1
|
Manosalva C, Bahamonde C, Soto F, Leal V, Ojeda C, Cortés C, Alarcón P, Burgos RA. Linoleic Acid Induces Metabolic Reprogramming and Inhibits Oxidative and Inflammatory Effects in Keratinocytes Exposed to UVB Radiation. Int J Mol Sci 2024; 25:10385. [PMID: 39408715 PMCID: PMC11476445 DOI: 10.3390/ijms251910385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Linoleic acid (LA), the primary ω-6 polyunsaturated fatty acid (PUFA) found in the epidermis, plays a crucial role in preserving the integrity of the skin's water permeability barrier. Additionally, vegetable oils rich in LA have been shown to notably mitigate ultraviolet (UV) radiation-induced effects, including the production of reactive oxygen species (ROS), cellular damage, and skin photoaging. These beneficial effects are primarily ascribed to the LA in these oils. Nonetheless, the precise mechanisms through which LA confers protection against damage induced by exposure to UVB radiation remain unclear. This study aimed to examine whether LA can restore redox and metabolic equilibria and to assess its influence on the inflammatory response triggered by UVB radiation in keratinocytes. Flow cytometry analysis unveiled the capacity of LA to diminish UVB-induced ROS levels in HaCaT cells. GC/MS-based metabolomics highlighted significant metabolic changes, especially in carbohydrate, amino acid, and glutathione (GSH) metabolism, with LA restoring depleted GSH levels post-UVB exposure. LA also upregulated PI3K/Akt-dependent GCLC and GSS expression while downregulating COX-2 expression. These results suggest that LA induces metabolic reprogramming, protecting against UVB-induced oxidative damage by enhancing GSH biosynthesis via PI3K/Akt signaling. Moreover, it suppresses UVB-induced COX-2 expression in HaCaT cells, making LA treatment a promising strategy against UVB-induced oxidative and inflammatory damage.
Collapse
Affiliation(s)
- Carolina Manosalva
- Institute of Pharmacy, Faculty of Sciences, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Claudio Bahamonde
- Institute of Pharmacy, Faculty of Sciences, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Franco Soto
- Institute of Pharmacy, Faculty of Sciences, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Vicente Leal
- Institute of Pharmacy, Faculty of Sciences, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - César Ojeda
- Institute of Pharmacy, Faculty of Sciences, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Carmen Cortés
- Institute of Pharmacy, Faculty of Sciences, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Pablo Alarcón
- Laboratory of Inflammation Pharmacology and Immunometabolism, Institute of Pharmacology and Morphophysiology, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia 5090000, Chile (R.A.B.)
| | - Rafael A. Burgos
- Laboratory of Inflammation Pharmacology and Immunometabolism, Institute of Pharmacology and Morphophysiology, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia 5090000, Chile (R.A.B.)
| |
Collapse
|
2
|
Bampidis V, Azimonti G, Bastos MDL, Christensen H, Durjava M, Kouba M, López‐Alonso M, Puente SL, Marcon F, Mayo B, Pechová A, Petkova M, Ramos F, Villa RE, Woutersen R, Brantom P, Chesson A, Schlatter J, Westendorf J, Dirven Y, Manini P, Dusemund B. Safety and efficacy of a feed additive consisting of a tincture derived from the dried fruit of Schisandra chinensis (Turcz.) Baill. (omicha tincture) for poultry, horses, dogs and cats (FEFANA asbl). EFSA J 2024; 22:e8731. [PMID: 38601870 PMCID: PMC11004902 DOI: 10.2903/j.efsa.2024.8731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024] Open
Abstract
Following a request from the European Commission, EFSA was asked to deliver a scientific opinion on the safety and efficacy of a tincture from the dried fruit of Schisandra chinensis (Turcz.) Baill. (omicha tincture), when used as a sensory additive in feed for horses, cats, dogs, and in feed and in water for drinking for poultry. The product is a water/ethanol (55:45 v/v) solution, with a dry matter content of not more than 4% (w/w) and a content of 0.01%-0.15% (w/w) for the sum of schisandrin and deoxyschisandrin. The Panel on Additives and Products or Substances used in Animal Feed (FEEDAP) concluded that omicha tincture is safe at the following concentrations in complete feed: 16 mg/kg for turkeys for fattening, 12 mg/kg for chickens for fattening and other poultry for fattening or reared for laying/reproduction, 18 mg/kg for laying hens and other laying/reproductive birds, 56 mg/kg for dogs and 47 mg/kg for horses and cats. The additive is considered safe for consumers when used up to the highest safe level in feed for poultry species and horses. Omicha tincture should be considered as irritants to skin and eyes, and as dermal and respiratory sensitisers. The use of omicha tincture as a flavour in feed for poultry species and horses was not considered to be a risk to the environment. Since it was recognised that the fruit of S. chinensis can influence sensory properties of feedingstuffs, no further demonstration of efficacy was considered necessary for the tincture under assessment.
