1
|
Sullivan J, Huth L, Meers J, McMichael L. Presence of Multiple Herpesvirus Variants in Australian Flying Foxes (Pteropus spp.). J Wildl Dis 2023; 59:453-459. [PMID: 37270294 DOI: 10.7589/jwd-d-22-00082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 01/27/2023] [Indexed: 06/05/2023]
Abstract
Herpesviruses have been detected in bat species from several countries, with a limited number of studies examining herpesviruses in Pteropus spp. (flying foxes) and no investigation of herpesviruses in Australian flying foxes. We examined the presence and prevalence of herpesviruses in the four mainland Australian flying fox species. A nested PCR targeting highly conserved amino acid motifs in the DNA polymerase (DPOL) gene of herpesviruses was used to analyze 564 samples collected from 514 individual Pteropus scapulatus, Pteropus poliocephalus, Pteropus alecto, and Pteropus conspicillatus. The prevalence of herpesvirus DNA in blood, urine, oral, and fecal swabs from the four species was 17% in P. scapulatus, 11% in P. poliocephalus, 10% in P. alecto, and 9% in P. conspicillatus (31% in P. conspicillatus spleen tissue). Five putative novel herpesviruses were detected. Following PCR amplicon sequence analysis, four of the herpesviruses grouped phylogenetically with the gammaherpesviruses, with nucleotide identities between 79% and 90% to gammaherpesviruses from Asian megabats. A betaherpesvirus was detected in P. scapulatus with 99% nucleotide identity to the partial DPOL gene sequence of an Indonesian fruit bat betaherpesvirus. This study lays the foundation for future epidemiology research of herpesviruses in Australian Pteropus spp. and adds to the discussion of hypotheses surrounding the evolutionary epidemiology of bat-borne viruses on a global scale.
Collapse
Affiliation(s)
- Jennifer Sullivan
- University of Queensland, School of Veterinary Science, Veterinary Science Building, Gatton Campus, 5391 Warrego Hwy, Gatton 4343, Queensland, Australia
| | - Lauren Huth
- University of Southern Queensland, Institute for Life Sciences and the Environment, Building P22, Toowoomba Campus, 487-535 West St, Darling Heights 4350, Queensland, Australia
| | - Joanne Meers
- University of Queensland, School of Veterinary Science, Veterinary Science Building, Gatton Campus, 5391 Warrego Hwy, Gatton 4343, Queensland, Australia
| | - Lee McMichael
- University of Queensland, School of Veterinary Science, Veterinary Science Building, Gatton Campus, 5391 Warrego Hwy, Gatton 4343, Queensland, Australia
| |
Collapse
|
2
|
McMichael L, Mclean J, Taylor J, Martinez Y, Meers J. Cleft Palate Syndrome in the Endangered Spectacled Flying Fox ( Pteropus conspicillatus): Implications for Conservation and Comparative Research. Vet Sci 2023; 10:vetsci10010038. [PMID: 36669041 PMCID: PMC9865782 DOI: 10.3390/vetsci10010038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/29/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023] Open
Abstract
Cleft palate syndrome, first observed in the spectacled flying fox population in 1998, has produced sporadic neonatal mortality events over the past two decades, with an estimated incidence of up to 1/1000 births per year. This study presents a rudimentary characterisation of the syndrome, presenting gross pathology of syndromic signs upon visual inspection, a histological examination of palate malformations, and syndrome incidence data representing the past two decades. The syndrome presents with a range of signs, primarily congenital palate malformations ranging from a pinhole cleft to a complete hard and soft palate deficit, resulting in the death or abandonment of neonates shortly after birth. The congenital palate malformations are often associated with claw deformities, wiry facial hair, and in some instances, muscle weakness and neurological signs. The natural occurrence of the lethal congenital orofacial birth defects in the spectacled flying fox presents a unique opportunity for the investigation of putative aetiologies, drawing parallels between bat and other mammalian cleft palate risk factors. Further syndrome investigation has the potential to deliver both biodiversity conservation and comparative veterinary and biomedical outcomes.
