temperature Stress. Int J Mol Sci 2022; 23:ijms232314926. [PMID: 36499255 PMCID: PMC9740226 DOI: 10.3390/ijms232314926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 12/05/2022] Open
Abstract
Oil palm (Elaeis guineensis Jacq.) is an economically important tropical oil crop widely cultivated in tropical zones worldwide. Being a tropical crop, low-temperature stress adversely affects the oil palm. However, integrative leaf transcriptomic and proteomic analyses have not yet been conducted on an oil palm crop under cold stress. In this study, integrative omics transcriptomic and iTRAQ-based proteomic approaches were employed for three oil palm varieties, i.e., B × E (Bamenda × Ekona), O × G (E. oleifera × Elaeis guineensis), and T × E (Tanzania × Ekona), in response to low-temperature stress. In response to low-temperature stress at (8 °C) for 5 days, a total of 5175 up- and 2941 downregulated DEGs in BE-0_VS_BE-5, and a total of 3468 up- and 2443 downregulated DEGs for OG-0_VS_OG-5, and 3667 up- and 2151 downregulated DEGs for TE-0_VS_TE-5 were identified. iTRAQ-based proteomic analysis showed 349 up- and 657 downregulated DEPs for BE-0_VS_BE-5, 372 up- and 264 downregulated DEPs for OG-0_VS_OG-5, and 500 up- and 321 downregulated DEPs for TE-0_VS_TE-5 compared to control samples treated at 28 °C and 8 °C, respectively. The KEGG pathway correlation of oil palm has shown that the metabolic synthesis and biosynthesis of secondary metabolites pathways were significantly enriched in the transcriptome and proteome of the oil palm varieties. The correlation expression pattern revealed that TE-0_VS_TE-5 is highly expressed and BE-0_VS_BE-5 is suppressed in both the transcriptome and proteome in response to low temperature. Furthermore, numerous transcription factors (TFs) were found that may regulate cold acclimation in three oil palm varieties at low temperatures. Moreover, this study identified proteins involved in stresses (abiotic, biotic, oxidative, and heat shock), photosynthesis, and respiration in iTRAQ-based proteomic analysis of three oil palm varieties. The increased abundance of stress-responsive proteins and decreased abundance of photosynthesis-related proteins suggest that the TE variety may become cold-resistant in response to low-temperature stress. This study may provide a basis for understanding the molecular mechanism for the adaptation of oil palm varieties in response to low-temperature stress in China.
Collapse
|
11
|
Zhang L, Li M, Fu J, Huang X, Yan P, Ge S, Li Z, Bai P, Zhang L, Han W, Li X. Genome-Wide Identification and Expression Analysis of Isopentenyl transferase Family Genes during Development and Resistance to Abiotic Stresses in Tea Plant (Camellia sinensis). PLANTS 2022; 11:plants11172243. [PMID: 36079621 PMCID: PMC9460862 DOI: 10.3390/plants11172243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 11/18/2022]
Abstract
The tea plant is an important economic crop and is widely cultivated. Isopentenyl transferase (IPT) is the first and rate-limiting enzyme of cytokinin (CK) signaling, which plays key roles in plant development and abiotic stress. However, the IPT gene family in tea plants has not been systematically investigated until now. The phylogenetic analyses, gene structures, and conserved domains were predicted here. The results showed that a total of 13 CsIPT members were identified from a tea plant genome database and phylogenetically classified into four groups. Furthermore, 10 CsIPT members belonged to plant ADP/ATP-IPT genes, and 3 CsIPTs were tRNA-IPT genes. There is a conserved putative ATP/GTP-binding site (P-loop motif) in all the CsIPT sequences. Based on publicly available transcriptome data as well as through RNA-seq and qRT-PCR analysis, the CsIPT genes which play key roles in the development of different tissues were identified, respectively. Furthermore, CsIPT6.2 may be involved in the response to different light treatments. CsIPT6.4 may play a key role during the dormancy and flush of the lateral buds. CsIPT5.1 may play important regulatory roles during the development of the lateral bud, leaf, and flower. CsIPT5.2 and CsIPT6.2 may both play key roles for increased resistance to cold-stress, whereas CsIPT3.2 may play a key role in improving resistance to high-temperature stress as well as drought-stress and rewatering. This study could provide a reference for further studies of CsIPT family’s functions and could contribute to tea molecular breeding.
Collapse
Affiliation(s)
- Liping Zhang
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Min Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, China
| | - Jianyu Fu
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Xiaoqin Huang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, China
| | - Peng Yan
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Shibei Ge
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Zhengzhen Li
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Peixian Bai
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Lan Zhang
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Wenyan Han
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
- Correspondence: (W.H.); (X.L.)
| | - Xin Li
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
- Correspondence: (W.H.); (X.L.)
| |
Collapse
|
12
|
Yan F, Qu D, Chen X, Zeng H, Li X, Hu CY. Metabolomics Reveals 5-Aminolevulinic Acid Improved the Ability of Tea Leaves ( Camellia sinensis L.) against Cold Stress. Metabolites 2022; 12:392. [PMID: 35629897 PMCID: PMC9144897 DOI: 10.3390/metabo12050392] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 11/16/2022] Open
Abstract
Tea is an important woody crop whose cultivation is severely limited by cold stress. Although 5-aminolevulinic acid (ALA) is known to be effective in alleviating abiotic stresses in plants, knowledge of the detailed metabolic response of tea plants to exogenous ALA-induced cold resistance is still limited-a lack which restricts our ability to protect tea plants from cold stress. In the present study, we performed an in-depth metabolomics analysis to elucidate the metabolic responses of tea plants to cold stress and explore the role of ALA in improving tea plants' cold-resistance capability. Metabolic profiles showed that cold stress altered various metabolisms in tea plants, especially galactose composition and flavonoid contents. Furthermore, exogenous ALA application altered a series of metabolisms associated with cold stress. Importantly, increases in metabolites, including catechin, 3,4-dihydroxyphenylacetic acid and procyanidin B2, involved in the mechanisms of ALA improved tea plants' cold resistance. Overall, our study deciphered detailed metabolic responses of tea plants to cold stress and elucidated the mechanisms of ALA in enhancing cold resistance through rebuilding compositions of soluble carbohydrates and flavonoids. Therefore, we have provided a basis for exogenous usage of ALA to protect tea plants from cold stress.
Collapse
Affiliation(s)
- Fei Yan
- Shaanxi Provincial Bioresource Key Laboratory, College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, China; (F.Y.); (X.C.); (H.Z.); (X.L.)
- Qinling-Bashan Mountains Bioresources Comprehensive Development C. I. C, Hanzhong 723001, China
- Qinba State Key Laboratory of Biological Resources and Ecological Environment, Hanzhong 723001, China
| | - Dong Qu
- Shaanxi Provincial Bioresource Key Laboratory, College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, China; (F.Y.); (X.C.); (H.Z.); (X.L.)
- Qinling-Bashan Mountains Bioresources Comprehensive Development C. I. C, Hanzhong 723001, China
| | - Xiaohua Chen
- Shaanxi Provincial Bioresource Key Laboratory, College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, China; (F.Y.); (X.C.); (H.Z.); (X.L.)
- Qinling-Bashan Mountains Bioresources Comprehensive Development C. I. C, Hanzhong 723001, China
- Qinba State Key Laboratory of Biological Resources and Ecological Environment, Hanzhong 723001, China
| | - Haitao Zeng
- Shaanxi Provincial Bioresource Key Laboratory, College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, China; (F.Y.); (X.C.); (H.Z.); (X.L.)
- Qinling-Bashan Mountains Bioresources Comprehensive Development C. I. C, Hanzhong 723001, China
- Qinba State Key Laboratory of Biological Resources and Ecological Environment, Hanzhong 723001, China
| | - Xinsheng Li
- Shaanxi Provincial Bioresource Key Laboratory, College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, China; (F.Y.); (X.C.); (H.Z.); (X.L.)
- Qinling-Bashan Mountains Bioresources Comprehensive Development C. I. C, Hanzhong 723001, China
- Qinba State Key Laboratory of Biological Resources and Ecological Environment, Hanzhong 723001, China
| | - Ching Yuan Hu
- Shaanxi Provincial Bioresource Key Laboratory, College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, China; (F.Y.); (X.C.); (H.Z.); (X.L.)
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, 1955 East-West Road, AgSci. 415J, Honolulu, HI 96822, USA
| |
Collapse
|
13
|
Jiang G, Hassan MA, Muhammad N, Arshad M, Chen X, Xu Y, Xu H, Ni Q, Liu B, Yang W, Li J. Comparative Physiology and Transcriptome Analysis of Young Spikes in Response to Late Spring Coldness in Wheat ( Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2022; 13:811884. [PMID: 35185984 PMCID: PMC8850991 DOI: 10.3389/fpls.2022.811884] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/10/2022] [Indexed: 05/27/2023]
Abstract
Late spring coldness (LSC) is critical for wheat growth and development in the Huang-Huai valleys of China. However, little is known about the molecular mechanisms for young spikes responding to low temperature (LT) stress during anther connective tissue formation phase (ACFP). To elucidate the molecular mechanisms associated with low temperature, we performed a comparative transcriptome analysis of wheat cultivars Xinmai26 (XM26: cold-sensitive) and Yannong19 (YN19: cold-tolerant) using RNA-seq data. Over 4000 differently expressed genes (DEGs) were identified under low temperature conditions (T1: 4°C) and freezing conditions (T2: -4°C) compared with control (CK: 16°C). The number of DEGs associated with two cultivars at two low temperature treatments (T1: 4°C and T2: -4°C) were 834, 1,353, 231, and 1,882 in four comparison groups (Xinmai26-CK vs. Xinmai26-T1, Xinmai26-CK vs. Xinmai26-T2, Yannong19-CK vs. Yannong19-T1, and Yannong19-CK vs. Yannong19-T2), respectively. Furthermore, to validate the accuracy of RNA-seq, 16 DEGs were analyzed using quantitative real-time RT-PCR. Several transcriptome changes were observed through Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway functional enrichment analysis in plant hormone signal transduction, circadian rhythm-plant, and starch and sucrose metabolism under low temperature. In addition, 126 transcription factors (TFs), including AP2-ERF, bHLH, WRKY, MYB, HSF, and members of the bZIP family, were considered as cold-responsive. It is the first study to investigate DEGs associated with low temperature stress at the transcriptome level in two wheat cultivars with different cold resistance capacities. Most likely, the variations in transcription factors (TFs) regulation, and starch and sucrose metabolism contribute to different cold resistance capacities in the two cultivars. Further, physiological activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) enzymes, malondialdehyde (MDA), soluble sugar (SS), and sucrose contents were evaluated to investigate the negative impacts of low temperature in both cultivars. These findings provide new insight into the molecular mechanisms of plant responses to low temperature and potential candidate genes that required for improving wheat's capacity to withstand low temperature stress.
Collapse
Affiliation(s)
- Gang Jiang
- School of Agronomy, Anhui Agricultural University, Hefei, China
| | | | - Noor Muhammad
- Agronomy Forage Production Section, Ayub Agricultural Research Institute, Faisalabad, Pakistan
| | - Muhammad Arshad
- Agriculture Department, Crop Reporting Service, Nankana Sahib, Pakistan
| | - Xiang Chen
- School of Agronomy, Anhui Agricultural University, Hefei, China
| | - Yonghan Xu
- School of Agronomy, Anhui Agricultural University, Hefei, China
| | - Hui Xu
- School of Agronomy, Anhui Agricultural University, Hefei, China
| | - Qianqian Ni
- School of Agronomy, Anhui Agricultural University, Hefei, China
| | - Binbin Liu
- School of Agronomy, Anhui Agricultural University, Hefei, China
| | - Wenkang Yang
- School of Agronomy, Anhui Agricultural University, Hefei, China
| | - Jincai Li
- School of Agronomy, Anhui Agricultural University, Hefei, China
- Jiangsu Collaborative Innovation Centre for Modern Crop Production, Nanjing, China
| |
Collapse
|
14
|
Liang Y, Wei K, Wei F, Qin S, Deng C, Lin Y, Li M, Gu L, Wei G, Miao J, Zhang Z. Integrated transcriptome and small RNA sequencing analyses reveal a drought stress response network in Sophora tonkinensis. BMC PLANT BIOLOGY 2021; 21:566. [PMID: 34856930 PMCID: PMC8641164 DOI: 10.1186/s12870-021-03334-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 11/10/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Sophora tonkinensis Gagnep is a traditional Chinese medical plant that is mainly cultivated in southern China. Drought stress is one of the major abiotic stresses that negatively impacts S. tonkinensis growth. However, the molecular mechanisms governing the responses to drought stress in S. tonkinensis at the transcriptional and posttranscriptional levels are not well understood. RESULTS To identify genes and miRNAs involved in drought stress responses in S. tonkinensis, both mRNA and small RNA sequencing was performed in root samples under control, mild drought, and severe drought conditions. mRNA sequencing revealed 66,476 unigenes, and the differentially expressed unigenes (DEGs) were associated with several key pathways, including phenylpropanoid biosynthesis, sugar metabolism, and quinolizidine alkaloid biosynthesis pathways. A total of 10 and 30 transcription factors (TFs) were identified among the DEGs under mild and severe drought stress, respectively. Moreover, small RNA sequencing revealed a total of 368 miRNAs, including 255 known miRNAs and 113 novel miRNAs. The differentially expressed miRNAs and their target genes were involved in the regulation of plant hormone signal transduction, the spliceosome, and ribosomes. Analysis of the regulatory network involved in the response to drought stress revealed 37 differentially expressed miRNA-mRNA pairs. CONCLUSION This is the first study to simultaneously profile the expression patterns of mRNAs and miRNAs on a genome-wide scale to elucidate the molecular mechanisms of the drought stress responses of S. tonkinensis. Our results suggest that S. tonkinensis implements diverse mechanisms to modulate its responses to drought stress.
