1
|
Ma Y, Ye S, Sun K, Gu Y. Effect of curcumin nanoparticles on proliferation and migration of mouse airway smooth muscle cells and airway inflammatory infiltration. Front Pharmacol 2024; 15:1344333. [PMID: 38708080 PMCID: PMC11066239 DOI: 10.3389/fphar.2024.1344333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/02/2024] [Indexed: 05/07/2024] Open
Abstract
Curcumin (CUR) possesses the capability to inhibit various inflammatory factors, exert anti-inflammatory effects, and alleviate asthma attacks; however, its hydrophobicity and instability significantly impede its clinical application. In this study, we synthesized CUR-loaded nanoparticles (CUR-NPs) and evaluated their impact on the proliferation, migration, and inflammatory infiltration of mouse airway smooth muscle cells (ASMCs), while investigating their underlying mechanisms. To achieve this objective, ASMCs were isolated from BALB/c mice and subjected to TGF-β1-induced cell proliferation and migration. Our findings demonstrate that CUR-NPs effectively regulate the release of CUR within cells with superior intracellular uptake compared to free CUR. The CCK-8 assay results indicate that the blank carrier does not exhibit any cytotoxic effects on cells, thus rendering the impact of the carrier itself negligible. The TGF-β1 group exhibited a significant increase in cell proliferation, whereas treatment with CUR-NPs significantly suppressed TGF-β1-induced cell proliferation. The findings from both the cell scratch assay and transwell assay demonstrated that TGF-β1 substantially enhanced cell migration, while CUR-NPs treatment effectively attenuated TGF-β1-induced cell migration. The Western blot analysis demonstrated a substantial increase in the expression levels of TGF-β1, p-STAT3, and CTGF in ASMCs following treatment with TGF-β1 when compared to the control group. Nevertheless, this effect was effectively counteracted upon administration of CUR-NPs. Furthermore, an asthma mouse model was successfully established and CUR-NPs were administered through tail vein injection. The serum levels of TGF-β1 and the expression levels of TGF-β1, p-STAT3, and CTGF proteins in the lung tissue of mice in the model group exhibited significant increases compared to those in the control group. However, CUR-NPs treatment effectively attenuated this change. Our research findings suggest that CUR-NPs possess inhibitory effects on ASMC proliferation, migration, and inflammatory infiltration by suppressing activation of the TGF-β1/p-STAT3/CTGF signaling pathway, thereby facilitating inhibition of airway remodeling.
Collapse
Affiliation(s)
- Yucong Ma
- Department of Pediatric Respiration, Children’s Medical Center, The First Affiliated Hospital of Jilin University, Changchun, Jilin, China
| | - Suping Ye
- Department of Reparatory and Critical Care Medicine, The First Affiliated Hospital of Jilin University, Changchun, Jilin, China
| | - Kunpeng Sun
- Department of Reparatory and Critical Care Medicine, The First Affiliated Hospital of Jilin University, Changchun, Jilin, China
| | - Yue Gu
- Department of Reparatory and Critical Care Medicine, The First Affiliated Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
2
|
Zare H, Bakherad H, Esfahani AN, Aghamollaei H, Gargari SLM, Aliomrani M, Ebrahimizadeh W. Investigating the effect of cGRP78 vaccine against different cancer cells and its role in reducing melanoma metastasis. Res Pharm Sci 2024; 19:73-82. [PMID: 39006979 PMCID: PMC11244710 DOI: 10.4103/1735-5362.394822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 04/30/2023] [Accepted: 11/08/2023] [Indexed: 07/16/2024] Open
Abstract
Background and purpose Treatment of malignancies with chemotherapy and surgery is often associated with disease recurrence and metastasis. Immunotherapy improves cancer treatment by creating an active response against tumor antigens. Various cancer cells express a large amount of glucose-regulated protein 78 (GRP78) protein on their surface. Stimulating the immune system against this antigen can expose cancer cells to the immune system. Herein, we investigated the effectiveness of a cGRP78-based vaccine against different cancer cells. Experimental approach BALB/c mice were immunized with the cGRP78. The humoral immune response against different cancer cells was assessed by Cell-ELISA. The cellular immunity response was determined by splenocyte proliferation assay with different cancer antigens. The effect of vaccination on metastasis was investigated in vaccinated mice by injecting melanoma cancer cells into the tail of mice. Findings/Results These results indicated that the cGRP78 has acceptable antigenicity and stimulates the immune system to produce antibodies. After three injections, the amount of produced antibody was significantly different from the control group. Compared to the other three cell types, Hela and HepG2 showed the highest reaction to the serum of vaccinated mice. Cellular immunity against the B16F10 cell line had the best results compared to other cells. The metastasis results showed that after 30 days, the growth of B16F10 melanoma cancer cells was not noticeable in the lung tissue of vaccinated mice. Conclusion and implications Considering the resistance of vaccinated mice to metastasis, this vaccine offers a promising prospect for cancer treatment by inhibiting the spread of cancer cells.
Collapse
Affiliation(s)
- Hamed Zare
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Hamid Bakherad
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
- Pharmaceutical Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Arman Nasr Esfahani
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Aghamollaei
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | - Mahdi Aliomrani
- Department of Pharmacology and Toxicology, Isfahan Pharmaceutical Science Research Center, Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Walead Ebrahimizadeh
- Department of Surgery, Division of Urology, McGill University and the Research Institute of the McGill University Health Centre (RI MUHC), Montreal, Quebec, Canada
| |
Collapse
|
3
|
Han J, Jia D, Yao H, Xu C, Huan Z, Jin H, Ge X. GRP78 improves the therapeutic effect of mesenchymal stem cells on hemorrhagic shock-induced liver injury: Involvement of the NF-кB and HO-1/Nrf-2 pathways. FASEB J 2024; 38:e23334. [PMID: 38050647 DOI: 10.1096/fj.202301456rrr] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/08/2023] [Accepted: 11/13/2023] [Indexed: 12/06/2023]
Abstract
Mesenchymal stem cells (MSCs) are a popular cell source for repairing the liver. Improving the survival rate and colonization time of MSCs may significantly improve the therapeutic outcomes of MSCs. Studies showed that 78-kDa glucose-regulated protein (GRP78) expression improves cell viability and migration. This study aims to examine whether GRP78 overexpression improves the efficacy of rat bone marrow-derived MSCs (rBMSCs) in HS-induced liver damage. Bone marrow was isolated from the femurs and tibias of rats. rBMSCs were transfected with a GFP-labeled GRP78 expression vector. Flow cytometry, transwell invasion assay, scratch assay immunoblotting, TUNEL assay, MTT assay, and ELISA were carried out. The results showed that GRP78 overexpression enhanced the migration and invasion of rBMSCs. Moreover, GRP78-overexpressing rBMSCs relieved liver damage, repressed liver oxidative stress, and inhibited apoptosis. We found that overexpression of GRP78 in rBMSCs inhibited activation of the NLRP3 inflammasome, significantly decreased the levels of inflammatory factors, and decreased the expression of CD68. Notably, GRP78 overexpression activated the Nrf-2/HO-1 pathway and inhibited the NF-κB pathway. High expression of GRP78 efficiently enhanced the effect of rBMSC therapy. GRP78 may be a potential target to improve the therapeutic efficacy of BMSCs.
Collapse
Affiliation(s)
- Jiahui Han
- Department of Critical Care Medicine, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, People's Republic of China
| | - Di Jia
- Department of Critical Care Medicine, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, People's Republic of China
| | - Hao Yao
- Department of Critical Care Medicine, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, People's Republic of China
| | - Ce Xu
- Department of Critical Care Medicine, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, People's Republic of China
| | - Zhirong Huan
- Department of Critical Care Medicine, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, People's Republic of China
| | - Hongdou Jin
- Department of General Surgery, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, People's Republic of China
| | - Xin Ge
- Department of Critical Care Medicine, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, People's Republic of China
- Orthopedic Institution of Wuxi City, Wuxi, People's Republic of China
| |
Collapse
|
4
|
Zhao T, Jiang T, Li X, Chang S, Sun Q, Kong F, Kong X, Wei F, He J, Hao J, Xie K. Nuclear GRP78 Promotes Metabolic Reprogramming and Therapeutic Resistance in Pancreatic Ductal Adenocarcinoma. Clin Cancer Res 2023; 29:5183-5195. [PMID: 37819952 DOI: 10.1158/1078-0432.ccr-23-1143] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 08/04/2023] [Accepted: 10/06/2023] [Indexed: 10/13/2023]
Abstract
PURPOSE Stromal fibrosis limits nutritional supply and disarrays metabolism in pancreatic cancer (PDA, pancreatic ductal adenocarcinoma). Understanding of the molecular basis underlying metabolic cues would improve PDA management. The current study determined the interaction between glucose-regulated proteins 78 (GRP78) and hypoxia-inducible factor 1α (HIF-1α) and its mechanistic roles underlying PDA response to oxygen and glucose restrains. EXPERIMENTAL DESIGN Gene expression and its association with clinicopathologic characteristics of patients with PDA and mouse models were analyzed using IHC. Protein expression and their regulation were measured by Western blot and immunoprecipitation analyses. Protein interactions were determined using gain- and loss-of-function assays and molecular methods, including chromatin immunoprecipitation, co-immunoprecipitation, and dual luciferase reporter. RESULTS There was concomitant overexpression of both GRP78 and HIF-1α in human and mouse PDA tissues and cells. Glucose deprivation increased the expression of GRP78 and HIF-1α, particularly colocalization in nucleus. Induction of HIF-1α expression by glucose deprivation in PDA cells depended on the expression of and its own interaction with GRP78. Mechanistically, increased expression of both HIF-1α and LDHA under glucose deprivation was caused by the direct binding of GRP78 and HIF-1α protein complexes to the promoters of HIF-1α and LDHA genes and transactivation of their transcriptional activity. CONCLUSIONS Protein complex of GRP78 and HIF-1α directly binds to HIF-1α own promoter and LDHA promoter, enhances the transcription of both HIF-1α and LDHA, whereas glucose deprivation increases GRP78 expression and further enhances HIF-1α and LDHA transcription. Therefore, crosstalk and integration of hypoxia- and hypoglycemia-responsive signaling critically impact PDA metabolic reprogramming and therapeutic resistance.
Collapse
Affiliation(s)
- Tiansuo Zhao
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Tingting Jiang
- Center for Pancreatic Cancer Research, The South China University of Technology School of Medicine, Guangzhou, China
| | - Xiaojia Li
- Center for Pancreatic Cancer Research, The South China University of Technology School of Medicine, Guangzhou, China
| | - Shaofei Chang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Qihui Sun
- Center for Pancreatic Cancer Research, The South China University of Technology School of Medicine, Guangzhou, China
| | - Fanyang Kong
- Department of Gastroenterology, Changhai Hospital, Shanghai, China
| | - Xiangyu Kong
- Department of Gastroenterology, Changhai Hospital, Shanghai, China
| | - Fang Wei
- Institute of Digestive Diseases, Guangzhou First People's Hospital and The Second Affiliated Hospital, The South China University of Technology School of Medicine, Guangzhou, China
| | - Jie He
- Institute of Digestive Diseases, Guangzhou First People's Hospital and The Second Affiliated Hospital, The South China University of Technology School of Medicine, Guangzhou, China
| | - Jihui Hao
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Keping Xie
- Center for Pancreatic Cancer Research, The South China University of Technology School of Medicine, Guangzhou, China
- Institute of Digestive Diseases, Guangzhou First People's Hospital and The Second Affiliated Hospital, The South China University of Technology School of Medicine, Guangzhou, China
- The South China University of Technology Comprehensive Cancer Center, Guangzhou, China
| |
Collapse
|
5
|
Li Y, Gao H, Nepovimova E, Wu Q, Adam V, Kuca K. Recombinant ferritins for multimodal nanomedicine. J Enzyme Inhib Med Chem 2023; 38:2219868. [PMID: 37263586 DOI: 10.1080/14756366.2023.2219868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/03/2023] Open
Abstract
In all living organisms, ferritins are a group of proteins important for maintaining iron homeostasis. Increasing amount of studies has shown that recombinant ferritins can be widely used in multimodal nanomedicine, especially for anticancer treatment and vaccination. Recombinant particles prepared by fusing viral proteins and ferritin subunits produce a better immune response and higher antibody titres. Moreover, actively-targeted ferritin nanoparticles can recognise receptors and deliver natural or chemical drugs specifically to the tumour tissue. In addition, ferritin-linked or loaded with contrast agents or fluorescent dyes can be used as multimodal particles useful cancer theranostics. In this review, we fully summarised the unitisation of recombinant ferritins in multimodal nanomedicine. The research progress of using recombinant ferritins as nanovaccines, nanozymes, and bioengineered nanocarriers for targeted therapy and bioimaging is emphasised.