Collapse
Affiliation(s)
- Lee McMichael
- School of Veterinary Science, University of Queensland, Gatton, QLD 4343, Australia
- Correspondence:
| | - Jennefer Mclean
- Tolga Bat Rescue and Research Inc., Carrington Road, Atherton, QLD 4883, Australia
| | - Jim Taylor
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4810, Australia
| | - Yissu Martinez
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4810, Australia
| | - Joanne Meers
- School of Veterinary Science, University of Queensland, Gatton, QLD 4343, Australia
| |
Collapse
|
3
|
BONE MINERAL DENSITY DETERMINED BY DUAL-ENERGY X-RAY ABSORPTIOMETRY METHOD FOR EGYPTIAN FRUIT BATS (ROUSETTUS AEGYPTIACUS) IN HUMAN CARE. J Zoo Wildl Med 2022; 53:528-536. [DOI: 10.1638/2021-0040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2022] [Indexed: 11/21/2022] Open
|
4
|
Rissmann M, Friedrichs V, Kley N, Straube M, Sadeghi B, Balkema-Buschmann A. Baseline of Physiological Body Temperature and Hematological Parameters in Captive Rousettus aegyptiacus and Eidolon helvum Fruit Bats. Front Physiol 2022; 13:910157. [PMID: 36105294 PMCID: PMC9465388 DOI: 10.3389/fphys.2022.910157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/16/2022] [Indexed: 11/30/2022] Open
Abstract
The discovery of bats as reservoir hosts for a number of highly pathogenic zoonotic agents has led to an increasing interest of infectious disease research in experimental studies with bats. Therefore, we established breeding colonies of Rousettus aegyptiacus and Eidolon helvum fruit bats, which both have been identified as reservoir hosts for relevant zoonotic disease agents, such as Marburg virus and Lagos bat virus. Since 2013, individuals of both species have been recruited to the Friedrich-Loeffler-Institut (FLI) from zoological gardens in Europe, to where these species had been introduced from the wild several decades ago. The aviaries have been designed according to national recommendations published by the Federal Ministry of Agriculture. Under these conditions, both species have been reproducing for years. To better understand the physiology of these animals, and to generate baseline knowledge for infection experiments, we monitored the body core temperatures of R. aegyptiacus bats in the aviaries, and found a circadian variation between 34°C and 41.5°C. We also determined the hematological parameters of both species, and detected specific differences between both bat species. For values of clinical chemistry, no correlation to age or sex was observed. However, species-specific differences were detected since ALT, BUN and CREA were found to be significantly higher in R. aegyptiacus and GLU and TP were significantly higher in E. helvum bats. A higher hematocrit, hemoglobin and red blood cell level was observed in subadult R. aegyptiacus, with hemoglobin and red blood cells also being significantly increased compared to E. helvum. Lymphocytes were found to be the dominant white blood cells in both species and are higher in female E. helvum. Neutrophil granulocytes were significantly higher in E. helvum bats. This underlines the necessity to define baseline profiles for each bat species prior to their use in experimental challenge.
Collapse
Affiliation(s)
- Melanie Rissmann
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald, Germany
- Department of Viroscience, Erasmus MC, Rotterdam, Netherlands
| | | | - Nils Kley
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald, Germany
| | - Martin Straube
- Landratsamt Ortenaukreis, Amt für Veterinärwesen und Lebensmittelüberwachung, Offenburg, Germany
| | - Balal Sadeghi
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald, Germany
| | - Anne Balkema-Buschmann
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald, Germany
- *Correspondence: Anne Balkema-Buschmann,
| |
Collapse
|
5
|
Hansen D, Hunt BE, Falvo CA, Ruiz-Aravena M, Kessler MK, Hall J, Thompson P, Rose K, Jones DN, Lunn TJ, Dale AS, Peel AJ, Plowright RK. Morphological and quantitative analysis of leukocytes in free-living Australian black flying foxes (Pteropus alecto). PLoS One 2022; 17:e0268549. [PMID: 35613104 PMCID: PMC9132326 DOI: 10.1371/journal.pone.0268549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 05/02/2022] [Indexed: 01/12/2023] Open
Abstract
The black flying fox (Pteropus alecto) is a natural reservoir for Hendra virus, a paramyxovirus that causes fatal infections in humans and horses in Australia. Increased excretion of Hendra virus by flying foxes has been hypothesized to be associated with physiological or energetic stress in the reservoir hosts. The objective of this study was to explore the leukocyte profiles of wild-caught P. alecto, with a focus on describing the morphology of each cell type to facilitate identification for clinical purposes and future virus spillover research. To this end, we have created an atlas of images displaying the commonly observed morphological variations across each cell type. We provide quantitative and morphological information regarding the leukocyte profiles in bats captured at two roost sites located in Redcliffe and Toowoomba, Queensland, Australia, over the course of two years. We examined the morphology of leukocytes, platelets, and erythrocytes of P. alecto using cytochemical staining and characterization of blood films through light microscopy. Leukocyte profiles were broadly consistent with previous studies of P. alecto and other Pteropus species. A small proportion of individual samples presented evidence of hemoparasitic infection or leukocyte morphological traits that are relevant for future research on bat health, including unique large granular lymphocytes. Considering hematology is done by visual inspection of blood smears, examples of the varied cell morphologies are included as a visual guide. To the best of our knowledge, this study provides the first qualitative assessment of P. alecto leukocytes, as well as the first set of published hematology reference images for this species.
Collapse
Affiliation(s)
- Dale Hansen
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, United States of America
- * E-mail:
| | - Brooklin E. Hunt
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, United States of America
| | - Caylee A. Falvo
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, United States of America
| | - Manuel Ruiz-Aravena
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, United States of America
| | - Maureen K. Kessler
- Department of Ecology, Montana State University, Bozeman, MT, United States of America
| | - Jane Hall
- Australian Registry of Wildlife Health, Taronga Conservation Society Australia, Sydney, NSW, Australia
- Centre for Planetary Health and Food Security, Griffith University, Nathan, QLD, Australia
| | - Paul Thompson
- Taronga Wildlife Hospital, Taronga Conservation Society Australia, Taronga Zoo, Sydney, NSW, Australia
| | - Karrie Rose
- Australian Registry of Wildlife Health, Taronga Conservation Society Australia, Sydney, NSW, Australia
| | - Devin N. Jones
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, United States of America
| | - Tamika J. Lunn
- Centre for Planetary Health and Food Security, Griffith University, Nathan, QLD, Australia
| | - Adrienne S. Dale
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States of America
| | - Alison J. Peel
- Centre for Planetary Health and Food Security, Griffith University, Nathan, QLD, Australia
| | - Raina K. Plowright
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, United States of America
| | | |
Collapse
|
6
|
Use of a Portable Analyzer for Venous Blood Gas and Biochemistry Analysis in Free-Ranging Indian Flying Foxes (Pteropus giganteus) in Myanmar. J Wildl Dis 2021; 57:242-245. [PMID: 33635999 DOI: 10.7589/jwd-d-20-00095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/05/2020] [Indexed: 11/20/2022]
Abstract
We determined venous blood gas, acid-base, and biochemical parameters for thirteen free-ranging Indian flying foxes (Pteropus giganteus) in Myanmar, using a handheld i-STAT analyzer with CG8+ and CHEM8 cartridges. For field-based projects, portable blood analyzers enable identification and management of electrolyte and acid-base imbalances and collection of physiologic data, but present logistical challenges.
