1
|
Lyons DE, Kumar P, Roan NR, Defechereux PA, Feschotte C, Lange UC, Murthy N, Sameshima P, Verdin E, Ake JA, Parsons MS, Nath A, Gianella S, Smith DM, Kallas EG, Villa TJ, Strange R, Mwesigwa B, Furler O’Brien RL, Nixon DF, Ndhlovu LC, Valente ST, Ott M. HIV-1 Remission: Accelerating the Path to Permanent HIV-1 Silencing. Viruses 2023; 15:2171. [PMID: 38005849 PMCID: PMC10674359 DOI: 10.3390/v15112171] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/26/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
Despite remarkable progress, a cure for HIV-1 infection remains elusive. Rebound competent latent and transcriptionally active reservoir cells persevere despite antiretroviral therapy and rekindle infection due to inefficient proviral silencing. We propose a novel "block-lock-stop" approach, entailing long term durable silencing of viral expression towards an irreversible transcriptionally inactive latent provirus to achieve long term antiretroviral free control of the virus. A graded transformation of remnant HIV-1 in PLWH from persistent into silent to permanently defective proviruses is proposed, emulating and accelerating the natural path that human endogenous retroviruses (HERVs) take over millions of years. This hypothesis was based on research into delineating the mechanisms of HIV-1 latency, lessons from latency reversing agents and advances of Tat inhibitors, as well as expertise in the biology of HERVs. Insights from elite controllers and the availability of advanced genome engineering technologies for the direct excision of remnant virus set the stage for a rapid path to an HIV-1 cure.
Collapse
Affiliation(s)
- Danielle E. Lyons
- Gladstone Institute of Virology, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Priti Kumar
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT 06510, USA;
| | - Nadia R. Roan
- Gladstone Institute of Virology, Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Urology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Patricia A. Defechereux
- Department of Medicine, University of California San Francisco, San Francisco, CA 94158, USA
| | - Cedric Feschotte
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | | | - Niren Murthy
- Department of Bioengineering, University of California, Berkeley, CA 94720, USA;
- Innovative Genomics Institute, Berkeley, CA 94720, USA
| | - Pauline Sameshima
- Faculty of Education, Lakehead University, Thunder Bay, ON P7B 5E1, Canada;
| | - Eric Verdin
- Department of Medicine, University of California San Francisco, San Francisco, CA 94158, USA
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Julie A. Ake
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA (M.S.P.)
| | - Matthew S. Parsons
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA (M.S.P.)
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
- Armed Forces Research Institute of Medical Sciences, Bangkok 10400, Thailand
| | - Avindra Nath
- Section of Infections of the Nervous System, National Institute of Neurological Diseases and Stroke, National Institutes of Health, Bethesda, MD 20824, USA;
| | - Sara Gianella
- Division of Infectious Diseases, Department of Medicine, University of California San Diego, San Diego, CA 92093, USA
| | - Davey M. Smith
- Division of Infectious Diseases, Department of Medicine, University of California San Diego, San Diego, CA 92093, USA
| | - Esper G. Kallas
- Department of Infectious and Parasitic Diseases, University of Sao Paulo, São Paulo 04023-900, Brazil
| | - Thomas J. Villa
- HOPE Martin Delaney Collaboratory for HIV Cure Research Community Engagement Ambassador, Washinton, DC 20004, USA (R.S.)
- National HIV & Aging Advocacy Network, Washington, DC 20004, USA
| | - Richard Strange
- HOPE Martin Delaney Collaboratory for HIV Cure Research Community Engagement Ambassador, Washinton, DC 20004, USA (R.S.)
| | - Betty Mwesigwa
- Research Department, Makerere University Walter Reed Project, Kampala P.O Box 7062, Uganda
| | - Robert L. Furler O’Brien
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Douglas F. Nixon
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Lishomwa C. Ndhlovu
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Susana T. Valente
- Department of Immunology and Microbiology, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL 33458, USA
| | - Melanie Ott
- Gladstone Institute of Virology, Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Medicine, University of California San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
2
|
Fan M, Bao Y, Berkhout B, Herrera-Carrillo E. CRISPR-Cas12b enables a highly efficient attack on HIV proviral DNA in T cell cultures. Biomed Pharmacother 2023; 165:115046. [PMID: 37379644 PMCID: PMC11228593 DOI: 10.1016/j.biopha.2023.115046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/08/2023] [Accepted: 06/20/2023] [Indexed: 06/30/2023] Open
Abstract
BACKGROUND The novel endonuclease Cas12b was engineered for targeted genome editing in mammalian cells and is a promising tool for certain applications because of its small size, high sequence specificity and ability to generate relatively large deletions. We previously reported inhibition of the human immunodeficiency virus (HIV) in cell culture infections upon attack of the integrated viral DNA genome by spCas9 and Cas12a. METHODS We now tested the ability of the Cas12b endonuclease to suppress a spreading HIV infection in cell culture with anti-HIV gRNAs. Virus inhibition was tested in long-term HIV replication studies, which allowed us to test for viral escape and the potential for reaching a CURE of the infected T cells. FINDINGS We demonstrate that Cas12b can achieve complete HIV inactivation with only a single gRNA, a result for which Cas9 required two gRNAs. When the Cas12b system is programmed with two antiviral gRNAs, the overall anti-HIV potency is improved and more grossly mutated HIV proviruses are generated as a result of multiple cut-repair actions. Such "hypermutated" HIV proviruses are more likely to be defective due to mutation of multiple essential parts of the HIV genome. We report that the mutational profiles of the Cas9, Cas12a and Cas12b endonucleases differ significantly, which may have an impact on the level of virus inactivation. These combined results make Cas12b the preferred editing system for HIV-inactivation. INTERPRETATION These results provide in vitro "proof of concept' for CRISPR-Cas12b mediated HIV-1 inactivation.
Collapse
Affiliation(s)
- Minghui Fan
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Yuanling Bao
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Elena Herrera-Carrillo
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
3
|
Rojo-Romanos T, Karpinski J, Millen S, Beschorner N, Simon F, Paszkowski-Rogacz M, Lansing F, Schneider PM, Sonntag J, Hauber J, Thoma-Kress AK, Buchholz F. Precise excision of HTLV-1 provirus with a designer-recombinase. Mol Ther 2023; 31:2266-2285. [PMID: 36934299 PMCID: PMC10362392 DOI: 10.1016/j.ymthe.2023.03.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 02/06/2023] [Accepted: 03/12/2023] [Indexed: 03/19/2023] Open
Abstract
The human T cell leukemia virus type 1 (HTLV-1) is a pathogenic retrovirus that persists as a provirus in the genome of infected cells and can lead to adult T cell leukemia (ATL). Worldwide, more than 10 million people are infected and approximately 5% of these individuals will develop ATL, a highly aggressive cancer that is currently incurable. In the last years, genome editing tools have emerged as promising antiviral agents. In this proof-of-concept study, we use substrate-linked directed evolution (SLiDE) to engineer Cre-derived site-specific recombinases to excise the HTLV-1 proviral genome from infected cells. We identified a conserved loxP-like sequence (loxHTLV) present in the long terminal repeats of the majority of virus isolates. After 181 cycles of SLiDE, we isolated a designer-recombinase (designated RecHTLV), which efficiently recombines the loxHTLV sequence in bacteria and human cells with high specificity. Expression of RecHTLV in human Jurkat T cells resulted in antiviral activity when challenged with an HTLV-1 infection. Moreover, expression of RecHTLV in chronically infected SP cells led to the excision of HTLV-1 proviral DNA. Our data suggest that recombinase-mediated excision of the HTLV-1 provirus represents a promising approach to reduce proviral load in HTLV-1-infected individuals, potentially preventing the development of HTLV-1-associated diseases.