Collapse
Affiliation(s)
- Ying Liang
- College of Agriculture, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan District, Fuzhou, 350002, People's Republic of China
- Guangxi key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, No. 189 Changgang Road, Xingning District, Nanning, 530023, People's Republic of China
- Guangxi Engineering Research Center of TCM Resource Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China
| | - Kunhua Wei
- Guangxi key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, No. 189 Changgang Road, Xingning District, Nanning, 530023, People's Republic of China
- Guangxi Engineering Research Center of TCM Resource Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China
| | - Fan Wei
- Guangxi key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, No. 189 Changgang Road, Xingning District, Nanning, 530023, People's Republic of China
- Guangxi Engineering Research Center of TCM Resource Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China
| | - Shuangshuang Qin
- Guangxi key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, No. 189 Changgang Road, Xingning District, Nanning, 530023, People's Republic of China
- Guangxi Engineering Research Center of TCM Resource Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China
| | - Chuanhua Deng
- Guangxi Forest Inventory and Planning Institute, Nanning, 530011, China
| | - Yang Lin
- Guangxi key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, No. 189 Changgang Road, Xingning District, Nanning, 530023, People's Republic of China
- Guangxi Engineering Research Center of TCM Resource Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China
| | - Mingjie Li
- College of Agriculture, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan District, Fuzhou, 350002, People's Republic of China
| | - Li Gu
- College of Agriculture, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan District, Fuzhou, 350002, People's Republic of China
| | - Guili Wei
- Guangxi key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, No. 189 Changgang Road, Xingning District, Nanning, 530023, People's Republic of China
- Guangxi Engineering Research Center of TCM Resource Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China
| | - Jianhua Miao
- Guangxi key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, No. 189 Changgang Road, Xingning District, Nanning, 530023, People's Republic of China.
- Guangxi Engineering Research Center of TCM Resource Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China.
| | - Zhongyi Zhang
- College of Agriculture, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan District, Fuzhou, 350002, People's Republic of China.
- Key Laboratory of Genetics, Breeding and Comprehensive Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
15
|
Wu H, Wu Z, Wang Y, Ding J, Zheng Y, Tang H, Yang L. Transcriptome and Metabolome Analysis Revealed the Freezing Resistance Mechanism in 60-Year-Old Overwintering Camellia sinensis. BIOLOGY 2021; 10:biology10100996. [PMID: 34681095 PMCID: PMC8533452 DOI: 10.3390/biology10100996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/28/2021] [Accepted: 10/01/2021] [Indexed: 01/23/2023]
Abstract
Simple Summary The freezing stress during overwintering brings great challenges to the normal growth of Camellia sinensis. The current research on C. sinensis mainly focuses on cold resistance, but less on freezing resistance. In the present study, the transcriptome and metabolome of C. sinensis under freezing stress were studied. Results showed that Pyr/PYL-PP2C-SnRK2 played a critical role in the signal transduction of freezing stress. Three metabolic pathways including phenylpropanoid biosynthesis, flavone and flavonol biosynthesis, and flavonoid biosynthesis contributed to the freezing resistance of C. sinensis. This study provides substantial insights for the breeding of C. sinensis. Abstract Freezing stress in winter is the biggest obstacle to the survival of C. sinensis in mid-latitude and high-latitude areas, which has a great impact on the yield, quality, and even life of C. sinensis every year. In this study, transcriptome and metabolome were used to clarify the freezing resistance mechanism of 60-year-old natural overwintering C. sinensis under freezing stress. Next, 3880 DEGs and 353 DAMs were obtained. The enrichment analysis showed that pathways of MAPK and ABA played a key role in the signal transduction of freezing stress, and Pyr/PYL-PP2C-SnRK2 in the ABA pathway promoted stomatal closure. Then, the water holding capacity and the freezing resistance of C. sinensis were improved. The pathway analysis showed that DEGs and DAMs were significantly enriched and up-regulated in the three-related pathways of phenylpropanoid biosynthesis, flavone and flavonol biosynthesis, and flavonoid biosynthesis. In addition, the carbohydrate and fatty acid synthesis pathways also had a significant enrichment, and the synthesis of these substances facilitated the freezing resistance. These results are of great significance to elucidate the freezing resistance mechanism and the freezing resistance breeding of C. sinensis.
Collapse
|
16
|
Zhou P, Li X, Liu X, Wen X, Zhang Y, Zhang D. Transcriptome profiling of Malus sieversii under freezing stress after being cold-acclimated. BMC Genomics 2021; 22:681. [PMID: 34548013 PMCID: PMC8456659 DOI: 10.1186/s12864-021-07998-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 09/07/2021] [Indexed: 01/03/2023] Open
Abstract
Background Freezing temperatures are an abiotic stress that has a serious impact on plant growth and development in temperate regions and even threatens plant survival. The wild apple tree (Malus sieversii) needs to undergo a cold acclimation process to enhance its freezing tolerance in winter. Changes that occur at the molecular level in response to low temperatures are poorly understood in wild apple trees. Results Phytohormone and physiology profiles and transcriptome analysis were used to elaborate on the dynamic response mechanism. We determined that JA, IAA, and ABA accumulated in the cold acclimation stage and decreased during freezing stress in response to freezing stress. To elucidate the molecular mechanisms of freezing stress after cold acclimation, we employed single molecular real-time (SMRT) and RNA-seq technologies to study genome-wide expression profiles in wild apple. Using the PacBio and Illumina platform, we obtained 20.79G subreads. These reads were assembled into 61,908 transcripts, and 24,716 differentially expressed transcripts were obtained. Among them, 4410 transcripts were differentially expressed during the whole process of freezing stress, and these were examined for enrichment via GO and KEGG analyses. Pathway analysis indicated that “plant hormone signal transduction”, “starch and sucrose metabolism”, “peroxisome” and “photosynthesis” might play a vital role in wild apple responses to freezing stress. Furthermore, the transcription factors DREB1/CBF, MYC2, WRKY70, WRKY71, MYB4 and MYB88 were strongly induced during the whole stress period. Conclusions Our study presents a global survey of the transcriptome profiles of wild apple trees in dynamic response to freezing stress after two days cold acclimation and provides insights into the molecular mechanisms of freezing adaptation of wild apple plants for the first time. The study also provides valuable information for further research on the antifreezing reaction mechanism and genetic improvement of M. sieversii after cold acclimation. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07998-0.
Collapse
Affiliation(s)
- Ping Zhou
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoshuang Li
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China.,Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan, 838008, China
| | - Xiaojie Liu
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuejing Wen
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China.,Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan, 838008, China
| | - Yan Zhang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Daoyuan Zhang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China. .,Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan, 838008, China.
| |
Collapse
|
17
|
MicroRNA Omics Analysis of Camellia sinesis Pollen Tubes in Response to Low-Temperature and Nitric Oxide. Biomolecules 2021; 11:biom11070930. [PMID: 34201466 PMCID: PMC8301950 DOI: 10.3390/biom11070930] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/20/2021] [Accepted: 06/21/2021] [Indexed: 12/21/2022] Open
Abstract
Nitric oxide (NO) as a momentous signal molecule participates in plant reproductive development and responds to various abiotic stresses. Here, the inhibitory effects of the NO-dominated signal network on the pollen tube growth of Camellia sinensis under low temperature (LT) were studied by microRNA (miRNA) omics analysis. The results showed that 77 and 71 differentially expressed miRNAs (DEMs) were induced by LT and NO treatment, respectively. Gene ontology (GO) analysis showed that DEM target genes related to microtubules and actin were enriched uniquely under LT treatment, while DEM target genes related to redox process were enriched uniquely under NO treatment. In addition, the target genes of miRNA co-regulated by LT and NO are only located on the cell membrane and cell wall, and most of them are enriched in metal ion binding and/or transport and cell wall organization. Furthermore, DEM and its target genes related to metal ion binding/transport, redox process, actin, cell wall organization and carbohydrate metabolism were identified and quantified by functional analysis and qRT-PCR. In conclusion, miRNA omics analysis provides a complex signal network regulated by NO-mediated miRNA, which changes cell structure and component distribution by adjusting Ca2+ gradient, thus affecting the polar growth of the C. sinensis pollen tube tip under LT.
Collapse
|
18
|
Shi J, Wang J, Lv H, Peng Q, Schreiner M, Baldermann S, Lin Z. Integrated proteomic and metabolomic analyses reveal the importance of aroma precursor accumulation and storage in methyl jasmonate-primed tea leaves. HORTICULTURE RESEARCH 2021; 8:95. [PMID: 33931596 PMCID: PMC8087812 DOI: 10.1038/s41438-021-00528-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/28/2021] [Accepted: 03/01/2021] [Indexed: 06/01/2023]
Abstract
In response to preharvest priming with exogenous methyl jasmonate (MeJA), tea plants adjust their physiological behavior at the molecular level. The whole-organism reconfiguration of aroma formation from the precursor to storage is poorly understood. In this study, we performed iTRAQ proteomic analysis and identified 337, 246, and 413 differentially expressed proteins in tea leaves primed with MeJA for 12 h, 24 h, and 48 h, respectively. Furthermore, a total of 266 nonvolatile and 100 volatile differential metabolites were identified by utilizing MS-based metabolomics. A novel approach that incorporated the integration of extended self-organizing map-based dimensionality was applied. The vivid time-scale changes tracing physiological responses in MeJA-primed tea leaves are marked in these maps. Jasmonates responded quickly to the activation of the jasmonic acid pathway in tea leaves, while hydroxyl and glycosyl jasmonates were biosynthesized simultaneously on a massive scale to compensate for the exhausted defense. The levels of α-linolenic acid, geranyl diphosphate, farnesyl diphosphate, geranylgeranyl diphosphate, and phenylalanine, which are crucial aroma precursors, were found to be significantly changed in MeJA-primed tea leaves. Green leaf volatiles, volatile terpenoids, and volatile phenylpropanoids/benzenoids were spontaneously biosynthesized from responding precursors and subsequently converted to their corresponding glycosidic forms, which can be stably stored in tea leaves. This study elucidated the physiological response of tea leaves primed with exogenous methyl jasmonate and revealed the molecular basis of source and sink changes on tea aroma biosynthesis and catabolism in response to exogenous stimuli. The results significantly enhance our comprehensive understanding of tea plant responses to exogenous treatment and will lead to the development of promising biotechnologies to improve fresh tea leaf quality.
Collapse
Affiliation(s)
- Jiang Shi
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 South Meiling Road, Hangzhou, Zhejiang, 310008, PR China
| | - Jiatong Wang
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 South Meiling Road, Hangzhou, Zhejiang, 310008, PR China
- Graduate School of Chinese Academy of Agricultural Sciences, 12 South Street of Zhongguancun, Beijing, 100081, PR China
| | - Haipeng Lv
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 South Meiling Road, Hangzhou, Zhejiang, 310008, PR China
| | - Qunhua Peng
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 South Meiling Road, Hangzhou, Zhejiang, 310008, PR China
| | - Monika Schreiner
- Leibniz Institute of Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1, 14979, Großbeeren, Germany
| | - Susanne Baldermann
- Leibniz Institute of Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1, 14979, Großbeeren, Germany.