Collapse
|
7
|
Brandimarti ME, Gray R, Silva FRO, Herbert CA. Kangaroos at maximum capacity: health assessment of free-ranging eastern grey kangaroos on a coastal headland. J Mammal 2021; 102:837-851. [PMID: 34385895 PMCID: PMC8355480 DOI: 10.1093/jmammal/gyab022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 02/09/2021] [Indexed: 12/26/2022] Open
Abstract
Sprawling urban development is fragmenting the landscape and native wildlife habitats on the Australian east coast. The impact of this rapid urbanization on wildlife health is largely unknown. This study surveyed the health of a high-density (5.4 individuals per ha) population of eastern grey kangaroos (Macropus giganteus) affected by urban encroachment and prolonged drought. Blood parameters (hematological and serum protein), trace element and heavy metal concentrations, and parasite counts (fecal worm egg counts, ticks, and mites) are reported for a sample of ≤ 54 kangaroos at Look at Me Now Headland, New South Wales, Australia. These parameters were compared to lower density kangaroo populations from other sites in New South Wales. We found the health and welfare of this population to be severely compromised, with nonregenerative anemia and nutritional deficiencies evident. Our results indicate that high-density kangaroo populations isolated by urban encroachment are at significant health risk. To prevent further decline in this population’s health, we discuss management strategies that could be employed, concurrent with ongoing health and disease monitoring, to mitigate the poor health outcomes in this population. We conclude that it is essential to retain habitat connectivity when altering land use in areas with resident kangaroo populations if managers are to maintain healthy populations.
Collapse
Affiliation(s)
- Maquel E Brandimarti
- School of Life and Environmental Science, The University of Sydney, JD Stewart Building, Camperdown, New South Wales 2006, Australia
| | - Rachael Gray
- Sydney School of Veterinary Science, The University of Sydney, McMaster Building, Camperdown, New South Wales 2006, Australia
| | - Fabiola R O Silva
- School of Life and Environmental Science, The University of Sydney, JD Stewart Building, Camperdown, New South Wales 2006, Australia
| | - Catherine A Herbert
- School of Life and Environmental Science, The University of Sydney, JD Stewart Building, Camperdown, New South Wales 2006, Australia
| |
Collapse
|
8
|
Karamat S, Ashraf N, Akhtar T, Rahim F, Shafi N, Khalid S, Shahid B, Khawaja S, Rahim J, Majeed Z, Lateef Z, Mehmood M. CO1-Based DNA barcoding for assessing diversity of Pteropus giganteus from the state of Azad Jammu Kashmir, Pakistan. BRAZ J BIOL 2021; 81:584-591. [PMID: 32785466 DOI: 10.1590/1519-6984.226466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 02/21/2020] [Indexed: 11/22/2022] Open
Abstract
The flying fox (Pteropus giganteus) also familiar with the name of the greater Indian fruit Bat belongs to the order Chiroptera and family Pteropodidae. Current research emphasis on the DNA barcoding of P. giganteus in Azad Jammu Kashmir. Bat sequences were amplified and PCR products were sequenced and examined by bioinformatics software. Congeneric and conspecific, nucleotide composition and K2P nucleotide deviation, haplotype diversity and the number of haplotypes were estimated. The analysis showed that all of the five studied samples of P. giganteus had low G contents (G 19.8%) than C (27.8%), A (25.1%) and T (27.3%) contents. The calculated haplotype diversity was 0.60% and the mean intraspecific K2P distance was 0.001% having a high number of transitional substitutions. The study suggested that P. giganteus (R=0.00) do not deviate from the neutral evolution. It was determined from the conclusion that this mtDNA gene is a better marker for identification of Bat species than nuclear genes due to its distinctive characteristics and may serve as a landmark for the identification of interconnected species at the molecular level and in the determination of population genetics.