Collapse
Affiliation(s)
- Teresa Rojo-Romanos
- Medical Systems Biology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technical University Dresden, 01307 Dresden, Germany
| | - Janet Karpinski
- Medical Systems Biology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technical University Dresden, 01307 Dresden, Germany
| | - Sebastian Millen
- Institute of Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Niklas Beschorner
- PROVIREX Genome Editing Therapies GmbH, Luruper Hauptstrasse 1, 22547 Hamburg, Germany
| | - Florian Simon
- Institute of Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Maciej Paszkowski-Rogacz
- Medical Systems Biology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technical University Dresden, 01307 Dresden, Germany
| | - Felix Lansing
- Medical Systems Biology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technical University Dresden, 01307 Dresden, Germany
| | - Paul Martin Schneider
- Medical Systems Biology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technical University Dresden, 01307 Dresden, Germany
| | - Jan Sonntag
- Medical Systems Biology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technical University Dresden, 01307 Dresden, Germany
| | - Joachim Hauber
- PROVIREX Genome Editing Therapies GmbH, Luruper Hauptstrasse 1, 22547 Hamburg, Germany
| | - Andrea K Thoma-Kress
- Institute of Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Frank Buchholz
- Medical Systems Biology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technical University Dresden, 01307 Dresden, Germany.
| |
Collapse
|
4
|
Abana CZY, Lamptey H, Bonney EY, Kyei GB. HIV cure strategies: which ones are appropriate for Africa? Cell Mol Life Sci 2022; 79:400. [PMID: 35794316 PMCID: PMC9259540 DOI: 10.1007/s00018-022-04421-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 11/10/2022]
Abstract
Although combination antiretroviral therapy (ART) has reduced mortality and improved lifespan for people living with HIV, it does not provide a cure. Patients must be on ART for the rest of their lives and contend with side effects, unsustainable costs, and the development of drug resistance. A cure for HIV is, therefore, warranted to avoid the limitations of the current therapy and restore full health. However, this cure is difficult to find due to the persistence of latently infected HIV cellular reservoirs during suppressive ART. Approaches to HIV cure being investigated include boosting the host immune system, genetic approaches to disable co-receptors and the viral genome, purging cells harboring latent HIV with latency-reversing latency agents (LRAs) (shock and kill), intensifying ART as a cure, preventing replication of latent proviruses (block and lock) and boosting T cell turnover to reduce HIV-1 reservoirs (rinse and replace). Since most people living with HIV are in Africa, methods being developed for a cure must be amenable to clinical trials and deployment on the continent. This review discusses the current approaches to HIV cure and comments on their appropriateness for Africa.
Collapse
Affiliation(s)
- Christopher Zaab-Yen Abana
- Department of Virology, College of Health Sciences, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Helena Lamptey
- Department of Immunology, College of Health Sciences, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Evelyn Y Bonney
- Department of Virology, College of Health Sciences, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - George B Kyei
- Department of Virology, College of Health Sciences, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana.
- Departments of Medicine and Molecular Microbiology, Washington University in St. Louis, 660 S. Euclid Ave, St. Louis, MO, USA.
- Medical and Scientific Research Center, University of Ghana Medical Centre, Accra, Ghana.
| |
Collapse
|
5
|
Kim TH, Lee SW. Therapeutic Application of Genome Editing Technologies in Viral Diseases. Int J Mol Sci 2022; 23:5399. [PMID: 35628210 PMCID: PMC9140762 DOI: 10.3390/ijms23105399] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 11/19/2022] Open
Abstract
Viral infections can be fatal and consequently, they are a serious threat to human health. Therefore, the development of vaccines and appropriate antiviral therapeutic agents is essential. Depending on the virus, it can cause an acute or a chronic infection. The characteristics of viruses can act as inhibiting factors for the development of appropriate treatment methods. Genome editing technology, including the use of clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated (Cas) proteins, zinc-finger nucleases (ZFNs), and transcription activator-like effector nucleases (TALENs), is a technology that can directly target and modify genomic sequences in almost all eukaryotic cells. The development of this technology has greatly expanded its applicability in life science research and gene therapy development. Research on the use of this technology to develop therapeutics for viral diseases is being conducted for various purposes, such as eliminating latent infections or providing resistance to new infections. In this review, we will look at the current status of the development of viral therapeutic agents using genome editing technology and discuss how this technology can be used as a new treatment approach for viral diseases.
Collapse
Affiliation(s)
- Tae Hyeong Kim
- Department of Molecular Biology, Dankook University, Cheonan 31116, Korea;
| | - Seong-Wook Lee
- Department of Bioconvergence Engineering, Research Institute of Advanced Omics, Dankook University, Yongin 16890, Korea
- R&D Center, Rznomics Inc., Seongnam 13486, Korea
| |
Collapse
|
6
|
Benjamin R, Banerjee A, Wu X, Geurink C, Buczek L, Eames D, Trimidal SG, Pluth JM, Schiller MR. XRCC4 and MRE11 Roles and Transcriptional Response to Repair of TALEN-Induced Double-Strand DNA Breaks. Int J Mol Sci 2022; 23:ijms23020593. [PMID: 35054780 PMCID: PMC8776116 DOI: 10.3390/ijms23020593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/30/2021] [Accepted: 01/03/2022] [Indexed: 02/04/2023] Open
Abstract
Double-strand breaks (DSB) are one of the most lethal forms of DNA damage that, if left unrepaired, can lead to genomic instability, cellular transformation, and cell death. In this work, we examined how repair of transcription activator-like effector nuclease (TALEN)-induced DNA damage was altered when knocking out, or inhibiting a function of, two DNA repair proteins, XRCC4 and MRE11, respectively. We developed a fluorescent reporter assay that uses TALENs to introduce DSB and detected repair by the presence of GFP fluorescence. We observed repair of TALEN-induced breaks in the XRCC4 knockout cells treated with mirin (a pharmacological inhibitor of MRE11 exonuclease activity), albeit with ~40% reduced efficiency compared to normal cells. Editing in the absence of XRCC4 or MRE11 exonuclease was robust, with little difference between the indel profiles amongst any of the groups. Reviewing the transcriptional profiles of the mirin-treated XRCC4 knockout cells showed 307 uniquely differentially expressed genes, a number far greater than for either of the other cell lines (the HeLa XRCC4 knockout sample had 83 genes, and the mirin-treated HeLa cells had 30 genes uniquely differentially expressed). Pathways unique to the XRCC4 knockout+mirin group included differential expression of p53 downstream pathways, and metabolic pathways indicating cell adaptation for energy regulation and stress response. In conclusion, our study showed that TALEN-induced DSBs are repaired, even when a key DSB repair protein or protein function is not operational, without a change in indel profiles. However, transcriptional profiles indicate the induction of unique cellular responses dependent upon the DNA repair protein(s) hampered.