- University of Bayreuth, Food Metabolome, Faculty of Life Sciences: Food, Nutrition, Kulmbach, Germany.
| | - Zhi Lin
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 South Meiling Road, Hangzhou, Zhejiang, 310008, PR China.
| |
Collapse
|
19
|
Wang H, Ding Z, Gou M, Hu J, Wang Y, Wang L, Wang Y, Di T, Zhang X, Hao X, Wang X, Yang Y, Qian W. Genome-wide identification, characterization, and expression analysis of tea plant autophagy-related genes (CsARGs) demonstrates that they play diverse roles during development and under abiotic stress. BMC Genomics 2021; 22:121. [PMID: 33596831 PMCID: PMC7891152 DOI: 10.1186/s12864-021-07419-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 01/31/2021] [Indexed: 12/12/2022] Open
Abstract
Background Autophagy, meaning ‘self-eating’, is required for the degradation and recycling of cytoplasmic constituents under stressful and non-stressful conditions, which helps to maintain cellular homeostasis and delay aging and longevity in eukaryotes. To date, the functions of autophagy have been heavily studied in yeast, mammals and model plants, but few studies have focused on economically important crops, especially tea plants (Camellia sinensis). The roles played by autophagy in coping with various environmental stimuli have not been fully elucidated to date. Therefore, investigating the functions of autophagy-related genes in tea plants may help to elucidate the mechanism governing autophagy in response to stresses in woody plants. Results In this study, we identified 35 C. sinensis autophagy-related genes (CsARGs). Each CsARG is highly conserved with its homologues from other plant species, except for CsATG14. Tissue-specific expression analysis demonstrated that the abundances of CsARGs varied across different tissues, but CsATG8c/i showed a degree of tissue specificity. Under hormone and abiotic stress conditions, most CsARGs were upregulated at different time points during the treatment. In addition, the expression levels of 10 CsARGs were higher in the cold-resistant cultivar ‘Longjing43’ than in the cold-susceptible cultivar ‘Damianbai’ during the CA period; however, the expression of CsATG101 showed the opposite tendency. Conclusions We performed a comprehensive bioinformatic and physiological analysis of CsARGs in tea plants, and these results may help to establish a foundation for further research investigating the molecular mechanisms governing autophagy in tea plant growth, development and response to stress. Meanwhile, some CsARGs could serve as putative molecular markers for the breeding of cold-resistant tea plants in future research. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07419-2.
Collapse
Affiliation(s)
- Huan Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
| | - Zhaotang Ding
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
| | - Mengjie Gou
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jianhui Hu
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yu Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
| | - Lu Wang
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China.,Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, 310008, China
| | - Yuchun Wang
- College of Agriculture and Food Science, Zhejiang A&F University, Hangzhou, 311300, China
| | - Taimei Di
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China.,Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, 310008, China
| | - Xinfu Zhang
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xinyuan Hao
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China.,Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, 310008, China
| | - Xinchao Wang
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China.,Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, 310008, China
| | - Yajun Yang
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China.,Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, 310008, China
| | - Wenjun Qian
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
20
|
Zhu C, Zhang S, Zhou C, Chen L, Zaripov T, Zhan D, Weng J, Lin Y, Lai Z, Guo Y. Integrated Transcriptome, microRNA, and Phytochemical Analyses Reveal Roles of Phytohormone Signal Transduction and ABC Transporters in Flavor Formation of Oolong Tea ( Camellia sinensis) during Solar Withering. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:12749-12767. [PMID: 33112139 DOI: 10.1021/acs.jafc.0c05750] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The unique aroma and flavor of oolong tea develop during the withering stage of postharvest processing. We explored the roles of miRNA-related regulatory networks during tea withering and their effects on oolong tea quality. We conducted transcriptome and miRNA analyses to identify differentially expressed (DE) miRNAs and target genes among fresh leaves, indoor-withered leaves, and solar-withered leaves. We identified 32 DE-miRNAs and 41 target genes involved in phytohormone signal transduction and ABC transporters. Further analyses indicated that these two pathways regulated the accumulation of flavor-related metabolites during tea withering. Flavonoid accumulation was correlated with the miR167d_1-ARF-GH3, miR845-ABCC1-3/ABCC2, miR166d-5p_1-ABCC1-2, and miR319c_3-PIF-ARF modules. Terpenoid content was correlated with the miR171b-3p_2-DELLA-MYC2 and miR166d-5p_1-ABCG2-MYC2 modules. These modules inhibited flavonoid biosynthesis and enhanced terpenoid biosynthesis in solar-withered leaves. Low auxin and gibberellic acid contents and circRNA-related regulatory networks also regulated the accumulation of flavor compounds in solar-withered leaves. Our analyses reveal how solar withering produces high-quality oolong tea.
Collapse
Affiliation(s)
- Chen Zhu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Tea Science in Universities of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shuting Zhang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chengzhe Zhou
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Tea Science in Universities of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lan Chen
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Tea Science in Universities of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Timur Zaripov
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Tea Science in Universities of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Dongmei Zhan
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Tea Science in Universities of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jingjing Weng
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Tea Science in Universities of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuling Lin
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhongxiong Lai
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuqiong Guo
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Tea Science in Universities of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
21
|
Liu L, Wu Y, Zhao D, Tao J. Integrated mRNA and microRNA transcriptome analyses provide insights into paclobutrazol inhibition of lateral branching in herbaceous peony. 3 Biotech 2020; 10:496. [PMID: 33150122 DOI: 10.1007/s13205-020-02489-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 10/14/2020] [Indexed: 11/24/2022] Open
Abstract
Herbaceous peony (Paeonia lactiflora Pall.) is a new high-end cut flower, but a large number of lateral branches often appear in some excellent cultivars, which is inconvenient for cut flower production. In the present study, we analyzed the effects of paclobutrazol (PBZ) on the lateral branches of P. lactiflora and adopted a next-generation sequencing approach to identify miRNAs and mRNAs that were differentially expressed involved in the PBZ response. Our results indicate that PBZ may inhibit the production of lateral branches on P. lactiflora. There were 827 differentially expressed genes (DEGs) and 104 differentially expressed miRNAs (DEMs). Integrative analysis revealed 29 miRNA-mRNA interactions related to PBZ stress. Our results provided a wealth of genetic information and data on metabolic pathways for revealing the regulatory mechanism of PBZ inhibition of the development of lateral branches in P. lactiflora and provided a new possibility for reducing lateral branch formation in the production of herbaceous peony cut flowers.
Collapse
Affiliation(s)
- Lei Liu
- College of Horticulture, Xinyang College of Agriculture and Forestry, Xinyang, 464000 China
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009 China
- Jiangsu Key Laboratory of Crop Genetics and Physiology/College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009 China
| | - Yanqing Wu
- Institutes of Agricultural Science and Technology Development, Yangzhou University/Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou, 225009 China
| | - Daqiu Zhao
- Jiangsu Key Laboratory of Crop Genetics and Physiology/College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009 China
| | - Jun Tao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009 China
- Jiangsu Key Laboratory of Crop Genetics and Physiology/College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009 China
| |
Collapse
|
22
|
Feng X, Liu W, Dai H, Qiu Y, Zhang G, Chen ZH, Wu F. HvHOX9, a novel homeobox leucine zipper transcription factor, positively regulates aluminum tolerance in Tibetan wild barley. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:6057-6073. [PMID: 32588054 DOI: 10.1093/jxb/eraa290] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 06/20/2020] [Indexed: 05/10/2023]
Abstract
Aluminum (Al) toxicity is the primary limiting factor of crop production on acid soils. Tibetan wild barley germplasm is a valuable source of potential genes for breeding barley with acid and Al tolerance. We performed microRNA and RNA sequencing using wild (XZ16, Al-tolerant; XZ61, Al-sensitive) and cultivated (Dayton, Al-tolerant) barley. A novel homeobox-leucine zipper transcription factor, HvHOX9, was identified as a target gene of miR166b and functionally characterized. HvHOX9 was up-regulated by Al stress in XZ16 (but unchanged in XZ61 and Dayton) and was significantly induced only in root tip. Phylogenetic analysis showed that HvHOX9 is most closely related to wheat TaHOX9 and orthologues of HvHOX9 are present in the closest algal relatives of Zygnematophyceae. Barley stripe mosaic virus-induced gene silencing of HvHOX9 in XZ16 led to significantly increased Al sensitivity but did not affect its sensitivity to other metals and low pH. Disruption of HvHOX9 did not change Al concentration in the root cell sap, but led to more Al accumulation in root cell wall after Al exposure. Silencing of HvHOX9 decreased H+ influx after Al exposure. Our findings suggest that miR166b/HvHOX9 play a critical role in Al tolerance by decreasing root cell wall Al binding and increasing apoplastic pH for Al detoxification in the root.
Collapse
Affiliation(s)
- Xue Feng
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Wenxing Liu
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Huaxin Dai
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Yue Qiu
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Guoping Zhang
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Zhong-Hua Chen
- School of Science and Health, Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Feibo Wu
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| |
Collapse
|
23
|
Jeyaraj A, Elango T, Li X, Guo G. Utilization of microRNAs and their regulatory functions for improving biotic stress tolerance in tea plant [ Camellia sinensis (L.) O. Kuntze]. RNA Biol 2020; 17:1365-1382. [PMID: 32478595 PMCID: PMC7549669 DOI: 10.1080/15476286.2020.1774987] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/04/2019] [Accepted: 03/20/2019] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs play a central role in responses to biotic stressors through their interactions with their target mRNAs. Tea plant (Camellia sinensis L.), an important beverage crop, is vulnerable to tea geometrid and anthracnose disease that causes considerable crop loss and tea production worldwide. Sustainable production of tea in the current scenario to biotic factors is major challenges. To overcome the problem of biotic stresses, high-throughput sequencing (HTS) with bioinformatics analyses has been used as an effective approach for the identification of stress-responsive miRNAs and their regulatory functions in tea plant. These stress-responsive miRNAs can be utilized for miRNA-mediated gene silencing to enhance stress tolerance in tea plant. Therefore, this review summarizes the current understanding of miRNAs regulatory functions in tea plant responding to Ectropis oblique and Colletotrichum gloeosporioides attacks for future miRNA research. Also, it highlights the utilization of miRNA-mediated gene silencing strategies for developing biotic stress-tolerant tea plant.
Collapse
Affiliation(s)
- Anburaj Jeyaraj
- Tea Research Institute, Nanjing Agricultural University, Nanjing, China
- Department of Biotechnology, Karpagam Academy of Higher Education, Tamilnadu, India
| | - Tamilselvi Elango
- Tea Research Institute, Nanjing Agricultural University, Nanjing, China
| | - Xinghui Li
- Tea Research Institute, Nanjing Agricultural University, Nanjing, China
| | - Guiyi Guo
- Henan Key Laboratory of Tea Plant Comprehensive Utilization in South Henan, Xinyang Agriculture and Forestry University, Xinyang, P.R. China
| |
Collapse
|
24
|
Samarina LS, Malyukova LS, Efremov AM, Simonyan TA, Matskiv AO, Koninskaya NG, Rakhmangulov RS, Gvasaliya MV, Malyarovskaya VI, Ryndin AV, Orlov YL, Tong W, Hanke MV. Physiological, biochemical and genetic responses of Caucasian tea ( Camellia sinensis (L.) Kuntze) genotypes under cold and frost stress. PeerJ 2020; 8:e9787. [PMID: 32923182 PMCID: PMC7457925 DOI: 10.7717/peerj.9787] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 07/31/2020] [Indexed: 12/11/2022] Open
Abstract
Background Cold and frost are two serious factors limiting the yield of many crops worldwide, including the tea plant (Camellia sinensis (L.) Kuntze). The acclimatization of tea plant from tropical to temperate climate regions resulted in unique germplasm in the North–Western Caucasus with extremely frost-tolerant genotypes. Methods The aim of the current research was to evaluate the physiological, biochemical and genetic responses of tolerant and sensitive tea cultivars exposed to cold (0 to +2 °C for 7 days) and frost (−6 to −8 °C for 5 days). Relative water content, cell membranes integrity, pH of the cell sap, water soluble protein, cations, sugars, amino acids were measured under cold and frost. Comparative expression of the following genes ICE1, CBF1, WRKY2, DHN1, DHN2, DHN3, NAC17, NAC26, NAC30, SnRK1.1, SnRK1.2, SnRK1.3, bHLH7, bHLH43, P5CS, LOX1, LOX6, LOX7 were analyzed. Results We found elevated protein (by 3–4 times) and cations (potassium, calcium and magnesium) contents in the leaves of both cultivars under cold and frost treatments. Meanwhile, Leu, Met, Val, Thr, Ser were increased under cold and frost, however tolerant cv. Gruzinskii7 showed earlier accumulation of these amino acids. Out of 18 studied genes, 11 were expressed at greater level in the frost- tolerant cultivar comparing with frost-sensitive one: ICE1, CBF1, WRKY2, DHN2, NAC17, NAC26, SnRK1.1, SnRK1.3, bHLH43, P5CS and LOX6. Positive correlations between certain amino acids namely, Met, Thr, Leu and Ser and studied genes were found. Taken together, the revealed cold responses in Caucasian tea cultivars help better understanding of tea tolerance to low temperature stress and role of revealed metabolites need to be further evaluated in different tea genotypes.