Collapse
Affiliation(s)
- Sana Karamat
- University of Azad Jammu and Kashmir, Department of Zoology, Muzaffarabad, Pakistan
| | - Nasra Ashraf
- University of Azad Jammu and Kashmir, Department of Zoology, Muzaffarabad, Pakistan
| | - Tasleem Akhtar
- University of Azad Jammu and Kashmir, Department of Zoology, Muzaffarabad, Pakistan
| | - Faisal Rahim
- Department of Agriculture Azad Jammu and Kashmir, Directorate of Agriculture Research, Muzaffarabad, Pakistan
| | - Nuzhat Shafi
- University of Azad Jammu and Kashmir, Department of Zoology, Muzaffarabad, Pakistan
| | - Saba Khalid
- University of Azad Jammu and Kashmir, Department of Zoology, Muzaffarabad, Pakistan
| | - Benish Shahid
- University of Azad Jammu and Kashmir, Department of Zoology, Muzaffarabad, Pakistan
| | - Sundas Khawaja
- University of Azad Jammu and Kashmir, Department of Biotechnology, Muzaffarabad, Pakistan
| | - Junaid Rahim
- University of Poonch Rawalakot, Faculty of Agriculture, Department of Entomology, Shamsabad, Rawalakot, Azad Jammu and Kashmir, Pakistan
| | - Zahid Majeed
- University of Azad Jammu and Kashmir, Department of Biotechnology, Muzaffarabad, Pakistan
| | - Zahid Lateef
- University of Azad Jammu and Kashmir, Department of Zoology, Muzaffarabad, Pakistan
| | - Majid Mehmood
- University of Poonch Rawalakot, Department of Zoology, Shamsabad, Rawalakot, Azad Jammu and Kashmir, Pakistan
| |
Collapse
|
9
|
Moretti P, Ravasio G, Magnone W, Di Cesare F, Paltrinieri S, Pecile A, Giordano A. Haematological, serum biochemical and electrophoretic data on healthy captive Egyptian fruit bats ( Rousettus aegyptiacus). Lab Anim 2020; 55:158-169. [PMID: 32838610 DOI: 10.1177/0023677220948542] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Bats play a key role as reservoir hosts of many emerging viral diseases with zoonotic potential. However, little is known about the laboratory reference intervals (RIs) of bats, especially Egyptian fruit bats (Rousettus aegyptiacus). The aim of this study was to obtain haematological, biochemical and electrophoretic RIs from captive fruit bats. Blood was collected from 21 R. aegyptiacus (11 females and 10 males). Complete blood cell count was performed using an impedance cell counter followed by the morphologic analysis of blood smears. Clinical biochemistry was performed with an automated spectrophotometer and agarose gel electrophoresis was carried out with an automated instrument. Reference intervals were determined using the Reference Value Advisor V2.1, following the American Society for Veterinary Clinical Pathology guidelines. Possible differences related to sex or sexual maturity were also investigated. The RIs for most of the analytes investigated were similar to those of other types of bats and other mammalian species. Haematology revealed mild polychromasia and slightly lower haematocrit, haemoglobin, leukocyte and lymphocyte counts compared to other bats. Glucose levels varied possibly due to stress, the anaesthetic protocol and fasting time. Creatine kinase was higher, while triglycerides were lower compared with domestic mammals and other bats. No sex- or age-related differences were found. Serum protein electrophoresis showed five fractions (albumin, α-, β1-, β2- and γ-globulins). The values recorded in this study could be helpful as a reference biological dataset to monitor the health status of wild and captive R. aegyptiacus and, possibly, of other Chiroptera.
Collapse
Affiliation(s)
- Pierangelo Moretti
- Department of Veterinary Medicine, University of Milan, Italy.,Veterinary Teaching Hospital, University of Milan, Italy
| | - Giuliano Ravasio
- Department of Veterinary Medicine, University of Milan, Italy.,Veterinary Teaching Hospital, University of Milan, Italy
| | | | - Federica Di Cesare
- Department of Health, Animal Science and Food Safety, University of Milan, Italy
| | - Saverio Paltrinieri
- Department of Veterinary Medicine, University of Milan, Italy.,Veterinary Teaching Hospital, University of Milan, Italy
| | - Alessandro Pecile
- Department of Veterinary Medicine, University of Milan, Italy.,Veterinary Teaching Hospital, University of Milan, Italy
| | - Alessia Giordano
- Department of Veterinary Medicine, University of Milan, Italy.,Veterinary Teaching Hospital, University of Milan, Italy
| |
Collapse
|
10
|
Bandouchova H, Zukal J, Linhart P, Berkova H, Brichta J, Kovacova V, Kubickova A, Abdelsalam EEE, Bartonička T, Zajíčková R, Pikula J. Low seasonal variation in greater mouse-eared bat (Myotis myotis) blood parameters. PLoS One 2020; 15:e0234784. [PMID: 32634149 PMCID: PMC7340307 DOI: 10.1371/journal.pone.0234784] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 06/02/2020] [Indexed: 11/19/2022] Open
Abstract
The greater mouse-eared bat (Myotis myotis) is a flagship species for the protection of hibernation and summer maternity roosts in the Western Palearctic region. A range of pathogenic agents is known to put pressure on populations, including the white-nose syndrome fungus, for which the species shows the highest prevalence and infection intensity of all European bat species. Here, we perform analysis of blood parameters characteristic for the species during its natural annual life cycle in order to establish reference values. Despite sexual dimorphism and some univariate differences, the overall multivariate pattern suggests low seasonal variation with homeostatic mechanisms effectively regulating haematology and blood biochemistry ranges. Overall, the species displayed a high haematocrit and haemoglobin content and high concentration of urea, while blood glucose levels in swarming and hibernating bats ranged from hypo- to normoglycaemic. Unlike blood pH, concentrations of electrolytes were wide ranging. To conclude, baseline data for blood physiology are a useful tool for providing suitable medical care in rescue centres, for studying population health in bats adapting to environmental change, and for understanding bat responses to stressors of conservation and/or zoonotic importance.
