1
|
Ajami S, Van den Dam Z, Hut J, Savery D, Chin M, Koudstaal M, Steacy M, Carriero A, Pitsillides A, Chang Y, Rau C, Marathe S, Dunaway D, Jeelani NUO, Schievano S, Pauws E, Borghi A. Cranial bone microarchitecture in a mouse model for syndromic craniosynostosis. J Anat 2024; 245:864-873. [PMID: 39096036 PMCID: PMC11547221 DOI: 10.1111/joa.14121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/27/2024] [Accepted: 07/23/2024] [Indexed: 08/04/2024] Open
Abstract
Crouzon syndrome is a congenital craniofacial disorder caused by mutations in the Fibroblast Growth Factor Receptor 2 (FGFR2). It is characterized by the premature fusion of cranial sutures, leading to a brachycephalic head shape, and midfacial hypoplasia. The aim of this study was to investigate the effect of the FGFR2 mutation on the microarchitecture of cranial bones at different stages of postnatal skull development, using the FGFR2C342Y mouse model. Apart from craniosynostosis, this model shows cranial bone abnormalities. High-resolution synchrotron microtomography images of the frontal and parietal bone were acquired for both FGFR2C342Y/+ (Crouzon, heterozygous mutant) and FGFR2+/+ (control, wild-type) mice at five ages (postnatal days 1, 3, 7, 14 and 21, n = 6 each). Morphometric measurements were determined for cortical bone porosity: osteocyte lacunae and canals. General linear model to assess the effect of age, anatomical location and genotype was carried out for each morphometric measurement. Histological analysis was performed to validate the findings. In both groups (Crouzon and wild-type), statistical difference in bone volume fraction, average canal volume, lacunar number density, lacunar volume density and canal volume density was found at most age points, with the frontal bone generally showing higher porosity and fewer lacunae. Frontal bone showed differences between the Crouzon and wild-type groups in terms of lacunar morphometry (average lacunar volume, lacunar number density and lacunar volume density) with larger, less dense lacunae around the postnatal age of P7-P14. Histological analysis of bone showed marked differences in frontal bone only. These findings provide a better understanding of the pathogenesis of Crouzon syndrome and will contribute to computational models that predict postoperative changes with the aim to improve surgical outcome.
Collapse
Affiliation(s)
- Sara Ajami
- UCL Great Ormond Street Institute of Child HealthUniversity College LondonLondonUK
- Craniofacial Unit, Great Ormond Street HospitalLondonUK
| | - Zoe Van den Dam
- UCL Great Ormond Street Institute of Child HealthUniversity College LondonLondonUK
| | - Julia Hut
- UCL Great Ormond Street Institute of Child HealthUniversity College LondonLondonUK
| | - Dawn Savery
- UCL Great Ormond Street Institute of Child HealthUniversity College LondonLondonUK
| | - Milton Chin
- UCL Great Ormond Street Institute of Child HealthUniversity College LondonLondonUK
- Oral and Maxillofacial Department, Erasmus MCRotterdamThe Netherlands
| | - Maarten Koudstaal
- Oral and Maxillofacial Department, Erasmus MCRotterdamThe Netherlands
| | - Miranda Steacy
- UCL Great Ormond Street Institute of Child HealthUniversity College LondonLondonUK
| | - Alessandra Carriero
- Department of Biomedical EngineeringThe City College of New YorkNew YorkNYUSA
| | - Andrew Pitsillides
- Comparative Biomedical Sciences, The Royal Veterinary CollegeRoyal College StreetLondonUK
| | - Y.‐M. Chang
- Comparative Biomedical Sciences, The Royal Veterinary CollegeRoyal College StreetLondonUK
| | - Christoph Rau
- Diamond Light Source, Harwell Science and Innovation CampusDidcotUK
| | | | - David Dunaway
- UCL Great Ormond Street Institute of Child HealthUniversity College LondonLondonUK
- Craniofacial Unit, Great Ormond Street HospitalLondonUK
| | - Noor Ul Owase Jeelani
- UCL Great Ormond Street Institute of Child HealthUniversity College LondonLondonUK
- Craniofacial Unit, Great Ormond Street HospitalLondonUK
| | - Silvia Schievano
- UCL Great Ormond Street Institute of Child HealthUniversity College LondonLondonUK
- Craniofacial Unit, Great Ormond Street HospitalLondonUK
| | - Erwin Pauws
- UCL Great Ormond Street Institute of Child HealthUniversity College LondonLondonUK
| | - Alessandro Borghi
- UCL Great Ormond Street Institute of Child HealthUniversity College LondonLondonUK
- Craniofacial Unit, Great Ormond Street HospitalLondonUK
- Department of EngineeringDurham UniversityDurhamUK
| |
Collapse
|
2
|
Maliuk A, Marghoub A, Williams CJA, Stanley E, Kéver L, Vickaryous M, Herrel A, Evans SE, Moazen M. Comparative analysis of osteoderms across the lizard body. Anat Rec (Hoboken) 2024; 307:3191-3203. [PMID: 38396371 DOI: 10.1002/ar.25418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/12/2023] [Accepted: 02/11/2024] [Indexed: 02/25/2024]
Abstract
Osteoderms (ODs) are mineralized tissue embedded within the skin and are particularly common in reptiles. They are generally thought to form a protective layer between the soft tissues of the animal and potential external threats, although other functions have been proposed. The aim of this study was to characterize OD variation across the lizard body. Adults of three lizard species were chosen for this study. After whole body CT scanning of each lizard, single ODs were extracted from 10 different anatomical regions, CT scanned, and characterized using sectioning and nanoindentation. Morphological analysis and material characterization revealed considerable diversity in OD structure across the species investigated. The scincid Tiliqua gigas was the only studied species in which ODs had a similar external morphology across the head and body. Greater osteoderm diversity was found in the gerrhosaurid Broadleysaurus major and the scincid Tribolonotus novaeguineae. Dense capping tissue, like that reported for Heloderma, was found in only one of the three species examined, B. major. Osteoderm structure can be surprisingly complex and variable, both among related taxa, and across the body of individual animals. This raises many questions about OD function but also about the genetic and developmental factors controlling OD shape.