Collapse
Affiliation(s)
- Lidiia S Samarina
- Federal Research Centre the "Subtropical Scientific Centre of the Russian Academy of Sciences", Sochi, Russia
| | - Lyudmila S Malyukova
- Federal Research Centre the "Subtropical Scientific Centre of the Russian Academy of Sciences", Sochi, Russia
| | - Alexander M Efremov
- Federal Research Centre the "Subtropical Scientific Centre of the Russian Academy of Sciences", Sochi, Russia
| | - Taisiya A Simonyan
- Federal Research Centre the "Subtropical Scientific Centre of the Russian Academy of Sciences", Sochi, Russia
| | - Alexandra O Matskiv
- Federal Research Centre the "Subtropical Scientific Centre of the Russian Academy of Sciences", Sochi, Russia
| | - Natalia G Koninskaya
- Federal Research Centre the "Subtropical Scientific Centre of the Russian Academy of Sciences", Sochi, Russia
| | - Ruslan S Rakhmangulov
- Federal Research Centre the "Subtropical Scientific Centre of the Russian Academy of Sciences", Sochi, Russia
| | - Maya V Gvasaliya
- Federal Research Centre the "Subtropical Scientific Centre of the Russian Academy of Sciences", Sochi, Russia
| | - Valentina I Malyarovskaya
- Federal Research Centre the "Subtropical Scientific Centre of the Russian Academy of Sciences", Sochi, Russia
| | - Alexey V Ryndin
- Federal Research Centre the "Subtropical Scientific Centre of the Russian Academy of Sciences", Sochi, Russia
| | - Yuriy L Orlov
- Federal Research Centre the "Subtropical Scientific Centre of the Russian Academy of Sciences", Sochi, Russia.,Agrarian and Technological Institute, Peoples' Friendship University of Russia (RUDN), Moscow, Russia.,Novosibirsk State University, Novosibirsk, Russia
| | - Wei Tong
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Magda-Viola Hanke
- Federal Research Centre the "Subtropical Scientific Centre of the Russian Academy of Sciences", Sochi, Russia
| |
Collapse
|
25
|
Jiang X, Zhao H, Guo F, Shi X, Ye C, Yang P, Liu B, Ni D. Transcriptomic analysis reveals mechanism of light-sensitive albinism in tea plant Camellia sinensis 'Huangjinju'. BMC PLANT BIOLOGY 2020; 20:216. [PMID: 32410639 PMCID: PMC7227349 DOI: 10.1186/s12870-020-02425-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 04/30/2020] [Indexed: 05/26/2023]
Abstract
BACKGROUND Camellia sinensis 'Huangjinju' is an albino tea variety developed recently in China. Young leaves of 'Huangjinju' demonstrate bright yellow when cultivated under natural sunlight, but regreens under reduced light intensity. To elucidate the physiological and molecular mechanisms of this light-sensitive albinism, we compared leaf pigmentation, metabolites, cellular ultrastructure and transcriptome between plants cultured under natural sunlight and shade. RESULTS Shading treatment doubled the chlorophyll concentration and regreened albino leaves; carotenoid also increased by 30%. Electron microscopy analyses showed that chloroplast not only increased in number but also in size with a complete set of components. In addition, regreened leaves also had a significantly higher concentration of polyphenols and catechins than albino leaves. At transcriptomic level, a total of 507 genes were differentially expressed in response to light condition changes. The most enriched pathways include light harvest protein complex, response to stimuli, oxidation-reduction process, generation of precursor metabolites and energy response. CONCLUSION The integrated strategy in this study allows a mechanistic understanding of leaf albinism in light-sensitive tea plants and suggested the regulation of gene networks involved in pigmentation and protein processing. Results from this study provide valuable information to this area and can benefit the domestication and artificial breeding to develop new albino tea varieties.
Collapse
Affiliation(s)
- Xinfeng Jiang
- College of Horticulture and Forestry Science, Huazhong Agricultural University, 1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei, China
- Jiangxi Sericulture and Tea Research Institute, Nanchang, 330202, Jiangxi, China
| | - Hua Zhao
- College of Horticulture and Forestry Science, Huazhong Agricultural University, 1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei, China
| | - Fei Guo
- College of Horticulture and Forestry Science, Huazhong Agricultural University, 1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei, China
| | - Xuping Shi
- Jiangxi Sericulture and Tea Research Institute, Nanchang, 330202, Jiangxi, China
| | - Chuan Ye
- Jiangxi Sericulture and Tea Research Institute, Nanchang, 330202, Jiangxi, China
| | - Puxiang Yang
- Jiangxi Sericulture and Tea Research Institute, Nanchang, 330202, Jiangxi, China
| | - Benying Liu
- Yunnan Provincial Key Laboratory of Tea Science, Jinghong, 666100, Yunnan, China
| | - Dejiang Ni
- College of Horticulture and Forestry Science, Huazhong Agricultural University, 1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei, China.
| |
Collapse
|
26
|
Liu ZW, Li H, Liu JX, Wang Y, Zhuang J. Integrative transcriptome, proteome, and microRNA analysis reveals the effects of nitrogen sufficiency and deficiency conditions on theanine metabolism in the tea plant ( Camellia sinensis). HORTICULTURE RESEARCH 2020; 7:65. [PMID: 32377356 PMCID: PMC7192918 DOI: 10.1038/s41438-020-0290-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/13/2020] [Accepted: 03/02/2020] [Indexed: 05/18/2023]
Abstract
Nitrogen (N) is associated with amino acid metabolism in higher plants. Theanine is an important amino acid in tea plants. To explore the relationship between theanine metabolism and N conditions, we examined the differentially expressed genes (DEGs), proteins (DEPs), and microRNAs (DEMs) involved in theanine metabolism in tea plant shoots and roots under N sufficiency and deficiency conditions. Transcriptome, proteome, and microRNA analyses were performed on tea plant shoots and roots under N sufficiency and deficiency conditions. The contents of theanine, expression levels of genes involved in theanine metabolism, contents of proteinogenic amino acids, and activity of enzymes were analyzed. The DEP-DEG correlation pairs and negative DEM-DEG interactions related to theanine metabolism were identified based on correlation analyses. The expression profiles of DEGs and negative DEM-DEG pairs related to theanine biosynthesis were consistent with the sequencing results. Our results suggest that the molecular and physiological mechanism of theanine accumulation is significantly affected by N sufficiency and deficiency conditions. The DEGs, DEPs, and DEMs and the activity of the enzymes involved in theanine biosynthesis might play vital roles in theanine accumulation under N sufficiency and deficiency conditions in the shoots and roots of tea plants.
Collapse
Affiliation(s)
- Zhi-Wei Liu
- Tea Science Research Institute, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 210095 Nanjing, China
| | - Hui Li
- Tea Science Research Institute, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 210095 Nanjing, China
| | - Jie-Xia Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 210095 Nanjing, China
| | - Yu Wang
- Tea Science Research Institute, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 210095 Nanjing, China
| | - Jing Zhuang
- Tea Science Research Institute, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 210095 Nanjing, China
| |
Collapse
|
27
|
Samarina LS, Malyukova LS, Gvasaliya MV, Efremov AM, Malyarovskaya VI, Loshkareva SV, Tuov MT. Genes underlying cold acclimation in the tea plant (<i>Camellia sinensis</i> (L.) Kuntze). Vavilovskii Zhurnal Genet Selektsii 2020. [DOI: 10.18699/vj19.572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The article reviews the latest studies showing the diversity of genetic mechanisms and gene families underlying the increased cold and frost tolerance of tea and other plant species. It has been shown that cell responses to chilling (0…+15°C) and freezing (< 0°C) are not the same and gene expression under cold stress is genotype-specific. In recent decades, progress has been made in understanding the genetic mechanisms underlying the cold response of plants – ICE1 (inducer of CBF expression 1), CBF (C-repeat-binding factor), COR (cold-regulated genes) pathways and signaling have been discovered. The ICE, CBF and DHN gene groups play a key role in the cold acclimation of the tea plant. The accumulation of CBF transcripts occurs after 15 min of chilling induction, and longer cold stress leads to accumulation of CBF transcripts. It is shown that the transcripts of the CsDHN1, CsDHN2 and CsDHN3 genes accumulate at a higher level in resistant genotypes of tea in comparison with susceptible cultivars during freezing. CBF-independent pathways include genes involved in metabolism and transcription factors such as HSFC1, ZAT12, CZF1, PLD (phospholipase D), WRKY, HD-Zip, CsLEA, LOX, NAC, HSP, which are widely distributed in plants and are involved in the basic mechanisms of tea resistance to cold and frost. The most recent studies show an important role of miRNA in the mechanisms of response to chilling and freezing in tea. The data obtained on different plant species may correlate with the mechanisms of frost tolerance of tea and are the basis for future studies of the signaling pathways of response to cold in the tea plant. The results of the research emphasize the need to further explore the ways in which various genes regulate the tolerance of tea to cold stress to find the molecular markers of frost tolerance.
Collapse
Affiliation(s)
- L. S. Samarina
- Russian Research Institute of Floriculture and Subtropical Crops
| | - L. S. Malyukova
- Russian Research Institute of Floriculture and Subtropical Crops
| | - M. V. Gvasaliya
- Russian Research Institute of Floriculture and Subtropical Crops
| | - A. M. Efremov
- Russian Research Institute of Floriculture and Subtropical Crops
| | | | - S. V. Loshkareva
- Russian Research Institute of Floriculture and Subtropical Crops
| | - M. T. Tuov
- Russian Research Institute of Floriculture and Subtropical Crops
| |
Collapse
|
28
|
Prerostova S, Černý M, Dobrev PI, Motyka V, Hluskova L, Zupkova B, Gaudinova A, Knirsch V, Janda T, Brzobohatý B, Vankova R. Light Regulates the Cytokinin-Dependent Cold Stress Responses in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2020; 11:608711. [PMID: 33613584 PMCID: PMC7889523 DOI: 10.3389/fpls.2020.608711] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/24/2020] [Indexed: 05/10/2023]
Abstract
To elucidate the effect of light intensity on the cold response (5°C; 7 days) in Arabidopsis thaliana, we compared the following parameters under standard light (150 μmol m-2 s-1), low light (20 μmol m-2 s-1), and dark conditions: membrane damage, photosynthetic parameters, cytokinin oxidase/dehydrogenase (CKX) activity, phytohormone levels, and transcription of selected stress- and hormone-related genes and proteome. The impact of cytokinins (CKs), hormones directly interacting with the light signaling pathway, on cold responses was evaluated using transformants overexpressing CK biosynthetic gene isopentenyl transferase (DEX:IPT) or CK degradation gene HvCKX2 (DEX:CKX) under a dexamethasone-inducible promoter. In wild-type plants, cold treatment under light conditions caused down-regulation of CKs (in shoots) and auxin, while abscisic acid (ABA), jasmonates, and salicylic acid (SA) were up-regulated, especially under low light. Cold treatment in the dark strongly suppressed all phytohormones, except ABA. DEX:IPT plants showed enhanced stress tolerance associated with elevated CK and SA levels in shoots and auxin in apices. Contrarily, DEX:CKX plants had weaker stress tolerance accompanied by lowered levels of CKs and auxins. Nevertheless, cold substantially diminished the impact from the inserted genes. Cold stress in dark minimized differences among the genotypes. Cold treatments in light strongly up-regulated stress marker genes RD29A, especially in roots, and CBF1-3 in shoots. Under control conditions, their levels were higher in DEX:CKX plants, but after 7-day stress, DEX:IPT plants exhibited the highest transcription. Transcription of genes related to CK metabolism and signaling showed a tendency to re-establish, at least partially, CK homeostasis in both transformants. Up-regulation of strigolactone-related genes in apices and leaves indicated their role in suppressing shoot growth. The analysis of leaf proteome revealed over 20,000 peptides, representing 3,800 proteins and 2,212 protein families (data available via ProteomeXchange, identifier PXD020480). Cold stress induced proteins involved in ABA and jasmonate metabolism, antioxidant enzymes, and enzymes of flavonoid and glucosinolate biosynthesis. DEX:IPT plants up-regulated phospholipase D and MAP-kinase 4. Cold stress response at the proteome level was similar in all genotypes under optimal light intensity, differing significantly under low light. The data characterized the decisive effect of light-CK cross-talk in the regulation of cold stress responses.