Collapse
Affiliation(s)
- Hana Bandouchova
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Jan Zukal
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
- Department of Botany and Zoology, Masaryk University, Brno, Czech Republic
| | - Petr Linhart
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Hana Berkova
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| | - Jiri Brichta
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Veronika Kovacova
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Aneta Kubickova
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Ehdaa E. E. Abdelsalam
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Tomáš Bartonička
- Department of Botany and Zoology, Masaryk University, Brno, Czech Republic
| | - Renata Zajíčková
- Department of Botany and Zoology, Masaryk University, Brno, Czech Republic
- Institute of Biostatistics and Analyses, Masaryk University, Brno, Czech Republic
| | - Jiri Pikula
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
- * E-mail:
| |
Collapse
|
11
|
Strumpf AA, Malmlov A, Ayers JD, Schountz T, Kendall LV. Hematologic Values of Jamaican Fruit Bats ( Artibeus jamaicensis) and the Effects of Isoflurane Anesthesia. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE 2020; 59:275-281. [PMID: 32164795 DOI: 10.30802/aalas-jaalas-19-000056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Jamaican fruit bats (Artibeus jamaicensis) are used as an animal model for several viruses, including Middle East respiratory syndrome virus, dengue virus, Zika virus, and Tacaribe virus. However, despite ongoing studies regarding these pathogens, little is known regarding the bats' normal physiology. In this study, phlebotomy of the propetagial (cephalic) vein was performed to establish baseline hematologic parameters in an apparently healthy, captive population of Jamaican fruit bats. Furthermore, we compared results from physically restrained and isoflurane-anesthetized bats. Our findings indicate significant increases in WBC count, lymphocytes, and monocytes in the anesthetized bats. However, RBC and platelet parameters were not different between the 2 groups. This information on the normal hematologic parameters of Jamaican fruit bats, adds to our overall understanding of the normal physiology of this species, and expands our knowledge on bat species in general.
Collapse
Affiliation(s)
- Alyssa A Strumpf
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado
| | - Ashley Malmlov
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado
| | - Jessica D Ayers
- Laboratory Animal Resources, Colorado State University, Fort Collins, Colorado
| | - Tony Schountz
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado
| | - Lon V Kendall
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado; Laboratory Animal Resources, Colorado State University, Fort Collins, Colorado;,
| |
Collapse
|
12
|
Irving AT, Ng JHJ, Boyd V, Dutertre C, Ginhoux F, Dekkers MH, Meers J, Field HE, Crameri G, Wang L. Optimizing dissection, sample collection and cell isolation protocols for frugivorous bats. Methods Ecol Evol 2019. [DOI: 10.1111/2041-210x.13325] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Aaron T. Irving
- Programme in Emerging Infectious Diseases Duke‐NUS Medical School Singapore
| | - Justin H. J. Ng
- Programme in Emerging Infectious Diseases Duke‐NUS Medical School Singapore
| | - Victoria Boyd
- Australian Animal Health Laboratory, Health and Biosecurity Business Unit Commonwealth Scientific and Industrial Research Organisation Geelong Vic Australia
| | - Charles‐Antoine Dutertre
- Programme in Emerging Infectious Diseases Duke‐NUS Medical School Singapore
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore Singapore
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore Singapore
| | - Milou H. Dekkers
- Queensland Animal Science Precinct The University of Queensland Gatton QLD Australia
| | - Joanne Meers
- School of Veterinary Science The University of Queensland Gatton QLD Australia
| | - Hume E. Field
- School of Veterinary Science The University of Queensland Gatton QLD Australia
- EcoHealth Alliance New York NY USA
| | - Gary Crameri
- Crameri Research Consulting Geelong Vic Australia
| | - Lin‐Fa Wang
- Programme in Emerging Infectious Diseases Duke‐NUS Medical School Singapore
| |
Collapse
|
13
|
Edson D, Peel AJ, Huth L, Mayer DG, Vidgen ME, McMichael L, Broos A, Melville D, Kristoffersen J, de Jong C, McLaughlin A, Field HE. Time of year, age class and body condition predict Hendra virus infection in Australian black flying foxes (Pteropus alecto). Epidemiol Infect 2019; 147:e240. [PMID: 31364577 PMCID: PMC6625375 DOI: 10.1017/s0950268819001237] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 05/16/2019] [Accepted: 05/31/2019] [Indexed: 01/12/2023] Open
Abstract
Hendra virus (HeV) continues to cause fatal infection in horses and threaten infection in close-contact humans in eastern Australia. Species of Pteropus bats (flying-foxes) are the natural reservoir of the virus. We caught and sampled flying-foxes from a multispecies roost in southeast Queensland, Australia on eight occasions between June 2013 and June 2014. The effects of sample date, species, sex, age class, body condition score (BCS), pregnancy and lactation on HeV antibody prevalence, log-transformed median fluorescent intensity (lnMFI) values and HeV RNA status were assessed using unbalanced generalised linear models. A total of 1968 flying-foxes were sampled, comprising 1012 Pteropus alecto, 742 P. poliocephalus and 214 P. scapulatus. Sample date, species and age class were each statistically associated with HeV RNA status, antibody status and lnMFI values; BCS was statistically associated with HeV RNA status and antibody status. The findings support immunologically naïve sub-adult P. alecto playing an important role in maintaining HeV infection at a population level. The biological significance of the association between BCS and HeV RNA status, and BCS and HeV antibody status, is less clear and warrants further investigation. Contrary to previous studies, we found no direct association between HeV infection and pregnancy or lactation. The findings in P. poliocephalus suggest that HeV exposure in this species may not result in systemic infection and virus excretion, or alternatively, may reflect assay cross-reactivity with another (unidentified) henipavirus.