Collapse
Affiliation(s)
- Ronald Benjamin
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV 89154, USA; (A.B.); (X.W.); (C.G.); (L.B.); (D.E.); (S.G.T.)
- School of Life Science, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
- Correspondence: (R.B.); (M.R.S.); Tel.: +1-(702)927-9325 (R.B.); +1-(702)895-5546 (M.R.S.)
| | - Atoshi Banerjee
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV 89154, USA; (A.B.); (X.W.); (C.G.); (L.B.); (D.E.); (S.G.T.)
- School of Life Science, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| | - Xiaogang Wu
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV 89154, USA; (A.B.); (X.W.); (C.G.); (L.B.); (D.E.); (S.G.T.)
| | - Corey Geurink
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV 89154, USA; (A.B.); (X.W.); (C.G.); (L.B.); (D.E.); (S.G.T.)
- School of Life Science, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| | - Lindsay Buczek
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV 89154, USA; (A.B.); (X.W.); (C.G.); (L.B.); (D.E.); (S.G.T.)
- School of Life Science, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| | - Danielle Eames
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV 89154, USA; (A.B.); (X.W.); (C.G.); (L.B.); (D.E.); (S.G.T.)
- School of Life Science, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| | - Sara G. Trimidal
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV 89154, USA; (A.B.); (X.W.); (C.G.); (L.B.); (D.E.); (S.G.T.)
- School of Life Science, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| | - Janice M. Pluth
- Health Physics and Diagnostic Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154, USA;
| | - Martin R. Schiller
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV 89154, USA; (A.B.); (X.W.); (C.G.); (L.B.); (D.E.); (S.G.T.)
- School of Life Science, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
- Correspondence: (R.B.); (M.R.S.); Tel.: +1-(702)927-9325 (R.B.); +1-(702)895-5546 (M.R.S.)
| |
Collapse
|
7
|
Xun J, Zhang X, Guo S, Lu H, Chen J. Editing out HIV: application of gene editing technology to achieve functional cure. Retrovirology 2021; 18:39. [PMID: 34922576 PMCID: PMC8684261 DOI: 10.1186/s12977-021-00581-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 11/05/2021] [Indexed: 03/01/2023] Open
Abstract
Highly active antiretroviral therapy (HAART) successfully suppresses human immunodeficiency virus (HIV) replication and improves the quality of life of patients living with HIV. However, current HAART does not eradicate HIV infection because an HIV reservoir is established in latently infected cells and is not recognized by the immune system. The successful curative treatment of the Berlin and London patients following bone marrow transplantation inspired researchers to identify an approach for the functional cure of HIV. As a promising technology, gene editing-based strategies have attracted considerable attention and sparked much debate. Herein, we discuss the development of different gene editing strategies in the functional cure of HIV and highlight the potential for clinical applications prospects. ![]()
Collapse
Affiliation(s)
- Jingna Xun
- Scientific Research Center, Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Shanghai, 201508, China.,State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Xinyu Zhang
- Scientific Research Center, Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Shanghai, 201508, China
| | - Shuyan Guo
- Shanghai Foreign Language School, Shanghai International Studies University, Shanghai, China
| | - Hongzhou Lu
- Department of Infectious Diseases and Immunology, Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Shanghai, 201508, China
| | - Jun Chen
- Department of Infectious Diseases and Immunology, Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Shanghai, 201508, China.
| |
Collapse
|
8
|
Khalid K, Padda J, Wijeratne Fernando R, Mehta KA, Almanie AH, Al Hennawi H, Padda S, Cooper AC, Jean-Charles G. Stem Cell Therapy and Its Significance in HIV Infection. Cureus 2021; 13:e17507. [PMID: 34595076 PMCID: PMC8468364 DOI: 10.7759/cureus.17507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2021] [Indexed: 12/02/2022] Open
Abstract
Human immunodeficiency virus (HIV) infection is a major global public health issue. Despite this, the only treatment available in mainstay is antiretroviral therapy. This treatment is not curative, it needs to be used lifelong, and there are many issues with compliance and side effects. In recent years, stem cell therapy has shown promising results in HIV management, and it can have a major impact on the future of HIV treatment and prevention. The idea behind anti-HIV hematopoietic stem/progenitor cell (HSPC)-directed gene therapy is to genetically engineer patient-derived (autologous) HSPC to acquire an inherent resistance to HIV infection. Multiple stem-cell-based gene therapy strategies have been suggested that may infer HIV resistance including anti-HIV gene reagents and gene combinatorial strategies giving rise to anti-HIV gene-modified HSPCs. Such stem cells can hamper HIV progression in the body by interrupting key stages of HIV proliferation: viral entry, viral integration, HIV gene expression, etc.Hematopoietic stem cells (HSCs) may also protect leukocytes from being infected. Additionally, genetically engineered HSCs have the ability to continuously produce protected immune cells by prolonged self-renewal that can attack the HIV virus. Therefore, a successful treatment strategy has the potential to control the infection at a steady state and eradicate HIV from patients. This will allow for a potential future benefit with stem cell therapy in HIV treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Gutteridge Jean-Charles
- Internal Medicine, JC Medical Center, Orlando, USA.,Internal Medicine, AdventHealth & Orlando Health Hospital, Orlando, USA
| |
Collapse
|
9
|
Bhardwaj A, Nain V. TALENs-an indispensable tool in the era of CRISPR: a mini review. J Genet Eng Biotechnol 2021; 19:125. [PMID: 34420096 PMCID: PMC8380213 DOI: 10.1186/s43141-021-00225-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 08/08/2021] [Indexed: 12/26/2022]
Abstract
BACKGROUND Genome of an organism has always fascinated life scientists. With the discovery of restriction endonucleases, scientists were able to make targeted manipulations (knockouts) in any gene sequence of any organism, by the technique popularly known as genome engineering. Though there is a range of genome editing tools, but this era of genome editing is dominated by the CRISPR/Cas9 tool due to its ease of design and handling. But, when it comes to clinical applications, CRISPR is not usually preferred. In this review, we will elaborate on the structural and functional role of designer nucleases with emphasis on TALENs and CRISPR/Cas9 genome editing system. We will also present the unique features of TALENs and limitations of CRISPRs which makes TALENs a better genome editing tool than CRISPRs. MAIN BODY Genome editing is a robust technology used to make target specific DNA modifications in the genome of any organism. With the discovery of robust programmable endonucleases-based designer gene manipulating tools such as meganucleases (MN), zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeats associated protein (CRISPR/Cas9), the research in this field has experienced a tremendous acceleration giving rise to a modern era of genome editing with better precision and specificity. Though, CRISPR-Cas9 platform has successfully gained more attention in the scientific world, TALENs and ZFNs are unique in their own ways. Apart from high-specificity, TALENs are proven to target the mitochondrial DNA (mito-TALEN), where gRNA of CRISPR is difficult to import. This review talks about genome editing goals fulfilled by TALENs and drawbacks of CRISPRs. CONCLUSIONS This review provides significant insights into the pros and cons of the two most popular genome editing tools TALENs and CRISPRs. This mini review suggests that, TALENs provides novel opportunities in the field of therapeutics being highly specific and sensitive toward DNA modifications. In this article, we will briefly explore the special features of TALENs that makes this tool indispensable in the field of synthetic biology. This mini review provides great perspective in providing true guidance to the researchers working in the field of trait improvement via genome editing.