Collapse
Affiliation(s)
- Anastasiia Maliuk
- Department of Mechanical Engineering, University College London, London, UK
- Department of Zoology, National Museum of Natural History, NAS of Ukraine, Kyiv, Ukraine
| | - Arsalan Marghoub
- Department of Mechanical Engineering, University College London, London, UK
| | - Catherine J A Williams
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada
- Department of Biology, Aarhus University, Aarhus, Denmark
- Department of Animal and Veterinary Sciences, Aarhus University, Tjele, Denmark
| | - Edward Stanley
- Department of Natural History, Florida Museum of Natural History, Gainesville, Florida, USA
| | - Loïc Kéver
- Département Adaptations du Vivant, UMR7179 CNRS/MNHN, Paris, France
| | - Matthew Vickaryous
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Anthony Herrel
- Département Adaptations du Vivant, UMR7179 CNRS/MNHN, Paris, France
- Department of Biology, Evolutionary Morphology of Vertebrates, Ghent University, Ghent, Belgium
- Department of Biology, University of Antwerp, Wilrijk, Belgium
- Naturhistorisches Museum Bern, Bern, Switzerland
| | - Susan E Evans
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Mehran Moazen
- Department of Mechanical Engineering, University College London, London, UK
| |
Collapse
|
3
|
Wang L, Meloro C, Fagan MJ, Kissane RWP, Bates KT, Askew GN, Watson PJ. Regional variation of the cortical and trabecular bone material properties in the rabbit skull. PLoS One 2024; 19:e0298621. [PMID: 38412158 PMCID: PMC10898762 DOI: 10.1371/journal.pone.0298621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 01/27/2024] [Indexed: 02/29/2024] Open
Abstract
The material properties of some bones are known to vary with anatomical location, orientation and position within the bone (e.g., cortical and trabecular bone). Details of the heterogeneity and anisotropy of bone is an important consideration for biomechanical studies that apply techniques such as finite element analysis, as the outcomes will be influenced by the choice of material properties used. Datasets detailing the regional variation of material properties in the bones of the skull are sparse, leaving many finite element analyses of skulls no choice but to employ homogeneous, isotropic material properties, often using data from a different species to the one under investigation. Due to the growing significance of investigating the cranial biomechanics of the rabbit in basic science and clinical research, this study used nanoindentation to measure the elastic modulus of cortical and trabecular bone throughout the skull. The elastic moduli of cortical bone measured in the mediolateral and ventrodorsal direction were found to decrease posteriorly through the skull, while it was evenly distributed when measured in the anteroposterior direction. Furthermore, statistical tests showed that the variation of elastic moduli between separate regions (anterior, middle and posterior) of the skull were significantly different in cortical bone, but was not in trabecular bone. Elastic moduli measured in different orthotropic planes were also significantly different, with the moduli measured in the mediolateral direction consistently lower than that measured in either the anteroposterior or ventrodorsal direction. These findings demonstrate the significance of regional and directional variation in cortical bone elastic modulus, and therefore material properties in finite element models of the skull, particularly those of the rabbit, should consider the heterogeneous and orthotropic properties of skull bone when possible.
Collapse
Affiliation(s)
- Linje Wang
- Structural Biomechanics, Department of Civil and Environmental Engineering, Imperial College London, London, United Kingdom
- School of Engineering, University of Hull, Hull, United Kingdom
| | - Carlo Meloro
- Research Centre in Evolutionary Anthropology and Palaeoecology, School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Michael J Fagan
- School of Engineering, University of Hull, Hull, United Kingdom
| | - Roger W P Kissane
- Department of Musculoskeletal & Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Karl T Bates
- Department of Musculoskeletal & Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Graham N Askew
- School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| | - Peter J Watson
- School of Engineering, University of Hull, Hull, United Kingdom
- Institute of Medical and Biological Engineering, School of Mechanical Engineering, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
4
|
Taverne M, Watson PJ, Dutel H, Boistel R, Lisicic D, Tadic Z, Fabre AC, Fagan MJ, Herrel A. Form-function relationships underlie rapid dietary changes in a lizard. Proc Biol Sci 2023; 290:20230582. [PMID: 37282532 PMCID: PMC10244978 DOI: 10.1098/rspb.2023.0582] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/18/2023] [Indexed: 06/08/2023] Open
Abstract
Macroevolutionary changes such as variation in habitat use or diet are often associated with convergent, adaptive changes in morphology. However, it is still unclear how small-scale morphological variation at the population level can drive shifts in ecology such as observed at a macroevolutionary scale. Here, we address this question by investigating how variation in cranial form and feeding mechanics relate to rapid changes in diet in an insular lizard (Podarcis siculus) after experimental introduction into a new environment. We first quantified differences in the skull shape and jaw muscle architecture between the source and introduced population using three-dimensional geometric morphometrics and dissections. Next, we tested the impact of the observed variation in morphology on the mechanical performance of the masticatory system using computer-based biomechanical simulation techniques. Our results show that small differences in shape, combined with variation in muscle architecture, can result in significant differences in performance allowing access to novel trophic resources. The confrontation of these data with the already described macroevolutionary relationships between cranial form and function in these insular lizards provides insights into how selection can, over relatively short time scales, drive major changes in ecology through its impact on mechanical performance.
Collapse
Affiliation(s)
- M. Taverne
- UMR 7179, Département Adaptations du Vivant, Muséum National d'Histoire Naturelle, Centre National de la Recherche Scientifique, Paris, France
| | - P. J. Watson
- Department of Engineering, University of Hull, Cottingham Road, Hull HU6 7RX, UK
| | - H. Dutel
- Department of Engineering, University of Hull, Cottingham Road, Hull HU6 7RX, UK
- School of Earth Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - R. Boistel
- UMR 7179, Département Adaptations du Vivant, Muséum National d'Histoire Naturelle, Centre National de la Recherche Scientifique, Paris, France
| | - D. Lisicic
- Department of Biology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, Zagreb, Croatia
| | - Z. Tadic
- Department of Biology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, Zagreb, Croatia
| | - A-C. Fabre
- Naturhistorisches Museum der Burgergemeinde Bern, Bernastrasse 15, 3005 Bern, Switzerland
- Institute of Ecology & Evolution, Universität Bern, Baltzerstrasse 6, 3012 Bern, Switzerland
- Department of Life Sciences, Natural History Museum, London SW7 5BD, UK
| | - M. J. Fagan
- Department of Engineering, University of Hull, Cottingham Road, Hull HU6 7RX, UK
| | - A. Herrel
- UMR 7179, Département Adaptations du Vivant, Muséum National d'Histoire Naturelle, Centre National de la Recherche Scientifique, Paris, France
- Naturhistorisches Museum der Burgergemeinde Bern, Bernastrasse 15, 3005 Bern, Switzerland
| |
Collapse
|
5
|
A preliminary analysis of replicating the biomechanics of helmet therapy for sagittal craniosynostosis. Childs Nerv Syst 2022; 39:989-996. [PMID: 36565313 PMCID: PMC10160196 DOI: 10.1007/s00381-022-05792-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/08/2022] [Indexed: 12/25/2022]
Abstract
PURPOSE The aim of this study was to investigate the biomechanics of endoscopically assisted strip craniectomy treatment for the management of sagittal craniosynostosis while undergoing three different durations of postoperative helmet therapy using a computational approach. METHODS A previously developed 3D model of a 4-month-old sagittal craniosynostosis patient was used. The strip craniectomy incisions were replicated across the segmented parietal bones. Areas across the calvarial were selected and constrained to represent the helmet placement after surgery. Skull growth was modelled and three variations of helmet therapy were investigated, where the timings of helmet removal alternated between 2, 5, and 8 months after surgery. RESULTS The predicted outcomes suggest that the prolonging of helmet placement has perhaps a beneficial impact on the postoperative long-term morphology of the skull. No considerable difference was found on the pattern of contact pressure at the interface of growing intracranial volume and the skull between the considered helmeting durations. CONCLUSION Although the validation of these simulations could not be performed, these simulations showed that the duration of helmet therapy after endoscopically assisted strip craniectomy influenced the cephalic index at 36 months. Further studies require to validate these preliminary findings yet this study can lay the foundations for further studies to advance our fundamental understanding of mechanics of helmet therapy.