Collapse
|
3
|
Zhang F, Yang Q, Tang S, Jiang S, Zhao Q, Li J, Xu C, Liu J, Fu Y. CD38-targeted and erythrocyte membrane camouflaged nanodrug delivery system for photothermal and chemotherapy in multiple myeloma. Int J Pharm 2023; 643:123241. [PMID: 37479101 DOI: 10.1016/j.ijpharm.2023.123241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 06/19/2023] [Accepted: 07/15/2023] [Indexed: 07/23/2023]
Abstract
Multiple myeloma (MM) is a malignant and incurable disease. Chemotherapy is currently the primary treatment option for MM. However, chemotherapeutic drugs can interrupt treatment because of serious side effects. Therefore, development of novel therapeutics for MM is essential. In this study, we designed and constructed an innovative nanoparticle-based drug delivery system, P-R@Ni3P-BTZ, and investigated its feasibility, effectiveness, and safety both in vitro and in vivo. P-R@Ni3P-BTZ is a nanocomposite that consists of two parts: (1) the drug carrier (Ni3P), which integrates photothermal therapy (PTT) with chemotherapy by loading bortezomib (BTZ); and (2) the shell (P-R), a CD38 targeting peptide P-modified red blood cell membrane nanovesicles. In vitro and in vivo, it was proven that P-R@Ni3P-BTZ exhibits remarkable antitumor effects by actively targeting CD38 + MM cells. P-R@Ni3P-BTZ significantly induces the accumulation of intracellular reactive oxygen species (ROS) and increases the apoptosis of MM cells, which underlies the primary mechanism of its antitumor effects. In addition, P-R@Ni3P exhibits good biocompatibility and biosafety, both in vitro and in vivo. Overall, P-R@Ni3P-BTZ is a specific and efficient MM therapeutic method.
Collapse
Affiliation(s)
- Fangrong Zhang
- Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha 410013, People's Republic of China
| | - Qin Yang
- Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha 410013, People's Republic of China
| | - Sishi Tang
- Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha 410013, People's Republic of China
| | - Siyi Jiang
- Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha 410013, People's Republic of China
| | - Qiangqiang Zhao
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha 410013, People's Republic of China
| | - Jian Li
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha 410013, People's Republic of China
| | - Cong Xu
- Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha 410013, People's Republic of China
| | - Jing Liu
- Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha 410013, People's Republic of China.
| | - Yunfeng Fu
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha 410013, People's Republic of China.
| |
Collapse
|
4
|
Zagórska-Dziok M, Wójciak M, Ziemlewska A, Nizioł-Łukaszewska Z, Hoian U, Klimczak K, Szczepanek D, Sowa I. Evaluation of the Antioxidant, Cytoprotective and Antityrosinase Effects of Schisandra chinensis Extracts and Their Applicability in Skin Care Product. Molecules 2022; 27:molecules27248877. [PMID: 36558009 PMCID: PMC9786222 DOI: 10.3390/molecules27248877] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/09/2022] [Accepted: 12/11/2022] [Indexed: 12/15/2022] Open
Abstract
Plant extracts have been widely used for skin care for many centuries, and nowadays, they are commonly applied for the development and enrichment of new cosmetic preparations. The present study aimed the assessment of the biological activity of aqueous Schisandra chinensis extracts as a potential ingredient of skin care products. The aspects studied involved the ability to neutralize free radicals, impact on viability and metabolism of keratinocytes, as well as tyrosinase inhibitory potential. Our study showed that aqueous S. chinensis extracts have a positive effect on keratinocyte growth and have high antioxidant potential and strong tyrosinase inhibitory activity. UPLC-MS analysis revealed that three groups of phenolic compounds were predominant in the analyzed extract, including lignans, phenolic acids and flavonoids and protocatechiuc and p-coumaryl quinic acids were predominant. Moreover, microwave-assisted extraction, followed by heat reflux extraction, was the most effective for extracting polyphenols. Furthermore, a prototypical natural body washes gel formulation containing the previously prepared extracts was developed. The irritation potential and viscosity were assessed for each of the formulations. The study demonstrated that the addition of these extracts to body wash gel formulations has a positive effect on their quality and may contribute to a decrease in skin irritation. In summary, S. chinensis aqueous extracts can be seen as an innovative ingredient useful in the cosmetic and pharmaceutical industry.
Collapse
Affiliation(s)
- Martyna Zagórska-Dziok
- Department of Technology of Cosmetic and Pharmaceutical Products, Medical College, University of Information Technology and Management in Rzeszow, Kielnarowa 386a, 36-020 Tyczyn, Poland
| | - Magdalena Wójciak
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
- Correspondence:
| | - Aleksandra Ziemlewska
- Department of Technology of Cosmetic and Pharmaceutical Products, Medical College, University of Information Technology and Management in Rzeszow, Kielnarowa 386a, 36-020 Tyczyn, Poland
| | - Zofia Nizioł-Łukaszewska
- Department of Technology of Cosmetic and Pharmaceutical Products, Medical College, University of Information Technology and Management in Rzeszow, Kielnarowa 386a, 36-020 Tyczyn, Poland
| | - Uliana Hoian
- Department of Technology of Cosmetic and Pharmaceutical Products, Medical College, University of Information Technology and Management in Rzeszow, Kielnarowa 386a, 36-020 Tyczyn, Poland
| | - Katarzyna Klimczak
- Department of Technology of Cosmetic and Pharmaceutical Products, Medical College, University of Information Technology and Management in Rzeszow, Kielnarowa 386a, 36-020 Tyczyn, Poland