Collapse
Affiliation(s)
- Anuradha Bhardwaj
- Department of Biotechnology, Gautam Buddha University, Greater Noida, Uttar Pradesh, 201312, India
| | - Vikrant Nain
- Department of Biotechnology, Gautam Buddha University, Greater Noida, Uttar Pradesh, 201312, India.
| |
Collapse
|
10
|
Ratti V, Nanda S, Eszterhas SK, Howell AL, Wallace DI. A mathematical model of HIV dynamics treated with a population of gene-edited haematopoietic progenitor cells exhibiting threshold phenomenon. MATHEMATICAL MEDICINE AND BIOLOGY-A JOURNAL OF THE IMA 2021; 37:212-242. [PMID: 31265056 DOI: 10.1093/imammb/dqz011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 04/03/2019] [Accepted: 05/09/2019] [Indexed: 12/13/2022]
Abstract
The use of gene-editing technology has the potential to excise the CCR5 gene from haematopoietic progenitor cells, rendering their differentiated CD4-positive (CD4+) T cell descendants HIV resistant. In this manuscript, we describe the development of a mathematical model to mimic the therapeutic potential of gene editing of haematopoietic progenitor cells to produce a class of HIV-resistant CD4+ T cells. We define the requirements for the permanent suppression of viral infection using gene editing as a novel therapeutic approach. We develop non-linear ordinary differential equation models to replicate HIV production in an infected host, incorporating the most appropriate aspects found in the many existing clinical models of HIV infection, and extend this model to include compartments representing HIV-resistant immune cells. Through an analysis of model equilibria and stability and computation of $R_0$ for both treated and untreated infections, we show that the proposed therapy has the potential to suppress HIV infection indefinitely and return CD4+ T cell counts to normal levels. A computational study for this treatment shows the potential for a successful 'functional cure' of HIV. A sensitivity analysis illustrates the consistency of numerical results with theoretical results and highlights the parameters requiring better biological justification. Simulations of varying level production of HIV-resistant CD4+ T cells and varying immune enhancements as the result of these indicate a clear threshold response of the model and a range of treatment parameters resulting in a return to normal CD4+ T cell counts.
Collapse
Affiliation(s)
| | - Seema Nanda
- Department of Mathematics, Dartmouth College, Hanover, USA
| | - Susan K Eszterhas
- Veterans Affairs Medical Center, White River Junction, USA.,Departments of Microbiology and Immunology, and Medicine, Geisel School of Medicine at Dartmouth, Lebanon, USA
| | - Alexandra L Howell
- Veterans Affairs Medical Center, White River Junction, USA.,Departments of Microbiology and Immunology, and Medicine, Geisel School of Medicine at Dartmouth, Lebanon, USA
| | | |
Collapse
|
11
|
Schwarzer R, Gramatica A, Greene WC. Reduce and Control: A Combinatorial Strategy for Achieving Sustained HIV Remissions in the Absence of Antiretroviral Therapy. Viruses 2020; 12:v12020188. [PMID: 32046251 PMCID: PMC7077203 DOI: 10.3390/v12020188] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 02/05/2020] [Accepted: 02/05/2020] [Indexed: 12/23/2022] Open
Abstract
Human immunodeficiency virus (HIV-1) indefinitely persists, despite effective antiretroviral therapy (ART), within a small pool of latently infected cells. These cells often display markers of immunologic memory and harbor both replication-competent and -incompetent proviruses at approximately a 1:100 ratio. Although complete HIV eradication is a highly desirable goal, this likely represents a bridge too far for our current and foreseeable technologies. A more tractable goal involves engineering a sustained viral remission in the absence of ART––a “functional cure.” In this setting, HIV remains detectable during remission, but the size of the reservoir is small and the residual virus is effectively controlled by an engineered immune response or other intervention. Biological precedence for such an approach is found in the post-treatment controllers (PTCs), a rare group of HIV-infected individuals who, following ART withdrawal, do not experience viral rebound. PTCs are characterized by a small reservoir, greatly reduced inflammation, and the presence of a poorly understood immune response that limits viral rebound. Our goal is to devise a safe and effective means for replicating durable post-treatment control on a global scale. This requires devising methods to reduce the size of the reservoir and to control replication of this residual virus. In the following sections, we will review many of the approaches and tools that likely will be important for implementing such a “reduce and control” strategy and for achieving a PTC-like sustained HIV remission in the absence of ART.
Collapse
|
12
|
Trimidal SG, Benjamin R, Bae JE, Han MV, Kong E, Singer A, Williams TS, Yang B, Schiller MR. Can Designer Indels Be Tailored by Gene Editing?: Can Indels Be Customized? Bioessays 2019; 41:e1900126. [PMID: 31693213 PMCID: PMC7202862 DOI: 10.1002/bies.201900126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/01/2019] [Indexed: 12/23/2022]
Abstract
Genome editing with engineered nucleases (GEENs) introduce site-specific DNA double-strand breaks (DSBs) and repairs DSBs via nonhomologous end-joining (NHEJ) pathways that eventually create indels (insertions/deletions) in a genome. Whether the features of indels resulting from gene editing could be customized is asked. A review of the literature reveals how gene editing technologies via NHEJ pathways impact gene editing. The survey consolidates a body of literature that suggests that the type (insertion, deletion, and complex) and the approximate length of indel edits can be somewhat customized with different GEENs and by manipulating the expression of key NHEJ genes. Structural data suggest that binding of GEENs to DNA may interfere with binding of key components of DNA repair complexes, favoring either classical- or alternative-NHEJ. The hypotheses have some limitations, but if validated, will enable scientists to better control indel makeup, holding promise for basic science and clinical applications of gene editing. Also see the video abstract here https://youtu.be/vTkJtUsLi3w.