Collapse
|
6
|
Galiay L, Cornette R, Laliève L, Hennocq Q, Cross C, Alazmani A, Moazen M, Khonsari RH. Intentional craniofacial remodelling in Europe in the XIXth century: Quantitative evidence of soft tissue modifications from Toulouse, France. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2022; 123:e342-e348. [PMID: 35526830 DOI: 10.1016/j.jormas.2022.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/26/2022] [Accepted: 05/03/2022] [Indexed: 06/14/2023]
Abstract
Intentional skull deformations have been practiced by every human population, from the prehistoric times until the XXth century. In Europe, they were specifically prevalent in the region of Toulouse, France. The soft-tissue modifications due to such practices are not well characterized in the literature due to the rarity of photographic data. Most studies on skull deformations are thus based on skeletal remains. Here we performed a controlled geometric morphometric assessment of 31 frontal pictures and 70 lateral pictures of individuals from Toulouse with intentional deformations extracted from two XIXth century historical French photographic archives. We also measured the forces exerted on the skull vault by the traditional deformation device from Toulouse using a 3D-printed skull and pressure sensors. We showed that individuals with Toulouse deformations have distinctive facial features, caused by moderate forces exerted on the skull vault. Our results exhibit and quantify for the first time the real face of intentional skull deformations, which are a ubiquitous and distinctive feature of the human species.
Collapse
Affiliation(s)
- Leila Galiay
- Service de Chirurgie Maxillo-Faciale et Chirurgie Plastique, Hôpital Universitaire Necker - Enfants Malades, Assistance Publique - Hôpitaux de Paris, Centre de Références Maladies Rares Craniosténoses et Malformations Craniofaciales CRANIOST, Filière Maladies Rares TeteCou, Faculté de Médecine, Université de Paris, 149 rue de Sèvres, Paris 75015, France
| | - Raphaël Cornette
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, École Pratique des Hautes Études, Université des Antilles, Paris, France
| | - Laura Laliève
- Service de Chirurgie Maxillo-Faciale et Chirurgie Plastique, Hôpital Universitaire Necker - Enfants Malades, Assistance Publique - Hôpitaux de Paris, Centre de Références Maladies Rares Craniosténoses et Malformations Craniofaciales CRANIOST, Filière Maladies Rares TeteCou, Faculté de Médecine, Université de Paris, 149 rue de Sèvres, Paris 75015, France
| | - Quentin Hennocq
- Service de Chirurgie Maxillo-Faciale et Chirurgie Plastique, Hôpital Universitaire Necker - Enfants Malades, Assistance Publique - Hôpitaux de Paris, Centre de Références Maladies Rares Craniosténoses et Malformations Craniofaciales CRANIOST, Filière Maladies Rares TeteCou, Faculté de Médecine, Université de Paris, 149 rue de Sèvres, Paris 75015, France
| | - Connor Cross
- Department of Mechanical Engineering, University College London, London, United Kingdom
| | - Ali Alazmani
- Institute of Functional Surfaces, School of Mechanical Engineering, University of Leeds, Leeds, United Kingdom
| | - Mehran Moazen
- Department of Mechanical Engineering, University College London, London, United Kingdom
| | - Roman Hossein Khonsari
- Service de Chirurgie Maxillo-Faciale et Chirurgie Plastique, Hôpital Universitaire Necker - Enfants Malades, Assistance Publique - Hôpitaux de Paris, Centre de Références Maladies Rares Craniosténoses et Malformations Craniofaciales CRANIOST, Filière Maladies Rares TeteCou, Faculté de Médecine, Université de Paris, 149 rue de Sèvres, Paris 75015, France.
| |
Collapse
|
7
|
Marghoub A, Williams CJ, Leite JV, Kirby AC, Kéver L, Porro LB, Barrett PM, Bertazzo S, Abzhanov A, Vickaryous M, Herrel A, Evans SE, Moazen M. Unravelling the structural variation of lizard osteoderms. Acta Biomater 2022; 146:306-316. [PMID: 35552001 DOI: 10.1016/j.actbio.2022.05.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/12/2022] [Accepted: 05/03/2022] [Indexed: 12/15/2022]
Abstract
Vertebrate skin is a remarkable organ that supports and protects the body. It consists of two layers, the epidermis and the underlying dermis. In some tetrapods, the dermis includes mineralised organs known as osteoderms (OD). Lizards, with over 7,000 species, show the greatest diversity in OD morphology and distribution, yet we barely understand what drives this diversity. This multiscale analysis of five species of lizards, whose lineages diverged ∼100-150 million years ago, compared the micro- and macrostructure, material properties, and bending rigidity of their ODs, and examined the underlying bones of the skull roof and jaw (including teeth when possible). Unsurprisingly, OD shape, taken alone, impacts bending rigidity, with the ODs of Corucia zebrata being most flexible and those of Timon lepidus being most rigid. Macroscopic variation is also reflected in microstructural diversity, with differences in tissue composition and arrangement. However, the properties of the core bony tissues, in both ODs and cranial bones, were found to be similar across taxa, although the hard, capping tissue on the ODs of Heloderma and Pseudopus had material properties similar to those of tooth enamel. The results offer evidence on the functional adaptations of cranial ODs, but questions remain regarding the factors driving their diversity. STATEMENT OF SIGNIFICANCE: Understanding nature has always been a significant source of inspiration for various areas of the physical and biological sciences. Here we unravelled a novel biomineralization, i.e. calcified tissue, OD, forming within the skin of lizards which show significant diversity across the group. A range of techniques were used to provide an insight into these exceptionally diverse natural structures, in an integrated, whole system fashion. Our results offer some suggestions into the functional and biomechanical adaptations of OD and their hierarchical structure. This knowledge can provide a potential source of inspiration for biomimetic and bioinspired designs, applicable to the manufacturing of light-weight, damage-tolerant and multifunctional materials for areas such as tissue engineering.