Collapse
Affiliation(s)
- Yihao Li
- College of Life Science, Yangtze University, Jingzhou, China
| | - Haoyu Gao
- College of Life Science, Yangtze University, Jingzhou, China
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Králové, Czech Republic
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou, China
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Králové, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Králové, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
6
|
Zare H, Bakherad H, Nasr Esfahani A, Norouzi M, Aghamollaei H, Mousavi Gargari SL, Mahmoodi F, Aliomrani M, Ebrahimizadeh W. Introduction of a new recombinant vaccine based on GRP78 for breast cancer immunotherapy and evaluation in a mouse model. BIOIMPACTS : BI 2023; 14:27829. [PMID: 38505675 PMCID: PMC10945302 DOI: 10.34172/bi.2023.27829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 07/04/2023] [Accepted: 07/29/2023] [Indexed: 03/21/2024]
Abstract
Introduction Breast cancer is one of the most prevalent malignancies in women. Several treatment options are available today, including surgery, chemotherapy, and radiotherapy. Immunotherapy, as a highly specific therapy, involves adaptive immune responses and immunological memory. In our present research, we used the recombinant C-terminal domain of the GRP78 (glucose- regulated protein 78) protein to induce an immune response and investigate its therapeutic impact in the 4T1 breast cancer model. Methods BALB/c mice were immunized with the cGRP78 protein. The humoral immune response was assessed by ELISA. Then, BALB/c mice were injected subcutaneously with 1×106 4T1 tumor cells. Subsequently, tumor size and survival rate measurements, MTT, and cytokine assays were performed. Results The animals receiving the cGRP78 vaccine showed significantly more favorable survival and slower tumor growth rates compared with unvaccinated tumor-bearing mice as the negative control mice. Circulating levels of tumoricidal cytokines such as IFNγ were higher, whereas tolerogenic cytokines such as IL-2, 6, and 10 either did not increase or had a decreasing trend in mice receiving cGRP78. Conclusion cGRP78 vaccines generated potent immunotherapeutic effects in a breast cancer mouse model. This novel strategy of targeting the GRP78 protein can promote the development of cancer vaccines and immunotherapies for breast cancer malignancies.
Collapse
Affiliation(s)
- Hamed Zare
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Hamid Bakherad
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
- Pharmaceutical Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Arman Nasr Esfahani
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohamad Norouzi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Aghamollaei
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | - Fatemeh Mahmoodi
- Department of Biology, College of Sciences, Shiraz University, Shiraz, Iran
| | - Mahdi Aliomrani
- Department of Pharmacology and Toxicology, Isfahan Pharmaceutical Science Research Center, Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Walead Ebrahimizadeh
- Department of Surgery, Division of Urology, McGill University, and the Research Institute of the McGill University Health Centre (RI MUHC), Montreal, Quebec, Canada
| |
Collapse
|
7
|
Acosta JC, Bahr JM, Basu S, O’Donnell JT, Barua A. Expression of CISH, an Inhibitor of NK Cell Function, Increases in Association with Ovarian Cancer Development and Progression. Biomedicines 2023; 11:biomedicines11020299. [PMID: 36830840 PMCID: PMC9952877 DOI: 10.3390/biomedicines11020299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
Epithelial ovarian cancer (OVCA), a fatal malignancy of women, disseminates locally. Although NK cells mount immune responses against OVCA, tumors inhibit NK cells, and the mechanism is not well understood. Cytokines stimulate NK cells; however, chronic stimulation exhausts them and induces expression of cytokine-inducible SH2-containing protein (CISH). Tumors produce anti-inflammatory cytokine interleukin (IL)-10 which may induce NK cell exhaustion. The goal of this study was to examine if CISH expression in NK cells increases during OVCA development and to determine the mechanism(s) of OVCA-induced CISH expression in NK cells. Normal ovaries (n = 7) were used for CISH, IL-10 and GRP78 expression. In tumor ovaries, CISH was examined in early and late stages (n = 14 each, all subtypes) while IL-10 and GRP78 expression were examined in early and late stage HGSC (n = 5 each). Compared to normal, the population of CISH-expressing NK cells increased and the intensity of IL-10 and GRP78 expression was significantly higher in OVCA (p < 0.05). CISH expression was positively correlated with IL-10 expression (r = 0.52, r = 0.65, p < 0.05 at early and late stages, respectively) while IL-10 expression was positively correlated with GRP78 expression (r = 0.43, r = 0.52, p < 0.05, respectively). These results suggest that OVCA development and progression are associated with increased CISH expression by NK cells which is correlated with tumor-induced persistent cellular stress.
Collapse
Affiliation(s)
- Jasmin C. Acosta
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL 60612, USA
| | - Janice M. Bahr
- Department of Animal Science, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Sanjib Basu
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| | - James T. O’Donnell
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL 60612, USA
| | - Animesh Barua
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL 60612, USA
- Department of Obstetrics and Gynecology, Rush University Medical Center, Chicago, IL 60612, USA
- Department of Pathology, Rush University Medical Center, Chicago, IL 60612, USA
- Correspondence: ; Tel.: +1-(312)-942-6666
| |
Collapse
|
8
|
Retraction: Curcumin Suppresses Proliferation and Migration of MDA-MB-231 Breast Cancer Cells through Autophagy-Dependent Akt Degradation. PLoS One 2023; 18:e0283354. [PMID: 36920966 PMCID: PMC10016713 DOI: 10.1371/journal.pone.0283354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
|
9
|
Banerjee DK. BIRTH OF A GLYCOTHERAPY FOR BREAST CANCER. TRENDS IN CARBOHYDRATE RESEARCH 2023; 15:25-37. [PMID: 38362162 PMCID: PMC10869124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Breast cancer is the most common malignant disease in women and is worldwide. The incidence rate of women's breast cancer in 2020 was 2,261,419 and 2022 estimates diagnosing 1,918,030 cases. The disease is heterogeneous and the pathogenesis of breast cancer still remains unclear. Much progress has been made in early detection and better treatment to improve survival. Unfortunately, the current treatment strategies destroy the patient's quality of life. The patients develop drug resistance, exhibit severe side effects, and not afford the cost creates anxiety among the patients, families, and friends. In addition, a considerable number of patients relapse as a result of organ metastasis, e.g., the triple-negative breast cancer (TNBC, ER-/PR-HER2-). The 5-year survival rate of patients who recurred with distant metastasis is less than 20%. More than half a million women worldwide still suffer from metastatic breast cancer annually, and 90% of their deaths could be attributed to metastasis. One of the reasons for the failure of cancer therapeutics is the approaches did not consider the cancer holistically. All breast cancer cells and their micro environmental capillary endothelial cells express asparagine-linked (N-linked) glycoproteins. We have tested a biologic and a small molecule, Tunicamycin-P (P = pure N-glycosylation inhibitor) to interfere with the protein N-glycosylation pathway in the endoplasmic reticulum (ER) by specifically blocking the catalytic activity of N-acetylglusosaminyl 1-phosphate transferase (GPT) activity. The outcome has been quantitative inhibition of in vitro and in vivo angiogenesis and the breast tumor progression of multiple subtypes in pre-clinical mouse models with "zero" toxicity. We have, therefore, concluded that Tunicamycin-P is expected to supersede the current therapeutics and become a Glycotherapy treating breast cancer of all subtypes.
Collapse
Affiliation(s)
- Dipak K Banerjee
- Department of Biochemistry, School of Medicine, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00936-5067, USA
| |
Collapse
|
10
|
Retraction: APPL1-Mediating Leptin Signaling Contributes to Proliferation and Migration of Cancer Cells. PLoS One 2023; 18:e0283346. [PMID: 36920975 PMCID: PMC10016670 DOI: 10.1371/journal.pone.0283346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
|
11
|
Direito I, Gomes D, Monteiro FL, Carneiro I, Lobo J, Henrique R, Jerónimo C, Helguero LA. The Clinicopathological Significance of BiP/GRP-78 in Breast Cancer: A Meta-Analysis of Public Datasets and Immunohistochemical Detection. Curr Oncol 2022; 29:9066-9087. [PMID: 36547124 PMCID: PMC9777260 DOI: 10.3390/curroncol29120710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/24/2022] Open
Abstract
The endoplasmic reticulum chaperone BiP (also known as GRP-78 or HSPA5) maintains protein folding to allow cell proliferation and survival and has been implicated in carcinogenesis, tumor progression, and therapy resistance. BiP's association with clinical factors and prognostic potential in breast cancer remains unclear. In this work, three types of analysis were conducted to improve the knowledge of BiP's clinicopathological potential: (1) analysis of publicly available RNA-seq and proteomics datasets stratified as high and low quartiles; (2) a systematic review and meta-analysis of immunohistochemical detection of BIP; (3) confirmation of findings by BiP immunohistochemical detection in two luminal-like breast cancer small cohorts of paired samples (pre- vs. post-endocrine therapy, and primary pre- vs. metastasis post-endocrine therapy). The TCGA PanCancer dataset and CPTAC showed groups with high BiP mRNA and protein associated with HER2, basal-like subtypes, and higher immune scores. The meta-analysis of BiP immunohistochemistry disclosed an association between higher BiP positivity and reduced relapse-free survival. BiP immunohistochemistry confirmed increased BiP expression in metastasis, an association of BiP positivity with HER2 expression, and nuclear BiP localization with higher a tumor stage and poor outcome. Therefore, three independent approaches showed that BiP protein is associated with worse outcomes and holds prognostic potential for breast cancer.
Collapse
Affiliation(s)
- Inês Direito
- iBiMED—Institute of Biomedicine, University of Aveiro, Agra do Crasto 30, 3810-193 Aveiro, Portugal
| | - Daniela Gomes
- iBiMED—Institute of Biomedicine, University of Aveiro, Agra do Crasto 30, 3810-193 Aveiro, Portugal
| | - Fátima Liliana Monteiro
- iBiMED—Institute of Biomedicine, University of Aveiro, Agra do Crasto 30, 3810-193 Aveiro, Portugal
| | - Isa Carneiro
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Centre (Porto.CCC) & RISE@CI-IPOP (Health Research Network), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
| | - João Lobo
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Centre (Porto.CCC) & RISE@CI-IPOP (Health Research Network), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
- Department of Pathology and Molecular Immunology, School of Medicine & Biomedical Sciences, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal
| | - Rui Henrique
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Centre (Porto.CCC) & RISE@CI-IPOP (Health Research Network), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
- Department of Pathology and Molecular Immunology, School of Medicine & Biomedical Sciences, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal
| | - Carmen Jerónimo
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Centre (Porto.CCC) & RISE@CI-IPOP (Health Research Network), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
- Department of Pathology and Molecular Immunology, School of Medicine & Biomedical Sciences, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal
| | - Luisa Alejandra Helguero
- iBiMED—Institute of Biomedicine, University of Aveiro, Agra do Crasto 30, 3810-193 Aveiro, Portugal
- Correspondence: ; Tel.: +35-1-234-247-240 (ext. 22112)
| |
Collapse
|
12
|
Domanegg K, Sleeman JP, Schmaus A. CEMIP, a Promising Biomarker That Promotes the Progression and Metastasis of Colorectal and Other Types of Cancer. Cancers (Basel) 2022; 14:cancers14205093. [PMID: 36291875 PMCID: PMC9600181 DOI: 10.3390/cancers14205093] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 10/05/2022] [Accepted: 10/12/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary CEMIP (cell migration-inducing and hyaluronan-binding protein) has been implicated in the pathogenesis of numerous diseases, including colorectal and other forms of cancer. The molecular functions of CEMIP are currently under investigation and include the degradation of the extracellular matrix component hyaluronic acid (HA), as well as the regulation of a number of signaling pathways. In this review, we survey our current understanding of how CEMIP contributes to tumor growth and metastasis, focusing particularly on colorectal cancer, for which it serves as a promising biomarker. Abstract Originally discovered as a hypothetical protein with unknown function, CEMIP (cell migration-inducing and hyaluronan-binding protein) has been implicated in the pathogenesis of numerous diseases, including deafness, arthritis, atherosclerosis, idiopathic pulmonary fibrosis, and cancer. Although a comprehensive definition of its molecular functions is still in progress, major functions ascribed to CEMIP include the depolymerization of the extracellular matrix component hyaluronic acid (HA) and the regulation of a number of signaling pathways. CEMIP is a promising biomarker for colorectal cancer. Its expression is associated with poor prognosis for patients suffering from colorectal and other types of cancer and functionally contributes to tumor progression and metastasis. Here, we review our current understanding of how CEMIP is able to foster the process of tumor growth and metastasis, focusing particularly on colorectal cancer. Studies in cancer cells suggest that CEMIP exerts its pro-tumorigenic and pro-metastatic activities through stimulating migration and invasion, suppressing cell death and promoting survival, degrading HA, regulating pro-metastatic signaling pathways, inducing the epithelial–mesenchymal transition (EMT) program, and contributing to the metabolic reprogramming and pre-metastatic conditioning of future metastatic microenvironments. There is also increasing evidence indicating that CEMIP may be expressed in cells within the tumor microenvironment that promote tumorigenesis and metastasis formation, although this remains in an early stage of investigation. CEMIP expression and activity can be therapeutically targeted at a number of levels, and preliminary findings in animal models show encouraging results in terms of reduced tumor growth and metastasis, as well as combating therapy resistance. Taken together, CEMIP represents an exciting new player in the progression of colorectal and other types of cancer that holds promise as a therapeutic target and biomarker.
Collapse
Affiliation(s)
- Kevin Domanegg
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Jonathan P. Sleeman
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
- Institute of Biological and Chemical Systems-Biological Information Processing, Karlsruhe Institute of Technology (KIT) Campus Nord, 76344 Eggenstein-Leopoldshafen, Germany
- Correspondence:
| | - Anja Schmaus
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
- Institute of Biological and Chemical Systems-Biological Information Processing, Karlsruhe Institute of Technology (KIT) Campus Nord, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
13
|
Shin J, Toyoda S, Fukuhara A, Shimomura I. GRP78, a Novel Host Factor for SARS-CoV-2: The Emerging Roles in COVID-19 Related to Metabolic Risk Factors. Biomedicines 2022; 10:biomedicines10081995. [PMID: 36009544 PMCID: PMC9406123 DOI: 10.3390/biomedicines10081995] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/08/2022] [Accepted: 08/12/2022] [Indexed: 11/28/2022] Open
Abstract
The outbreak of coronavirus disease 19 (COVID-19), caused by the infection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has resulted in an unprecedented amount of infection cases and deaths, leading to the global health crisis. Despite many research efforts, our understanding of COVID-19 remains elusive. Recent studies have suggested that cell surface glucose-regulated protein 78 (GRP78) acts as a host co-receptor for SARS-CoV-2 infection and is related to COVID-19 risks, such as older age, obesity, and diabetes. Given its significance in a wide range of biological processes, such as protein homeostasis and cellular signaling, GRP78 might also play an important role in various stages of the viral life cycle and pathology of SARS-CoV-2. In this perspective, we explore the emerging and potential roles of GRP78 in SARS-CoV-2 infection. Additionally, we discuss the association with COVID-19 risks and symptoms. We hope this review article will be helpful to understand COVID-19 pathology and promote attention and study of GRP78 from many clinical and basic research fields.