| | - Dariusz Szczepanek
- Chair and Department of Neurosurgery and Paediatric Neurosurgery, Medical University of Lublin, 20-090 Lublin, Poland
| | - Ireneusz Sowa
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| |
Collapse
|
5
|
Fu K, Zhou H, Wang C, Gong L, Ma C, Zhang Y, Li Y. A review: Pharmacology and pharmacokinetics of Schisandrin A. Phytother Res 2022; 36:2375-2393. [DOI: 10.1002/ptr.7456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 02/20/2022] [Accepted: 03/18/2022] [Indexed: 12/12/2022]
Affiliation(s)
- Ke Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy Chengdu University of Traditional Chinese Medicine Chengdu China
| | - Honglin Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy Chengdu University of Traditional Chinese Medicine Chengdu China
| | - Cheng Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy Chengdu University of Traditional Chinese Medicine Chengdu China
| | - Lihong Gong
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy Chengdu University of Traditional Chinese Medicine Chengdu China
| | - Cheng Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy Chengdu University of Traditional Chinese Medicine Chengdu China
| | - Yafang Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy Chengdu University of Traditional Chinese Medicine Chengdu China
| | - Yunxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy Chengdu University of Traditional Chinese Medicine Chengdu China
| |
Collapse
|
6
|
Deng Y, Zhang Z, Hong Y, Feng L, Su Y, Xu D. Schisandrin A alleviates mycophenolic acid-induced intestinal toxicity by regulating cell apoptosis and oxidative damage. Toxicol Mech Methods 2022; 32:580-587. [PMID: 35321622 DOI: 10.1080/15376516.2022.2057263] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The gastrointestinal side effects of mycophenolic acid affect its efficacy in kidney transplant patients, which may be due to its toxicity to the intestinal epithelial mechanical barrier, including intestinal epithelial cell apoptosis and destruction of tight junctions. The toxicity mechanism of mycophenolic acid is related to oxidative stress-mediated the activation of mitogen-activated protein kinases (MAPK). Schisandrin A (Sch A), one of the main active components of the Schisandra chinensis, can protects intestinal epithelial cells from deoxynivalenol-induced cytotoxicity and oxidative damage by antioxidant effects. The aim of this study was to investigate the protective effect and potential mechanism of Sch A on mycophenolic acid-induced damage in intestinal epithelial cell. The results showed that Sch A significantly reversed the mycophenolic acid-induced cell viability reduction, restored the expression of tight junction protein ZO-1, occludin and reduced cell apoptosis. In addition, Sch A inhibited mycophenolic acid-mediated MAPK activation and reactive oxygen species (ROS) increase. Collectively, our study showed that Sch A protected intestinal epithelial cells from mycophenolic acid intestinal toxicity, at least in part, by reducing oxidative stress and inhibiting MAPK signaling pathway.
Collapse
Affiliation(s)
- Yiyun Deng
- School of Pharmacy, Anhui Medical University, Hefei, China
| | - Zhe Zhang
- School of Pharmacy, Anhui Medical University, Hefei, China
| | - Yuanyuan Hong
- School of Pharmacy, Anhui Medical University, Hefei, China
| | - Lijuan Feng
- The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yong Su
- The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Dujuan Xu
- School of Pharmacy, Anhui Medical University, Hefei, China.,The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
7
|
Liu HM, Xu PF, Cheng MY, Lei SN, Liu QL, Wang W. Optimization of Fermentation Process of Pomegranate Peel and Schisandra Chinensis and the Biological Activities of Fermentation Broth: Antioxidant Activity and Protective Effect Against H 2O 2-induced Oxidative Damage in HaCaT Cells. Molecules 2021; 26:molecules26113432. [PMID: 34198860 PMCID: PMC8201020 DOI: 10.3390/molecules26113432] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 12/29/2022] Open
Abstract
In this study, the lactobacillus fermentation process of pomegranate (Punica granatum L.) peel and Schisandra chinensis (Turcz.) Baill (PP&SC) was optimized by using the response surface method (RSM) coupled with a Box-Behnken design. The optimum fermentation condition with the maximal yield of ellagic acid (99.49 ± 0.47 mg/g) was as follows: 1:1 (w:w) ratio of pomegranate peel to Schisandra chinensis, 1% (v:v) of strains with a 1:1 (v:v) ratio of Lactobacillus Plantarum to Streptococcus Thermophilus, a 37 °C fermentation temperature, 33 h of fermentation time, 1:20 (g:mL) of a solid–liquid ratio and 3 g/100 mL of a glucose dosage. Under these conditions, the achieved fermentation broth (FB) showed stronger free radical scavenging abilities than the water extract (WE) against the ABTS+, DPPH, OH− and O2− radicals. The cytotoxicity and the protective effect of FB on the intracellular ROS level in HaCaT cells were further detected by the Cell Counting Kit-8 (CCK-8) assay. The results showed that FB had no significant cytotoxicity toward HaCaT cells when its content was no more than 8 mg/mL. The FB with a concentration of 8 mg/mL had a good protective effect against oxidative damage, which can effectively reduce the ROS level to 125.94% ± 13.46% (p < 0.001) compared with 294.49% ± 11.54% of the control group in H2O2-damaged HaCaT cells. The outstanding antioxidant ability and protective effect against H2O2-induced oxidative damage in HaCaT cells promote the potential for the FB of PP&SC as a functional raw material of cosmetics.
Collapse
Affiliation(s)
- Hui-Min Liu
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai 201418, China; (H.-M.L.); (P.-F.X.); (M.-Y.C.); (S.-N.L.); (Q.-L.L.)