Collapse
Affiliation(s)
- D. Edson
- Biosecurity Queensland, Department of Agriculture and Fisheries, Coopers Plains, Queensland, Australia
- Department of Agriculture, Canberra, ACT, Australia
| | - A. J. Peel
- Environmental Futures Research Institute, Griffith University, Nathan, Queensland, Australia
| | - L. Huth
- Biosecurity Queensland, Department of Agriculture and Fisheries, Coopers Plains, Queensland, Australia
| | - D. G. Mayer
- Biosecurity Queensland, Department of Agriculture and Fisheries, Coopers Plains, Queensland, Australia
| | - M. E. Vidgen
- Biosecurity Queensland, Department of Agriculture and Fisheries, Coopers Plains, Queensland, Australia
| | - L. McMichael
- Biosecurity Queensland, Department of Agriculture and Fisheries, Coopers Plains, Queensland, Australia
| | - A. Broos
- Biosecurity Queensland, Department of Agriculture and Fisheries, Coopers Plains, Queensland, Australia
- Medical Research Council, University of Glasgow Centre for Virus Research, Glasgow, UK
| | - D. Melville
- Biosecurity Queensland, Department of Agriculture and Fisheries, Coopers Plains, Queensland, Australia
| | - J. Kristoffersen
- Biosecurity Queensland, Department of Agriculture and Fisheries, Coopers Plains, Queensland, Australia
| | - C. de Jong
- Biosecurity Queensland, Department of Agriculture and Fisheries, Coopers Plains, Queensland, Australia
| | - A. McLaughlin
- Biosecurity Queensland, Department of Agriculture and Fisheries, Coopers Plains, Queensland, Australia
| | - H. E. Field
- Biosecurity Queensland, Department of Agriculture and Fisheries, Coopers Plains, Queensland, Australia
- EcoHealth Alliance, New York, NY, USA
- School of Veterinary Science, The University of Queensland, Gatton, Queensland, Australia
| |
Collapse
|
14
|
Hematology and Plasma Biochemistry of Wild Spectacled Flying Foxes ( Pteropus conspicillatus) in Australia. J Wildl Dis 2018; 55:449-454. [PMID: 30325258 DOI: 10.7589/2018-04-096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The spectacled flying fox ( Pteropus conspicillatus) is listed as vulnerable to extinction in Australia. The species' restricted population is in decline, putatively attributed to decreasing habitat, climatic extremes, anthropogenic activities, and more recently, mass mortality events associated with tick paralysis and neonatal cleft palate syndrome. Knowledge of fundamental physiologic parameters of the species is limited. To address this knowledge gap, we sampled 50 wild-caught adult spectacled flying foxes in June (winter) in Far North Queensland, Australia. Hematologic and plasma biochemistry reference ranges were established, and a suite of urine biochemistry analytes were measured. Analyte values were compared within spectacled flying fox sex cohorts and between the spectacled flying fox and the paraphyletic black flying fox ( Pteropus alecto). Significant differences in multiple analytes (including erythrocyte, leucocyte, plasma, and urine biochemistry) were found between spectacled flying fox sex cohorts. The majority of spectacled flying fox analyte values did not differ significantly from black flying fox values. Of those analytes that differed between species (erythrocyte, platelet, eosinophil, liver enzyme, and triglyceride levels), the majority were plausibly explained by intraerythrocyte parasite burden and food resource type. Our findings provide baseline data essential to measure and meaningfully interpret flying fox population health in ecologic, conservation, and epidemiologic contexts.
Collapse
|
15
|
HEMATOLOGY, PLASMA BIOCHEMISTRY, AND URINALYSIS OF FREE-RANGING GREY-HEADED FLYING FOXES (PTEROPUS POLIOCEPHALUS) IN AUSTRALIA. J Zoo Wildl Med 2018; 49:591-598. [DOI: 10.1638/2017-0126.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
16
|
Kessler MK, Becker DJ, Peel AJ, Justice NV, Lunn T, Crowley DE, Jones DN, Eby P, Sánchez CA, Plowright RK. Changing resource landscapes and spillover of henipaviruses. Ann N Y Acad Sci 2018; 1429:78-99. [PMID: 30138535 DOI: 10.1111/nyas.13910] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 05/11/2018] [Accepted: 05/29/2018] [Indexed: 12/14/2022]
Abstract
Old World fruit bats (Chiroptera: Pteropodidae) provide critical pollination and seed dispersal services to forest ecosystems across Africa, Asia, and Australia. In each of these regions, pteropodids have been identified as natural reservoir hosts for henipaviruses. The genus Henipavirus includes Hendra virus and Nipah virus, which regularly spill over from bats to domestic animals and humans in Australia and Asia, and a suite of largely uncharacterized African henipaviruses. Rapid change in fruit bat habitat and associated shifts in their ecology and behavior are well documented, with evidence suggesting that altered diet, roosting habitat, and movement behaviors are increasing spillover risk of bat-borne viruses. We review the ways that changing resource landscapes affect the processes that culminate in cross-species transmission of henipaviruses, from reservoir host density and distribution to within-host immunity and recipient host exposure. We evaluate existing evidence and highlight gaps in knowledge that are limiting our understanding of the ecological drivers of henipavirus spillover. When considering spillover in the context of land-use change, we emphasize that it is especially important to disentangle the effects of habitat loss and resource provisioning on these processes, and to jointly consider changes in resource abundance, quality, and composition.