Collapse
Affiliation(s)
- Sara G Trimidal
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA
| | - Ronald Benjamin
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA
| | - Ji Eun Bae
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA
| | - Mira V Han
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA
| | - Elizabeth Kong
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA
| | - Aaron Singer
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA
| | - Tyler S Williams
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA
| | - Bing Yang
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA
| | - Martin R Schiller
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA
| |
Collapse
|
13
|
Humanized Mouse Model of HIV-1 Latency with Enrichment of Latent Virus in PD-1 + and TIGIT + CD4 T Cells. J Virol 2019; 93:JVI.02086-18. [PMID: 30842333 DOI: 10.1128/jvi.02086-18] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 03/01/2019] [Indexed: 12/18/2022] Open
Abstract
Combination anti-retroviral drug therapy (ART) potently suppresses HIV-1 replication but does not result in virus eradication or a cure. A major contributing factor is the long-term persistence of a reservoir of latently infected cells. To study this reservoir, we established a humanized mouse model of HIV-1 infection and ART suppression based on an oral ART regimen. Similar to humans, HIV-1 levels in the blood of ART-treated animals were frequently suppressed below the limits of detection. However, the limited timeframe of the mouse model and the small volume of available samples makes it a challenging model with which to achieve full viral suppression and to investigate the latent reservoir. We therefore used an ex vivo latency reactivation assay that allows a semiquantitative measure of the latent reservoir that establishes in individual animals, regardless of whether they are treated with ART. Using this assay, we found that latently infected human CD4 T cells can be readily detected in mouse lymphoid tissues and that latent HIV-1 was enriched in populations expressing markers of T cell exhaustion, PD-1 and TIGIT. In addition, we were able to use the ex vivo latency reactivation assay to demonstrate that HIV-specific TALENs can reduce the fraction of reactivatable virus in the latently infected cell population that establishes in vivo, supporting the use of targeted nuclease-based approaches for an HIV-1 cure.IMPORTANCE HIV-1 can establish latent infections that are not cleared by current antiretroviral drugs or the body's immune responses and therefore represent a major barrier to curing HIV-infected individuals. However, the lack of expression of viral antigens on latently infected cells makes them difficult to identify or study. Here, we describe a humanized mouse model that can be used to detect latent but reactivatable HIV-1 in both untreated mice and those on ART and therefore provides a simple system with which to study the latent HIV-1 reservoir and the impact of interventions aimed at reducing it.
Collapse
|
14
|
Emerging CRISPR/Cas9 applications for T-cell gene editing. Emerg Top Life Sci 2019; 3:261-275. [PMID: 33523139 DOI: 10.1042/etls20180144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/04/2019] [Accepted: 03/08/2019] [Indexed: 12/17/2022]
Abstract
Gene editing tools are being rapidly developed, accelerating many areas of cell and gene therapy research. Each successive gene editing technology promises increased efficacy, improved specificity, reduced manufacturing cost and design complexity; all of which are currently epitomised by the clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein (Cas9) platform. Since its conceptualisation, CRISPR-based gene editing has been applied to existing methodologies and has further allowed the exploration of novel avenues of research. Implementation of CRISPR/Cas9 has been instrumental to recent progress in the treatment of cancer, primary immunodeficiency, and infectious diseases. To this end, T-cell therapies have attempted to harness and redirect antigen recognition function, and through gene editing, broaden T-cell targeting capabilities and enhance their potency. The purpose of this review is to provide insights into emerging applications of CRISPR/Cas9 in T-cell therapies, to briefly address concerns surrounding CRISPR-mediated indel formation, and to introduce CRISPR/Cas9 base editing technologies that hold vast potential for future research and clinical translation.
Collapse
|
15
|
Amsterdam D. Unique natural and adaptive response mechanisms to control and eradicate HIV infection. AIMS ALLERGY AND IMMUNOLOGY 2018. [DOI: 10.3934/allergy.2018.3.113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
16
|
Trevisan M, Palù G, Barzon L. Genome editing technologies to fight infectious diseases. Expert Rev Anti Infect Ther 2017; 15:1001-1013. [PMID: 29090592 DOI: 10.1080/14787210.2017.1400379] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Genome editing by programmable nucleases represents a promising tool that could be exploited to develop new therapeutic strategies to fight infectious diseases. These nucleases, such as zinc-finger nucleases, transcription activator-like effector nucleases, clustered regularly interspaced short palindromic repeat (CRISPR)-CRISPR-associated protein 9 (Cas9) and homing endonucleases, are molecular scissors that can be targeted at predetermined loci in order to modify the genome sequence of an organism. Areas covered: By perturbing genomic DNA at predetermined loci, programmable nucleases can be used as antiviral and antimicrobial treatment. This approach includes targeting of essential viral genes or viral sequences able, once mutated, to inhibit viral replication; repurposing of CRISPR-Cas9 system for lethal self-targeting of bacteria; targeting antibiotic-resistance and virulence genes in bacteria, fungi, and parasites; engineering arthropod vectors to prevent vector-borne infections. Expert commentary: While progress has been done in demonstrating the feasibility of using genome editing as antimicrobial strategy, there are still many hurdles to overcome, such as the risk of off-target mutations, the raising of escape mutants, and the inefficiency of delivery methods, before translating results from preclinical studies into clinical applications.
Collapse
Affiliation(s)
- Marta Trevisan
- a Department of Molecular Medicine , University of Padova , Padova , Italy
| | - Giorgio Palù
- a Department of Molecular Medicine , University of Padova , Padova , Italy
| | - Luisa Barzon
- a Department of Molecular Medicine , University of Padova , Padova , Italy
| |
Collapse
|
17
|
Rogers GL, Cannon PM. Gene Therapy Approaches to Human Immunodeficiency Virus and Other Infectious Diseases. Hematol Oncol Clin North Am 2017; 31:883-895. [PMID: 28895854 DOI: 10.1016/j.hoc.2017.06.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Advances in gene therapy technologies, particularly in gene editing, are suggesting new avenues for the treatment of human immunodeficiency virus and other infectious diseases. This article outlines recent developments in antiviral gene therapies, including those based on the disruption of entry receptors or that target viral genomes using targeted nucleases, such as the CRISPR/Cas9 system. In addition, new ways to express circulating antiviral factors, such as antibodies, and approaches to harness and engineer the immune system to provide an antiviral effect that is not naturally achieved are described.
Collapse
Affiliation(s)
- Geoffrey L Rogers
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, 2011 Zonal Avenue, HMR 413A, Los Angeles, CA 90033, USA
| | - Paula M Cannon
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, 2011 Zonal Avenue, HMR 413A, Los Angeles, CA 90033, USA.
| |
Collapse
|
18
|
Kwarteng A, Ahuno ST, Kwakye-Nuako G. The therapeutic landscape of HIV-1 via genome editing. AIDS Res Ther 2017; 14:32. [PMID: 28705213 PMCID: PMC5513397 DOI: 10.1186/s12981-017-0157-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 05/30/2017] [Indexed: 12/31/2022] Open
Abstract
Current treatment for HIV-1 largely relies on chemotherapy through the administration of antiretroviral drugs. While the search for anti-HIV-1 vaccine remain elusive, the use of highly active antiretroviral therapies (HAART) have been far-reaching and has changed HIV-1 into a manageable chronic infection. There is compelling evidence, including several side-effects of ARTs, suggesting that eradication of HIV-1 cannot depend solely on antiretrovirals. Gene therapy, an expanding treatment strategy, using RNA interference (RNAi) and programmable nucleases such as meganuclease, zinc finger nuclease (ZFN), transcription activator-like effector nuclease (TALEN), and clustered regularly interspaced short palindromic repeats/CRISPR-associated proteins (CRISPR-Cas9) are transforming the therapeutic landscape of HIV-1. TALENS and ZFNS are structurally similar modular systems, which consist of a FokI endonuclease fused to custom-designed effector proteins but have been largely limited, particularly ZFNs, due to their complexity and cost of protein engineering. However, the newly developed CRISPR-Cas9 system, consists of a single guide RNA (sgRNA), which directs a Cas9 endonuclease to complementary target sites, and serves as a superior alternative to the previous protein-based systems. The techniques have been successfully applied to the development of better HIV-1 models, generation of protective mutations in endogenous/host cells, disruption of HIV-1 genomes and even reactivating latent viruses for better detection and clearance by host immune response. Here, we focus on gene editing-based HIV-1 treatment and research in addition to providing perspectives for refining these techniques.