- Engineering Research Center of Perfume & Aroma and Cosmetics, Ministry of Education, Shanghai 201418, China
| | - Peng-Fei Xu
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai 201418, China; (H.-M.L.); (P.-F.X.); (M.-Y.C.); (S.-N.L.); (Q.-L.L.)
| | - Ming-Yan Cheng
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai 201418, China; (H.-M.L.); (P.-F.X.); (M.-Y.C.); (S.-N.L.); (Q.-L.L.)
| | - Sheng-Nan Lei
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai 201418, China; (H.-M.L.); (P.-F.X.); (M.-Y.C.); (S.-N.L.); (Q.-L.L.)
| | - Qing-Lei Liu
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai 201418, China; (H.-M.L.); (P.-F.X.); (M.-Y.C.); (S.-N.L.); (Q.-L.L.)
| | - Wei Wang
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai 201418, China; (H.-M.L.); (P.-F.X.); (M.-Y.C.); (S.-N.L.); (Q.-L.L.)
- Engineering Research Center of Perfume & Aroma and Cosmetics, Ministry of Education, Shanghai 201418, China
- Correspondence: ; Tel.: +86-18918830550
| |
Collapse
|
8
|
Kopustinskiene DM, Bernatoniene J. Antioxidant Effects of Schisandra chinensis Fruits and Their Active Constituents. Antioxidants (Basel) 2021; 10:antiox10040620. [PMID: 33919588 PMCID: PMC8073495 DOI: 10.3390/antiox10040620] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/16/2021] [Accepted: 04/16/2021] [Indexed: 02/07/2023] Open
Abstract
Schisandra chinensis Turcz. (Baill.) fruits, their extracts, and bioactive compounds are used in alternative medicine as adaptogens and ergogens protecting against numerous neurological, cardiovascular, gastrointestinal, liver, and skin disorders. S. chinensis fruit extracts and their active compounds are potent antioxidants and mitoprotectors exerting anti-inflammatory, antiviral, anticancer, and anti-aging effects. S. chinensis polyphenolic compounds-flavonoids, phenolic acids and the major constituents dibenzocyclooctadiene lignans are responsible for the S. chinensis antioxidant activities. This review will focus on the direct and indirect antioxidant effects of S. chinensis fruit extract and its bioactive compounds in the cells during normal and pathological conditions.
Collapse
Affiliation(s)
- Dalia M. Kopustinskiene
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania;
| | - Jurga Bernatoniene
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania;
- Department of Drug Technology and Social Pharmacy, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania
- Correspondence:
| |
Collapse
|
9
|
Cho G, Park HM, Jung WM, Cha WS, Lee D, Chae Y. Identification of candidate medicinal herbs for skincare via data mining of the classic Donguibogam text on Korean medicine. Integr Med Res 2020; 9:100436. [PMID: 32742921 PMCID: PMC7388188 DOI: 10.1016/j.imr.2020.100436] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/26/2020] [Accepted: 05/26/2020] [Indexed: 11/26/2022] Open
Abstract
Background Korean cosmetics are widely exported throughout Asia. Cosmetics exploiting traditional Korean medicine lead this trend; thus, the traditional medicinal literature has been invaluable in terms of cosmetic development. We sought candidate medicinal herbs for skincare. Methods We used data mining to investigate associations between medicinal herbs and skin-related keywords (SRKs) in a classical text. We selected 26 SRKs used in the Donguibogam text; these referred to 626 medicinal herbs. Using a term frequency-inverse document frequency approach, we extracted data on herbal characteristics by assessing the co-occurrence frequencies of 52 medicinal herbs and the 26 SRKs. Results We extracted the characteristics of the 52 herbs, each of which exhibited a distinct skin-related action profile. For example Ginseng Radix was associated at a high-level with tonification and anti-aging, but Rehmanniae Radix exhibited a stronger association with anti-aging. Of the 52 herbs, 46 had been subjected to at least one modern study on skincare-related efficacy. Conclusions We made a comprehensive list of candidate medicinal herbs for skincare via data mining a classical medical text. This enhances our understanding of such herbs and will help with discovering new candidate herbs.
Collapse
Affiliation(s)
- Gayoung Cho
- Department of Medical History, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea.,Amore Pacific Research and Development Center, Yongin, Republic of Korea
| | - Hyo-Min Park
- Amore Pacific Research and Development Center, Yongin, Republic of Korea
| | - Won-Mo Jung
- Acupuncture & Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Woong-Seok Cha
- Department of Medical History, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Donghun Lee
- Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, Seongnam, Republic of Korea
| | - Younbyoung Chae
- Acupuncture & Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
10
|
A Review of the Potential Benefits of Plants Producing Berries in Skin Disorders. Antioxidants (Basel) 2020; 9:antiox9060542. [PMID: 32575730 PMCID: PMC7346205 DOI: 10.3390/antiox9060542] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/12/2020] [Accepted: 06/18/2020] [Indexed: 01/17/2023] Open
Abstract
During the last 30 years, berries have gained great attention as functional food against several risk factors in chronic diseases. The number of related publications on Pubmed rose from 1000 items in 1990 to more than 11,000 in 2019. Despite the fact that a common and clear definition of "berries" is not shared among different scientific areas, the phytochemical pattern of these fruits is mainly characterized by anthocyanins, flavanols, flavonols, and tannins, which showed antioxidant and anti-inflammatory properties in humans. Skin insults, like wounds, UV rays, and excessive inflammatory responses, may lead to chronic dermatological disorders, conditions often characterized by long-term treatments. The application of berries for skin protection is sustained by long traditional use, but many observations still require a clear pharmacological validation. This review summarizes the scientific evidence, published on EMBASE, MEDLINE, and Scholar, to identify extraction methods, way of administration, dose, and mechanism of action of berries for potential dermatological treatments. Promising in vitro and in vivo evidence of Punica granatum L. and Vitis vinifera L. supports wound healing and photoprotection, while Schisandra chinensis (Turcz.) Baill. and Vaccinium spp. showed clear immunomodulatory effects. Oral or topical administrations of these berries justify the evaluation of new translational studies to validate their efficacy in humans.