Collapse
Affiliation(s)
| | - Daniel J Becker
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana.,The Center for the Ecology of Infectious Diseases, University of Georgia, Athens, Georgia
| | - Alison J Peel
- Environmental Futures Research Institute, Griffith University, Nathan, Queensland, Australia
| | - Nathan V Justice
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana
| | - Tamika Lunn
- The Griffith School of Environment, Griffith University, Nathan, Queensland, Australia
| | - Daniel E Crowley
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana
| | - Devin N Jones
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana
| | - Peggy Eby
- The School of Biological, Earth, and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Cecilia A Sánchez
- The Center for the Ecology of Infectious Diseases, University of Georgia, Athens, Georgia.,The Odum School of Ecology, University of Georgia, Athens, Georgia
| | - Raina K Plowright
- Department of Ecology, Montana State University, Bozeman, Montana.,Department of Microbiology and Immunology, Montana State University, Bozeman, Montana
| |
Collapse
|
17
|
Abstract
Fourteen captive Livingstone's fruit bats ( Pteropus livingstonii) were anesthetized for routine veterinary health checks, including echocardiography, using sevoflurane. In addition, three specimens suffering from cardiac disease and a pregnant specimen were anesthetized for clinical assessment. No anesthetic complications were observed in any of the specimens. Significant differences in the core body temperature were found between the esophageal and rectal measurements. A significant decrease in blood glucose was noted through the anesthesia, suspected to be related to an extended fasting period prior to the procedure.
Collapse
|
18
|
Mackie JT, Stenner R, Gillett AK, Barbosa A, Ryan U, Irwin PJ. Trypanosomiasis in an Australian little red flying fox (Pteropus scapulatus). Aust Vet J 2017; 95:259-261. [PMID: 28653380 PMCID: PMC7159704 DOI: 10.1111/avj.12597] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 09/11/2016] [Accepted: 09/30/2016] [Indexed: 11/30/2022]
Abstract
Case report An adult female Australian little red flying fox (Pteropus scapulatus) presented with icterus and anaemia. Examination of a blood smear revealed numerous trypanosomes 20.4–30.8 µm long with tapered ends. Necropsy and histological findings were consistent with trypanosome infection of lymphoid tissue and intravascular haemolysis. Sequence and phylogenetic analysis demonstrated this trypanosome species to be genetically distinct and most similar to Trypanosoma minasense and Trypanosoma rangeli (with a genetic distance of 1% at the 18S rRNA locus for both). Conclusion To the authors’ knowledge this is the first report of a trypanosome infection associated with clinical disease in bats.
Collapse
Affiliation(s)
- J T Mackie
- Vepalabs, Woolloongabba, Queensland, Australia
| | - R Stenner
- Australia Zoo Wildlife Hospital, Beerwah, Queensland, Australia
| | - A K Gillett
- Australia Zoo Wildlife Hospital, Beerwah, Queensland, Australia
| | - A Barbosa
- School of Veterinary and Life Sciences, Murdoch University, Perth, Western Australia, Australia.,CAPES Foundation, Ministry of Education of Brazil, Brazil
| | - U Ryan
- School of Veterinary and Life Sciences, Murdoch University, Perth, Western Australia, Australia
| | - P J Irwin
- School of Veterinary and Life Sciences, Murdoch University, Perth, Western Australia, Australia
| |
Collapse
|
19
|
Shanmugam AA, Muliya SK, Deshmukh A, Suresh S, Nath A, Kalaignan P, Venkataravanappa M, Jose L. Baseline hematology and serum biochemistry results for Indian leopards ( Panthera pardus fusca). Vet World 2017; 10:818-824. [PMID: 28831229 PMCID: PMC5553154 DOI: 10.14202/vetworld.2017.818-824] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 06/01/2017] [Indexed: 11/16/2022] Open
Abstract
Aim: The aim of the study was to establish the baseline hematology and serum biochemistry values for Indian leopards (Panthera pardus fusca), and to assess the possible variations in these parameters based on age and gender. Materials and Methods: Hemato-biochemical test reports from a total of 83 healthy leopards, carried out as part of routine health evaluation in Bannerghatta Biological Park and Manikdoh Leopard Rescue Center, were used to establish baseline hematology and serum biochemistry parameters for the subspecies. The hematological parameters considered for the analysis included hemoglobin (Hb), packed cell volume, total erythrocyte count (TEC), total leukocyte count (TLC), mean corpuscular volume (MCV), mean corpuscular Hb (MCH), and MCH concentration. The serum biochemistry parameters considered included total protein (TP), albumin, globulin, aspartate aminotransferase, alanine aminotransferase (ALT), blood urea nitrogen, creatinine, triglycerides, calcium, and phosphorus. Results: Even though few differences were observed in hematologic and biochemistry values between male and female Indian leopards, the differences were statistically not significant. Effects of age, however, were evident in relation to many hematologic and biochemical parameters. Sub-adults had significantly greater values for Hb, TEC, and TLC compared to adults and geriatric group, whereas they had significantly lower MCV and MCH compared to adults and geriatric group. Among, serum biochemistry parameters the sub-adult age group was observed to have significantly lower values for TP and ALT than adult and geriatric leopards. Conclusion: The study provides a comprehensive analysis of hematologic and biochemical parameters for Indian leopards. Baselines established here will permit better captive management of the subspecies, serve as a guide to assess the health and physiological status of the free ranging leopards, and may contribute valuable information for making effective management decisions during translocation or rehabilitation process.