Collapse
Affiliation(s)
- Alexander Kwarteng
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology (KNUST), PMB, Kumasi, Ghana
- Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), Kumasi, Ghana
| | - Samuel Terkper Ahuno
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology (KNUST), PMB, Kumasi, Ghana
| | - Godwin Kwakye-Nuako
- Department of Biomedical Sciences, School of Allied Health Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| |
Collapse
|
19
|
TALEN based HPV-E7 editing triggers necrotic cell death in cervical cancer cells. Sci Rep 2017; 7:5500. [PMID: 28710417 PMCID: PMC5511212 DOI: 10.1038/s41598-017-05696-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 05/17/2017] [Indexed: 12/31/2022] Open
Abstract
Human Papillomavirus E7 and E6 oncoproteins have been considered as suitable candidate anti-viral targets since they cause malignant conversion in cervical cancers. Transcription Activator-Like Effector Nucleases (TALENs) are recent editing tools to knockout genes by inducing double stranded breaks at specific sites in the genome. In here, we have designed specific TALENs to target E7 and analyzed their efficiency in inducing cell death in cervical cancer cells. We found that designed TALENs could yield about 10–12% editing activity as observed from T7E1 and nuclease resistance assays. Down-regulation of E7 and E6 was further evident at the transcript as well as proteins levels indicating that the selected TALENs were effective. TALEN-mediated E7 editing led to cell death as ascertained by cell cycle and Annexin V assays. Annexin profiling suggested that cell death could be due to necrosis as observed by upregulation of necrotic markers such as LDH A, Rip-1, and Cyclophilin A. Necrosis appears to be a better therapeutic response as it could further activate pro-inflammatory cytokines to attract immune cells to eliminate HPV-integrated cells and therefore TALEN editing strategy has the potential to be a promising tool as an adjuvant therapy in cervical cancer along with surgery.
Collapse
|
20
|
Current application of CRISPR/Cas9 gene-editing technique to eradication of HIV/AIDS. Gene Ther 2017; 24:377-384. [PMID: 28471431 DOI: 10.1038/gt.2017.35] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 01/25/2017] [Accepted: 02/01/2017] [Indexed: 12/14/2022]
Abstract
Human immunodeficiency virus (HIV)/acquired immunodeficiency syndrome (AIDS) remains a major health hazard despite significant advances in prevention and treatment of HIV infection. The major reason for the persistence of HIV/AIDS is the inability of existing treatments to clear or eradicate the multiple HIV reservoirs that exist in the human body. To suppress the virus replication and rebound, HIV/AIDS patients must take life-long antiviral medications. The clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated nuclease 9 (Cas9) system is an emerging gene-editing technique with the potential to eliminate or disrupt HIV-integrated genomes or HIV-infected cells from multiple HIV reservoirs, which could result in the complete cure of HIV/AIDS. Encouraging progress has already been reported for the application of the CRISPR/Cas9 technique to HIV/AIDS treatment and prevention, both in vitro in human patient cells and in vivo in animal model experiments. In this review, we will summarize the most recent progress in the application of the CRISPR/Cas9 gene-editing technique to HIV/AIDS therapy and elimination. Future directions and trends of such applications are also discussed.
Collapse
|
21
|
Advancements in Developing Strategies for Sterilizing and Functional HIV Cures. BIOMED RESEARCH INTERNATIONAL 2017; 2017:6096134. [PMID: 28529952 PMCID: PMC5424177 DOI: 10.1155/2017/6096134] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 04/04/2017] [Indexed: 12/14/2022]
Abstract
Combined antiretroviral therapy (cART) has been successful in prolonging lifespan and reducing mortality of patients infected with human immunodeficiency virus (HIV). However, the eradication of latent HIV reservoirs remains a challenge for curing HIV infection (HIV cure) because of HIV latency in primary memory CD4+ T cells. Currently, two types of HIV cures are in development: a “sterilizing cure” and a “functional cure.” A sterilizing cure refers to the complete elimination of replication-competent proviruses in the body, while a functional cure refers to the long-term control of HIV replication without treatment. Based on these concepts, significant progress has been made in different areas. This review focuses on recent advancements and future prospects for HIV cures.
Collapse
|
22
|
Abstract
PURPOSE OF REVIEW Alternative approaches to conventional drug-based cancer treatments have seen T cell therapies deployed more widely over the last decade. This is largely due to their ability to target and kill specific cell types based on receptor recognition. Introduction of recombinant T cell receptors (TCRs) using viral vectors and HLA-independent T cell therapies using chimeric antigen receptors (CARs) are discussed. This article reviews the tools used for genome editing, with particular emphasis on the applications of site-specific DNA nuclease mediated editing for T cell therapies. RECENT FINDINGS Genetic engineering of T cells using TCRs and CARs with redirected antigen-targeting specificity has resulted in clinical success of several immunotherapies. In conjunction, the application of genome editing technologies has resulted in the generation of HLA-independent universal T cells for allogeneic transplantation, improved T cell sustainability through knockout of the checkpoint inhibitor, programmed cell death protein-1 (PD-1), and has shown efficacy as an antiviral therapy through direct targeting of viral genomic sequences and entry receptors. SUMMARY The combined use of engineered antigen-targeting moieties and innovative genome editing technologies have recently shown success in a small number of clinical trials targeting HIV and hematological malignancies and are now being incorporated into existing strategies for other immunotherapies.