Collapse
|
11
|
Improvement of the production of an Arctic bacterial exopolysaccharide with protective effect on human skin cells against UV-induced oxidative stress. Appl Microbiol Biotechnol 2020; 104:4863-4875. [PMID: 32285173 DOI: 10.1007/s00253-020-10524-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 02/12/2020] [Accepted: 03/03/2020] [Indexed: 01/24/2023]
Abstract
Although microbial exopolysaccharides (EPSs) are applied in different fields, no EPS has been used to protect human skin cells against UV-induced oxidative stress. The EPS produced by the Arctic bacterium Polaribacter sp. SM1127 has high moisture-retention ability and antioxidant activity, suggesting its good industrial potentials. In this study, we improved the EPS production of SM1127 and evaluated its protective effect on human dermal fibroblasts (HDFs) against UV-induced oxidative stress. With glucose as carbon source, the EPS yield was increased from 2.11 to 6.12 g/L by optimizing the fermentation conditions using response surface methodology. To lower the fermentation cost and decrease corrosive speed in stainless steel tanks, whole sugar, whose price is only 8% of that of glucose, was used to replace glucose and NaCl concentration was reduced to 4 g/L in the medium. With the optimized conditions, fed-batch fermentation in a 5-L bioreactor was conducted, and the EPS production reached 19.25 g/L, which represents the highest one reported for a polar microorganism. Moreover, SM1127 EPS could maintain the cell viability and integrity of HDFs under UV-B radiation, probably via decreasing intracellular reactive oxygen species level and increasing intracellular glutathione content and superoxide dismutase activity. Therefore, SM1127 EPS has significant protective effect on HDFs against UV-induced oxidative stress, suggesting its potential to be used in preventing photoaging and photocarcinogenesis. Altogether, this study lays a good foundation for the industrialization of SM1127 EPS, which has promising potential to be used in cosmetics and medical fields.
Collapse
|
12
|
Effects of Deoxyschisandrin on Visceral Sensitivity of Mice with Inflammatory Bowel Disease. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:2986097. [PMID: 31871476 PMCID: PMC6913379 DOI: 10.1155/2019/2986097] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 10/20/2019] [Accepted: 11/08/2019] [Indexed: 12/26/2022]
Abstract
The aims of this study were to build an IBD mouse model and further to observe the effects of deoxyschisandrin on IBD and visceral sensitivity and to evaluate the relevance of brain-derived neurotrophic factor (BDNF) to intestinal hypersensitivity of IBD mice. The results showed that deoxyschisandrin could depress the contraction of isolated smooth muscle, modulate gastrointestinal function, and efficiently decrease the disease activity index (DAI) of IBD mice, which proved that deoxyschisandrin had antidiarrheal effects on the animals. In the colorectal distention (CRD) experiment, visceral sensibility was increased in the model group. However, abdominal withdrawal reflex (AWR) scores were decreased after deoxyschisandrin intervention, indicating that deoxyschisandrin could reduce the visceral hypersensitivity of IBD mice. Both IHC observation and western blotting analysis showed that BDNF protein expression increased evidently in colon of IBD mice. After the intervention of deoxyschisandrin, colon mucosa BDNF protein expression in IBD mice decreased, indicating that deoxyschisandrin could decrease mouse intestinal sensitivity by reducing colon mucosa BDNF expression. In conclusion, deoxyschisandrin possessed antidiarrheal effects and visceral hypersensitivity inhibitory effects in the mice with IBD induced by TNBS, which was related to the reduction in BDNF expression in the colon.
Collapse
|
13
|
Wei Y, Luo Z, Zhou K, Wu Q, Xiao W, Yu Y, Li T. Schisandrae chinensis fructus extract protects against hepatorenal toxicity and changes metabolic ions in cyclosporine A rats. Nat Prod Res 2019; 35:2915-2920. [DOI: 10.1080/14786419.2019.1672688] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Yanyan Wei
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Zhengzhong Luo
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Kang Zhou
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Quanwu Wu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Wen Xiao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yang Yu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Tongming Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
14
|
Kumar JP, Mandal BB. Inhibitory role of silk cocoon extract against elastase, hyaluronidase and UV radiation-induced matrix metalloproteinase expression in human dermal fibroblasts and keratinocytes. Photochem Photobiol Sci 2019; 18:1259-1274. [PMID: 30891584 DOI: 10.1039/c8pp00524a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Topical delivery of potent antioxidants maintain the redox balance of the skin, which leads to the downregulation of matrix metalloproteinase (MMP) expression and prevents UV radiation-induced photoaging. In this study, we aimed at investigating the inhibitory role of silk cocoon extract (SCE) isolated from the Antheraea assamensis (AA), Bombyx mori (BM), and Philosamia ricini (PR) silk varieties against UV radiation-induced MMP expression. Incubation of elastase and hyaluronidase with Antheraea assamensis silk cocoon extract (AASCE) caused 50% inhibition of activity. The assessment of total collagen content using the Sirius red assay showed that AASCE (10 μg mL-1) and Philosamia ricini silk cocoon extract (PRSCE at 100 μg mL-1 concentration) post-treatment significantly enhanced the total collagen content in UVA1 and UVB irradiated HDF cells, whereas BM silk cocoon extract (BMSCE at 100 μg mL-1 concentration) post-treatment significantly enhanced the total collagen content in UVA1-irradiated HDF cells. Gene expression studies revealed AASCE and PRSCE post-treatment downregulated the expression of interleukin (IL)-6, MMP-1 and upregulated procollagen genes in UV irradiated HDF cells. Gelatin zymography studies with AASCE post-treatment downregulated the release of MMP-2 and MMP-9 by HaCaT cells. The overall results validate AASCE efficiently shielding UV radiation-induced collagen and elastin degradation by downregulation of MMP expression, substantiating its further use as a potent antioxidant complement in skin care formulations.