Collapse
Affiliation(s)
- Jihoon Shin
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
- Department of Diabetes Care Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
- Correspondence:
| | - Shinichiro Toyoda
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Atsunori Fukuhara
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
- Department of Adipose Management, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Iichiro Shimomura
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
14
|
Alberti G, Vergilio G, Paladino L, Barone R, Cappello F, Conway de Macario E, Macario AJL, Bucchieri F, Rappa F. The Chaperone System in Breast Cancer: Roles and Therapeutic Prospects of the Molecular Chaperones Hsp27, Hsp60, Hsp70, and Hsp90. Int J Mol Sci 2022; 23:ijms23147792. [PMID: 35887137 PMCID: PMC9324353 DOI: 10.3390/ijms23147792] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 06/30/2022] [Accepted: 07/10/2022] [Indexed: 12/26/2022] Open
Abstract
Breast cancer (BC) is a major public health problem, with key pieces of information needed for developing preventive and curative measures still missing. For example, the participation of the chaperone system (CS) in carcinogenesis and anti-cancer responses is poorly understood, although it can be predicted to be a crucial factor in these mechanisms. The chief components of the CS are the molecular chaperones, and here we discuss four of them, Hsp27, Hsp60, Hsp70, and Hsp90, focusing on their pro-carcinogenic roles in BC and potential for developing anti-BC therapies. These chaperones can be targets of negative chaperonotherapy, namely the elimination/blocking/inhibition of the chaperone(s) functioning in favor of BC, using, for instance, Hsp inhibitors. The chaperones can also be employed in immunotherapy against BC as adjuvants, together with BC antigens. Extracellular vesicles (EVs) in BC diagnosis and management are also briefly discussed, considering their potential as easily accessible carriers of biomarkers and as shippers of anti-cancer agents amenable to manipulation and controlled delivery. The data surveyed from many laboratories reveal that, to enhance the understanding of the role of the CS in BS pathogenesis, one must consider the CS as a physiological system, encompassing diverse members throughout the body and interacting with the ubiquitin–proteasome system, the chaperone-mediated autophagy machinery, and the immune system (IS). An integrated view of the CS, including its functional partners and considering its highly dynamic nature with EVs transporting CS components to reach all the cell compartments in which they are needed, opens as yet unexplored pathways leading to carcinogenesis that are amenable to interference by anti-cancer treatments centered on CS components, such as the molecular chaperones.
Collapse
Affiliation(s)
- Giusi Alberti
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.A.); (G.V.); (R.B.); (F.C.); (F.B.); (F.R.)
| | - Giuseppe Vergilio
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.A.); (G.V.); (R.B.); (F.C.); (F.B.); (F.R.)
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy;
| | - Letizia Paladino
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.A.); (G.V.); (R.B.); (F.C.); (F.B.); (F.R.)
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy;
- Correspondence:
| | - Rosario Barone
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.A.); (G.V.); (R.B.); (F.C.); (F.B.); (F.R.)
| | - Francesco Cappello
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.A.); (G.V.); (R.B.); (F.C.); (F.B.); (F.R.)
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy;
| | - Everly Conway de Macario
- Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore-Institute of Marine and Environmental Technology (IMET), Baltimore, MD 21202, USA;
| | - Alberto J. L. Macario
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy;
- Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore-Institute of Marine and Environmental Technology (IMET), Baltimore, MD 21202, USA;
| | - Fabio Bucchieri
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.A.); (G.V.); (R.B.); (F.C.); (F.B.); (F.R.)
| | - Francesca Rappa
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.A.); (G.V.); (R.B.); (F.C.); (F.B.); (F.R.)
| |
Collapse
|
15
|
Schneider M, Winkler K, Kell R, Pfaffl MW, Atkinson MJ, Moertl S. The Chaperone Protein GRP78 Promotes Survival and Migration of Head and Neck Cancer After Direct Radiation Exposure and Extracellular Vesicle-Transfer. Front Oncol 2022; 12:842418. [PMID: 35299733 PMCID: PMC8921984 DOI: 10.3389/fonc.2022.842418] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/09/2022] [Indexed: 01/01/2023] Open
Abstract
Background and Purpose Increased levels of the chaperone protein GRP78 have been implicated in poorer outcomes of cancer therapy. We have therefore explored the functional connection between the expression of GRP78 and the development of radioresistance and metastatic behavior in HNSCC. Material and Methods The association between gene expression of GRP78 and survival in HNSCC patients was examined using the TCGA database. The influence of ionizing radiation on the GRP78 levels in HNSCC cell lines, their secreted extracellular vesicles (EV) and non-irradiated EV-recipient cells was investigated by Western Blot and FACS. The consequences of chemical inhibition or experimental overexpression of GRP78 on radioresistance and migration of HNSCC cells were analyzed by clonogenic survival and gap closure assays. Results Elevated levels of GRP78 RNA in HNSCC correlated with poorer overall survival. Radiation increased GRP78 protein expression on the surface of HNSCC cell lines. Experimental overexpression of GRP78 increased both radioresistance and migratory potential. Chemical inhibition of GRP78 impaired cell migration. EVs were identified as a potential source of increased GRP78 content as elevated levels of surface GRP78 were found in EVs released by irradiated cells. These vesicles transferred GRP78 to non-irradiated recipient cells during co-cultivation. Conclusions We have identified the chaperone protein GRP78 as a potential driver of increased radioresistance and motility in HNSCC. The uptake of GRP78-rich EVs originating from irradiated cells may contribute to a poorer prognosis through bystander effects mediated by the transfer of GRP78 to non-irradiated cells. Therefore, we consider the chaperone protein GRP78 to be an attractive target for improving radiotherapy strategies.
Collapse
Affiliation(s)
- Michael Schneider
- Institute of Radiation Medicine, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Klaudia Winkler
- Institute of Radiation Medicine, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Rosemarie Kell
- Institute of Radiation Medicine, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Michael W Pfaffl
- Animal Physiology and Immunology, TUM School of Life Science, Technical University of Munich, Freising, Germany
| | - Michael J Atkinson
- Chair of Radiation Biology, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Simone Moertl
- Department of Effects and Risks of Ionising and Non-Ionising Radiation, Federal Office for Radiation Protection, Oberschleißheim, Germany
| |
Collapse
|
16
|
Angeles-Floriano T, Rivera-Torruco G, García-Maldonado P, Juárez E, Gonzalez Y, Parra-Ortega I, Vilchis-Ordoñez A, Lopez-Martinez B, Arriaga-Pizano L, Orozco-Ruíz D, Torres-Nava JR, Licona-Limón P, López-Sosa F, Bremer A, Alvarez-Arellano L, Valle-Rios R. Cell surface expression of GRP78 and CXCR4 is associated with childhood high-risk acute lymphoblastic leukemia at diagnostics. Sci Rep 2022; 12:2322. [PMID: 35149705 PMCID: PMC8837614 DOI: 10.1038/s41598-022-05857-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 01/12/2022] [Indexed: 12/11/2022] Open
Abstract
Acute lymphocytic leukemia is the most common type of cancer in pediatric individuals. Glucose regulated protein (GRP78) is an endoplasmic reticulum chaperone that facilitates the folding and assembly of proteins and regulates the unfolded protein response pathway. GRP78 has a role in survival of cancer and metastasis and cell-surface associated GRP78 (sGRP78) is expressed on cancer cells but not in normal cells. Here, we explored the presence of sGRP78 in pediatric B-ALL at diagnosis and investigated the correlation with bona fide markers of leukemia. By using a combination of flow cytometry and high multidimensional analysis, we found a distinctive cluster containing high levels of sGRP78, CD10, CD19, and CXCR4 in bone marrow samples obtained from High-risk leukemia patients, which was absent in the compartment of Standard-risk leukemia. We confirmed that sGRP78+CXCR4+ blood-derived cells were more frequent in High-risk leukemia patients. Finally, we analyzed the dissemination capacity of sGRP78 leukemia cells in a model of xenotransplantation. sGRP78+ cells emigrated to the bone marrow and lymph nodes, maintaining the expression of CXCR4. Testing the presence of sGRP78 and CXCR4 together with conventional markers may help to achieve a better categorization of High and Standard-risk pediatric leukemia at diagnosis.
Collapse
Affiliation(s)
- Tania Angeles-Floriano
- Unidad Universitaria de Investigación, División de Investigación, Facultad de Medicina, UNAM-Hospital Infantil de México Federico Gómez, Universidad 3000, CP 04510, Mexico City, Mexico
- Programa de Maestría y Doctorado en Ciencias Médicas Odontológicas y de la Salud, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
- Unidad de Investigación en Inmunología y Proteómica, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Guadalupe Rivera-Torruco
- Unidad de Investigación en Inmunología y Proteómica, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
- Departamento de Fisiología y Neurociencias, Centro de Investigación y de Estudios Avanzados (CINVESTAV), Mexico City, Mexico
| | - Paulina García-Maldonado
- Unidad Universitaria de Investigación, División de Investigación, Facultad de Medicina, UNAM-Hospital Infantil de México Federico Gómez, Universidad 3000, CP 04510, Mexico City, Mexico
| | - Esmeralda Juárez
- Departamento de Investigación en Microbiología, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Yolanda Gonzalez
- Departamento de Investigación en Microbiología, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Israel Parra-Ortega
- Subdirección de Diagnóstico clínico y Departamento de Laboratorio Clínico, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Armando Vilchis-Ordoñez
- Subdirección de Diagnóstico clínico y Departamento de Laboratorio Clínico, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Briceida Lopez-Martinez
- Subdirección de Diagnóstico clínico y Departamento de Laboratorio Clínico, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Lourdes Arriaga-Pizano
- Unidad de Investigación Médica en Inmunoquímica, CMN Siglo XXI, IMSS, Mexico City, Mexico
| | | | | | - Paula Licona-Limón
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Francisco López-Sosa
- Departamento de Ortopedia, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Alhelí Bremer
- Departamento de Ortopedia, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | | | - Ricardo Valle-Rios
- Unidad Universitaria de Investigación, División de Investigación, Facultad de Medicina, UNAM-Hospital Infantil de México Federico Gómez, Universidad 3000, CP 04510, Mexico City, Mexico.
- Unidad de Investigación en Inmunología y Proteómica, Hospital Infantil de México Federico Gómez, Mexico City, Mexico.
| |
Collapse
|
17
|
Kabakov AE, Gabai VL. HSP70s in Breast Cancer: Promoters of Tumorigenesis and Potential Targets/Tools for Therapy. Cells 2021; 10:cells10123446. [PMID: 34943954 PMCID: PMC8700403 DOI: 10.3390/cells10123446] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/25/2021] [Accepted: 12/03/2021] [Indexed: 12/20/2022] Open
Abstract
The high frequency of breast cancer worldwide and the high mortality among women with this malignancy are a serious challenge for modern medicine. A deeper understanding of the mechanisms of carcinogenesis and emergence of metastatic, therapy-resistant breast cancers would help development of novel approaches to better treatment of this disease. The review is dedicated to the role of members of the heat shock protein 70 subfamily (HSP70s or HSPA), mainly inducible HSP70, glucose-regulated protein 78 (GRP78 or HSPA5) and GRP75 (HSPA9 or mortalin), in the development and pathogenesis of breast cancer. Various HSP70-mediated cellular mechanisms and pathways which contribute to the oncogenic transformation of mammary gland epithelium are reviewed, as well as their role in the development of human breast carcinomas with invasive, metastatic traits along with the resistance to host immunity and conventional therapeutics. Additionally, intracellular and cell surface HSP70s are considered as potential targets for therapy or sensitization of breast cancer. We also discuss a clinical implication of Hsp70s and approaches to targeting breast cancer with gene vectors or nanoparticles downregulating HSP70s, natural or synthetic (small molecule) inhibitors of HSP70s, HSP70-binding antibodies, HSP70-derived peptides, and HSP70-based vaccines.
Collapse
Affiliation(s)
- Alexander E. Kabakov
- Department of Radiation Biochemistry, A. Tsyb Medical Radiological Research Center—Branch of the National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, Koroleva 4, 249036 Obninsk, Russia;
| | - Vladimir L. Gabai
- CureLab Oncology Inc., Dedham, MA 02026, USA
- Correspondence: ; Tel.: +1-617-319-7314
| |
Collapse
|
18
|
Zhang H, Wang SQ, Hang L, Zhang CF, Wang L, Duan CJ, Cheng YD, Wu DK, Chen R. GRP78 facilitates M2 macrophage polarization and tumour progression. Cell Mol Life Sci 2021; 78:7709-7732. [PMID: 34713304 PMCID: PMC11072571 DOI: 10.1007/s00018-021-03997-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/22/2021] [Accepted: 10/15/2021] [Indexed: 12/17/2022]
Abstract
This study investigated the regulation of GRP78 in tumour-associated macrophage polarization in lung cancer. First, our results showed that GRP78 was upregulated in macrophages during M2 polarization and in a conditioned medium derived from lung cancer cells. Next, we found that knocking down GRP78 in macrophages promoted M1 differentiation and suppressed M2 polarization via the Janus kinase/signal transducer and activator of transcription signalling. Moreover, conditioned medium from GRP78- or insulin-like growth factor 1-knockdown macrophages attenuated the survival, proliferation, and migration of lung cancer cells, while conditioned medium from GRP78-overexpressing macrophages had the opposite effects. Additionally, GRP78 knockdown reduced both the secretion of insulin-like growth factor 1 and the phosphorylation of the insulin-like growth factor 1 receptor. Interestingly, insulin-like growth factor 1 neutralization downregulated GRP78 and suppressed GRP78 overexpression-induced M2 polarization. Mechanistically, insulin-like growth factor 1 treatment induced the translocation of GRP78 to the plasma membrane and promoted its association with the insulin-like growth factor 1 receptor. Finally, IGF-1 blockade and knockdown as well as GRP78 knockdown in macrophages inhibited M2 macrophage-induced survival, proliferation, and migration of lung cancer cells both in vitro and in vivo.