Collapse
Affiliation(s)
- Sylva Prerostova
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czechia
| | - Martin Černý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Petre I. Dobrev
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czechia
| | - Vaclav Motyka
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czechia
| | - Lucia Hluskova
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czechia
| | - Barbara Zupkova
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czechia
| | - Alena Gaudinova
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czechia
| | - Vojtech Knirsch
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czechia
| | - Tibor Janda
- Department of Plant Physiology, Agricultural Institute, Centre for Agricultural Research, Martonvasar, Hungary
| | - Bretislav Brzobohatý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
- CEITEC MENDELU: Central European Institute of Technology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Radomira Vankova
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czechia
- *Correspondence: Radomira Vankova,
| |
Collapse
|
29
|
Xia EH, Tong W, Wu Q, Wei S, Zhao J, Zhang ZZ, Wei CL, Wan XC. Tea plant genomics: achievements, challenges and perspectives. HORTICULTURE RESEARCH 2020; 7:7. [PMID: 31908810 PMCID: PMC6938499 DOI: 10.1038/s41438-019-0225-4] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 10/17/2019] [Accepted: 11/03/2019] [Indexed: 05/18/2023]
Abstract
Tea is among the world's most widely consumed non-alcoholic beverages and possesses enormous economic, health, and cultural values. It is produced from the cured leaves of tea plants, which are important evergreen crops globally cultivated in over 50 countries. Along with recent innovations and advances in biotechnologies, great progress in tea plant genomics and genetics has been achieved, which has facilitated our understanding of the molecular mechanisms of tea quality and the evolution of the tea plant genome. In this review, we briefly summarize the achievements of the past two decades, which primarily include diverse genome and transcriptome sequencing projects, gene discovery and regulation studies, investigation of the epigenetics and noncoding RNAs, origin and domestication, phylogenetics and germplasm utilization of tea plant as well as newly developed tools/platforms. We also present perspectives and possible challenges for future functional genomic studies that will contribute to the acceleration of breeding programs in tea plants.
Collapse
Affiliation(s)
- En-Hua Xia
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036 China
| | - Wei Tong
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036 China
| | - Qiong Wu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036 China
| | - Shu Wei
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036 China
| | - Jian Zhao
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036 China
| | - Zheng-Zhu Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036 China
| | - Chao-Ling Wei
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036 China
| | - Xiao-Chun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036 China
| |
Collapse
|
30
|
MicroRNAs and their targeted genes associated with phase changes of stem explants during tissue culture of tea plant. Sci Rep 2019; 9:20239. [PMID: 31882926 PMCID: PMC6934718 DOI: 10.1038/s41598-019-56686-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 12/13/2019] [Indexed: 11/08/2022] Open
Abstract
Elucidation of the molecular mechanism related to the dedifferentiation and redifferentiation during tissue culture will be useful for optimizing regeneration system of tea plant. In this study, an integrated sRNAome and transcriptome analyses were carried out during phase changes of the stem explant culture. Among 198 miRNAs and 8001 predicted target genes, 178 differentially expressed miRNAs and 4264 potential targets were screened out from explants, primary calli, as well as regenerated roots and shoots. According to KEGG analysis of the potential targets, pathway of "aminoacyl-tRNA biosynthesis", "proteasome" and "glutathione metabolism" was of great significance during the dedifferentiation, and pathway of "porphyrin and chlorophyll metabolism", "mRNA surveillance pathway", "nucleotide excision repair" was indispensable for redifferentiation of the calli. Expression pattern of 12 miRNAs, including csn-micR390e, csn-miR156b-5p, csn-miR157d-5p, csn-miR156, csn-miR166a-3p, csn-miR166e, csn-miR167d, csn-miR393c-3p, csn-miR394, csn-miR396a-3p, csn-miR396 and csn-miR396e-3p, was validated by qRT-PCR among 57 differentially expressed phase-specific miRNAs. Validation also confirmed that regulatory module of csn-miR167d/ERF3, csn-miR156/SPB1, csn-miR166a-3p/ATHB15, csn-miR396/AIP15A, csn-miR157d-5p/GST and csn-miR393c-3p/ATG18b might play important roles in regulating the phase changes during tissue culture of stem explants.
Collapse
|
31
|
Li FD, Tong W, Xia EH, Wei CL. Optimized sequencing depth and de novo assembler for deeply reconstructing the transcriptome of the tea plant, an economically important plant species. BMC Bioinformatics 2019; 20:553. [PMID: 31694521 PMCID: PMC6836513 DOI: 10.1186/s12859-019-3166-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 10/21/2019] [Indexed: 11/10/2022] Open
Abstract
Background Tea is the oldest and among the world’s most popular non-alcoholic beverages, which has important economic, health and cultural values. Tea is commonly produced from the leaves of tea plants (Camellia sinensis), which belong to the genus Camellia of family Theaceae. In the last decade, many studies have generated the transcriptomes of tea plants at different developmental stages or under abiotic and/or biotic stresses to investigate the genetic basis of secondary metabolites that determine tea quality. However, these results exhibited large differences, particularly in the total number of reconstructed transcripts and the quality of the assembled transcriptomes. These differences largely result from limited knowledge regarding the optimized sequencing depth and assembler for transcriptome assembly of structurally complex plant species genomes. Results We employed different amounts of RNA-sequencing data, ranging from 4 to 84 Gb, to assemble the tea plant transcriptome using five well-known and representative transcript assemblers. Although the total number of assembled transcripts increased with increasing sequencing data, the proportion of unassembled transcripts became saturated as revealed by plant BUSCO datasets. Among the five representative assemblers, the Bridger package shows the best performance in both assembly completeness and accuracy as evaluated by the BUSCO datasets and genome alignment. In addition, we showed that Bridger and BinPacker harbored the shortest runtimes followed by SOAPdenovo and Trans-ABySS. Conclusions The present study compares the performance of five representative transcript assemblers and investigates the key factors that affect the assembly quality of the transcriptome of the tea plants. This study will be of significance in helping the tea research community obtain better sequencing and assembly of tea plant transcriptomes under conditions of interest and may thus help to answer major biological questions currently facing the tea industry.
Collapse
Affiliation(s)
- Fang-Dong Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China.,School of Science, Anhui Agricultural University, Hefei, 230036, China
| | - Wei Tong
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - En-Hua Xia
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China.
| | - Chao-Ling Wei
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
32
|
Zhou C, Zhu C, Fu H, Li X, Chen L, Lin Y, Lai Z, Guo Y. Genome-wide investigation of superoxide dismutase (SOD) gene family and their regulatory miRNAs reveal the involvement in abiotic stress and hormone response in tea plant (Camellia sinensis). PLoS One 2019; 14:e0223609. [PMID: 31600284 PMCID: PMC6786557 DOI: 10.1371/journal.pone.0223609] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 09/24/2019] [Indexed: 02/06/2023] Open
Abstract
Superoxide dismutases (SODs), as a family of metalloenzymes related to the removal of reactive oxygen species (ROS), have not previously been investigated at genome-wide level in tea plant. In this study, 10 CsSOD genes were identified in tea plant genome, including 7 Cu/Zn-SODs (CSDs), 2 Fe-SODs (FSDs) and one Mn-SOD (MSD), and phylogenetically classified in three subgroups, respectively. Physico-chemical characteristic, conserved motifs and potential protein interaction analyses about CsSOD proteins were carried out. Exon-intron structures and codon usage bias about CsSOD genes were also examined. Exon-intron structures analysis revealed that different CsSOD genes contained various number of introns. On the basis of the prediction of regulatory miRNAs of CsSODs, a modification 5’ RNA ligase-mediated (RLM)-RACE was performed and validated that csn-miR398a-3p-1 directly cleaves CsCSD4. By prediction of cis-acting elements, the expression patterns of 10 CsSOD genes and their regulatory miRNAs were detected under cold, drought, exogenous methyl jasmonate (MeJA) and gibberellin (GA3) treatments. The results showed that most of CsSODs except for CsFSD2 were induced under cold stress and CsCSDs may play primary roles under drought stress; exogenous GA3 and MeJA could also stimulated/inhibited distinct CsSODs at different stages. In addition, we found that csn-miR398a-3p-1 negatively regulated the expression of CsCSD4 may be a crucial regulatory mechanism under cold stress. This study provides a certain basis for the studies about stress resistance in tea plants, even provide insight into comprehending the classification, evolution, diverse functions and influencing factors of expression patterns for CsSOD genes.
Collapse
Affiliation(s)
- Chengzhe Zhou
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Chen Zhu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Haifeng Fu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Xiaozhen Li
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Lan Chen
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yuling Lin
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Zhongxiong Lai
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yuqiong Guo
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Key Laboratory of Tea Science of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- * E-mail:
| |
Collapse
|
33
|
Liu S, Mi X, Zhang R, An Y, Zhou Q, Yang T, Xia X, Guo R, Wang X, Wei C. Integrated analysis of miRNAs and their targets reveals that miR319c/TCP2 regulates apical bud burst in tea plant (Camellia sinensis). PLANTA 2019; 250:1111-1129. [PMID: 31172343 DOI: 10.1007/s00425-019-03207-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 06/01/2019] [Indexed: 05/18/2023]
Abstract
MAIN CONCLUSION The roles of microRNA-mediated epigenetic regulation were highlighted in the bud dormancy-activity cycle, implying that certain differentially expressed miRNAs play crucial roles in apical bud burst, such as csn-miR319c/TCP2. microRNAs (miRNAs) are a class of small non-coding RNAs that regulate gene expression by targeting mRNA transcripts for cleavage or directing translational inhibition. To investigate whether miRNAs regulate bud dormancy-activation transition in tea plant, which largely affects the yield and price of tea products and adaptability of tea trees, we constructed small RNA libraries from three different periods of bud dormancy-burst transition. Through sequencing analysis, 262 conserved and 83 novel miRNAs were identified, including 118 differentially expressed miRNAs. Quantitative RT-PCR results for randomly selected miRNAs exhibited that our comprehensive analysis is highly reliable and accurate. The content of caffeine increased continuously from the endodormancy bud to flushing bud, and differentially expressed miRNAs coupling with their targets associated with bud burst were identified. Remarkably, csn-miR319c was downregulated significantly from the quiescent bud to burst bud, while its target gene CsnTCP2 (TEOSINTE BRANCHED/CYCLOIDEA/PROLIFERATING CELL FACTOR 2) displayed opposite expression patterns. Co-transformation experiment in tobacco demonstrated that csn-miR319c can significantly suppress the functions of CsnTCP2. This study on miRNAs and the recognition of target genes could provide new insights into the molecular mechanism of the bud dormancy-activation transition in tea plant.