Collapse
Affiliation(s)
- Jadi Praveen Kumar
- Biomaterial and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.
| | | |
Collapse
|
15
|
Wang Y, Li W, Xu S, Hu R, Zeng Q, Liu Q, Li S, Lee H, Chang M, Guan L. Protective skin aging effects of cherry blossom extract (Prunus Yedoensis) on oxidative stress and apoptosis in UVB-irradiated HaCaT cells. Cytotechnology 2019; 71:475-487. [PMID: 30874982 DOI: 10.1007/s10616-018-0215-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 03/19/2018] [Indexed: 11/28/2022] Open
Abstract
Extracts of the cherry blossom plant have been reported to exert various biological effects on human cells. However, no previous investigations have examined the antioxidant and anti-apoptotic effects of these extracts on ultraviolet B (UVB) radiation-induced skin aging. This study explores the underlying mechanisms of the antioxidant and anti-apoptotic effects of cherry blossom extract (CBE) in human keratinocyte (HaCaT) cells. HaCaT cells were treated with CBE at concentrations of 0.5, 1.0, and 2.0% for 24 h and then irradiated with UVB (40 mJ/cm2). CBE effectively and dose-dependently decreased the levels of reactive oxygen species and malondialdehyde, while increasing the activities of superoxide dismutase and glutathione peroxidase. Pretreatment with 1 and 2% CBE attenuated UVB-induced DNA damage by reducing the formation of cyclobutane pyrimidine dimers and 8-hydroxy-20-deoxyguanosine. Furthermore, CBE also prevented UVB-induced apoptosis and significantly downregulated B cell lymphoma 2 (Bcl-2)-associated X, cytochrome-c, and caspase-3 expression, while upregulating Bcl-2 expression. Taken together, these results indicate that CBE protects HaCaT cells from UVB-induced oxidative stress and apoptosis and suggest that CBE could be a potent antioxidant against skin aging.
Collapse
Affiliation(s)
- Yaning Wang
- Skin Research Center, Landproof Testing Technology Co., Ltd, No. 129, Longkou Dong Road, Guangzhou, 510635, Guangdong Province, China
| | - Weixuan Li
- Clinical Laboratory, The First People Hospital of Foshan, No. 81, Lingnan Avenue North, Foshan, Guangdong Province, 528000, People's Republic of China.
| | - Sika Xu
- Skin Research Center, Landproof Testing Technology Co., Ltd, No. 129, Longkou Dong Road, Guangzhou, 510635, Guangdong Province, China
| | - Rong Hu
- Skin Research Center, Landproof Testing Technology Co., Ltd, No. 129, Longkou Dong Road, Guangzhou, 510635, Guangdong Province, China
| | - Qingting Zeng
- Skin Research Center, Landproof Testing Technology Co., Ltd, No. 129, Longkou Dong Road, Guangzhou, 510635, Guangdong Province, China
| | - Qiaoyuan Liu
- Skin Research Center, Landproof Testing Technology Co., Ltd, No. 129, Longkou Dong Road, Guangzhou, 510635, Guangdong Province, China
| | - Shan Li
- Skin Research Center, Landproof Testing Technology Co., Ltd, No. 129, Longkou Dong Road, Guangzhou, 510635, Guangdong Province, China
| | - Hayeon Lee
- The Garden of Naturalsolution, Gajangsaneopseo-ro, Osan-si, Gyeonggi-Do, Republic of Korea
| | - Moonsik Chang
- The Garden of Naturalsolution, Gajangsaneopseo-ro, Osan-si, Gyeonggi-Do, Republic of Korea
| | - Lei Guan
- Skin Research Center, Landproof Testing Technology Co., Ltd, No. 129, Longkou Dong Road, Guangzhou, 510635, Guangdong Province, China.
| |
Collapse
|
16
|
Potential of Schisandra chinensis (Turcz.) Baill. in Human Health and Nutrition: A Review of Current Knowledge and Therapeutic Perspectives. Nutrients 2019; 11:nu11020333. [PMID: 30720717 PMCID: PMC6412213 DOI: 10.3390/nu11020333] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 01/27/2019] [Accepted: 02/02/2019] [Indexed: 12/12/2022] Open
Abstract
Schisandra chinensis (Turcz.) Baill. (SCE) is a plant with high potential for beneficial health effects, confirmed by molecular studies. Its constituents exert anti-cancer effects through the induction of cell cycle arrest and apoptosis, as well as inhibition of invasion and metastasis in cancer cell lines and experimental animals. SCE displays antimicrobial effects against several pathogenic strains. It has anti-diabetic potential, supported by hypoglycemic activity. A diet rich in SCE improves pancreatic functions, stimulates insulin secretion, and reduces complications in diabetic animals. SCE prevents lipid accumulation and differentiation of preadipocytes, indicating its anti-obesity potential. SCE exerts a protective effect against skin photoaging, osteoarthritis, sarcopenia, senescence, and mitochondrial dysfunction, and improves physical endurance and cognitive/behavioural functions, which can be linked with its general anti-aging potency. In food technology, SCE is applied as a preservative, and as an additive to increase the flavour, taste, and nutritional value of food. In summary, SCE displays a variety of beneficial health effects, with no side effects. Further research is needed to determine the molecular mechanisms of SCE action. First, the constituents responsible for its beneficial effects should be isolated and identified, and recommended as preventative nutritional additives, or considered as therapeutics.