Collapse
Affiliation(s)
- Heng Zhang
- Department of General Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
- Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
- Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis and Treatment, Changsha, 410008, Hunan Province, China
| | - Shao-Qiang Wang
- Department of Thoracic Surgery, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, 272029, Shandong Province, China
| | - Lin Hang
- Department of General Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Chun-Fang Zhang
- Department of General Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
- Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
- Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis and Treatment, Changsha, 410008, Hunan Province, China
| | - Li Wang
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan Province, China
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan Province, China
| | - Chao-Jun Duan
- Department of General Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
- Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis and Treatment, Changsha, 410008, Hunan Province, China
| | - Yuan-Da Cheng
- Department of General Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
- Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
- Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis and Treatment, Changsha, 410008, Hunan Province, China
| | - Dong-Kai Wu
- Department of Cardiothoracic Surgery, Xiangya Hospital, Central South University, No. 87, Xiangya Road, Changsha, 410008, Hunan Province, China
| | - Ri Chen
- Department of Cardiothoracic Surgery, Xiangya Hospital, Central South University, No. 87, Xiangya Road, Changsha, 410008, Hunan Province, China.
| |
Collapse
|
19
|
Shin J, Toyoda S, Nishitani S, Fukuhara A, Kita S, Otsuki M, Shimomura I. Possible Involvement of Adipose Tissue in Patients With Older Age, Obesity, and Diabetes With SARS-CoV-2 Infection (COVID-19) via GRP78 (BIP/HSPA5): Significance of Hyperinsulinemia Management in COVID-19. Diabetes 2021; 70:2745-2755. [PMID: 34615619 PMCID: PMC8660985 DOI: 10.2337/db20-1094] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 09/29/2021] [Indexed: 12/20/2022]
Abstract
Aging, obesity, and diabetes are major risk factors for the severe progression and outcome of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection (coronavirus disease 2019 [COVID-19]), but the underlying mechanism is not yet fully understood. In this study, we found that the SARS-CoV-2 spike protein physically interacts with cell surface GRP78, which promotes the binding to and accumulation in ACE2-expressing cells. GRP78 was highly expressed in adipose tissue and increased in humans and mice with older age, obesity, and diabetes. The overexpression of GRP78 was attributed to hyperinsulinemia in adipocytes, which was in part mediated by the stress-responsive transcription factor XBP-1s. Management of hyperinsulinemia by pharmacological approaches, including metformin, sodium-glucose cotransporter 2 inhibitor, or β3-adrenergic receptor agonist, decreased GRP78 gene expression in adipose tissue. Environmental interventions, including exercise, calorie restriction, fasting, or cold exposure, reduced the gene expression of GRP78 in adipose tissue. This study provides scientific evidence for the role of GRP78 as a binding partner of the SARS-CoV-2 spike protein and ACE2, which might be related to the severe progression and outcome of COVID-19 in patients with older age, obesity, and diabetes. The management of hyperinsulinemia and the related GRP78 expression could be a therapeutic or preventative target.
Collapse
Affiliation(s)
- Jihoon Shin
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Department of Diabetes Care Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Shinichiro Toyoda
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Shigeki Nishitani
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Atsunori Fukuhara
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Department of Adipose Management, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Shunbun Kita
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Department of Adipose Management, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Michio Otsuki
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Iichiro Shimomura
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| |
Collapse
|
20
|
Singh P, Kumari M, Bal A, Srinivasan R, Ghosh S. Heat shock protein 60 is a disease-associated sialoglycoprotein in human non-small cell lung cancer. Biol Chem 2021; 401:969-983. [PMID: 32049642 DOI: 10.1515/hsz-2019-0352] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 02/03/2020] [Indexed: 01/23/2023]
Abstract
The diagnostic and therapeutic potential of Maackia amurensis agglutinin (MAA) have been reported in various malignancies. Earlier, we have found that MAA specifically interacted with human non-small cell lung-cancer (NSCLC) cells and induced apoptosis in these cells. The present study was designed to identify M. amurensis leukoagglutinin (MAL-I, one of the components of MAA, having the same carbohydrate specificity as MAA) interacting membrane sialoglycoprotein(s) of two subtypes of human NSCLC cell lines. Nine proteins were identified using two-dimensional (2D)-polyacrylamide gel electrophoresis (PAGE) followed by MAL-I-overlay transblotting and matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF-MS). Among these proteins, HSP60 was selected for further characterization. The sialoglycoprotein nature of membrane-HSP60 of NSCLC cell lines was confirmed by its reduced reactivity with MAL-I in Western blots in the presence of GM2 and by dual staining of the cell lines with MAL-I and HSP60-antibody. These findings were further substantiated by enzymatic analysis of membrane-HSP60 as well as in-silico evidence regarding this protein. Our observations were validated by immunohistochemical analysis of both subtypes of NSCLC tissue sections. Membrane-HSP60 was found to be involved in the inhibition of MAL-I-induced morphological alteration of NSCLC cells and also in the proliferation and migration of these cells, indicating the probable role of sialylated membrane-HSP60 in this disease.
Collapse
Affiliation(s)
- Praveen Singh
- Department of Experimental Medicine and Biotechnology, PGIMER, Chandigarh 160012, India
| | - Munmun Kumari
- Department of Experimental Medicine and Biotechnology, PGIMER, Chandigarh 160012, India
| | - Amanjit Bal
- Department of Histopathology, PGIMER, Chandigarh 160012, India
| | - Radhika Srinivasan
- Department of Cytology and Gynecological Pathology, PGIMER, Chandigarh 160012, India
| | - Sujata Ghosh
- Department of Experimental Medicine and Biotechnology, PGIMER, Chandigarh 160012, India
| |
Collapse
|
21
|
Li J, Wang Y, Li L, Or PMY, Wai Wong C, Liu T, Ho WLH, Chan AM. Tumour-derived substrate-adherent cells promote neuroblastoma survival through secreted trophic factors. Mol Oncol 2021; 15:2011-2025. [PMID: 33932101 PMCID: PMC8334291 DOI: 10.1002/1878-0261.12969] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 02/10/2021] [Accepted: 04/14/2021] [Indexed: 12/17/2022] Open
Abstract
Neuroblastoma (NB) is the most common extracranial solid tumour in children. NB is highly heterogeneous and is comprised of a mixture of neuroblastic cancer cells and stromal cells. We previously reported that N‐type cells (neuroblastic cells) and S‐type cells (substrate‐adherent cells) in the SK‐N‐SH cell line shared almost identical genetic backgrounds. Sublines of N‐ and S‐type cells were isolated from an early passage (P35) of SK‐N‐SH. Sequencing analysis revealed that all sublines harboured the anaplastic lymphoma kinase (ALK) F1174L mutation, indicating that they were tumour derived. Surprisingly, over 74% resembled S‐type cells. In coculture experiments, S‐type cells protected N‐type cells from apoptosis induced by the oncogenic ALK inhibitor TAE684. Western blotting analyses showed that ALK, protein kinase A (AKT) and STAT3 signalling were stimulated in the cocultures. Furthermore, the conditioned medium from S‐type cells activated these downstream signalling molecules in the N‐type cells. The activation of STAT3 in the N‐type cells was ALK‐independent, while AKT was regulated by the ALK activation status. To identify the responsible soluble factors, we used a combination of transcriptomic and proteomic analysis and found that plasminogen activator inhibitor 1, secreted protein acidic and cysteine rich, periostin and galectin‐1 were potential mediators of STAT3 signalling. The addition of recombinant proteins to the tumour cells treated with the ALK inhibitor partially enhanced cell viability. Overall, the tumour‐derived S‐type cells prevented apoptosis in the N‐type cells via ALK‐independent STAT3 activation triggered by secreted factors. The inhibition of these factors in combination with ALK inhibition could provide a new direction for targeted therapies to treat high‐risk NB.
Collapse
Affiliation(s)
- Jing Li
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yubing Wang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Lisha Li
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Penelope M-Y Or
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chi Wai Wong
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Tian Liu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Wayne L H Ho
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Andrew M Chan
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
22
|
Berberine inhibits proliferation and migration of colorectal cancer cells by downregulation of GRP78. Anticancer Drugs 2021; 31:141-149. [PMID: 31743135 DOI: 10.1097/cad.0000000000000835] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Human colorectal cancer (CRC), a highly malignant and metastatic carcinoma, is resistant to many present anticancer therapies. The inhibition of tumor survival and growth through receptor suppression is a promising way to treat CRC. The study aimed to investigate the effect of a natural plant triterpenoid, berberine (BBR), on SW480 cells and whether its role is mediated by Glucose-regulated protein 78 (GRP78). MTT assay, wound healing assay, and Annexin V-FITC assay were used to measure the effect of BBR on the proliferation, migration, and apoptosis of SW480 cells, respectively. Immunofluorescence and western blotting were used to evaluate both the downregulation of BBR on GRP78 and the role of GRP78 in the effect of BBR on SW480 cells. Our results revealed that BBR inhibited the proliferation and migration, as well as induced the apoptosis of SW480 cells, in a dose-dependent manner. BBR induced the dose-dependent inhibition of cell proliferation in HT-29 cells. BBR inhibited the expression of GRP78 and its localization on the cell surface. Moreover, BBR inhibited the expression of Bax, Bcl-2, c-Myc, and Vimentin and up-regulated the cytokeratin expression in SW480 cells. In addition, we found that the effects of BBR on cell proliferation, migration, and apoptosis in SW480 cells were reversed by the overexpression of GRP78. Our findings demonstrated that BBR inhibited the proliferation and migration and induced the apoptosis of SW480 cells by downregulating the expression of GRP78, and targeting GRP78 might be a potential way to develop the effective anticancer therapy.
Collapse
|
23
|
Farshbaf M, Khosroushahi AY, Mojarad-Jabali S, Zarebkohan A, Valizadeh H, Walker PR. Cell surface GRP78: An emerging imaging marker and therapeutic target for cancer. J Control Release 2020; 328:932-941. [DOI: 10.1016/j.jconrel.2020.10.055] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/23/2020] [Accepted: 10/25/2020] [Indexed: 12/12/2022]
|
24
|
Zhang X, Su Y, Lin H, Yao X. The impacts of ubiquilin 1 (UBQLN1) knockdown on cells viability, proliferation, and apoptosis are mediated by p53 in A549 lung cancer cells. J Thorac Dis 2020; 12:5887-5895. [PMID: 33209421 PMCID: PMC7656338 DOI: 10.21037/jtd-20-1362] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background Little is known about the relationship between ubiquilin 1 (UBQLN1) and p53, both of them have been implicated in the development and progression of non-small cell lung cancer (NSCLC). In this study, we aimed to explore the role of loss of UBQLN1 in cell viability and proliferation, and cell apoptosis in human lung adenocarcinoma A549 cells. Methods Cell viability, proliferation, and apoptosis were determined by MTT, BrdU, and TUNEL assays, respectively. Adenoviruses carrying cDNA or siRNA were used to overexpress or silence target protein. Dihydroethidium (DHE) staining was performed to measure the real-time formation of intracellular reactive oxygen species (ROS). The chymotrypsin-like activity of 20S proteasome core was determined by using synthetic fluorogenic peptide substrate. Results UBQLN1 silencing led to a reduction of p53 protein levels and overexpression of p53 reversed the effects of UBQLN1 knockdown (KD) on cell viability, proliferation, and apoptosis. Furthermore, deficiency of UBQLN1 activated autophagy activity but did not affect proteasome activity. Inhibition of autophagy restored p53 protein levels in UBQLN1-KD A549 cells. In addition, UBQLN1 KD markedly inhibited phosphorylation of mammalian target of rapamycin (mTOR) and its downstream ribosomal S6 kinase (S6K). Conclusions Our experiments suggested that the regulation of UBQLN1 on cell viability, proliferation, and apoptosis was mediated by mTOR/autophagy/p53 signaling pathway.
Collapse
Affiliation(s)
- Xinghua Zhang
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yunshu Su
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Huiqing Lin
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaoli Yao
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
25
|
Gopal U, Pizzo SV. Cell surface GRP78 signaling: An emerging role as a transcriptional modulator in cancer. J Cell Physiol 2020; 236:2352-2363. [PMID: 32864780 DOI: 10.1002/jcp.30030] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/07/2020] [Accepted: 08/17/2020] [Indexed: 12/14/2022]
Abstract
Cancer cells acquire dysregulated gene expression to establish specific transcriptional dependencies and their underlying mechanisms that are ultimately responsible for this addictions have not been fully elucidated. Glucose-regulated protein 78 (GRP78) is a stress-inducible, multifunctional, prosurvival, endoplasmic reticulum chaperone in the heat shock protein 70 family. Expression of cell surface GRP78 (CS-GRP78) is associated with increased malignant behavior and resistance to chemotherapy and radiotherapy by endowing various cancer cells with increased proliferative ability, altered metabolism, improved survival, and augmented invasive and metastatic potential. Emerging evidence has highlighted an unusual role of CS-GRP78 in regulating transcription factors (TFs) by mediating various signaling pathways involved in malignant transformation, metabolic reprogramming, and tumor progression. During the last decade, we targeted CS-GRP78 with C38 monoclonal antibody (C38 Mab) in numerous studies, which have highlighted the epigenetic interplay between CS-GRP78 and various TFs including c-MYC, Yes-associated protein/transcriptional coactivator with PDZ-binding motif, c-Fos, and histone acetylation to potentiate subsequent modulation of tumorigenesis, invasion, and metastasis. Here, we summarize the current state of knowledge about the role of CS-GRP78 in cancer development and progression, including epigenetic regulation and sheds light on CS-GRP78 as vulnerable target for cancer therapy. Overall, this review focuses on the mechanisms of TFs that are behind the transcriptional dysregulation in cancer and lays the groundwork for rational therapeutic use of C38 Mab based on CS-GRP78 biology.