Collapse
Affiliation(s)
- Arun Attur Shanmugam
- Department of Biotechnology, Jain University, Bengaluru, Karnataka, India.,Wildlife SOS, Bengaluru, Karnataka, India
| | | | - Ajay Deshmukh
- Manikdoh Leopard Rescue Center, Wildlife SOS, Khamgaon, Maharashtra, India
| | - Sujay Suresh
- Bannerghatta Biological Park, Bannerghatta, Bengaluru, Karnataka, India
| | - Anukul Nath
- Department of Ecology & Environmental Science, E. P. Odum School of Environmental Sciences, Silchar, Assam, India
| | - Pa Kalaignan
- Bannerghatta Biological Park, Bannerghatta, Bengaluru, Karnataka, India
| | - Manjunath Venkataravanappa
- Wild Animal Disease Diagnostic Lab, Bannerghatta Biological Park, Bannerghatta, Bengaluru, Karnataka, India
| | - Lyju Jose
- Department of Biotechnology, Jain University, Bengaluru, Karnataka, India
| |
Collapse
|
20
|
PHYSIOLOGIC BIOMARKERS AND HENDRA VIRUS INFECTION IN AUSTRALIAN BLACK FLYING FOXES (PTEROPUS ALECTO). J Wildl Dis 2016; 53:111-120. [PMID: 27723384 DOI: 10.7589/2016-05-100] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Bats of the genus Pteropus (Pteropodidae), colloquially known as flying foxes, are recognized as the natural reservoir of Hendra virus, a zoonotic paramyxovirus responsible for mortality in horses and humans. Some previous studies have suggested that physiologic and ecologic factors promote Hendra virus infection in flying foxes, and by extension, spillover to horses and humans. However, the impact of Hendra virus infection on relevant physiologic biomarkers in flying foxes has not been measured. Over 12 mo in eastern Australia, we captured and sampled 446 individual black flying foxes ( Pteropus alecto ), a putative primary reservoir host species, and measured a suite of hematologic, plasma biochemistry, and urinary biomarkers. All mean hematologic and biochemical values in both Hendra virus-positive and virus-negative cohorts were within the published reference ranges for black flying foxes. We found no association between Hendra virus infection (as indicated by PCR detection of Hendra virus RNA) and biomarkers for nutritional stress, reproductive stress, or extreme metabolic demand. However, we identified associations between several other biomarkers and Hendra virus infection, which may partly elucidate the physiologic effects of Hendra virus infection in flying foxes. Our findings highlight the need for critical evaluation of putative risk factors for infection in flying foxes and provide insights for future epidemiologic studies of Hendra virus and related viruses in the Pteropus species.
Collapse
|
21
|
McMichael L, Edson D, Mayer D, McLaughlin A, Goldspink L, Vidgen ME, Kopp S, Meers J, Field H. Temporal Variation in Physiological Biomarkers in Black Flying-Foxes (Pteropus alecto), Australia. ECOHEALTH 2016; 13:49-59. [PMID: 27026357 PMCID: PMC7087910 DOI: 10.1007/s10393-016-1113-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 02/11/2016] [Accepted: 02/23/2016] [Indexed: 06/05/2023]
Abstract
Bats of the genus Pteropus (Pteropodidae) are recognised as the natural host of multiple emerging pathogenic viruses of animal and human health significance, including henipaviruses, lyssaviruses and ebolaviruses. Some studies have suggested that physiological and ecological factors may be associated with Hendra virus infection in flying-foxes in Australia; however, it is essential to understand the normal range and seasonal variability of physiological biomarkers before seeking physiological associations with infection status. We aimed to measure a suite of physiological biomarkers in P. alecto over time to identify any seasonal fluctuations and to examine possible associations with life-cycle and environmental stressors. We sampled 839 adult P. alecto in the Australian state of Queensland over a 12-month period. The adjusted population means of every assessed hematologic and biochemical parameter were within the reported reference range on every sampling occasion. However, within this range, we identified significant temporal variation in these parameters, in urinary parameters and body condition, which primarily reflected the normal annual life cycle. We found no evident effect of remarkable physiological demands or nutritional stress, and no indication of clinical disease driving any parameter values outside the normal species reference range. Our findings identify underlying temporal physiological changes at the population level that inform epidemiological studies and assessment of putative physiological risk factors driving Hendra virus infection in P. alecto. More broadly, the findings add to the knowledge of Pteropus populations in terms of their relative resistance and resilience to emerging infectious disease.
Collapse
Affiliation(s)
- Lee McMichael
- School of Veterinary Science, University of Queensland, Gatton, QLD, 4343, Australia.
- Biosecurity Queensland, Department of Agriculture and Fisheries, Brisbane, QLD, 4108, Australia.
| | - Daniel Edson
- Biosecurity Queensland, Department of Agriculture and Fisheries, Brisbane, QLD, 4108, Australia
- Department of Agriculture and Water Resources, Canberra, ACT, 2601, Australia
| | - David Mayer
- Department of Agriculture and Fisheries, Brisbane, QLD, 4103, Australia
| | - Amanda McLaughlin
- Biosecurity Queensland, Department of Agriculture and Fisheries, Brisbane, QLD, 4108, Australia
| | - Lauren Goldspink
- Biosecurity Queensland, Department of Agriculture and Fisheries, Brisbane, QLD, 4108, Australia
| | - Miranda E Vidgen
- School of Science and Engineering, University of the Sunshine Coast, Sippy Downs, QLD, 4556, Australia
| | - Steven Kopp
- School of Veterinary Science, University of Queensland, Gatton, QLD, 4343, Australia
| | - Joanne Meers
- School of Veterinary Science, University of Queensland, Gatton, QLD, 4343, Australia
| | - Hume Field
- Ecohealth Alliance, New York, NY, 10001, USA
| |
Collapse
|