Collapse
|
17
|
Kortesoja M, Karhu E, Olafsdottir ES, Freysdottir J, Hanski L. Impact of dibenzocyclooctadiene lignans from Schisandra chinensis on the redox status and activation of human innate immune system cells. Free Radic Biol Med 2019; 131:309-317. [PMID: 30578916 DOI: 10.1016/j.freeradbiomed.2018.12.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/05/2018] [Accepted: 12/17/2018] [Indexed: 12/15/2022]
Abstract
Redox signaling has been established as an essential component of inflammatory responses, and redox active compounds are of interest as potential immunomodulatory agents. Dibenzocyclooctadiene lignans isolated from Schisandra chinensis, a medicinal plant with widespread use in oriental medicine, have been implicated to possess immunomodulatory properties but their effects on the human innate immune system cells have not been described. In this contribution, data are presented on the impact of schisandrin, schisandrin B and schisandrin C on human monocytic cell redox status, as well as their impact on dendritic cell maturation and T cell activation capacity and cytokine production. In THP-1 cells, levels of intracellular reactive oxygen species (ROS) were elevated after 1 h exposure to schisandrin. Schisandrin B and schisandrin C decreased cellular glutathione pools, which is a phenotype previously reported to promote anti-inflammatory functions. Treatment of human primary monocytes with the lignans during their maturation to dendritic cells did not have any effect on the appearance of surface markers HLA-DR and CD86 but schisandrin B and schisandrin C suppressed the secretion of cytokines interleukin (IL)-6, IL-10 and IL-12 by the mature dendritic cells. Dendritic cells maturated in presence of schisandrin C were further cocultured with naïve CD4+ T cells, resulting in reduced IL-12 production. In THP-1 cells, schisandrin B and schisandrin C reduced the IL-6 and IL-12 production triggered by E. coli lipopolysaccharide and IL-12 production induced by an infection with Chlamydia pneumoniae. In conclusion, the studied lignans act as immunomodulatory agents by altering the cytokine secretion, but do not interfere with dendritic cell maturation. And the observed effects may be associated with the ability of the lignans to alter cellular redox status.
Collapse
Affiliation(s)
- Maarit Kortesoja
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014 University of Helsinki, Finland
| | - Elina Karhu
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014 University of Helsinki, Finland
| | - Elin Soffia Olafsdottir
- Faculty of Pharmaceutical Sciences, University of Iceland, Reykjavik, Hofsvallagata 53, 107 Reykjavik, Iceland
| | - Jona Freysdottir
- Department of Immunology and Center for Rheumatology Research, Landspitali-The National University Hospital of Iceland and Faculty of Medicine, University of Iceland, Eiriksgata, 101 Reykjavik, Iceland
| | - Leena Hanski
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014 University of Helsinki, Finland.
| |
Collapse
|
18
|
Kumar JP, Alam S, Jain AK, Ansari KM, Mandal BB. Protective Activity of Silk Sericin against UV Radiation-Induced Skin Damage by Downregulating Oxidative Stress. ACS APPLIED BIO MATERIALS 2018; 1:2120-2132. [DOI: 10.1021/acsabm.8b00558] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Jadi Praveen Kumar
- Biomaterial and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati781039, Assam, India
| | | | | | | | - Biman B. Mandal
- Biomaterial and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati781039, Assam, India
| |
Collapse
|
19
|
Ding M, Shu P, Gao S, Wang F, Gao Y, Chen Y, Deng W, He G, Hu Z, Li T. Schisandrin B protects human keratinocyte-derived HaCaT cells from tert-butyl hydroperoxide-induced oxidative damage through activating the Nrf2 signaling pathway. Int J Mol Med 2018; 42:3571-3581. [PMID: 30272282 DOI: 10.3892/ijmm.2018.3901] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 09/06/2018] [Indexed: 11/05/2022] Open
Abstract
Schisandrin B (Sch B), an active extract of Schisandra chinensis, has demonstrated antioxidant activity in a number of in vitro and in vivo models. In the present study, the capacity of Sch B to protect against oxidative injury in keratinocytes using the human keratinocyte‑derived HaCaT cell line was investigated. To induce oxidative injury, tert‑Butyl hydroperoxide (tBHP) was employed. The results indicate that Sch B efficiently reduced tBHP‑induced cell death, reactive oxygen species (ROS) generation, protein oxidation, lipid peroxidation and DNA damage. Sch B also effectively attenuated the loss of mitochondrial membrane potential (MMP), and restored adenosine triphosphate (ATP) levels in tBHP‑injured HaCaT cells. Furthermore, Sch B enhanced the expression of key antioxidant enzymes, including catalase, heme oxygenase‑1, glutathione peroxidase, and superoxide dismutase, and further engaged the nuclear factor‑erythroid 2‑related factor 2 (Nrf2) signaling pathway by modulating its phosphorylation through activating multiple upstream kinases, including protein kinase B, adenosine monophosphate‑activated protein kinase and mitogen‑activated protein kinases (MAPKs). The present study suggests that Sch B provides a protective effect in keratinocytes in response to oxidative injury via reinforcing the endogenous antioxidant defense system. Therefore, it may be applied as an adjuvant therapy or in health foods to delay the skin aging process and the onset of skin diseases caused by oxidative stress.