Collapse
Affiliation(s)
- Shengrui Liu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, China
| | - Xiaozeng Mi
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, China
| | - Ran Zhang
- Tea Research Institution, Anhui Academy of Agricultural Sciences, Huangshang, China
| | - Yanlin An
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, China
| | - Qiying Zhou
- Henan Key Laboratory of Tea Plant Biology, Xinyang Normal University, 237 Nanhu Road, Xinyang, 464000, China
| | - Tianyuan Yang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, China
| | - Xiaobo Xia
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, China
| | - Rui Guo
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, China
| | - Xuewen Wang
- Department of Genetics, University of Georgia, Athens, GA, 30602, USA
| | - Chaoling Wei
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, China.
| |
Collapse
|
34
|
Jeyaraj A, Wang X, Wang S, Liu S, Zhang R, Wu A, Wei C. Identification of Regulatory Networks of MicroRNAs and Their Targets in Response to Colletotrichum gloeosporioides in Tea Plant ( Camellia sinensis L.). FRONTIERS IN PLANT SCIENCE 2019; 10:1096. [PMID: 31572415 PMCID: PMC6751461 DOI: 10.3389/fpls.2019.01096] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 08/09/2019] [Indexed: 05/21/2023]
Abstract
Anthracnose disease is caused by Colletotrichum gloeosporioides, and is common in leaves of the tea plant (Camellia sinensis). MicroRNAs (miRNAs) have been known as key modulators of gene expression in response to environmental stresses, disease resistance, defense responses, and plant immunity. However, the role of miRNAs in responses to C. gloeosporioides remains unexplored in tea plant. Therefore, in the present study, six miRNA sequencing data sets and two degradome data sets were generated from C. gloeosporioides-inoculated and control tea leaves. A total of 485 conserved and 761 novel miRNAs were identified. Of those, 239 known and 369 novel miRNAs exhibited significantly differential expression under C. gloeosporioides stress. One thousand one hundred thirty-four and 596 mRNAs were identified as targets of 389 conserved and 299 novel miRNAs by degradome analysis, respectively. Based on degradome analysis, most of the predicted targets are negatively correlated with their corresponding conserved and novel miRNAs. The expression levels of 12 miRNAs and their targets were validated by quantitative real-time PCR. A negative correlation between expression profiles of five miRNAs (PC-5p-80764_22, csn-miR160c, csn-miR828a, csn-miR164a, and csn-miR169e) and their targets (WRKY, ARF, MYB75, NAC, and NFY transcription factor) was observed. The predicted targets of five interesting miRNAs were further validated through 5'RLM-RACE. Furthermore, Gene Ontology and metabolism pathway analysis revealed that most of the target genes were involved in the regulation of auxin pathway, ROS scavenging pathway, salicylic acid mediated pathway, receptor kinases, and transcription factors for plant growth and development as well as stress responses in tea plant against C. gloeosporioides stress. This study enriches the resources of stress-responsive miRNAs and their targets in C. sinensis and thus provides novel insights into the miRNA-mediated regulatory mechanisms, which could contribute to the enhanced susceptibility of C. gloeosporioides in tea plant.
Collapse
Affiliation(s)
- Anburaj Jeyaraj
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
- Department of Biotechnology, Karpagam Academy of Higher Education, Coimbatore, India
| | - Xuewen Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
- Department of Genetics, University of Georgia, Athens, United States
| | - Shuangshuang Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Shengrui Liu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Ran Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Ailin Wu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Chaoling Wei
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| |
Collapse
|
35
|
Samarth, Lee R, Song J, Macknight RC, Jameson PE. Identification of flowering-time genes in mast flowering plants using De Novo transcriptomic analysis. PLoS One 2019; 14:e0216267. [PMID: 31412034 PMCID: PMC6693765 DOI: 10.1371/journal.pone.0216267] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 07/22/2019] [Indexed: 11/18/2022] Open
Abstract
Mast flowering is synchronised highly variable flowering by a population of perennial plants over a wide geographical area. High seeding years are seen as a threat to native and endangered species due to high predator density caused by the abundance of seed. An understanding of the molecular pathways that influence masting behaviour in plants could provide better prediction of a forthcoming masting season and enable conservation strategies to be deployed. The goal of this study was to identify candidate flowering genes that might be involved in regulating mast flowering. To achieve this, high-throughput large-scale RNA-sequencing was performed on two masting plant species, Celmisia lyallii (Asteraceae), and Chionochloa pallens (Poaceae) to develop a reference transcriptome for functional and molecular analysis. An average total of 33 million 150 base-paired reads, for both species, were assembled using the Trinity pipeline, resulting in 151,803 and 348,649 transcripts respectively for C. lyallii and C. pallens. For both species, about 56% of the unigenes were annotated with gene descriptions to known proteins followed by Gene Ontology analysis, categorising them on the basis of putative biological processes, molecular function, and cellular localization. A total of 543 transcripts from C. lyallii and 470 transcripts from C. pallens were also mapped to unique flowering-time proteins identified in Arabidopsis thaliana, suggesting the conservation of the flowering network in these wild alpine plants growing in natural field conditions. Expression analysis of several selected homologous flowering-pathway genes showed seasonal and photoperiodic variations. These genes can further be analysed to understand why seasonal cues, such as the increasing photoperiod in spring, that triggers the annual flowering of most plants, are insufficient to always trigger flowering in masting plants and to uncover the molecular basis of how additional cues (such as temperature during the previous growing seasons) then determines flowering in mast years.
Collapse
Affiliation(s)
- Samarth
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Robyn Lee
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Jiancheng Song
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
- School of Life Sciences, Yantai University, Yantai, China
| | | | - Paula E. Jameson
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| |
Collapse
|
36
|
Nilo-Poyanco R, Vizoso P, Sanhueza D, Balic I, Meneses C, Orellana A, Campos-Vargas R. A Prunus persica genome-wide RNA-seq approach uncovers major differences in the transcriptome among chilling injury sensitive and non-sensitive varieties. PHYSIOLOGIA PLANTARUM 2019; 166:772-793. [PMID: 30203620 DOI: 10.1111/ppl.12831] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 08/28/2018] [Accepted: 09/03/2018] [Indexed: 05/14/2023]
Abstract
Chilling injury represents a major constrain for crops productivity. Prunus persica, one of the most relevant rosacea crops, have early season varieties that are resistant to chilling injury, in contrast to late season varieties, which display chilling symptoms such as mealiness (dry, sandy fruit mesocarp) after prolonged storage at chilling temperatures. To uncover the molecular processes related to the ability of early varieties to withstand mealiness, postharvest and genome-wide RNA-seq assessments were performed in two early and two late varieties. Differences in juice content and ethylene biosynthesis were detected among early and late season fruits that became mealy after exposed to prolonged chilling. Principal component and data distribution analysis revealed that cold-stored late variety fruit displayed an exacerbated and unique transcriptome profile when compared to any other postharvest condition. A differential expression analysis performed using an empirical Bayes mixture modeling approach followed by co-expression and functional enrichment analysis uncover processes related to ethylene, lipids, cell wall, carotenoids and DNA metabolism, light response, and plastid homeostasis associated to the susceptibility or resistance of P. persica varieties to chilling stress. Several of the genes related to these processes are in quantitative trait loci (QTL) associated to mealiness in P. persica. Together, these analyses exemplify how P. persica can be used as a model for studying chilling stress in plants.
Collapse
Affiliation(s)
- Ricardo Nilo-Poyanco
- Escuela de Biotecnología, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Paula Vizoso
- Centro de Propagación y Conservación Vegetal, Universidad Mayor, Santiago, Chile
| | - Dayan Sanhueza
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Iván Balic
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Departamento de Ciencias Biológicas, Universidad de Los Lagos, Osorno, Chile
| | - Claudio Meneses
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- FONDAP Center for Genome Regulation, Santiago, Chile
| | - Ariel Orellana
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- FONDAP Center for Genome Regulation, Santiago, Chile
| | - Reinaldo Campos-Vargas
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| |
Collapse
|
37
|
Pu Y, Liu L, Wu J, Zhao Y, Bai J, Ma L, Yue J, Jin J, Niu Z, Fang Y, Sun W. Transcriptome Profile Analysis of Winter Rapeseed ( Brassica napus L.) in Response to Freezing Stress, Reveal Potentially Connected Events to Freezing Stress. Int J Mol Sci 2019; 20:ijms20112771. [PMID: 31195741 PMCID: PMC6600501 DOI: 10.3390/ijms20112771] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 05/30/2019] [Accepted: 06/03/2019] [Indexed: 11/16/2022] Open
Abstract
Winter rapeseed is not only an important oilseed crop, but also a winter cover crop in Northern China, where its production was severely limited by freezing stress. As an overwinter crop, the production is severely limited by freezing stress. Therefore, understanding the physiological and molecular mechanism of winter rapeseed (Brassica napus L.) in freezing stress responses becomes essential for the improvement and development of freezing-tolerant varieties of Brassica napus. In this study, morphological, physiological, ultrastructure and transcriptome changes in the Brassica napus line "2016TS(G)10" (freezing-tolerance line) that was exposed to -2 °C for 0 h, 1 h, 3 h and 24 h were characterized. The results showed that freezing stress caused seedling dehydration, and chloroplast dilation and degradation. The content of malondialdehyde (MDA), proline, soluble protein and soluble sugars were increased, as well as the relative electrolyte leakage (REL) which was significantly increased at frozen 24 h. Subsequently, RNA-seq analysis revealed a total of 98,672 UniGenes that were annotated in Brassica napus and 3905 UniGenes were identified as differentially expressed genes after being exposed to freezing stress. Among these genes, 2312 (59.21%) were up-regulated and 1593 (40.79%) were down-regulated. Most of these DEGs were significantly annotated in the carbohydrates and energy metabolism, signal transduction, amino acid metabolism and translation. Most of the up-regulated DEGs were especially enriched in plant hormone signal transduction, starch and sucrose metabolism pathways. Transcription factor enrichment analysis showed that the AP2/ERF, WRKY and MYB families were also significantly changed. Furthermore, 20 DEGs were selected to validate the transcriptome profiles via quantitative real-time PCR (qRT-PCR). In conclusion, the results provide an overall view of the dynamic changes in physiology and insights into the molecular regulation mechanisms of winter Brassica napus in response to freezing treatment, expanding our understanding on the complex molecular mechanism in plant response to freezing stress.
Collapse
Affiliation(s)
- Yuanyuan Pu
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China.
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou 730070, China.
| | - Lijun Liu
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou 730070, China.
| | - Junyan Wu
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China.
| | - Yuhong Zhao
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China.
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou 730070, China.
| | - Jing Bai
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China.
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou 730070, China.
| | - Li Ma
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China.
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou 730070, China.
| | - Jinli Yue
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China.
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou 730070, China.
| | - Jiaojiao Jin
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China.
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou 730070, China.
| | - Zaoxia Niu
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China.
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou 730070, China.
| | - Yan Fang
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou 730070, China.
| | - Wancang Sun
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China.
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou 730070, China.
| |
Collapse
|
38
|
Zhao L, Chen C, Wang Y, Shen J, Ding Z. Conserved MicroRNA Act Boldly During Sprout Development and Quality Formation in Pingyang Tezaocha ( Camellia sinensis). Front Genet 2019; 10:237. [PMID: 31001312 PMCID: PMC6455055 DOI: 10.3389/fgene.2019.00237] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 03/04/2019] [Indexed: 01/20/2023] Open
Abstract
Tea tree [Camellia sinensis (L.) O. Kuntze] is an important leaf (sometimes tender stem)-using commercial plant with many medicinal uses. The development of newly sprouts would directly affect the yield and quality of tea product, especially significant for Pingyang Tezaocha (PYTZ) which takes up a large percent in the early spring tea market. MicroRNA (miRNA), particularly the conserved miRNAs, often position in the center of subtle and complex gene regulatory systems, precisely control the biological processes together with other factors in a spatio-temporal pattern. Here, quality-determined metabolites catechins, theanine and caffeine in PYTZ sprouts including buds (sBud), different development stages of leaves (sL1, sL2) and stems (sS1, sS2) were quantified. A total of 15 miRNA libraries of the same tissue with three repetitions for each were constructed to explore vital miRNAs during the biological processes of development and quality formation. We analyzed the whole miRNA profiles during the sprout development and defined conserved miRNA families in the tea plant. The differentially expressed miRNAs related to the expression profiles buds, leaves, and stems development stages were described. Twenty one miRNAs and eight miRNA-TF pairs that most likely to participate in regulating development, and at least two miRNA-TF-metabolite triplets that participate in both development and quality formation had been filtered. Our results indicated that conserved miRNA act boldly during important biological processes, they are (i) more likely to be linked with morphological function in primary metabolism during sprout development, and (ii) hold an important position in secondary metabolism during quality formation in tea plant, also (iii) coordinate with transcription factors in forming networks of complex multicellular organism regulation.