Collapse
|
8
|
Mechanical loading of cranial joints minimizes the craniofacial phenotype in Crouzon syndrome. Sci Rep 2022; 12:9693. [PMID: 35690633 PMCID: PMC9188582 DOI: 10.1038/s41598-022-13807-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/27/2022] [Indexed: 11/09/2022] Open
Abstract
Children with syndromic forms of craniosynostosis undergo a plethora of surgical interventions to resolve the clinical features caused by the premature fusion of cranial sutures. While surgical correction is reliable, the need for repeated rounds of invasive treatment puts a heavy burden on the child and their family. This study explores a non-surgical alternative using mechanical loading of the cranial joints to prevent or delay craniofacial phenotypes associated with Crouzon syndrome. We treated Crouzon syndrome mice before the onset of craniosynostosis by cyclical mechanical loading of cranial joints using a custom designed set-up. Cranial loading applied to the frontal bone partially restores normal skull morphology, significantly reducing the typical brachycephalic appearance. This is underpinned by the delayed closure of the coronal suture and of the intersphenoidal synchondrosis. This study provides a novel treatment alternative for syndromic craniosynostosis which has the potential to be an important step towards replacing, reducing or refining the surgical treatment of all craniosynostosis patients.
Collapse
|
9
|
Cross C, Khonsari RH, Patermoster G, Arnaud E, Larysz D, Kölby L, Johnson D, Ventikos Y, Moazen M. A Computational Framework to Predict Calvarial Growth: Optimising Management of Sagittal Craniosynostosis. Front Bioeng Biotechnol 2022; 10:913190. [PMID: 35685092 PMCID: PMC9170984 DOI: 10.3389/fbioe.2022.913190] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/10/2022] [Indexed: 11/13/2022] Open
Abstract
The neonate skull consists of several bony plates, connected by fibrous soft tissue called sutures. Premature fusion of sutures is a medical condition known as craniosynostosis. Sagittal synostosis, caused by premature fusion of the sagittal suture, is the most common form of this condition. The optimum management of this condition is an ongoing debate in the craniofacial community while aspects of the biomechanics and mechanobiology are not well understood. Here, we describe a computational framework that enables us to predict and compare the calvarial growth following different reconstruction techniques for the management of sagittal synostosis. Our results demonstrate how different reconstruction techniques interact with the increasing intracranial volume. The framework proposed here can be used to inform optimum management of different forms of craniosynostosis, minimising the risk of functional consequences and secondary surgery.
Collapse
Affiliation(s)
- Connor Cross
- Department of Mechanical Engineering, University College London, London, United Kingdom
| | - Roman H Khonsari
- Department of Maxillofacial Surgery and Plastic Surgery, Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France.,Department of Neurosurgery, Craniofacial Surgery Unit, Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Giovanna Patermoster
- Department of Neurosurgery, Craniofacial Surgery Unit, Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Eric Arnaud
- Department of Neurosurgery, Craniofacial Surgery Unit, Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Dawid Larysz
- Department of Head and Neck Surgery for Children and Adolescents, University of Warmia and Mazury in Olsztyn, Prof. St. Popowski Regional Specialized Children's Hospital, Olsztyn, Poland
| | - Lars Kölby
- Department of Plastic Surgery, Sahlgrenska University Hospital, University of Gothenburg, Gothenburg, Sweden
| | - David Johnson
- Oxford Craniofacial Unit, Oxford University Hospital, Oxford, United Kingdom
| | - Yiannis Ventikos
- Department of Mechanical Engineering, University College London, London, United Kingdom
| | - Mehran Moazen
- Department of Mechanical Engineering, University College London, London, United Kingdom
| |
Collapse
|
10
|
Wang JW, Yu K, Li M, Wu J, Wang J, Wan CW, Xiao CL, Xia B, Huang J. Application of nanoindentation technology in testing the mechanical properties of skull materials. Sci Rep 2022; 12:8717. [PMID: 35610238 PMCID: PMC9130296 DOI: 10.1038/s41598-022-11216-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 03/24/2022] [Indexed: 11/18/2022] Open
Abstract
Three-point bending test, compression test and tensile test can detect the mechanical properties of the whole layer of skull, but cannot detect the mechanical properties of the inner plate, the diploe and the outer plate of the skull. In this study, nanoindentation technology was applied to detect mechanical properties of micro-materials of the skull, and differences in micro-mechanical properties of the inner, diploe and outer plates of the skull and cranial suture of human carcasses at different ages were analyzed. The differences in hardness (HIT) and modulus of elasticity (E) were statistically significant among different age groups (P < 0.01). In terms of structure, the E of diploe was higher than that of other structures, while HIT had no significant statistical difference. In terms of location, both HIT and E showed that left frontal (LF) was significantly higher than coronal suture (CS). The above results were consistent with the multi-factor ANOVAs. In addition, the multi-factor ANOVAs further explained the interaction of HIT and E with age, location and structure. It was believed that the nanoindentation technique could be used to analyze laws of micromechanical properties of different structures of human cadaveric skull and cranial suture.
Collapse
Affiliation(s)
- Jia-Wen Wang
- School of Forensic Medicine, Guizhou Medical University, Guiyang, 550004, China
| | - Kai Yu
- Department of Forensic Pathology, College of Forensic Medicine, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Man Li
- School of Forensic Medicine, Guizhou Medical University, Guiyang, 550004, China
| | - Jun Wu
- School of Forensic Medicine, Guizhou Medical University, Guiyang, 550004, China
| | - Jie Wang
- School of Forensic Medicine, Guizhou Medical University, Guiyang, 550004, China
| | - Chang-Wu Wan
- School of Forensic Medicine, Guizhou Medical University, Guiyang, 550004, China
| | - Chao-Lun Xiao
- Basic Medical College, Guizhou Medical University, Guiyang, 550004, China
| | - Bing Xia
- School of Forensic Medicine, Guizhou Medical University, Guiyang, 550004, China
| | - Jiang Huang
- School of Forensic Medicine, Guizhou Medical University, Guiyang, 550004, China.