Collapse
Affiliation(s)
- Juliette M. K. M. Delhove
- Molecular Immunology Unit, UCL Great Ormond Street Institute of Child Health, University College London (UCL), 30 Guilford Street, London, WC1N 1EH UK
| | - Waseem Qasim
- Molecular Immunology Unit, UCL Great Ormond Street Institute of Child Health, University College London (UCL), 30 Guilford Street, London, WC1N 1EH UK
| |
Collapse
|
23
|
Novel AIDS therapies based on gene editing. Cell Mol Life Sci 2017; 74:2439-2450. [PMID: 28210784 DOI: 10.1007/s00018-017-2479-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 01/20/2017] [Accepted: 01/30/2017] [Indexed: 01/03/2023]
Abstract
HIV/AIDS remains a major public health issue. In 2014, it was estimated that 36.9 million people are living with HIV worldwide, including 2.6 million children. Since the advent of combination antiretroviral therapy (cART), in the 1990s, treatment has been so successful that in many parts of the world, HIV has become a chronic condition in which progression to AIDS has become increasingly rare. However, while people with HIV can expect to live a normal life span with cART, lifelong medication is required and cardiovascular, renal, liver, and neurologic diseases are still possible, which continues to prompt research for a cure for HIV. Infected reservoir cells, such as CD4+ T cells and myeloid cells, allow persistence of HIV as an integrated DNA provirus and serve as a potential source for the re-emergence of virus. Attempts to eradicate HIV from these cells have focused mainly on the so-called "shock and kill" approach, where cellular reactivation is induced so as to trigger the purging of virus-producing cells by cytolysis or immune attack. This approach has several limitations and its usefulness in clinical applications remains to be assessed. Recent advances in gene-editing technology have allowed the use of this approach for inactivating integrated proviral DNA in the genome of latently infected cells or knocking out HIV receptors. Here, we review this strategy and its potential to eliminate the latent HIV reservoir resulting in a sterile cure of AIDS.
Collapse
|
24
|
Abstract
To complete its life cycle, HIV-1 enters the nucleus of the host cell as reverse-transcribed viral DNA. The nucleus is a complex environment, in which chromatin is organized to support different structural and functional aspects of cell physiology. As such, it represents a challenge for an incoming viral genome, which needs to be integrated into cellular DNA to ensure productive infection. Integration of the viral genome into host DNA depends on the enzymatic activity of HIV-1 integrase and involves different cellular factors that influence the selection of integration sites. The selection of integration site has functional consequences for viral transcription, which usually follows the integration event. However, in resting CD4+ T cells, the viral genome can be silenced for long periods of time, which leads to the generation of a latent reservoir of quiescent integrated HIV-1 DNA. Integration represents the only nuclear event in the viral life cycle that can be pharmacologically targeted with current therapies, and the aspects that connect HIV-1 nuclear entry to HIV-1 integration and viral transcription are only beginning to be elucidated.
Collapse
|
25
|
Pernet O, Yadav SS, An DS. Stem cell-based therapies for HIV/AIDS. Adv Drug Deliv Rev 2016; 103:187-201. [PMID: 27151309 PMCID: PMC4935568 DOI: 10.1016/j.addr.2016.04.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 04/21/2016] [Accepted: 04/25/2016] [Indexed: 12/26/2022]
Abstract
One of the current focuses in HIV/AIDS research is to develop a novel therapeutic strategy that can provide a life-long remission of HIV/AIDS without daily drug treatment and, ultimately, a cure for HIV/AIDS. Hematopoietic stem cell-based anti-HIV gene therapy aims to reconstitute the patient immune system by transplantation of genetically engineered hematopoietic stem cells with anti-HIV genes. Hematopoietic stem cells can self-renew, proliferate and differentiate into mature immune cells. In theory, anti-HIV gene-modified hematopoietic stem cells can continuously provide HIV-resistant immune cells throughout the life of a patient. Therefore, hematopoietic stem cell-based anti-HIV gene therapy has a great potential to provide a life-long remission of HIV/AIDS by a single treatment. Here, we provide a comprehensive review of the recent progress of developing anti-HIV genes, genetic modification of hematopoietic stem progenitor cells, engraftment and reconstitution of anti-HIV gene-modified immune cells, HIV inhibition in in vitro and in vivo animal models, and in human clinical trials.
Collapse
Affiliation(s)
- Olivier Pernet
- School of Nursing, University of California Los Angeles, 188 BSRB, 615 Charles E. Young Dr. South, Los Angeles, CA 90095, USA; UCLA AIDS Institute, 188 BSRB, 615 Charles E. Young Dr. South, Los Angeles, CA 90095, USA.
| | - Swati Seth Yadav
- School of Nursing, University of California Los Angeles, 188 BSRB, 615 Charles E. Young Dr. South, Los Angeles, CA 90095, USA; UCLA AIDS Institute, 188 BSRB, 615 Charles E. Young Dr. South, Los Angeles, CA 90095, USA.
| | - Dong Sung An
- School of Nursing, University of California Los Angeles, 188 BSRB, 615 Charles E. Young Dr. South, Los Angeles, CA 90095, USA; UCLA AIDS Institute, 188 BSRB, 615 Charles E. Young Dr. South, Los Angeles, CA 90095, USA; Hematology-Oncology, The Department of Medicine, David Geffen School of Medicine at UCLA, 188 BSRB, 615 Charles E. Young Dr. South, Los Angeles, CA 90095, USA.
| |
Collapse
|
26
|
Kishida T, Ejima A, Mazda O. Specific Destruction of HIV Proviral p17 Gene in T Lymphoid Cells Achieved by the Genome Editing Technology. Front Microbiol 2016; 7:1001. [PMID: 27446041 PMCID: PMC4923141 DOI: 10.3389/fmicb.2016.01001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 06/13/2016] [Indexed: 11/13/2022] Open
Abstract
Recent development in genome editing technologies has enabled site-directed deprivation of a nucleotide sequence in the chromosome in mammalian cells. Human immunodeficiency (HIV) infection causes integration of proviral DNA into the chromosome, which potentially leads to re-emergence of the virus, but conventional treatment cannot delete the proviral DNA sequence from the cells infected with HIV. In the present study, the transcription activator-like effector nucleases (TALENs) specific for the HIV p17 gene were constructed, and their activities to destroy the target sequence were evaluated. SSA assay showed a high activity of a pair of p17-specific TALENs. A human T lymphoid cell line, Jurkat, was infected with a lentivirus vector followed by transfection with the TALEN–HIV by electroporation. The target sequence was destructed in approximately 10–95% of the p17 polymerase chain reaction clones, and the efficiencies depended on the Jurkat–HIV clones. Because p17 plays essential roles for assembly and budding of HIV, and this gene has relatively low nucleotide sequence diversity, genome editing procedures targeting p17 may provide a therapeutic benefit for HIV infection.
Collapse
Affiliation(s)
- Tsunao Kishida
- Department of Immunology, Kyoto Prefectural University of Medicine Kamikyo, Japan
| | - Akika Ejima
- Department of Immunology, Kyoto Prefectural University of Medicine Kamikyo, Japan
| | - Osam Mazda
- Department of Immunology, Kyoto Prefectural University of Medicine Kamikyo, Japan
| |
Collapse
|
27
|
Lucic B, Lusic M. Connecting HIV-1 integration and transcription: a step toward new treatments. FEBS Lett 2016; 590:1927-39. [PMID: 27224516 DOI: 10.1002/1873-3468.12226] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 05/17/2016] [Accepted: 05/24/2016] [Indexed: 12/12/2022]
Abstract
Thanks to the current combined antiretroviral therapy (cART), HIV-1 infection has become a manageable although chronic disease. The reason for this lies in the fact that long-lived cellular reservoirs persist in patients on cART. Despite numerous efforts to understand molecular mechanisms that contribute to viral latency, the important question of how and when latency is established remains unanswered. Related to this is the connection between HIV-1 integration and the capacity of the provirus to enter the latent state. In this review, we will give an overview of these nuclear events in the viral life cycle in the light of current therapeutic approaches, which aim to either reactivate the provirus or even excise the proviral DNA from the cellular genome.