Collapse
Affiliation(s)
- Udhayakumar Gopal
- Department of Pathology, Duke University Medical Center, Durham, North Carolina
| | - Salvatore V Pizzo
- Department of Pathology, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
26
|
Raiter A, Lipovetzki J, Lubin I, Yerushalmi R. GRP78 expression in peripheral blood mononuclear cells is a new predictive marker for the benefit of taxanes in breast cancer neoadjuvant treatment. BMC Cancer 2020; 20:333. [PMID: 32306920 PMCID: PMC7168854 DOI: 10.1186/s12885-020-06835-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 04/06/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Breast cancer treatment is tailored to the specific cancer subtype. Often, systemic treatment is given prior to surgery. Chemotherapy induces significant endoplasmic reticulum (ER) stress-mediated cell death and upregulation of 78-kDa glucose-regulated protein (GRP78). We hypothesized that chemotherapy induces ER stress not only in the tumor tissue but also in immune cells, which may affect the response to anti-cancer treatment. METHODS We determined the surface expression of GRP78 on 15 different peripheral blood mononuclear cell (PBMC) subpopulations in 20 breast cancer patients at three time points of the neoadjuvant treatment, i.e., at baseline, after anthracycline treatment, and after taxanes treatment. For this purpose, we performed flow cytometric analyses and analyzed the data using ANOVA and the Tukey test. Serum cytokine levels were also evaluated, and their levels were correlated with response to treatment using the t-test after log transformation and Mann-Whitney U Wilcoxon W test. RESULTS A significant increase in GRP78 expression in PBMCs was documented during the taxane phase, only in patients who achieved pathological complete response (pCR). GRP78-positive clones correlated with increased serum levels of interferon gamma (IFNγ). CONCLUSIONS The presence of GRP78-positive clones in certain PBMC subpopulations in pCR patients suggests a dynamic interaction between ER stress and immune responsiveness. The correlation of GRP78-positive clones with increased levels of IFNγ supports the idea that GRP78 expression in PBMCs might serve as a new predictive marker to identify the possible benefits of taxanes in the neoadjuvant setting.
Collapse
Affiliation(s)
- Annat Raiter
- Felsenstein Medical Research Center, Sackler School of Medicine, Tel Aviv University, Rabin Medical Center, Beilinson Campus, 49100, Petach Tikva, Israel.
| | - Julia Lipovetzki
- Felsenstein Medical Research Center, Sackler School of Medicine, Tel Aviv University, Rabin Medical Center, Beilinson Campus, 49100, Petach Tikva, Israel
| | - Ido Lubin
- Felsenstein Medical Research Center, Sackler School of Medicine, Tel Aviv University, Rabin Medical Center, Beilinson Campus, 49100, Petach Tikva, Israel
| | - Rinat Yerushalmi
- Felsenstein Medical Research Center, Sackler School of Medicine, Tel Aviv University, Rabin Medical Center, Beilinson Campus, 49100, Petach Tikva, Israel.
- Davidoff Cancer Center, Rabin Medical Center, Beilinson Campus, 49100, Petach Tikva, Israel.
| |
Collapse
|
27
|
López-Muñoz E, Corres-Molina M, García-Hernández N. Correlation of the protein expression of GRP78 and BIK/NBK with prognostic markers in patients with breast cancer and neoadjuvant chemotherapy. J OBSTET GYNAECOL 2019; 40:419-426. [DOI: 10.1080/01443615.2019.1652886] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Eunice López-Muñoz
- Medical Research Unit in Reproductive Medicine, Unidad Médica de Alta Especialidad (UMAE) Hospital de Gineco Obstetricia No. 4, Luis Castelazo Ayala, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Miguel Corres-Molina
- Service of Oncology, Hospital Juárez de México, Mexico City, Mexico
- Service of Oncologic Surgery, Hospital General Naval de Alta Especialidad, Secretaría de Marina (SEMAR), Mexico City, Mexico
| | - Normand García-Hernández
- Medical Research Unit in Human Genetics, Unidad Médica de Alta Especialidad (UMAE) Hospital de Pediatría, Dr. Silvestre Frenk Freund, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| |
Collapse
|
28
|
Sicari D, Fantuz M, Bellazzo A, Valentino E, Apollonio M, Pontisso I, Di Cristino F, Dal Ferro M, Bicciato S, Del Sal G, Collavin L. Mutant p53 improves cancer cells' resistance to endoplasmic reticulum stress by sustaining activation of the UPR regulator ATF6. Oncogene 2019; 38:6184-6195. [PMID: 31312025 DOI: 10.1038/s41388-019-0878-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 05/27/2019] [Accepted: 06/30/2019] [Indexed: 12/17/2022]
Abstract
Missense mutations in the TP53 gene are frequent in human cancers, giving rise to mutant p53 proteins that can acquire oncogenic properties. Gain of function mutant p53 proteins can enhance tumour aggressiveness by promoting cell invasion, metastasis and chemoresistance. Accumulating evidences indicate that mutant p53 proteins can also modulate cell homeostatic processes, suggesting that missense p53 mutation may increase resistance of tumour cells to intrinsic and extrinsic cancer-related stress conditions, thus offering a selective advantage. Here we provide evidence that mutant p53 proteins can modulate the Unfolded Protein Response (UPR) to increase cell survival upon Endoplasmic Reticulum (ER) stress, a condition to which cancer cells are exposed during tumour formation and progression, as well as during therapy. Mechanistically, this action of mutant p53 is due to enhanced activation of the pro-survival UPR effector ATF6, coordinated with inhibition of the pro-apoptotic UPR effectors JNK and CHOP. In a triple-negative breast cancer cell model with missense TP53 mutation, we found that ATF6 activity is necessary for viability and invasion phenotypes. Together, these findings suggest that ATF6 inhibitors might be combined with mutant p53-targeting drugs to specifically sensitise cancer cells to endogenous or chemotherapy-induced ER stress.
Collapse
Affiliation(s)
- Daria Sicari
- National Laboratory CIB (LNCIB), AREA Science Park, 34149, Trieste, Italy.,Department of Life Sciences, University of Trieste, 34127, Trieste, Italy
| | - Marco Fantuz
- National Laboratory CIB (LNCIB), AREA Science Park, 34149, Trieste, Italy.,Department of Life Sciences, University of Trieste, 34127, Trieste, Italy.,International School for Advanced Studies (SISSA), Trieste, Italy
| | - Arianna Bellazzo
- National Laboratory CIB (LNCIB), AREA Science Park, 34149, Trieste, Italy.,Department of Life Sciences, University of Trieste, 34127, Trieste, Italy
| | - Elena Valentino
- National Laboratory CIB (LNCIB), AREA Science Park, 34149, Trieste, Italy.,Department of Life Sciences, University of Trieste, 34127, Trieste, Italy
| | - Mattia Apollonio
- National Laboratory CIB (LNCIB), AREA Science Park, 34149, Trieste, Italy.,Department of Life Sciences, University of Trieste, 34127, Trieste, Italy
| | - Ilaria Pontisso
- National Laboratory CIB (LNCIB), AREA Science Park, 34149, Trieste, Italy.,Department of Life Sciences, University of Trieste, 34127, Trieste, Italy
| | - Francesca Di Cristino
- National Laboratory CIB (LNCIB), AREA Science Park, 34149, Trieste, Italy.,Department of Life Sciences, University of Trieste, 34127, Trieste, Italy
| | - Marco Dal Ferro
- Department of Life Sciences, University of Trieste, 34127, Trieste, Italy
| | - Silvio Bicciato
- Department of Life Sciences, University of Modena and Reggio Emilia, 41100, Modena, Italy
| | - Giannino Del Sal
- National Laboratory CIB (LNCIB), AREA Science Park, 34149, Trieste, Italy. .,Department of Life Sciences, University of Trieste, 34127, Trieste, Italy. .,IFOM, the FIRC Institute of Molecular Oncology, Trieste, Italy.
| | - Licio Collavin
- National Laboratory CIB (LNCIB), AREA Science Park, 34149, Trieste, Italy. .,Department of Life Sciences, University of Trieste, 34127, Trieste, Italy.
| |
Collapse
|
29
|
Tseng CC, Zhang P, Lee AS. The COOH-Terminal Proline-Rich Region of GRP78 Is a Key Regulator of Its Cell Surface Expression and Viability of Tamoxifen-Resistant Breast Cancer Cells. Neoplasia 2019; 21:837-848. [PMID: 31306849 PMCID: PMC6629921 DOI: 10.1016/j.neo.2019.05.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/23/2019] [Accepted: 05/28/2019] [Indexed: 12/11/2022] Open
Abstract
Translocation of 78-kDa glucose-regulated protein (GRP78) from endoplasmic reticulum (ER) to plasma membrane represents a paradigm shift beyond its traditional function as an ER chaperone protein. Cell surface GRP78 (csGRP78) exerts novel signaling functions, and mechanisms underlying its cell surface expression are just emerging. Acquired tamoxifen resistance of breast cancer cells is accompanied with elevated level of csGRP78. Therefore, the tamoxifen-resistant MCF7 breast cancer cells (MCF7-LR) represents a clinically relevant model to study mechanisms of csGRP78 expression. We discovered that a proline-rich region (PRR) containing three consecutive prolines close to the COOH-terminus of GRP78 is important for its ability to form a complex with the partner protein, CD44v, as demonstrated by in vitro glutathione S-transferase pull-down assay. Proline to alanine mutations at the PRR compromised GRP78 expression level on the cell surface as evidenced by purification of biotinylated cell surface proteins. Reconstitution of MCF7-LR cells with the PRR mutant after knockdown of endogenous GRP78 diminished the capacity of GRP78 to stimulate STAT3 activation. The enforced expression of a short peptide bearing the PRR region of GRP78 led to reduction of CD44v and Cyclin D1 protein levels as well as cell viability, accompanied with increase in apoptotic signaling including cleaved Caspase-3 and PARP. These findings suggest that the COOH-terminal PRR of GRP78 is critical for its interaction with CD44v as well as its cell surface expression, and enforced expression of the short peptide bearing the PRR region may provide a new approach to lower the viability of tamoxifen-resistant breast cancer cells.
Collapse
Affiliation(s)
- Chun-Chih Tseng
- Department of Biochemistry and Molecular Medicine, University of Southern California, 1441 Eastlake Avenue, Los Angeles, California 90089, USA; USC Norris Comprehensive Cancer Center, University of Southern California, 1441 Eastlake Avenue, Los Angeles, California 90089, USA.
| | - Pu Zhang
- Department of Molecular Microbiology and Immunology, University of Southern California, 1441 Eastlake Avenue, Los Angeles, California 90089, USA; USC Norris Comprehensive Cancer Center, University of Southern California, 1441 Eastlake Avenue, Los Angeles, California 90089, USA.
| | - Amy S Lee
- Department of Biochemistry and Molecular Medicine, University of Southern California, 1441 Eastlake Avenue, Los Angeles, California 90089, USA; USC Norris Comprehensive Cancer Center, University of Southern California, 1441 Eastlake Avenue, Los Angeles, California 90089, USA.