| |
Collapse
|
11
|
Cerrizuela S, Vega-Lopez GA, Méndez-Maldonado K, Velasco I, Aybar MJ. The crucial role of model systems in understanding the complexity of cell signaling in human neurocristopathies. WIREs Mech Dis 2022; 14:e1537. [PMID: 35023327 DOI: 10.1002/wsbm.1537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 08/26/2021] [Accepted: 08/30/2021] [Indexed: 11/07/2022]
Abstract
Animal models are useful to study the molecular, cellular, and morphogenetic mechanisms underlying normal and pathological development. Cell-based study models have emerged as an alternative approach to study many aspects of human embryonic development and disease. The neural crest (NC) is a transient, multipotent, and migratory embryonic cell population that generates a diverse group of cell types that arises during vertebrate development. The abnormal formation or development of the NC results in neurocristopathies (NCPs), which are characterized by a broad spectrum of functional and morphological alterations. The impaired molecular mechanisms that give rise to these multiphenotypic diseases are not entirely clear yet. This fact, added to the high incidence of these disorders in the newborn population, has led to the development of systematic approaches for their understanding. In this article, we have systematically reviewed the ways in which experimentation with different animal and cell model systems has improved our knowledge of NCPs, and how these advances might contribute to the development of better diagnostic and therapeutic tools for the treatment of these pathologies. This article is categorized under: Congenital Diseases > Genetics/Genomics/Epigenetics Congenital Diseases > Stem Cells and Development Congenital Diseases > Molecular and Cellular Physiology Neurological Diseases > Genetics/Genomics/Epigenetics.
Collapse
Affiliation(s)
- Santiago Cerrizuela
- Division of Molecular Neurobiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT), Tucumán, Argentina
| | - Guillermo A Vega-Lopez
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT), Tucumán, Argentina.,Instituto de Biología "Dr. Francisco D. Barbieri", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Tucumán, Argentina
| | - Karla Méndez-Maldonado
- Instituto de Fisiología Celular - Neurociencias, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.,Departamento de Fisiología y Farmacología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Iván Velasco
- Instituto de Fisiología Celular - Neurociencias, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.,Laboratorio de Reprogramación Celular del Instituto de Fisiología Celular, UNAM en el Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", Ciudad de México, Mexico
| | - Manuel J Aybar
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT), Tucumán, Argentina.,Instituto de Biología "Dr. Francisco D. Barbieri", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Tucumán, Argentina
| |
Collapse
|
12
|
Cross C, Khonsari RH, Larysz D, Johnson D, Kölby L, Moazen M. Predicting and comparing three corrective techniques for sagittal craniosynostosis. Sci Rep 2021; 11:21216. [PMID: 34707183 PMCID: PMC8551239 DOI: 10.1038/s41598-021-00642-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 10/08/2021] [Indexed: 11/26/2022] Open
Abstract
Sagittal synostosis is the most occurring form of craniosynostosis, resulting in calvarial deformation and possible long-term neurocognitive deficits. Several surgical techniques have been developed to correct these issues. Debates as to the most optimal approach are still ongoing. Finite element method is a computational tool that's shown to assist with the management of craniosynostosis. The aim of this study was to compare and predict the outcomes of three reconstruction methods for sagittal craniosynostosis. Here, a generic finite element model was developed based on a patient at 4 months of age and was virtually reconstructed under all three different techniques. Calvarial growth was simulated to predict the skull morphology and the impact of different reconstruction techniques on the brain growth up to 60 months of age. Predicted morphology was then compared with in vivo and literature data. Our results show a promising resemblance to morphological outcomes at follow up. Morphological characteristics between considered techniques were also captured in our predictions. Pressure outcomes across the brain highlight the potential impact that different techniques have on growth. This study lays the foundation for further investigation into additional reconstructive techniques for sagittal synostosis with the long-term vision of optimizing the management of craniosynostosis.
Collapse
Affiliation(s)
- Connor Cross
- Department of Mechanical Engineering, University College London, London, UK
| | - Roman H Khonsari
- Department of Maxillofacial Surgery and Plastic Surgery, School of Medicine, Necker - Enfants Malades University Hospital, Assistance Publique - Hôpitaux de Paris, University of Paris, Paris, France
| | - Dawid Larysz
- Department of Head and Neck Surgery for Children and Adolescents, University of Warmia and Mazury in Olsztyn. Ul, Zolnierska 18a, 10-561, Olsztyn, Poland
| | - David Johnson
- Oxford Craniofacial Unit, Oxford University Hospital, NHS Foundation Trust, Oxford, UK
| | - Lars Kölby
- Department of Plastic Surgery, Sahlgrenska University Hospital, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Mehran Moazen
- Department of Mechanical Engineering, University College London, London, UK.
| |
Collapse
|
13
|
Cross C, Khonsari RH, Galiay L, Patermoster G, Johnson D, Ventikos Y, Moazen M. Using Sensitivity Analysis to Develop a Validated Computational Model of Post-operative Calvarial Growth in Sagittal Craniosynostosis. Front Cell Dev Biol 2021; 9:621249. [PMID: 34124030 PMCID: PMC8187911 DOI: 10.3389/fcell.2021.621249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 04/21/2021] [Indexed: 11/13/2022] Open
Abstract
Craniosynostosis is the premature fusion of one or more sutures across the calvaria, resulting in morphological and health complications that require invasive corrective surgery. Finite element (FE) method is a powerful tool that can aid with preoperative planning and post-operative predictions of craniosynostosis outcomes. However, input factors can influence the prediction of skull growth and the pressure on the growing brain using this approach. Therefore, the aim of this study was to carry out a series of sensitivity studies to understand the effect of various input parameters on predicting the skull morphology of a sagittal synostosis patient post-operatively. Preoperative CT images of a 4-month old patient were used to develop a 3D model of the skull, in which calvarial bones, sutures, cerebrospinal fluid (CSF), and brain were segmented. Calvarial reconstructive surgery was virtually modeled and two intracranial content scenarios labeled “CSF present” and “CSF absent,” were then developed. FE method was used to predict the calvarial morphology up to 76 months of age with intracranial volume-bone contact parameters being established across the models. Sensitivity tests with regards to the choice of material properties, methods of simulating bone formation and the rate of bone formation across the sutures were undertaken. Results were compared to the in vivo data from the same patient. Sensitivity tests to the choice of various material properties highlighted that the defined elastic modulus for the craniotomies appears to have the greatest influence on the predicted overall skull morphology. The bone formation modeling approach across the sutures/craniotomies had a considerable impact on the level of contact pressure across the brain with minimum impact on the overall predicated morphology of the skull. Including the effect of CSF (based on the approach adopted here) displayed only a slight reduction in brain pressure outcomes. The sensitivity tests performed in this study set the foundation for future comparative studies using FE method to compare outcomes of different reconstruction techniques for the management of craniosynostosis.