Collapse
Affiliation(s)
- Lei Zhao
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticultural Plants, College of Horticulture, Qingdao Agricultural University, Qingdao, China.,Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, United States
| | - Changsong Chen
- Tea Research Institute, Fujian Academy of Agricultural Sciences, Fu'an, China
| | - Yu Wang
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticultural Plants, College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Jiazhi Shen
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Zhaotang Ding
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticultural Plants, College of Horticulture, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
39
|
Choudhary S, Thakur S, Jaitak V, Bhardwaj P. Gene and metabolite profiling reveals flowering and survival strategies in Himalayan Rhododendron arboreum. Gene 2019; 690:1-10. [DOI: 10.1016/j.gene.2018.12.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 12/13/2018] [Indexed: 12/23/2022]
|
40
|
Gao Y, Zhao M, Wu XH, Li D, Borthakur D, Ye JH, Zheng XQ, Lu JL. Analysis of Differentially Expressed Genes in Tissues of Camellia sinensis during Dedifferentiation and Root Redifferentiation. Sci Rep 2019; 9:2935. [PMID: 30814540 PMCID: PMC6393419 DOI: 10.1038/s41598-019-39264-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 01/21/2019] [Indexed: 12/04/2022] Open
Abstract
Tissue culture is very important for identifying the gene function of Camellia sinensis (L.) and exploiting novel germplasm through transgenic technology. Regeneration system of tea plant has been explored but not been well established since the molecular mechanism of tea plant regeneration is not clear yet. In this study, transcriptomic analysis was performed in the initial explants of tea plant and their dedifferentiated and redifferentiated tissues. A total of 93,607 unigenes were obtained through de novo assembly, and 7,193 differentially expressed genes (DEGs) were screened out from the 42,417 annotated unigenes. Much more DEGs were observed during phase transition rather than at growth stages of callus. Our KOG and KEGG analysis, and qPCR results confirmed that phase transition of tea plant was closely related to the mechanism that regulate expression of genes encoding the auxin- and cytokinin-responsive proteins, transcription factor MYB15 and ethylene-responsive transcription factor ERF RAP2-12. These findings provide a reliable foundation for elucidating the mechanism of the phase transition and may help to optimize the regeneration system by regulating the gene expression pattern.
Collapse
Affiliation(s)
- Ying Gao
- Zhejiang University Tea Research Institute, Hangzhou, 310058, P.R. China
| | - Min Zhao
- Zhejiang University Tea Research Institute, Hangzhou, 310058, P.R. China
| | - Xiao-Han Wu
- Zhejiang University Tea Research Institute, Hangzhou, 310058, P.R. China
| | - Da Li
- Zhejiang University Tea Research Institute, Hangzhou, 310058, P.R. China
| | | | - Jian-Hui Ye
- Zhejiang University Tea Research Institute, Hangzhou, 310058, P.R. China
| | - Xin-Qiang Zheng
- Zhejiang University Tea Research Institute, Hangzhou, 310058, P.R. China
| | - Jian-Liang Lu
- Zhejiang University Tea Research Institute, Hangzhou, 310058, P.R. China.
| |
Collapse
|
41
|
Liu W, Cheng C, Chen F, Ni S, Lin Y, Lai Z. High-throughput sequencing of small RNAs revealed the diversified cold-responsive pathways during cold stress in the wild banana (Musa itinerans). BMC PLANT BIOLOGY 2018; 18:308. [PMID: 30486778 PMCID: PMC6263057 DOI: 10.1186/s12870-018-1483-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 10/15/2018] [Indexed: 05/16/2023]
Abstract
BACKGROUND Cold stress is one of the most severe abiotic stresses affecting the banana production. Although some miRNAs have been identified, little is known about the role of miRNAs in response to cold stress in banana, and up to date, there is no report about the role of miRNAs in the response to cold stress in the plants of the cultivated or wild bananas. RESULT Here, a cold-resistant line wild banana (Musa itinerans) from China was used to profile the cold-responsive miRNAs by RNA-seq during cold stress. Totally, 265 known mature miRNAs and 41 novel miRNAs were obtained. Cluster analysis of differentially expressed (DE) miRNAs indicated that some miRNAs were specific for chilling or 0 °C treated responses, and most of them were reported to be cold-responsive; however, some were seldom reported to be cold-responsive in response to cold stress, e.g., miR395, miR408, miR172, suggesting that they maybe play key roles in response to cold stress. The GO and KEGG pathway enrichment analysis of DE miRNAs targets indicated that there existed diversified cold-responsive pathways, and miR172 was found likely to play a central coordinating role in response to cold stress, especially in the regulation of CK2 and the circadian rhythm. Finally, qPCR assays indicated the related targets were negatively regulated by the tested DE miRNAs during cold stress in the wild banana. CONCLUSIONS In this study, the profiling of miRNAs by RNA-seq in response to cold stress in the plants of the wild banana (Musa itinerans) was reported for the first time. The results showed that there existed diversified cold-responsive pathways, which provided insight into the roles of miRNAs during cold stress, and would be helpful for alleviating cold stress and cold-resistant breeding in bananas.
Collapse
Affiliation(s)
- Weihua Liu
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- Chongqing Normal University, Daxuecheng Middle Rd, Chongqing, Shapingba Qu China
| | - Chunzhen Cheng
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Fanglan Chen
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Shanshan Ni
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Yuling Lin
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Zhongxiong Lai
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| |
Collapse
|
42
|
Kenchanmane Raju SK, Barnes AC, Schnable JC, Roston RL. Low-temperature tolerance in land plants: Are transcript and membrane responses conserved? PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 276:73-86. [PMID: 30348330 DOI: 10.1016/j.plantsci.2018.08.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 08/01/2018] [Accepted: 08/02/2018] [Indexed: 05/20/2023]
Abstract
Plants' tolerance of low temperatures is an economically and ecologically important limitation on geographic distributions and growing seasons. Tolerance for low temperatures varies significantly across different plant species, and different mechanisms likely act in different species. In order to survive low-temperature stress, plant membranes must maintain their fluidity in increasingly cold and oxidative cellular environments. The responses of different species to low-temperature stress include changes to the types and desaturation levels of membrane lipids, though the precise lipids affected tend to vary by species. Regulation of membrane dynamics and other low-temperature tolerance factors are controlled by both transcriptional and post-transcriptional mechanisms. Here, we review low-temperature induced changes in both membrane lipid composition and gene transcription across multiple related plant species with differing degrees of low-temperature tolerance. We attempt to define a core set of changes for transcripts and lipids across species and treatment variations. Some responses appear to be consistent across all species for which data are available, while many others appear likely to be species or family-specific. Potential rationales are presented, including variance in testing, reporting and the importance of considering the level of stress perceived by the plant.
Collapse
Affiliation(s)
- Sunil Kumar Kenchanmane Raju
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA; Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA
| | - Allison C Barnes
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA; Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA
| | - James C Schnable
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA; Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA
| | - Rebecca L Roston
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA; Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA.
| |
Collapse
|
43
|
Zuo J, Wang Y, Zhu B, Luo Y, Wang Q, Gao L. sRNAome and transcriptome analysis provide insight into chilling response of cowpea pods. Gene 2018; 671:142-151. [PMID: 29792949 DOI: 10.1016/j.gene.2018.05.064] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 05/04/2018] [Accepted: 05/16/2018] [Indexed: 12/11/2022]
Abstract
Cowpea is an important horticultural crop in tropical and subtropical areas of Asia, Africa, and Latin America, as well as parts of southern Europe and Central and South America. Chilling injury is a common physiological hazard of cowpea in cold chain logistics which reduce the cowpea pods nutritional quality and product value. However, the molecular mechanism involved in chilling injury remains unclear in cowpea pods. RNA-Seq and sRNA-Seq technologies were employed to decipher the miRNAs and mRNAs expression profiles and their regulatory networks in cowpea pods involved in chilling stress. Differentially expressed miRNAs and mRNA profiles were obtained based on cluster analysis, miRNAs and target genes were found to show coherent relationships in the regulatory networks of chilling injury. Furthermore, we found that numerous miRNAs and nat-siRNAs' targets were predicted to be key enzymes involved in the redox reactions such as POD, CAT, AO and LOX, energy metabolism such as ATPase, FAD and NAD related enzymes and different transcription factors such as WRKY, bHLH, MYB, ERF and NAC which play important roles in chilling injury.
Collapse
Affiliation(s)
- Jinhua Zuo
- Key laboratory of the vegetable postharvest treatment of Ministry of Agriculture, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Boyce Thompson Institute for Plant Research, Cornell University Campus, Ithaca, NY 14853, USA.
| | - Yunxiang Wang
- Beijing Academy of Forestry and Pomology Sciences, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, China
| | - Benzhong Zhu
- Laboratory of Postharvest Molecular Biology of Fruits and Vegetables, Department of Food Biotechnology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yunbo Luo
- Laboratory of Postharvest Molecular Biology of Fruits and Vegetables, Department of Food Biotechnology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Qing Wang
- Key laboratory of the vegetable postharvest treatment of Ministry of Agriculture, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| | - Lipu Gao
- Key laboratory of the vegetable postharvest treatment of Ministry of Agriculture, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| |
Collapse
|
44
|
Zhao C, Fan S, Qiu L. Identification of MicroRNAs and Their Target Genes Associated with Ovarian Development in Black Tiger Shrimp (Penaeus monodon) Using High-Throughput Sequencing. Sci Rep 2018; 8:11602. [PMID: 30072718 PMCID: PMC6072753 DOI: 10.1038/s41598-018-29597-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 07/11/2018] [Indexed: 12/23/2022] Open
Abstract
Plenty of evidence showing that microRNAs (miRNAs) post-transcriptionally regulate gene expression and are involved in a wide range of biological processes. However, the roles of miRNAs in ovarian development process remain largely unknown in shrimp. In the present study, high-throughput sequencing of small RNAs was performed to find specific miRNAs that are involved in ovarian development process in Penaeus monodon. Two small RNA libraries were constructed from undeveloped (UNDEV group) and developed (DEV group) ovarian tissues in P. monodon. In total, 43 differentially expressed miRNAs were identified between the two groups (P ≤ 0.05, |log2 ratio| ≥1), and their expression profiles were validated by qRT-PCR. In order to further clarify the functional roles of these differentially expressed miRNAs during ovarian development process, target gene prediction was performed. In total, 4,102 target genes of 43 miRNAs were predicted, then clustered by the Kyoto Encyclopedia of Genes and Genomes (KEGG) database; only four specific pathways related to ovarian development were obtained (P < 0.05). Dual-luciferase reporter assays and integrated expression analysis were also conducted to further clarify the interaction between the miRNAs and their target mRNAs. This study provides important information about the function of miRNAs involved in ovarian developmental stages in P. monodon.
Collapse
Affiliation(s)
- Chao Zhao
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, Guangzhou, China
| | - Sigang Fan
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, Guangzhou, China
| | - Lihua Qiu
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China.
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture, CAFS, Beijing, 100141, China.
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, Guangzhou, China.
| |
Collapse
|
45
|
Li NN, Yue C, Cao HL, Qian WJ, Hao XY, Wang YC, Wang L, Ding CQ, Wang XC, Yang YJ. Transcriptome sequencing dissection of the mechanisms underlying differential cold sensitivity in young and mature leaves of the tea plant (Camellia sinensis). JOURNAL OF PLANT PHYSIOLOGY 2018; 224-225:144-155. [PMID: 29642051 DOI: 10.1016/j.jplph.2018.03.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 03/27/2018] [Accepted: 03/27/2018] [Indexed: 06/08/2023]
Abstract
The tea plant originated in tropical and subtropical regions and experiences considerable challenges during cold winters and late spring frosts. After short-term chilling stress, young leaves of tea plants exhibit browning, a significant increase in electrolyte leakage and a marked decrease in the maximal photochemical efficiency of photosystem II (Fv/Fm) compared with mature leaves. To identify the mechanisms underlying the different chilling tolerance between young and mature leaves of the tea plant, we used Illumina RNA-Seq technology to analyse the transcript expression profiles of young and mature leaves exposed to temperatures of 20 °C, 4 °C, and 0 °C for 4 h. A total of 45.70-72.93 million RNA-Seq raw reads were obtained and then de novo assembled into 228,864 unigenes with an average length of 601 bp and an N50 of 867 bp. In addition, the differentially expressed unigenes were identified via Venn diagram analyses for paired comparisons of young and mature leaves. Functional classifications based on Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses revealed that the up-regulated differentially expressed genes were predominantly related to the cellular component terms of chloroplasts and cell membranes, the biological process term of oxidation-reduction process as well as the pathway terms of glutathione metabolism and photosynthesis, suggesting that these components and pathways may contribute to the cold hardiness of mature leaves. Conversely, the inhibited expression of genes related to cell membranes, carotenoid metabolism, photosynthesis, and ROS detoxification in young leaves under cold conditions might lead to the disintegration of cell membranes and oxidative damage to the photosynthetic apparatus. Further quantitative real-time PCR testing validated the reliability of our RNA-Seq results. This work provides valuable information for understanding the mechanisms underlying the cold susceptibility of young tea plant leaves and for breeding tea cultivars with superior frost resistance via the genetic manipulation of antioxidant enzymes.