| |
Collapse
|
30
|
Battogtokh G, Gotov O, Subrahmanyam N, Ko YT, Ghandehari H. GRP78‐Targeted HPMA Copolymer‐Photosensitizer Conjugate for Hyperthermia‐Induced Enhanced Uptake and Cytotoxicity in MCF‐7 Breast Cancer Cells. Macromol Biosci 2019; 19:e1900032. [DOI: 10.1002/mabi.201900032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 05/15/2019] [Indexed: 12/27/2022]
Affiliation(s)
- Gantumur Battogtokh
- Yonsei Institute of Pharmaceutical ScienceCollege of PharmacyYonsei University 85, Songdogwahak‐ro, Yeonsu‐gu Incheon 21983 Republic of Korea
- College of PharmacyGachon University 191 Hambakmoe‐ro, Yeonsu‐gu Incheon 406–799 South Korea
- Departments of Pharmaceutics and Pharmaceutical ChemistryUniversity of Utah Sorenson Molecular Biotechnology Building36 S. Wasatch Dr. Salt Lake City UT 84112 USA
- Utah Center for NanomedicineNano Institute of UtahUniversity of Utah Sorenson Molecular Biotechnology Building36 S. Wasatch Dr. Salt Lake City UT 84112 USA
| | - Oyuntuya Gotov
- College of PharmacyGachon University 191 Hambakmoe‐ro, Yeonsu‐gu Incheon 406–799 South Korea
| | - Nithya Subrahmanyam
- Departments of Pharmaceutics and Pharmaceutical ChemistryUniversity of Utah Sorenson Molecular Biotechnology Building36 S. Wasatch Dr. Salt Lake City UT 84112 USA
- Utah Center for NanomedicineNano Institute of UtahUniversity of Utah Sorenson Molecular Biotechnology Building36 S. Wasatch Dr. Salt Lake City UT 84112 USA
| | - Young Tag Ko
- College of PharmacyGachon University 191 Hambakmoe‐ro, Yeonsu‐gu Incheon 406–799 South Korea
| | - Hamidreza Ghandehari
- Departments of Pharmaceutics and Pharmaceutical ChemistryUniversity of Utah Sorenson Molecular Biotechnology Building36 S. Wasatch Dr. Salt Lake City UT 84112 USA
- Bioengineering, University of Utah Sorenson Molecular Biotechnology Building36 S. Wasatch Dr. Salt Lake City UT 84112 USA
- Utah Center for NanomedicineNano Institute of UtahUniversity of Utah Sorenson Molecular Biotechnology Building36 S. Wasatch Dr. Salt Lake City UT 84112 USA
| |
Collapse
|
31
|
Jiang B, Zhang R, Zhang J, Hou Y, Chen X, Zhou M, Tian X, Hao C, Fan K, Yan X. GRP78-targeted ferritin nanocaged ultra-high dose of doxorubicin for hepatocellular carcinoma therapy. Am J Cancer Res 2019; 9:2167-2182. [PMID: 31149036 PMCID: PMC6531302 DOI: 10.7150/thno.30867] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 12/29/2018] [Indexed: 12/25/2022] Open
Abstract
Hepatocellular carcinoma (HCC) remains one of the leading causes of cancer deaths, primarily due to its high incidence of recurrence and metastasis. Considerable efforts have therefore been undertaken to develop effective therapies; however, effective anti-HCC therapies rely on identification of suitable biomarkers, few of which are currently available for drug targeting. Methods: GRP78 was identified as the membrane receptor of HCC-targeted peptide SP94 by immunoprecipitation and mass spectrum analysis. To develop an effective anti-HCC drug nanocarrier, we first displayed GRP78-targeted peptide SP94 onto the exterior surface of Pyrococcus furiosus ferritin Fn (HccFn) by genetic engineering approach, and then loaded doxorubicin (Dox) into the cavities of HccFn via urea-based disassembly/reassembly method, thereby constructing a drug nanocarrier called HccFn-Dox. Results: We demonstrated that HccFn nanocage encapsulated ultra-high dose of Dox (up to 400 molecules Dox/protein nanocage). In vivo animal experiments showed that Dox encapsulated in HccFn-Dox was selectively delivered into HCC tumor cells, and effectively killed subcutaneous and lung metastatic HCC tumors. In addition, HccFn-Dox significantly reduced drug exposure to healthy organs and improved the maximum tolerated dose by six-fold compared with free Dox. Conclusion: In conclusion, our findings clearly demonstrate that GRP78 is an effective biomarker for HCC therapy, and GRP78-targeted HccFn nanocage is effective in delivering anti-HCC drug without damage to healthy tissue.
Collapse
|
32
|
Sun LL, Chen CM, Zhang J, Wang J, Yang CZ, Lin LZ. Glucose-Regulated Protein 78 Signaling Regulates Hypoxia-Induced Epithelial-Mesenchymal Transition in A549 Cells. Front Oncol 2019; 9:137. [PMID: 30931255 PMCID: PMC6423493 DOI: 10.3389/fonc.2019.00137] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 02/15/2019] [Indexed: 12/13/2022] Open
Abstract
Objective: Metastasis and therapeutic resistance are the major determinants of lung cancer progression and high mortality. Epithelial-mesenchymal transition (EMT) plays a key role in the metastasis and therapeutic resistance. Highly expressed glucose-regulated protein 78 (GRP78) is a poor prognostic factor in lung cancer and possibly correlated with EMT. This study aims to examine whether the up-regulation of GRP78 is involved in EMT in lung adenocarcinoma and explore the underlying downstream molecular pathways. Study Design: EMT was assessed by analysis of cell morphology and expression of EMT protein markers in A549 cells under normoxia, hypoxia and silencing GRP78 conditions. The expression levels of Smad2/3, Src, and MAPK (p38, ERK, and JNK) proteins were examined by Western blot analysis under hypoxia and treatments with phosphorylation inhibitors. Results: Under hypoxic conditions, the EMT morphology significantly changed and the GRP78 expression was significantly up-regulated in A549 cells compared with those in normoxia control. The expression and phosphorylation levels of smad2/3, Src, p38, ERK, and JNK were also upregulated. When GRP78 was silenced, EMT was inhibited, and the levels of phospho-smad2/3, phospho-Src, phospho-p38, phospho-ERK, and phospho-JNK were suppressed. When the activation of Smad2/3, Src, p38, ERK, and JNK was inhibited, EMT was also inhibited. The inhibition effect on EMT by these phosphorylation inhibitors was found to be weaker than that of GRP78 knockdown. Conclusions: Hypoxia-induced EMT in A549 cells is regulated by GRP78 signaling pathways. GRP78 promotes EMT by activating Smad2/3 and Src/MAPK pathways. Hence, GRP78 might be a potential target for treatment of lung adenocarcinoma.
Collapse
Affiliation(s)
- Ling-Ling Sun
- Integrative Cancer Centre, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chang-Ming Chen
- Integrative Cancer Centre, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jue Zhang
- Integrative Cancer Centre, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jing Wang
- Integrative Cancer Centre, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Cai-Zhi Yang
- Integrative Cancer Centre, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Li-Zhu Lin
- Integrative Cancer Centre, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
33
|
Rahman S, Archana A, Dutta D, Kumar V, Kim J, Jan AT, Minakshi R. The onus of cannabinoids in interrupting the molecular odyssey of breast cancer: A critical perspective on UPR ER and beyond. Saudi Pharm J 2019; 27:437-445. [PMID: 30976189 PMCID: PMC6438785 DOI: 10.1016/j.jsps.2019.01.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 01/05/2019] [Indexed: 12/31/2022] Open
Abstract
Cannabinoids, commonly used for medicinal and recreational purposes, consist of various complex hydrophobic molecules obtained from Cannabis sativa L. Acting as an inhibitory molecule; they have been investigated for their antineoplastic effect in various breast tumor models. Lately, it was found that cannabinoid treatment not only stimulates autophagy-mediated apoptotic death of tumor cells through unfolded protein response (UPRER) activated downstream effectors, but also imposes cell cycle arrest. The exploitation of UPRER tumors as such is believed to be a major molecular event and is therefore employed in understanding the development and progression of breast tumor. Simultaneously, the data on clinical trials following administration of cannabinoid is currently being explored to find its role not only in palliation but also in the treatment of breast cancer. The present study summarizes new achievements in understanding the extent of therapeutic progress and highlights recent developments in cannabinoid biology towards achieving a better cure of breast cancer through the exploitation of different cannabinoids.
Collapse
Affiliation(s)
- Safikur Rahman
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 712-749, South Korea
| | - Ayyagari Archana
- Department of Microbiology, Swami Shraddhanand College, University of Delhi, Delhi 110036, India
| | - Durgashree Dutta
- Department of Biochemistry, Jan Nayak Chaudhary Devilal Dental College, Sirsa, Haryana, India
| | - Vijay Kumar
- Department of Zoology, R.N. College, B.R. Ambedkar Bihar University, Muzaffarpur, Bihar, India
| | - Jihoe Kim
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 712-749, South Korea
| | - Arif Tasleem Jan
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, India
| | - Rinki Minakshi
- Department of Microbiology, Swami Shraddhanand College, University of Delhi, Delhi 110036, India
| |
Collapse
|
34
|
Wang Y, Luo YH, Piao XJ, Shen GN, Meng LQ, Zhang Y, Wang JR, Li JQ, Wang H, Xu WT, Liu Y, Zhang Y, Zhang T, Wang SN, Sun HN, Han YH, Jin MH, Zang YQ, Zhang DJ, Jin CH. Novel 1,4‑naphthoquinone derivatives induce reactive oxygen species‑mediated apoptosis in liver cancer cells. Mol Med Rep 2018; 19:1654-1664. [PMID: 30592276 PMCID: PMC6390020 DOI: 10.3892/mmr.2018.9785] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 11/15/2018] [Indexed: 12/13/2022] Open
Abstract
Derivatives of 1,4-naphthoquinone have excellent anti-cancer effects, but their use has been greatly limited due to their serious side effects. To develop compounds with decreased side effects and improved anti-cancer activity, two novel types of 1,4-naphthoquinone derivatives, 2,3-dihydro-2,3-epoxy-2-propylsulfonyl-5,8-dimethoxy-1,4-naphthoquinone (EPDMNQ) and 2,3-dihydro-2,3-epoxy-2-nonylsulfonyl-5,8-dimethoxy-1,4-naphthoquinone (ENDMNQ) were synthesized and their anti-tumor activities were investigated. The effects of EPDMNQ and ENDMNQ on cell viability, apoptosis and accumulation of reactive oxygen species (ROS) in liver cancer cells were determined by MTT cell viability assay and flow cytometry. The expression levels of mitochondrial, mitogen activated protein kinase (MAPK) and signal transducer and activator of transcription 3 (STAT3) signaling pathway-associated proteins in Hep3B liver cancer cells were analyzed by western blot analysis. The results demonstrated that EPDMNQ and ENDMNQ inhibited the proliferation of liver cancer Hep3B, HepG2, and Huh7 cell lines but not that of normal liver L-02, normal lung IMR-90 and stomach GES-1 cell lines. The number of apoptotic cells and ROS levels were significantly increased following treatment with EPDMNQ and ENDMNQ, and these effects were blocked by the ROS inhibitor N-acetyl-L-cysteine (NAC) in Hep3B cells. EPDMNQ and ENDMNQ induced apoptosis by upregulating the protein expression of p38 MAPK and c-Jun N-terminal kinase and downregulating extracellular signal-regulated kinase and STAT3; these effects were inhibited by NAC. The results of the present study demonstrated that EPDMNQ and ENDMNQ induced apoptosis through ROS-modulated MAPK and STAT3 signaling pathways in Hep3B cells. Therefore, these novel 1,4-naphthoquinone derivatives may be useful as anticancer agents for the treatment of liver cancer.
Collapse
Affiliation(s)
- Yue Wang
- Department of Biochemistry and Molecular Biology, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Ying-Hua Luo
- Department of Grass Science, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Xian-Ji Piao
- Department of Gynaecology and Obstetrics, The Fifth Affiliated Hospital of Harbin Medical University, Daqing, Heilongjiang 163316, P.R. China
| | - Gui-Nan Shen
- Department of Biochemistry and Molecular Biology, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Ling-Qi Meng
- Department of Biochemistry and Molecular Biology, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Yi Zhang
- Department of Biochemistry and Molecular Biology, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Jia-Ru Wang
- Department of Biochemistry and Molecular Biology, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Jin-Qian Li
- Department of Biochemistry and Molecular Biology, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Hao Wang
- Department of Biochemistry and Molecular Biology, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Wan-Ting Xu
- Department of Biochemistry and Molecular Biology, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Yang Liu
- Department of Biochemistry and Molecular Biology, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Yu Zhang
- Department of Biochemistry and Molecular Biology, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Tong Zhang
- Department of Biochemistry and Molecular Biology, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Shi-Nong Wang
- Department of Biochemistry and Molecular Biology, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Hu-Nan Sun
- Department of Biochemistry and Molecular Biology, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Ying-Hao Han
- Department of Biochemistry and Molecular Biology, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Mei-Hua Jin
- Department of Biochemistry and Molecular Biology, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Yan-Qing Zang
- Department of Food Science and Engineering, College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Dong-Jie Zhang
- Department of Food Science and Engineering, College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Cheng-Hao Jin
- Department of Biochemistry and Molecular Biology, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| |
Collapse
|
35
|
Zhou Y, Yang J, Zhang Q, Xu Q, Lu L, Wang J, Xia W. P4HB knockdown induces human HT29 colon cancer cell apoptosis through the generation of reactive oxygen species and inactivation of STAT3 signaling. Mol Med Rep 2018; 19:231-237. [PMID: 30431122 PMCID: PMC6297753 DOI: 10.3892/mmr.2018.9660] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 05/10/2018] [Indexed: 12/11/2022] Open
Abstract
Colon cancer is the second most lethal malignancy worldwide. A better understanding of colon cancer at the molecular level may increase overall survival rates. Previous studies have indicated that prolyl 4-hydroxylase, β polypeptide (P4HB) is associated with tumorigenesis in colon cancer; however, its role and molecular mechanisms in colon cancer remain unclear. In the present study, the cellular responses to P4HB in human colon cancer cell lines were investigated by proliferation and apoptosis assays, western blotting, and immunohistochemistry. The results showed that expression of P4HB was higher in colon cancer tissues compared within adjacent normal tissues. P4HB knockdown increased the apoptosis of human HT29 cells. Furthermore, P4HB knockdown reduced the activation of signal transducer and activator of transcription 3 (STAT3) and promoted accumulation of reactive oxygen species (ROS). Inhibiting the accumulation of ROS abrogated the increased cell apoptosis induced by P4HB knockdown. Notably, decreased ROS levels effectively antagonized the effects of P4HB on STAT3 inactivation. In conclusion, these findings suggested that P4HB knockdown may induce HT29 human colon cancer cell apoptosis through the generation of ROS and inactivation of the STAT3 signaling pathway.