Collapse
Affiliation(s)
- Connor Cross
- Department of Mechanical Engineering, University College London, London, United Kingdom
| | - Roman H Khonsari
- Service de Chirurgie Maxillo-Faciale et Plastique, Assistance Publique des Hôpitaux de Paris, Paris, France
| | - Leila Galiay
- Service de Chirurgie Maxillo-Faciale et Plastique, Assistance Publique des Hôpitaux de Paris, Paris, France
| | - Giovanna Patermoster
- Department of Neurosurgery, Craniofacial 16 Surgery Unit, Necker-Enfants Malades University Hospital, Assistance Publique-Hôpitaux de 17 Paris, Université de Paris, Paris, France
| | - David Johnson
- Oxford Craniofacial Unit, Oxford University Hospital, NHS Foundation Trust, Oxford, United Kingdom
| | - Yiannis Ventikos
- Department of Mechanical Engineering, University College London, London, United Kingdom
| | - Mehran Moazen
- Department of Mechanical Engineering, University College London, London, United Kingdom
| |
Collapse
|
14
|
Abstract
Early fusion of the sagittal suture is a clinical condition called, sagittal craniosynostosis. Calvarial reconstruction is the most common treatment option for this condition with a range of techniques being developed by different groups. Computer simulations have a huge potential to predict the calvarial growth and optimise the management of this condition. However, these models need to be validated. The aim of this study was to develop a validated patient-specific finite element model of a sagittal craniosynostosis. Here, the finite element method was used to predict the calvarial morphology of a patient based on its preoperative morphology and the planned surgical techniques. A series of sensitivity tests and hypothetical models were carried out and developed to understand the effect of various input parameters on the result. Sensitivity tests highlighted that the models are sensitive to the choice of input parameter. The hypothetical models highlighted the potential of the approach in testing different reconstruction techniques. The patient-specific model highlighted that a comparable pattern of calvarial morphology to the follow up CT data could be obtained. This study forms the foundation for further studies to use the approach described here to optimise the management of sagittal craniosynostosis.
Collapse
|
15
|
Borghi A, Rodriguez Florez N, Ruggiero F, James G, O'Hara J, Ong J, Jeelani O, Dunaway D, Schievano S. A population-specific material model for sagittal craniosynostosis to predict surgical shape outcomes. Biomech Model Mechanobiol 2019; 19:1319-1329. [PMID: 31571084 PMCID: PMC7424404 DOI: 10.1007/s10237-019-01229-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 09/17/2019] [Indexed: 11/26/2022]
Abstract
Sagittal craniosynostosis consists of premature fusion (ossification) of the sagittal suture during infancy, resulting in head deformity and brain growth restriction. Spring-assisted cranioplasty (SAC) entails skull incisions to free the fused suture and insertion of two springs (metallic distractors) to promote cranial reshaping. Although safe and effective, SAC outcomes remain uncertain. We aimed hereby to obtain and validate a skull material model for SAC outcome prediction. Computed tomography data relative to 18 patients were processed to simulate surgical cuts and spring location. A rescaling model for age matching was created using retrospective data and validated. Design of experiments was used to assess the effect of different material property parameters on the model output. Subsequent material optimization-using retrospective clinical spring measurements-was performed for nine patients. A population-derived material model was obtained and applied to the whole population. Results showed that bone Young's modulus and relaxation modulus had the largest effect on the model predictions: the use of the population-derived material model had a negligible effect on improving the prediction of on-table opening while significantly improved the prediction of spring kinematics at follow-up. The model was validated using on-table 3D scans for nine patients: the predicted head shape approximated within 2 mm the 3D scan model in 80% of the surface points, in 8 out of 9 patients. The accuracy and reliability of the developed computational model of SAC were increased using population data: this tool is now ready for prospective clinical application.
Collapse
Affiliation(s)
- Alessandro Borghi
- UCL Great Ormond Street Institute of Child Health and Great Ormond Street Hospital for Children, London, UK.
| | - Naiara Rodriguez Florez
- Surface Technologies Group, Department of Biomedical Engineering, Mondragon Unibertsitatea, Mondragón, Spain
| | - Federica Ruggiero
- UCL Great Ormond Street Institute of Child Health and Great Ormond Street Hospital for Children, London, UK
| | - Greg James
- UCL Great Ormond Street Institute of Child Health and Great Ormond Street Hospital for Children, London, UK
| | - Justine O'Hara
- UCL Great Ormond Street Institute of Child Health and Great Ormond Street Hospital for Children, London, UK
| | - Juling Ong
- UCL Great Ormond Street Institute of Child Health and Great Ormond Street Hospital for Children, London, UK
| | - Owase Jeelani
- UCL Great Ormond Street Institute of Child Health and Great Ormond Street Hospital for Children, London, UK
| | - David Dunaway
- UCL Great Ormond Street Institute of Child Health and Great Ormond Street Hospital for Children, London, UK
| | - Silvia Schievano
- UCL Great Ormond Street Institute of Child Health and Great Ormond Street Hospital for Children, London, UK
| |
Collapse
|
16
|
Malde O, Libby J, Moazen M. An Overview of Modelling Craniosynostosis Using the Finite Element Method. Mol Syndromol 2019; 10:74-82. [PMID: 30976281 PMCID: PMC6422121 DOI: 10.1159/000490833] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Craniosynostosis is a medical condition caused by the early fusion of the cranial joint. The finite element method (FEM) is a computational technique that can answer a variety of "what if" questions in relation to the biomechanics of this condition. The aim of this study was to review the current literature that has used FEM to investigate the biomechanics of any aspect of craniosynostosis, being its development or its reconstruction. This review highlights that a relatively small number of studies (n = 10) has used FEM to investigate the biomechanics of craniosynostosis. Current studies set a good foundation for the future to take advantage of this method and optimize reconstruction of various forms of craniosynostosis.
Collapse
Affiliation(s)
- Oyvind Malde
- UCL Mechanical Engineering, University College London, London
| | - Joseph Libby
- School of Engineering and Computer Science, University of Hull, Hull, UK
| | - Mehran Moazen
- UCL Mechanical Engineering, University College London, London
| |
Collapse
|
17
|
Marghoub A, Libby J, Babbs C, Ventikos Y, Fagan MJ, Moazen M. Characterizing and Modeling Bone Formation during Mouse Calvarial Development. PHYSICAL REVIEW LETTERS 2019; 122:048103. [PMID: 30768286 DOI: 10.1103/physrevlett.122.048103] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 11/06/2018] [Indexed: 06/09/2023]
Abstract
The newborn mammalian cranial vault consists of five flat bones that are joined together along their edges by soft fibrous tissues called sutures. Early fusion of these sutures leads to a medical condition known as craniosynostosis. The mechanobiology of normal and craniosynostotic skull growth is not well understood. In a series of previous studies, we characterized and modeled radial expansion of normal and craniosynostotic (Crouzon) mice. Here, we describe a new modeling algorithm to simulate bone formation at the sutures in normal and craniosynostotic mice. Our results demonstrate that our modeling approach is capable of predicting the observed ex vivo pattern of bone formation at the sutures in the aforementioned mice. The same approach can be used to model different calvarial reconstruction in children with craniosynostosis to assist in the management of this complex condition.