Collapse
Affiliation(s)
- Na-Na Li
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou 310008, China
| | - Chuan Yue
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Department of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hong-Li Cao
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Department of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wen-Jun Qian
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Xin-Yuan Hao
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou 310008, China
| | - Yu-Chun Wang
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou 310008, China
| | - Lu Wang
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou 310008, China
| | - Chang-Qing Ding
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou 310008, China
| | - Xin-Chao Wang
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou 310008, China.
| | - Ya-Jun Yang
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou 310008, China.
| |
Collapse
|
46
|
High throughput deep sequencing reveals the important roles of microRNAs during sweetpotato storage at chilling temperature. Sci Rep 2017; 7:16578. [PMID: 29185497 PMCID: PMC5707365 DOI: 10.1038/s41598-017-16871-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 11/06/2017] [Indexed: 01/31/2023] Open
Abstract
Sweetpotato (Impomoea batatas L.) is a globally important economic food crop with a potential of becoming a bioenergy and pharmaceutical crop. Thus, studying the molecular mechanism of tuberous root development and storage is very important. However, not too much progress has been made in this field. In this study, we employed the next generation high-throughput deep sequencing technology to sequence all small RNAs and degradome of sweetpotato for systematically investigating sweetpotato response to chilling stress during storage. A total of 190 known microRNAs (miRNAs) and 191 novel miRNAs were identified, and 428 transcripts were targeted by 184 identified miRNAs. More importantly, we identified 26 miRNAs differentially expressed between chilling stress and control conditions. The expression of these miRNAs and their targets was also confirmed by qRT-PCR. Integrated analysis of small RNAs and degradome sequencing reveals that miRNA-mediated SA signaling, ABA-dependent, and ROS response pathways are involved in sweetpotato root response to chilling stress during storage.
Collapse
|
47
|
Jeyaraj A, Zhang X, Hou Y, Shangguan M, Gajjeraman P, Li Y, Wei C. Genome-wide identification of conserved and novel microRNAs in one bud and two tender leaves of tea plant (Camellia sinensis) by small RNA sequencing, microarray-based hybridization and genome survey scaffold sequences. BMC PLANT BIOLOGY 2017; 17:212. [PMID: 29157210 PMCID: PMC5697157 DOI: 10.1186/s12870-017-1169-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 11/10/2017] [Indexed: 05/19/2023]
Abstract
BACKGROUND MicroRNAs (miRNAs) are important for plant growth and responses to environmental stresses via post-transcriptional regulation of gene expression. Tea, which is primarily produced from one bud and two tender leaves of the tea plant (Camellia sinensis), is one of the most popular non-alcoholic beverages worldwide owing to its abundance of secondary metabolites. A large number of miRNAs have been identified in various plants, including non-model species. However, due to the lack of reference genome sequences and/or information of tea plant genome survey scaffold sequences, discovery of miRNAs has been limited in C. sinensis. RESULTS Using small RNA sequencing, combined with our recently obtained genome survey data, we have identified and analyzed 175 conserved and 83 novel miRNAs mainly in one bud and two tender leaves of the tea plant. Among these, 93 conserved and 18 novel miRNAs were validated using miRNA microarray hybridization. In addition, the expression pattern of 11 conserved and 8 novel miRNAs were validated by stem-loop-qRT-PCR. A total of 716 potential target genes of identified miRNAs were predicted. Further, Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that most of the target genes were primarily involved in stress response and enzymes related to phenylpropanoid biosynthesis. The predicted targets of 4 conserved miRNAs were further validated by 5'RLM-RACE. A negative correlation between expression profiles of 3 out of 4 conserved miRNAs (csn-miR160a-5p, csn-miR164a, csn-miR828 and csn-miR858a) and their targets (ARF17, NAC100, WER and MYB12 transcription factor) were observed. CONCLUSION In summary, the present study is one of few such studies on miRNA detection and identification in the tea plant. The predicted target genes of majority of miRNAs encoded enzymes, transcription factors, and functional proteins. The miRNA-target transcription factor gene interactions may provide important clues about the regulatory mechanism of these miRNAs in the tea plant. The data reported in this study will make a huge contribution to knowledge on the potential miRNA regulators of the secondary metabolism pathway and other important biological processes in C. sinensis.
Collapse
Affiliation(s)
- Anburaj Jeyaraj
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui Province 230036 People’s Republic of China
| | - Xiao Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui Province 230036 People’s Republic of China
| | - Yan Hou
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui Province 230036 People’s Republic of China
| | - Mingzhu Shangguan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui Province 230036 People’s Republic of China
| | - Prabu Gajjeraman
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui Province 230036 People’s Republic of China
- Department of Biotechnology, Karpagam University, Coimbatore, India
| | - Yeyun Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui Province 230036 People’s Republic of China
| | - Chaoling Wei
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui Province 230036 People’s Republic of China
| |
Collapse
|
48
|
Jeyaraj A, Liu S, Zhang X, Zhang R, Shangguan M, Wei C. Genome-wide identification of microRNAs responsive to Ectropis oblique feeding in tea plant (Camellia sinensis L.). Sci Rep 2017; 7:13634. [PMID: 29051614 PMCID: PMC5648755 DOI: 10.1038/s41598-017-13692-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 09/29/2017] [Indexed: 12/02/2022] Open
Abstract
The tea plant (Camellia sinensis L.) is vulnerable to the geometrid Ectropis oblique; although microRNAs (miRNAs) are important for plant growth, development and stress response, the function of miRNAs in the response of C. sinensis to stress from E. oblique is unclear. To identify E. oblique stress-responsive miRNAs and their target genes in tea plant, three small RNA libraries were constructed from leaves subjected to mechanical wounding (MW), geometrid attack (GA) and from healthy control (CK) leaves. Using high-throughput sequencing, 130 known miRNAs and 512 novel miRNAs were identified; of these, differential expression under GA stress was observed for 36 known and 139 novel miRNAs. Furthermore, 169 GA-responsive and 173 MW-responsive miRNAs were detected by miRNA microarray. The expression patterns of six GA-responsive miRNAs were validated by qRT-PCR. Several target genes for these miRNAs encode various transcription factors, including ethylene-responsive transcription factors and squamosa promoter-binding-like proteins, which suggests that these miRNAs may regulate stress-responsive transcriptional processes in tea plant. The present findings provide novel insights into miRNA-mediated regulatory mechanisms underlying the response to GA stress, and also offer valuable information for development of pest resistance using RNA interference-based strategies in tea plants.
Collapse
Affiliation(s)
- Anburaj Jeyaraj
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, P.R. China
| | - Shengrui Liu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, P.R. China
| | - Xiao Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, P.R. China
| | - Ran Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, P.R. China
| | - Mingzhu Shangguan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, P.R. China
| | - Chaoling Wei
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, P.R. China.
| |
Collapse
|
49
|
Chen Y, Dong J, Bennetzen JL, Zhong M, Yang J, Zhang J, Li S, Hao X, Zhang Z, Wang X. Integrating transcriptome and microRNA analysis identifies genes and microRNAs for AHO-induced systemic acquired resistance in N. tabacum. Sci Rep 2017; 7:12504. [PMID: 28970509 PMCID: PMC5624873 DOI: 10.1038/s41598-017-12249-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 09/04/2017] [Indexed: 11/09/2022] Open
Abstract
3-Acetonyl-3-hydroxyoxindole (AHO) induces systemic acquired resistance (SAR) in Nicotiana. However, the underlying molecular mechanism is not well understood. To understand the molecular regulation during SAR induction, we examined mRNA levels, microRNA (miRNA) expression, and their regulatory mechanisms in control and AHO-treated tobacco leaves. Using RNA-seq analysis, we identified 1,445 significantly differentially expressed genes (DEGs) at least 2 folds with AHO treatment. The DEGs significantly enriched in six metabolism pathways including phenylpropanoid biosynthesis, sesquiterpenoid and triterpenoid biosynthesis for protective cuticle and wax. Key DEGs including PALs and PR-10 in salicylic acid pathway involved in SAR were significantly regulated. In addition, we identified 403 miRNAs belonging to 200 miRNA families by miRNA sequencing. In total, AHO treatment led to 17 up- and 6 down-regulated at least 2 folds (Wald test, P < 0.05) miRNAs (DEMs), respectively. Targeting analysis implicated four DEMs regulating three DEGs involved in disease resistance, including miR156, miR172f, miR172g, miR408a, SPL6 and AP2. We concluded that both mRNA and miRNA regulation enhances AHO-induced SAR. These data regarding DEGs, miRNAs, and their regulatory mechanisms provide molecular evidence for the mechanisms involved in tobacco SAR, which are likely to be present in other plants.
Collapse
Affiliation(s)
- Yongdui Chen
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences; Yunnan Provincial Key Laboratory of Agricultural Biotechnology; Key Lab of Southwestern Crop Gene Resource and Germplasm Innovation, Ministry of Agriculture, Kunming, 650223, P. R. China
| | - Jiahong Dong
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences; Yunnan Provincial Key Laboratory of Agricultural Biotechnology; Key Lab of Southwestern Crop Gene Resource and Germplasm Innovation, Ministry of Agriculture, Kunming, 650223, P. R. China
| | - Jeffrey L Bennetzen
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, P. R. China
- Department of Genetics, University of Georgia, Athens, USA
| | - Micai Zhong
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, P. R. China
| | - Jun Yang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, P. R. China
| | - Jie Zhang
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences; Yunnan Provincial Key Laboratory of Agricultural Biotechnology; Key Lab of Southwestern Crop Gene Resource and Germplasm Innovation, Ministry of Agriculture, Kunming, 650223, P. R. China
| | - Shunlin Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, P. R. China
| | - Xiaojiang Hao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, P. R. China
| | - Zhongkai Zhang
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences; Yunnan Provincial Key Laboratory of Agricultural Biotechnology; Key Lab of Southwestern Crop Gene Resource and Germplasm Innovation, Ministry of Agriculture, Kunming, 650223, P. R. China.
| | - Xuewen Wang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, P. R. China.
- Department of Genetics, University of Georgia, Athens, USA.
| |
Collapse
|
50
|
Xu HX, Li XY, Chen JW. Comparative transcriptome profiling of freezing stress responses in loquat (Eriobotrya japonica) fruitlets. JOURNAL OF PLANT RESEARCH 2017; 130:893-907. [PMID: 28447204 DOI: 10.1007/s10265-017-0942-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 03/09/2017] [Indexed: 06/07/2023]
Abstract
Loquat (Eriobotrya japonica Lindl.) is an important subtropical, commercial fruit in China. It blossoms during autumn and winter in most areas of China and its fruitlets usually suffer from freezing stress. However, studies about the mechanisms underlying freezing stress in loquat are very limited. The gene expression profiles of loquat fruitlets subjected to freezing (G2 library) versus non-treated ones (G1 library) were investigated using Illumina sequencing technology to elucidate the molecular mechanisms and identify the genes that play vital roles in the freezing stress response. The results showed that approximately 157.63 million reads in total were obtained from freeze-treated and non-treated loquat fruitlets. These reads were assembled into 87,379 unigenes with an average length of 710 bp and an N50 of 1,200 bp. After comparing the profiles obtained from the G1 and G2 libraries, 2,892 differentially expressed genes were identified, of which 1,883 were up-regulated and 1,009 were down-regulated in the treated samples compared to non-treated ones. These unigenes showed significant differences in expression for carbohydrate transport and metabolism, amino acid metabolism, energy metabolism, and lipid metabolism, which are involved in defense against freezing stress. Glycolysis/gluconeogenesis was one of the most significantly regulated pathways. Freezing also significantly damaged the membrane system of loquat fruitlets, and several defense mechanisms were induced. Some selected genes related to low temperature resistance were validated by quantitative real-time PCR (qRT-PCR). The results revealed many genes and pathways that are part of freezing resistance processes and expand our understanding of the complex molecular events involved in freezing stress.
Collapse
Affiliation(s)
- Hong-Xia Xu
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, People's Republic of China
| | - Xiao-Ying Li
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, People's Republic of China
| | - Jun-Wei Chen
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, People's Republic of China.
| |
Collapse
|