Collapse
Affiliation(s)
- Ying Zhou
- Department of Gastroenterology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, P.R. China
| | - Jing Yang
- Department of General Surgery, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, P.R. China
| | - Qilin Zhang
- Department of Neurosurgery, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, P.R. China
| | - Qihua Xu
- Department of Gastroenterology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, P.R. China
| | - Lihua Lu
- Department of Gastroenterology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, P.R. China
| | - Jiening Wang
- Department of Integrated TCM and Western Medicine, President's Office, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, P.R. China
| | - Wei Xia
- Department of Nuclear Medicine, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, P.R. China
| |
Collapse
|
36
|
Serrano-Negrón JE, Zhang Z, Rivera-Ruiz AP, Banerjee A, Romero-Nutz EC, Sánchez-Torres N, Baksi K, Banerjee DK. Tunicamycin-induced ER stress in breast cancer cells neither expresses GRP78 on the surface nor secretes it into the media. Glycobiology 2018; 28:61-68. [PMID: 29206917 DOI: 10.1093/glycob/cwx098] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Accepted: 11/28/2017] [Indexed: 12/13/2022] Open
Abstract
GRP78 (an Mr 78 kDa calcium dependent glucose binding protein) is located in ER lumen. It functions as ER chaperone and translocates proteins for glycosylation at the asparagine residue present in the sequon Asn-X-Ser/Thr. Paraffin sections from N-glycosylation inhibitor tunicamycin treated ER-/PR-/HER2+ (double negative) breast tumor in athymic nude mice exhibited reduced N-glycan but increased GRP78 expression. We have evaluated the effect of tunicamycin on cellular localization of GRP78 in metastatic human breast cancer cells MDA-MB-231 (ER-/PR-/HER2-). Tunicamycin inhibited cell proliferation in a time and dose-dependent manner. Nonmetastatic estrogen receptor positive (ER+) MCF-7 breast cancer cells were also equally effective. GRP78 expression (protein and mRNA) was higher in tunicamycin (1.0 μg/mL) treated MCF-7 and MDA-MB-231 cells. GRP78 is an ER stress marker, so we have followed its intracellular localization using immunofluorescence microscopy after subjecting the cancer cells to various stress conditions. Unfixed cells stained with either FITC-conjugated Concanavalin A (Con A) or Texas-red conjugated wheat germ agglutinin (WGA) exhibited surface expression of N-glycans but not GRP78. GRP78 became detectable only after a brief exposure of cells to ice-cold methanol. Western blotting did not detect GRP78 in conditioned media of cancer cells whereas it did for MMP-1. The conclusion, GRP78 is expressed neither on the outer-leaflet of the (ER-/PR-/HER2-) human breast cancer cells nor it is secreted into the culture media during tunicamycin-induced ER stress. Our study therefore suggests strongly that anti-tumorigenic action of tunicamycin can be modeled to develop next generation cancer therapy, i.e., glycotherapy for treating breast and other sold tumors.
Collapse
Affiliation(s)
- Jesús E Serrano-Negrón
- Department of Biochemistry, School of Medicine, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00936-5067, USA.,Department of Natural Sciences and Mathematics, Interamerican University of Puerto Rico, Bayamón Campus, PR 00957, USA
| | - Zhenbo Zhang
- Department of Biochemistry, School of Medicine, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00936-5067, USA
| | - Andrea P Rivera-Ruiz
- Department of Biochemistry, School of Medicine, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00936-5067, USA
| | - Aditi Banerjee
- Department of Biochemistry, School of Medicine, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00936-5067, USA
| | - Eva C Romero-Nutz
- Department of Biochemistry, School of Medicine, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00936-5067, USA
| | - Neysharie Sánchez-Torres
- Department of Biochemistry, School of Medicine, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00936-5067, USA
| | - Krishna Baksi
- Department of Anatomy and Cell Biology, Universidad Central del Caribe, Bayamón, PR 00960-3001, USA
| | - Dipak K Banerjee
- Department of Biochemistry, School of Medicine, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00936-5067, USA.,Institute of Functional Nanomaterials, University of Puerto Rico, San Juan, PR PR00931-1907, USA
| |
Collapse
|
37
|
Yun S, Yun CW, Lee JH, Kim S, Lee SH. Cripto Enhances Proliferation and Survival of Mesenchymal Stem Cells by Up-Regulating JAK2/STAT3 Pathway in a GRP78-Dependent Manner. Biomol Ther (Seoul) 2018; 26:464-473. [PMID: 28835002 PMCID: PMC6131018 DOI: 10.4062/biomolther.2017.099] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 06/01/2017] [Accepted: 06/09/2017] [Indexed: 12/19/2022] Open
Abstract
Cripto is a small glycosylphosphatidylinositol-anchored signaling protein that can detach from the anchored membrane and stimulate proliferation, migration, differentiation, vascularization, and angiogenesis. In the present study, we demonstrated that Cripto positively affected proliferation and survival of mesenchymal stem cells (MSCs) without affecting multipotency. Cripto also increased expression of phosphorylated janus kinase 2 (p-JAK2), phosphorylated signal transducer and activator of transcription 3 (p-STAT3), 78 kDa glucose-regulated protein (GRP78), c-Myc, and cyclin D1. Notably, treatment with an anti-GRP78 antibody blocked these effects. In addition, pretreatment with STAT3 short interfering RNA (siRNA) inhibited the increase in p-JAK2, c-Myc, cyclin D1, and BCL3 levels caused by Cripto and attenuated the pro-survival action of Cripto on MSCs. We also found that incubation with Cripto protected MSCs from apoptosis caused by hypoxia or H2O2 exposure, and the level of caspase-3 decreased by the Cripto-induced expression of B-cell lymphoma 3-encoded protein (BCL3). These effects were sensitive to down-regulation of BCL3 expression by BCL3 siRNA. Finally, we showed that Cripto enhanced expression levels of vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF), and hepatocyte growth factor (HGF). In summary, our results demonstrated that Cripto activated a novel biochemical cascade that potentiated MSC proliferation and survival. This cascade relied on phosphorylation of JAK2 and STAT3 and was regulated by GRP78. Our findings may facilitate clinical applications of MSCs, as these cells may benefit from positive effects of Cripto on their survival and biological properties.
Collapse
Affiliation(s)
- SeungPil Yun
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Chul Won Yun
- Medical Science Research Institute, Soonchunhyang University, Seoul Hospital, Seoul 04401, Department of Medical Bioscience, Soonchunhyang University, Asan 31151, Republic of Korea
| | - Jun Hee Lee
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294, USA
| | - SangMin Kim
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Sang Hun Lee
- Medical Science Research Institute, Soonchunhyang University, Seoul Hospital, Seoul 04401, Department of Medical Bioscience, Soonchunhyang University, Asan 31151, Republic of Korea
| |
Collapse
|
38
|
Glucose-regulated protein 78 in lipid rafts elevates vascular smooth muscle cell proliferation of spontaneously hypertensive rats by controlling platelet-derived growth factor receptor signaling. Pflugers Arch 2018; 470:1831-1843. [PMID: 30155775 DOI: 10.1007/s00424-018-2199-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 08/09/2018] [Accepted: 08/16/2018] [Indexed: 10/28/2022]
Abstract
The multifunctional glucose-regulated protein 78 (GRP78) is known to be differentially expressed in the lipid rafts of vascular smooth muscle cells (VSMCs) from spontaneously hypertensive rats (SHRs) and normal Wistar-Kyoto (WKY) rats. However, its role in VSMCs from SHRs remains to be elucidated. This work was conducted to investigate the contribution made by GRP78 in VSMCs. GRP78 expression in VSMC lipid rafts decreased in WKY rats with age, but not in SHRs. Transfection with GRP78-siRNA attenuated not only platelet-derived growth factor (PDGF)-BB-induced VSMC proliferation and aortic sprout outgrowth but also the phosphorylation of PDGF receptor (PDGFR)-β, Akt, and extracellular signal-regulated kinase (Erk) 1/2 in VSMCs in response to PDGF-BB. Moreover, GRP78 knockdown also reduced the PDGF-BB-induced dimerization of PDGFR-β and GRP78 in SHR VSMCs. The phosphorylation of GRP78 and PDGFR-β was elevated in VSMCs treated with PDGF-BB and was completely abolished by AG1296 (a PDGFR inhibitor). Moreover, the binding of PDGFR-β to GRP78 and the co-localization of GRP78 to PDGFR-β in VSMCs were stronger in SHRs than in WKY rat controls. This study demonstrates that the PDGF-BB-induced proliferation of SHR VSMCs is mediated by the expressional upregulation of GRP78 on VSMC lipid rafts in SHRs, probably via the regulation of PDGFR-β-GRP78 binding and their cross-activation. These observations indicate that GRP78 may play important roles in the pathological progression of SHR VSMCs.
Collapse
|
39
|
Endoplasmic reticulum stress activates SRC, relocating chaperones to the cell surface where GRP78/CD109 blocks TGF-β signaling. Proc Natl Acad Sci U S A 2018; 115:E4245-E4254. [PMID: 29654145 DOI: 10.1073/pnas.1714866115] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The discovery that endoplasmic reticulum (ER) luminal chaperones such as GRP78/BiP can escape to the cell surface upon ER stress where they regulate cell signaling, proliferation, apoptosis, and immunity represents a paradigm shift. Toward deciphering the mechanisms, we report here that, upon ER stress, IRE1α binds to and triggers tyrosine kinase SRC activation, leading to ASAP1 phosphorylation and Golgi accumulation of ASAP1 and Arf1-GTP, resulting in KDEL receptor dispersion from the Golgi and suppression of retrograde transport. At the cell surface, GRP78 binds to and acts in concert with a glycosylphosphatidylinositol-anchored protein, CD109, in blocking TGF-β signaling by promoting the routing of the TGF-β receptor to the caveolae, thereby disrupting its binding to and activation of Smad2. Collectively, we uncover a SRC-mediated signaling cascade that leads to the relocalization of ER chaperones to the cell surface and a mechanism whereby GRP78 counteracts the tumor-suppressor effect of TGF-β.
Collapse
|
40
|
Wang Y, Shao F, Chen L. ALDH1A2 suppresses epithelial ovarian cancer cell proliferation and migration by downregulating STAT3. Onco Targets Ther 2018; 11:599-608. [PMID: 29430185 PMCID: PMC5797454 DOI: 10.2147/ott.s145864] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Epithelial ovarian cancer is the deadliest gynecological malignancy worldwide. A better understanding of epithelial ovarian cancer pathogenesis and the molecular mechanism underlying its metastasis may increase overall survival rates. Previous studies have indicated that aldehyde dehydrogenase 1 family member A2 (ALDH1A2) is a candidate tumor suppressor in epithelial ovarian cancer. However, the potential role of ALDH1A2 in the molecular mechanisms of epithelial ovarian cancer remains largely unclear. In the present study, we found lower expression of ALDH1A2 in high-grade epithelial ovarian cancer tissues than in low-grade epithelial ovarian cancer tissues. Overexpression of ALDH1A2 decreased the proliferation and migration of epithelial ovarian cancer cell lines, whereas ALDH1A2 knockdown significantly increased cell growth and migration. Moreover, upregulation of ALDH1A2 also reduced the activation of signal transducer and activator of transcription 3 (STAT3). In conclusion, these findings suggest that ALDH1A2 suppresses epithelial ovarian cancer cell proliferation and migration by downregulating STAT3.
Collapse
Affiliation(s)
- Yichen Wang
- Department of Gynecologic Oncology, Zhejiang Cancer Hospital, Hangzhou, China
| | - Feng Shao
- Department of Gynecologic Oncology, Zhejiang Cancer Hospital, Hangzhou, China
| | - Lu Chen
- Department of Gynecologic Oncology, Zhejiang Cancer Hospital, Hangzhou, China
| |
Collapse
|
41
|
Luo X, Yao J, Nie P, Yang Z, Feng H, Chen P, Shi X, Zou Z. FOXM1 promotes invasion and migration of colorectal cancer cells partially dependent on HSPA5 transactivation. Oncotarget 2018; 7:26480-95. [PMID: 27034162 PMCID: PMC5041994 DOI: 10.18632/oncotarget.8419] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 03/04/2016] [Indexed: 12/18/2022] Open
Abstract
In this study, to investigate whether endoplastic reticulum (ER) stress correlated with FOXM1 in colorectal cancer, we analysed the mRNA levels of FOXM1 and ER stress markers HSPA5 and spliced XBP1 by qRT-PCR. FOXM1 mRNA levels were found to positively correlate with HSPA5 in colorectal cancer. However, no significant correlation between FOXM1 and spliced XBP1 mRNA levels was found. Theses results suggested the positive correlation between FOXM1 and HSPA5 in colorectal cancer was not associated with ER stress. Next, we provided evidences that FOXM1 promoted HSPA5 transcription by directly binding to and stimulating HSPA5 promoter. Moreover, a FOXM1-binding site mapped between -1019 and -1012 bp of the proximal HSPA5 promoter was identified. In addition, we found that enhancement of cell migration and invasion by FOXM1 was significantly attenuated by depletion of HSPA5 in colorectal cancer cell. Furthermore, FOXM1 triggered colorectal cancer cell migration and invasion was involved in activities of cell-surface HSPA5. Lastly, our results suggested FOXM1 facilitated the activities and expressions of MMP2 and 9 associated with cell-surface HSPA5 in colorectal cancer cells. Moreover, statistically significant positive correlations between FOXM1 and MMP2 mRNA expression, between HSPA5 and MMP2 were found in colorectal cancer tissue specimens. Together, our results suggested that FOXM1-HSPA5 signaling might be considered as a novel molecular target for designing novel therapeutic regimen to control colorectal cancer metastasis and progression.