Collapse
Affiliation(s)
- Arsalan Marghoub
- Department of Mechanical Engineering, University College London, Torrington Place, London, WC1E 7JE, United Kingdom
| | - Joseph Libby
- Medical and Biological Engineering, School of Engineering and Computer Science, University of Hull, Hull, HU6 7RX, United Kingdom
| | - Christian Babbs
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, United Kingdom
| | - Yiannis Ventikos
- Department of Mechanical Engineering, University College London, Torrington Place, London, WC1E 7JE, United Kingdom
| | - Michael J Fagan
- Medical and Biological Engineering, School of Engineering and Computer Science, University of Hull, Hull, HU6 7RX, United Kingdom
| | - Mehran Moazen
- Department of Mechanical Engineering, University College London, Torrington Place, London, WC1E 7JE, United Kingdom
| |
Collapse
|
18
|
Libby J, Marghoub A, Johnson D, Khonsari RH, Fagan MJ, Moazen M. Modelling human skull growth: a validated computational model. J R Soc Interface 2018; 14:rsif.2017.0202. [PMID: 28566514 DOI: 10.1098/rsif.2017.0202] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 05/09/2017] [Indexed: 11/12/2022] Open
Abstract
During the first year of life, the brain grows rapidly and the neurocranium increases to about 65% of its adult size. Our understanding of the relationship between the biomechanical forces, especially from the growing brain, the craniofacial soft tissue structures and the individual bone plates of the skull vault is still limited. This basic knowledge could help in the future planning of craniofacial surgical operations. The aim of this study was to develop a validated computational model of skull growth, based on the finite-element (FE) method, to help understand the biomechanics of skull growth. To do this, a two-step validation study was carried out. First, an in vitro physical three-dimensional printed model and an in silico FE model were created from the same micro-CT scan of an infant skull and loaded with forces from the growing brain from zero to two months of age. The results from the in vitro model validated the FE model before it was further developed to expand from 0 to 12 months of age. This second FE model was compared directly with in vivo clinical CT scans of infants without craniofacial conditions (n = 56). The various models were compared in terms of predicted skull width, length and circumference, while the overall shape was quantified using three-dimensional distance plots. Statistical analysis yielded no significant differences between the male skull models. All size measurements from the FE model versus the in vitro physical model were within 5%, with one exception showing a 7.6% difference. The FE model and in vivo data also correlated well, with the largest percentage difference in size being 8.3%. Overall, the FE model results matched well with both the in vitro and in vivo data. With further development and model refinement, this modelling method could be used to assist in preoperative planning of craniofacial surgery procedures and could help to reduce reoperation rates.
Collapse
Affiliation(s)
- Joseph Libby
- Medical and Biological Engineering, School of Engineering and Computer Science, University of Hull, Hull HU6 7RX, UK
| | - Arsalan Marghoub
- UCL Mechanical Engineering, University College London, London WC1E 7JE, UK
| | - David Johnson
- Oxford Craniofacial Unit, Oxford Radcliffe Hospitals NHS Trust, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Roman H Khonsari
- Assistance Publique-Hôpitaux de Paris, Hôpital Universitaire Necker-Enfants Malades, Service de Chirurgie Maxillofaciale et Plastique & Université Paris Descartes, Paris, France
| | - Michael J Fagan
- Medical and Biological Engineering, School of Engineering and Computer Science, University of Hull, Hull HU6 7RX, UK
| | - Mehran Moazen
- UCL Mechanical Engineering, University College London, London WC1E 7JE, UK
| |
Collapse
|
19
|
Marghoub A, Libby J, Babbs C, Pauws E, Fagan MJ, Moazen M. Predicting calvarial growth in normal and craniosynostotic mice using a computational approach. J Anat 2018; 232:440-448. [PMID: 29243252 PMCID: PMC5807955 DOI: 10.1111/joa.12764] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2017] [Indexed: 11/26/2022] Open
Abstract
During postnatal calvarial growth the brain grows gradually and the overlying bones and sutures accommodate that growth until the later juvenile stages. The whole process is coordinated through a complex series of biological, chemical and perhaps mechanical signals between various elements of the craniofacial system. The aim of this study was to investigate to what extent a computational model can accurately predict the calvarial growth in wild-type (WT) and mutant type (MT) Fgfr2C342Y/+ mice displaying bicoronal suture fusion. A series of morphological studies were carried out to quantify the calvarial growth at P3, P10 and P20 in both mouse types. MicroCT images of a P3 specimen were used to develop a finite element model of skull growth to predict the calvarial shape of WT and MT mice at P10. Sensitivity tests were performed and the results compared with ex vivo P10 data. Although the models were sensitive to the choice of input parameters, they predicted the overall skull growth in the WT and MT mice. The models also captured the difference between the ex vivoWT and MT mice. This modelling approach has the potential to be translated to human skull growth and to enhance our understanding of the different reconstruction methods used to manage clinically the different forms of craniosynostosis, and in the long term possibly reduce the number of re-operations in children displaying this condition and thereby enhance their quality of life.
Collapse
Affiliation(s)
- Arsalan Marghoub
- Department of Mechanical EngineeringUniversity College LondonLondonUK
| | - Joseph Libby
- Medical and Biological EngineeringSchool of Engineering and Computer ScienceUniversity of HullHullUK
| | - Christian Babbs
- MRC Molecular Haematology UnitMRC Weatherall Institute of Molecular MedicineUniversity of OxfordOxfordUK
| | - Erwin Pauws
- Institute of Child HealthGreat Ormond StreetUniversity College LondonLondonUK
| | - Michael J. Fagan
- Medical and Biological EngineeringSchool of Engineering and Computer ScienceUniversity of HullHullUK
| | - Mehran Moazen
- Department of Mechanical EngineeringUniversity College LondonLondonUK
| |
Collapse
|
20
|
Abstract
Craniosynostosis is the premature fusion of the calvarial sutures that is associated with a number of physical and intellectual disabilities spanning from pediatric to adult years. Over the past two decades, techniques in molecular genetics and more recently, advances in high-throughput DNA sequencing have been used to examine the underlying pathogenesis of this disease. To date, mutations in 57 genes have been identified as causing craniosynostosis and the number of newly discovered genes is growing rapidly as a result of the advances in genomic technologies. While contributions from both genetic and environmental factors in this disease are increasingly apparent, there remains a gap in knowledge that bridges the clinical characteristics and genetic markers of craniosynostosis with their signaling pathways and mechanotransduction processes. By linking genotype to phenotype, outlining the role of cell mechanics may further uncover the specific mechanotransduction pathways underlying craniosynostosis. Here, we present a brief overview of the recent findings in craniofacial genetics and cell mechanics, discussing how this information together with animal models is advancing our understanding of craniofacial development.