Collapse
Affiliation(s)
- Bojana Lucic
- Department of Infectious Diseases, Integrative Virology, University Hospital Heidelberg and German Center for Infection Research (DZIF), Germany
| | - Marina Lusic
- Department of Infectious Diseases, Integrative Virology, University Hospital Heidelberg and German Center for Infection Research (DZIF), Germany
| |
Collapse
|
28
|
Abstract
Transcription activator-like effector nucleases (TALENs) are one of several types of programmable, engineered nucleases that bind and cleave specific DNA sequences. Cellular machinery repairs the cleaved DNA by introducing indels. In this review, we emphasize the potential, explore progress, and identify challenges in using TALENs as a therapeutic tool to treat HIV infection. TALENs have less off-target editing and can be more effective at tolerating HIV escape mutations than CRISPR/Cas-9. Scientists have explored TALEN-mediated editing of host genes such as viral entry receptors (CCR5 and CXCR4) and a protein involved in proviral integration (LEDGF/p75). Viral targets include the proviral DNA, particularly focused on the long terminal repeats. Major challenges with translating gene therapy from bench to bedside are improving cleavage efficiency and delivery, while minimizing off-target editing, cytotoxicity, and immunogenicity. However, rapid improvements in TALEN technology are enhancing cleavage efficiency and specificity. Therapeutic testing in animal models of HIV infection will help determine whether TALENs are a viable HIV treatment therapy. TALENs or other engineered nucleases could shift the therapeutic paradigm from life-long antiretroviral therapy toward eradication of HIV infection.
Collapse
|
29
|
CRISPR/Cas9-based tools for targeted genome editing and replication control of HBV. Virol Sin 2015; 30:317-25. [PMID: 26511989 DOI: 10.1007/s12250-015-3660-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 10/14/2015] [Indexed: 12/25/2022] Open
Abstract
Hepatitis B virus (HBV) infection remains a major global health problem because current therapies rarely eliminate HBV infections to achieve a complete cure. A different treatment paradigm to effectively clear HBV infection and eradicate latent viral reservoirs is urgently required. In recent years, the development of a new RNA-guided gene-editing tool, the CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated nuclease 9) system, has greatly facilitated site-specific mutagenesis and represents a very promising potential therapeutic tool for diseases, including for eradication of invasive pathogens such as HBV. Here, we review recent advances in the use of CRISPR/Cas9, which is designed to target HBV specific DNA sequences to inhibit HBV replication and to induce viral genome mutation, in cell lines or animal models. Advantages, limitations and possible solutions, and proposed directions for future research are discussed to highlight the opportunities and challenges of CRISPR/Cas9 as a new, potentially curative therapy for chronic hepatitis B infection.
Collapse
|
30
|
Bose D, Gagnon J, Chebloune Y. Comparative Analysis of Tat-Dependent and Tat-Deficient Natural Lentiviruses. Vet Sci 2015; 2:293-348. [PMID: 29061947 PMCID: PMC5644649 DOI: 10.3390/vetsci2040293] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 08/24/2015] [Accepted: 08/24/2015] [Indexed: 01/10/2023] Open
Abstract
The emergence of human immunodeficiency virus (HIV) causing acquired immunodeficiency syndrome (AIDS) in infected humans has resulted in a global pandemic that has killed millions. HIV-1 and HIV-2 belong to the lentivirus genus of the Retroviridae family. This genus also includes viruses that infect other vertebrate animals, among them caprine arthritis-encephalitis virus (CAEV) and Maedi-Visna virus (MVV), the prototypes of a heterogeneous group of viruses known as small ruminant lentiviruses (SRLVs), affecting both goat and sheep worldwide. Despite their long host-SRLV natural history, SRLVs were never found to be responsible for immunodeficiency in contrast to primate lentiviruses. SRLVs only replicate productively in monocytes/macrophages in infected animals but not in CD4+ T cells. The focus of this review is to examine and compare the biological and pathological properties of SRLVs as prototypic Tat-independent lentiviruses with HIV-1 as prototypic Tat-dependent lentiviruses. Results from this analysis will help to improve the understanding of why and how these two prototypic lentiviruses evolved in opposite directions in term of virulence and pathogenicity. Results may also help develop new strategies based on the attenuation of SRLVs to control the highly pathogenic HIV-1 in humans.
Collapse
Affiliation(s)
- Deepanwita Bose
- Pathogénèse et Vaccination Lentivirales, PAVAL Lab., Université Joseph Fourier Grenoble 1, Bat. NanoBio2, 570 rue de la Chimie, BP 53, 38041, Grenoble Cedex 9, France.
| | - Jean Gagnon
- Pathogénèse et Vaccination Lentivirales, PAVAL Lab., Université Joseph Fourier Grenoble 1, Bat. NanoBio2, 570 rue de la Chimie, BP 53, 38041, Grenoble Cedex 9, France.
| | - Yahia Chebloune
- Pathogénèse et Vaccination Lentivirales, PAVAL Lab., Université Joseph Fourier Grenoble 1, Bat. NanoBio2, 570 rue de la Chimie, BP 53, 38041, Grenoble Cedex 9, France.
| |
Collapse
|
31
|
Ng TB, Cheung RCF, Wong JH, Chan WY. Proteins, peptides, polysaccharides, and nucleotides with inhibitory activity on human immunodeficiency virus and its enzymes. Appl Microbiol Biotechnol 2015; 99:10399-414. [PMID: 26411457 DOI: 10.1007/s00253-015-6997-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 09/04/2015] [Accepted: 09/08/2015] [Indexed: 12/15/2022]
Abstract
Human immunodeficiency virus (HIV), the causative agent of acquired immune deficiency syndrome, has claimed innumerable lives in the past. Many biomolecules which suppress HIV replication and also other biomolecules that inhibit enzymes essential to HIV replication have been reported. Proteins including a variety of milk proteins, ribosome-inactivating proteins, ribonucleases, antifungal proteins, and trypsin inhibitors; peptides comprising cathelicidins, defensins, synthetic peptides, and others; polysaccharides and polysaccharopeptides; nucleosides, nucleotides, and ribozymes, demonstrated anti-HIV activity. In many cases, the mechanism of anti-HIV action has been elucidated. Strategies have been devised to augment the anti-HIV potency of these compounds.
Collapse
Affiliation(s)
- Tzi Bun Ng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, New Territories, China.
| | - Randy Chi Fai Cheung
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, New Territories, China
| | - Jack Ho Wong
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, New Territories, China
| | - Wai Yee Chan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, New Territories, China.
| |
Collapse
|