Collapse
Affiliation(s)
- Xiaoyong Luo
- Department of Oncology, The Affiliated Luoyang Central Hospital of Zhengzhou University, Luoyang, China
| | - Jinke Yao
- Department of General Surgery, Boji-Affiliated Hospital (Zengcheng People's Hospital), Sun Yat-Sen University, Guangzhou, China
| | - Peipei Nie
- KingMed Diagnostics and KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, China
| | - Zhiyuan Yang
- Department of Medcine, The Affiliated Luoyang Central Hospital of Zhengzhou University, Luoyang, China
| | - Hongbo Feng
- Department of Medcine, The Affiliated Luoyang Central Hospital of Zhengzhou University, Luoyang, China
| | - Pinjia Chen
- Department of Oncology, The Affiliated Luoyang Central Hospital of Zhengzhou University, Luoyang, China
| | - Xinpeng Shi
- Department of Oncology, The Affiliated Luoyang Central Hospital of Zhengzhou University, Luoyang, China
| | - Zhengzhi Zou
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, Joint Laboratory of Laser Oncology with Cancer Center of Sun Yat-sen University, College of Biophotonics, South China Normal University, Guangzhou, China
| |
Collapse
|
42
|
Minakshi R, Rahman S, Jan AT, Archana A, Kim J. Implications of aging and the endoplasmic reticulum unfolded protein response on the molecular modality of breast cancer. Exp Mol Med 2017; 49:e389. [PMID: 29123254 PMCID: PMC5704197 DOI: 10.1038/emm.2017.215] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 06/12/2017] [Accepted: 06/19/2017] [Indexed: 12/22/2022] Open
Abstract
The endoplasmic reticulum (ER) is an important subcellular organelle that is involved in numerous activities required to achieve and maintain functional proteins in addition to its role in the biosynthesis of lipids and as a repository of intracellular Ca2+. The inability of the ER to cope with protein folding beyond its capacity causes disturbances that evoke ER stress. Cells possess molecular mechanisms aimed at clearing unwanted cargo from the ER lumen as an adaptive response, but failing to do so navigates the system towards cell death. This systemic approach is called the unfolded protein response. Aging insults cells through various perturbations in homeostasis that involve curtailing ER function by mitigating the expression of its resident chaperones and enzymes. Here the unfolded protein response (UPR) cannot protect the cell due to the weakening of its protective arm, which exacerbates imbalanced homeostasis. Aging predisposed breast malignancy activates the UPR, but tumor cells maneuver the mechanistic details of the UPR, favoring tumorigenesis and thereby eliciting a treacherous condition. Tumor cells exploit UPR pathways via crosstalk involving various signaling cascades that usher tumor cells to immortality. This review aims to present a collection of data that can delineate the missing links of molecular signatures between aging and breast cancer.
Collapse
Affiliation(s)
- Rinki Minakshi
- Institute of Home Economics, University of Delhi, New Delhi, India
| | - Safikur Rahman
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Arif Tasleem Jan
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Ayyagari Archana
- Department of Microbiology, Swami Shraddhanand College, University of Delhi, New Delhi, India
| | - Jihoe Kim
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| |
Collapse
|
43
|
Garg S, Kaul SC, Wadhwa R. Cucurbitacin B and cancer intervention: Chemistry, biology and mechanisms (Review). Int J Oncol 2017; 52:19-37. [PMID: 29138804 DOI: 10.3892/ijo.2017.4203] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 10/23/2017] [Indexed: 11/06/2022] Open
Abstract
Cancer is one of the most important healthcare matters, with the worst prognosis but the best possibilities for scientific development. It is likely to increase in the future and cause global havoc designating it as an epidemic. Cancer development requires urgent intervention. Past few decades have witnessed extensive research to challenge carcinogenesis. Treatment involving synthetic discipline is often associated with severe adverse effects, or even worsened prognosis. Accordingly, newer economic and patient friendly molecules are warranted. Many natural substances have proved their potential so far. Cucurbitacin B against cancer and other diseases has achieved towering popularity among the researchers around the world, as detailed in the below sections with summarized tables. In line with the fascinating role of cucurbitacin B against various types of cancers, through various molecular signaling pathways, it is justifiable to propose cucurbitacin B as a mainline chemotherapy before the onset and after the diagnosis of cancer.
Collapse
Affiliation(s)
- Sukant Garg
- Drug Discovery and Assets Innovation Lab, DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8565, Japan
| | - Sunil C Kaul
- Drug Discovery and Assets Innovation Lab, DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8565, Japan
| | - Renu Wadhwa
- Drug Discovery and Assets Innovation Lab, DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8565, Japan
| |
Collapse
|
44
|
Al-Maleki AR, Loke MF, Lui SY, Ramli NSK, Khosravi Y, Ng CG, Venkatraman G, Goh KL, Ho B, Vadivelu J. Helicobacter pylori outer inflammatory protein A (OipA) suppresses apoptosis of AGS gastric cells in vitro. Cell Microbiol 2017; 19. [PMID: 28776327 DOI: 10.1111/cmi.12771] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 07/02/2017] [Accepted: 07/26/2017] [Indexed: 12/12/2022]
Abstract
Outer inflammatory protein A (OipA) is an important virulence factor associated with gastric cancer and ulcer development; however, the results have not been well established and turned out to be controversial. This study aims to elucidate the role of OipA in Helicobacter pylori infection using clinical strains harbouring oipA "on" and "off" motifs. Proteomics analysis was performed on AGS cell pre-infection and postinfection with H. pylori oipA "on" and "off" strains, using liquid chromatography/mass spectrometry. AGS apoptosis and cell cycle assays were performed. Moreover, expression of vacuolating cytotoxin A (VacA) was screened using Western blotting. AGS proteins that have been suggested previously to play a role or associated with gastric disease were down-regulated postinfection with oipA "off" strains comparing to oipA "on" strains. Furthermore, oipA "off" and ΔoipA cause higher level of AGS cells apoptosis and G0/G1 cell-cycle arrest than oipA "on" strains. Interestingly, deletion of oipA increased bacterial VacA production. The capability of H. pylori to induce apoptosis and suppress expression of proteins having roles in human disease in the absence of oipA suggests that strains not expressing OipA may be less virulent or may even be protective against carcinogenesis compared those expressing OipA. This potentially explains the higher incidence of gastric cancer in East Asia where oipA "on" strains predominates.
Collapse
Affiliation(s)
- Anis Rageh Al-Maleki
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Mun Fai Loke
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.,Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Sook Yin Lui
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Nur Siti Khadijah Ramli
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Yalda Khosravi
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Chow Goon Ng
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Gopinath Venkatraman
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Khean-Lee Goh
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Bow Ho
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Singapore Precision Medicine Centre Pte Ltd, Singapore, Singapore
| | - Jamuna Vadivelu
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
45
|
Zheng HC, Gong BC, Zhao S. The meta and bioinformatics analysis of GRP78 expression in gastric cancer. Oncotarget 2017; 8:73017-73028. [PMID: 29069845 PMCID: PMC5641188 DOI: 10.18632/oncotarget.20318] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 08/04/2017] [Indexed: 01/16/2023] Open
Abstract
GRP78 is a molecular chaperone located in endoplasmic reticulum, and induces folding and assembly of newly-synthesized proteins, proteasome degradation of aberrant proteins, and translocation of secretory proteins, autophagy, and epithelial-mesenchymal transition. We performed a systematic meta- and bioinformatics analysis through multiple online databases up to March 14, 2017. It was found that up-regulated GRP78 expression in gastric cancer, compared with normal mucosa at both protein and mRNA levels (p < 0.05). GRP78 expression was positively correlated with depth of invasion, TNM staging and dedifferentiation of gastric cancer (p < 0.05), while its mRNA expression was negatively correlated with depth of invasion, histological grading and dedifferentiation (p < 0.05). A positive association between GRP78 expression and unfavorable overall survival was found in patients with gastric cancer (p < 0.005). A higher GRP78 mRNA expression was positively correlated with overall and progression-free survival rates of all cancer patients, even stratified by aggressive parameters, or as an independent factor (p < 0.05). These findings indicated that GRP78 expression might be employed as a potential marker to indicate gastric carcinogenesis and subsequent progression, even prognosis.
Collapse
Affiliation(s)
- Hua-Chuan Zheng
- Department of Experimental Oncology and Animal Center, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Bao-Cheng Gong
- Department of Experimental Oncology and Animal Center, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Shuang Zhao
- Department of Experimental Oncology and Animal Center, Shengjing Hospital of China Medical University, Shenyang 110004, China
| |
Collapse
|
46
|
Yin Y, Chen C, Chen J, Zhan R, Zhang Q, Xu X, Li D, Li M. Cell surface GRP78 facilitates hepatoma cells proliferation and migration by activating IGF-IR. Cell Signal 2017; 35:154-162. [DOI: 10.1016/j.cellsig.2017.04.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 03/06/2017] [Accepted: 04/03/2017] [Indexed: 12/23/2022]
|
47
|
Abstract
Mesenchymal stem cells (MSC) are ideal materials for stem cell-based therapy. As MSCs reside in hypoxic microenvironments (low oxygen tension of 1% to 7%), several studies have focused on the beneficial effects of hypoxic preconditioning on MSC survival; however, the mechanisms underlying such effects remain unclear. This study aimed to uncover the potential mechanism involving 78-kDa glucose-regulated protein (GRP78) to explain the enhanced MSC bioactivity and survival in hindlimb ischemia. Under hypoxia (2% O₂), the expression of GRP78 was significantly increased via hypoxia-inducible factor (HIF)-1α. Hypoxia-induced GRP78 promoted the proliferation and migration potential of MSCs through the HIF-1α-GRP78-Akt signal axis. In a murine hind-limb ischemia model, hypoxic preconditioning enhanced the survival and proliferation of transplanted MSCs through suppression of the cell death signal pathway and augmentation of angiogenic cytokine secretion. These effects were regulated by GRP78. Our findings indicate that hypoxic preconditioning promotes survival, proliferation, and angiogenic cytokine secretion of MSCs via the HIF-1α-GRP78-Akt signal pathway, suggesting that hypoxia-preconditioned MSCs might provide a therapeutic strategy for MSC-based therapies and that GRP78 represents a potential target for the development of functional MSCs.
Collapse
|
48
|
Abstract
Macrophages are the main immune-competent cells that infiltrate in tumors. Tumor-associated macrophages (TAMs), termed M2 macrophages, facilitate tumor progress and promote metastasis. However, M2 macrophages always display an immunosuppressive phenotype, which is not in accordance with the tumor inflammatory microenvironment and inflammation-related metastasis. In this study, we established a macrophage polarization model with human monocytes and found that the conditioned medium from M2 macrophages increased GRP78 expression in tumor cells and facilitated tumor cell migration. Mechanistically, excessive GRP78 formed a protein complex with STAT3 and JAK2 to promote STAT3 phosphorylation. Furthermore, p-STAT3 facilitated the high expression of inflammatory factors IL-1β and TNF-α in tumor cells, which was important in M2 macrophage-induced metastasis. The present data demonstrate that M2 macrophages elevate tumor cell GRP78 expression to trigger an inflammatory response, which further facilitates tumor metastasis. Therefore, our study not only uncovered a new cause of GRP78 overexpression in tumor cell, but also, explained the antinomy of TAMs immunosuppressive properties and inflammation-related tumor metastasis.
Collapse
|
49
|
In vivo amelioration of endogenous antitumor autoantibodies via low-dose P4N through the LTA4H/activin A/BAFF pathway. Proc Natl Acad Sci U S A 2016; 113:E7798-E7807. [PMID: 27856749 DOI: 10.1073/pnas.1604752113] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cancer progression is associated with the development of antitumor autoantibodies in patients' sera. Although passive treatment with antitumor antibodies has exhibited remarkable therapeutic efficacy, inhibitory effects on tumor progression by endogenous antitumor autoantibodies (EAAs) have been limited. In this study, we show that P4N, a derivative of the plant lignan nordihydroguaiaretic acid (NDGA), enhanced the production of EAAs and inhibited tumor growth at low noncytotoxic concentrations via its immunoregulatory activity. Intratumoral injection of P4N improved the quantity and quality of EAAs, and passive transfer of P4N-induced EAAs dramatically suppressed lung metastasis formation and prolonged the survival of mice inoculated with metastatic CT26 tumor cells. P4N-induced EAAs specifically recognized two surface antigens, 78-kDa glucose-regulated protein (GRP78) and F1F0 ATP synthase, on the plasma membrane of cancer cells. Additionally, P4N treatment led to B-cell proliferation, differentiation to plasma cells, and high titers of autoantibody production. By serial induction of autocrine and paracrine signals in monocytes, P4N increased B-cell proliferation and antibody production via the leukotriene A4 hydrolase (LTA4H)/activin A/B-cell activating factor (BAFF) pathway. This mechanism provides a useful platform for studying and seeking a novel immunomodulator that can be applied in targeting therapy by improving the quantity and quality of the EAAs.
Collapse
|
50
|
Cell surface GRP78 as a biomarker and target for suppressing glioma cells. Sci Rep 2016; 6:34922. [PMID: 27713511 PMCID: PMC5054676 DOI: 10.1038/srep34922] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 09/08/2016] [Indexed: 12/29/2022] Open
Abstract
High-grade glioma is a highly malignant and metastatic brain cancer, resistant to many existing anticancer treatments. In such glioma cancer cells, the glucose-regulated protein 78 kDa (GRP78) is particularly highly up-regulated. Former studies have thus targeted mutation-free GRP78 not only to detect glioma cancer cells specifically but also to enhance cytotoxic effect. We focus on cell surface-expressed GRP78 as a target for suppressing high-grade glioma cell lines. Glioblastoma multiforme (GBM) cell line, highly malignant glioma cells, was first injected into 5-week-old athymic mice to confirm and compare GRP78 expression in vivo in xenografted and normal brain tissue. Immunofluorescence and immunoblotting were utilized to detect surface-localized GRP78 in diverse high-grade glioma cell lines. By treating glioma cell lines with the polyclonal N-20 antibody against surface-localized GRP78, we subsequently studied the significance of surface GRP78 to the survival and growth of the glioma cell lines. We found that inhibiting the function of surface GRP78 suppressed cancer cell survival and growth proving that the surface-expressed GRP78 is a vital receptor involved in the proliferation of high-grade glioma. Our findings provide opportunities to target surface GRP78 as a biomarker for high-grade glioma and to develop effective cell-specific anticancer therapy.
Collapse
|