Collapse
Affiliation(s)
- Zeinab Al-Rekabi
- Department of Mechanical Engineering, University of Washington, 3900 E Stevens Way NE, Seattle, WA, 98195, USA
- Seattle Children’s Research Institute, Center for Developmental Biology and Regenerative Medicine, 1900 9 Ave, Seattle, WA, 98101, USA
| | - Michael L. Cunningham
- Seattle Children’s Research Institute, Center for Developmental Biology and Regenerative Medicine, 1900 9 Ave, Seattle, WA, 98101, USA
- Department of Pediatrics, Division of Craniofacial Medicine and the, University of Washington, 1959 NE Pacific St., Seattle, WA, 98195, USA
| | - Nathan J. Sniadecki
- Department of Mechanical Engineering, University of Washington, 3900 E Stevens Way NE, Seattle, WA, 98195, USA
- Department of Bioengineering, University of Washington, 3720 15 Ave NE, Seattle WA, 98105, USA
| |
Collapse
|
21
|
Yu W, Bajorek J, Jayade S, Miele A, Mirza J, Rogado S, Sundararajan A, Faig J, Ferrage L, Uhrich KE. Salicylic acid (SA)-eluting bone regeneration scaffolds with interconnected porosity and local and sustained SA release. J Biomed Mater Res A 2016; 105:311-318. [DOI: 10.1002/jbm.a.35904] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 09/11/2016] [Accepted: 09/14/2016] [Indexed: 01/12/2023]
Affiliation(s)
- Weiling Yu
- Department of Biomedical Engineering; Rutgers, The State University of New Jersey; Piscataway New Jersey 08854
| | - Jennifer Bajorek
- Department of Biomedical Engineering; Rutgers, The State University of New Jersey; Piscataway New Jersey 08854
| | - Sayeli Jayade
- Department of Biomedical Engineering; Rutgers, The State University of New Jersey; Piscataway New Jersey 08854
| | - Alyssa Miele
- Department of Biomedical Engineering; Rutgers, The State University of New Jersey; Piscataway New Jersey 08854
| | - Javad Mirza
- Department of Biomedical Engineering; Rutgers, The State University of New Jersey; Piscataway New Jersey 08854
| | - Sarah Rogado
- Department of Pharmaceutics, Ernest Mario School of Pharmacy; Rutgers, The State University of New Jersey; Piscataway New Jersey 08854
| | - Aravind Sundararajan
- Department of Biomedical Engineering; Rutgers, The State University of New Jersey; Piscataway New Jersey 08854
| | - Jonathan Faig
- Department of Chemistry and Chemical Biology; Rutgers, The State University of New Jersey; Piscataway New Jersey 08854
| | - Loïc Ferrage
- Department of Materials Science Engineering; ENSIACET; 31030 Toulouse France
| | - Kathryn E. Uhrich
- Department of Chemistry and Chemical Biology; Rutgers, The State University of New Jersey; Piscataway New Jersey 08854
| |
Collapse
|
22
|
Biomimetic whitlockite inorganic nanoparticles-mediated in situ remodeling and rapid bone regeneration. Biomaterials 2016; 112:31-43. [PMID: 27744219 DOI: 10.1016/j.biomaterials.2016.10.009] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 09/27/2016] [Accepted: 10/07/2016] [Indexed: 11/20/2022]
Abstract
Bone remodeling process relies on complex signaling pathway between osteoblasts and osteoclasts and control mechanisms to achieve homeostasis of their growth and differentiation. Despite previous achievements in understanding complicated signaling pathways between cells and bone extracellular matrices during bone remodeling process, a role of local ionic concentration remains to be elucidated. Here, we demonstrate that synthetic whitlockite (WH: Ca18Mg2(HPO4)2(PO4)12) nanoparticles can recapitulate early-stage of bone regeneration through stimulating osteogenic differentiation, prohibiting osteoclastic activity, and transforming into mechanically enhanced hydroxyapatite (HAP)-neo bone tissues by continuous supply of PO43- and Mg2+ under physiological conditions. In addition, based on their structural analysis, the dynamic phase transformation from WH into HAP contributed as a key factor for rapid bone regeneration with denser hierarchical neo-bone structure. Our findings suggest a groundbreaking concept of 'living bone minerals' that actively communicate with the surrounding system to induce self-healing, while previous notions about bone minerals have been limited to passive products of cellular mineralization.
Collapse
|
23
|
Intracranial pressure changes during mouse development. J Biomech 2015; 49:123-126. [PMID: 26620442 DOI: 10.1016/j.jbiomech.2015.11.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 11/06/2015] [Accepted: 11/10/2015] [Indexed: 12/25/2022]
Abstract
During early stages of postnatal development, pressure from the growing brain as well as cerebrospinal fluid, i.e. intracranial pressure (ICP), load the calvarial bones. It is likely that such loading contributes to the peripheral bone formation at the sutural edges of calvarial bones, especially shortly after birth when the brain is growing rapidly. The aim of this study was to quantify ICP during mouse development. A custom pressure monitoring system was developed and calibrated. It was then used to measure ICP in a total of seventy three wild type mice at postnatal (P) day 3, 10, 20, 31 and 70. Retrospectively, the sample in each age group with the closest ICP to the average value was scanned using micro-computed tomography to estimate cranial growth. ICP increased from 1.33±0.87mmHg at P3 to 1.92±0.78mmHg at P10 and 3.60±1.08mmHg at P20. In older animals, ICP plateaued at about 4mmHg. There were statistically significant differences between the ICP at the P3 vs. P20, and P10 vs. P20. In the samples that were scanned, intracranial volume and skull length followed a similar pattern of increase up to P20 and then plateaued at older ages. These data are consistent with the possibility of ICP being a contributing factor to bone formation at the sutures during early stages of development. The data can be further used for development and validation of computational models of skull growth.
Collapse
|