Collapse
Affiliation(s)
- Ming Ding
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology, Jinan, Shandong 250353, P.R. China
| | - Peng Shu
- Infinitus (China) Company, Ltd., Guangzhou, Guangdong 510663, P.R. China
| | - Shuang Gao
- Institute of Life Science, Wenzhou University, Wenzhou, Zhejiang 325000, P.R. China
| | - Fenglou Wang
- LB Cosmeceutical Technology Co., Ltd., Shanghai 200233, P.R. China
| | - Yitian Gao
- Institute of Life Science, Wenzhou University, Wenzhou, Zhejiang 325000, P.R. China
| | - Yu Chen
- Institute of Life Science, Wenzhou University, Wenzhou, Zhejiang 325000, P.R. China
| | - Wenjuan Deng
- Infinitus (China) Company, Ltd., Guangzhou, Guangdong 510663, P.R. China
| | - Gaiying He
- LB Cosmeceutical Technology Co., Ltd., Shanghai 200233, P.R. China
| | - Zhenlin Hu
- Institute of Life Science, Wenzhou University, Wenzhou, Zhejiang 325000, P.R. China
| | - Tianduo Li
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology, Jinan, Shandong 250353, P.R. China
| |
Collapse
|
20
|
Song L, Cui S, Li T, Yang S, Wang Q, He K, Zheng Y, He C. Antibacterial effects of Schisandra chinensis
extract on Staphylococcus aureus
and its application in food. J Food Saf 2018. [DOI: 10.1111/jfs.12503] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Liya Song
- Beijing Key Laboratory of Plant Resources Research and Development; College of Science, Beijing Technology and Business University; Beijing China
| | - Shumei Cui
- Beijing Key Laboratory of Plant Resources Research and Development; College of Science, Beijing Technology and Business University; Beijing China
| | - Ting Li
- Beijing Key Laboratory of Plant Resources Research and Development; College of Science, Beijing Technology and Business University; Beijing China
| | - Shuran Yang
- Beijing Key Laboratory of Plant Resources Research and Development; College of Science, Beijing Technology and Business University; Beijing China
| | - Qian Wang
- Beijing Key Laboratory of Plant Resources Research and Development; College of Science, Beijing Technology and Business University; Beijing China
| | - Keke He
- Beijing Key Laboratory of Plant Resources Research and Development; College of Science, Beijing Technology and Business University; Beijing China
| | - Yumei Zheng
- Beijing Key Laboratory of Plant Resources Research and Development; College of Science, Beijing Technology and Business University; Beijing China
| | - Congfen He
- Beijing Key Laboratory of Plant Resources Research and Development; College of Science, Beijing Technology and Business University; Beijing China
| |
Collapse
|
21
|
Liu G, Zhang W. Long non-coding RNA HOTAIR promotes UVB-induced apoptosis and inflammatory injury by up-regulation of PKR in keratinocytes. ACTA ACUST UNITED AC 2018; 51:e6896. [PMID: 29898032 PMCID: PMC6002131 DOI: 10.1590/1414-431x20186896] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 04/09/2018] [Indexed: 12/14/2022]
Abstract
Excessive exposure to ultraviolet (UV) rays can cause damage of the skin and may
induce cancer, immunosuppression, photoaging, and inflammation. The long
non-coding RNA (lncRNA) HOX antisense intergenic RNA (HOTAIR) is involved in
multiple human biological processes. However, its role in UVB-induced
keratinocyte injury is unclear. This study was performed to investigate the
effects of HOTAIR in UVB-induced apoptosis and inflammatory injury in human
keratinocytes (HaCaT cells). Quantitative real-time polymerase chain reaction
was performed to analyze the expression levels of HOTAIR, PKR, TNF-α, and IL-6.
Cell viability was measured using trypan blue exclusion method and cell
apoptosis using flow cytometry and western blot. ELISA was used to measure the
concentrations of TNF-α and IL-6. Western blot was used to measure the
expression of PKR, apoptosis-related proteins, and PI3K/AKT and NF-κB pathway
proteins. UVB induced HaCaT cell injury by inhibiting cell viability and
promoting cell apoptosis and expressions of IL-6 and TNF-α. UVB also promoted
the expression of HOTAIR. HOTAIR suppression increased cell viability and
decreased apoptosis and expression of inflammatory factors in UVB-treated cells.
HOTAIR also promoted the expression of PKR. Overexpression of HOTAIR decreased
cell viability and increased cell apoptosis and expression of inflammatory
factors in UVB-treated cells by upregulating PKR. Overexpression of PKR
decreased cell viability and promoted cell apoptosis in UVB-treated cells.
Overexpression of PKR activated PI3K/AKT and NF-κB pathways. Our findings
identified an essential role of HOTAIR in promoting UVB-induced apoptosis and
inflammatory injury by up-regulating PKR in keratinocytes.
Collapse
Affiliation(s)
- Guo Liu
- Department of Burns and Plastic Surgery, Jining No.1 People's Hospital, Jining, Shandong, China
| | - Wenhao Zhang
- Department of Burns and Plastic Surgery, Jining No.1 People's Hospital, Jining, Shandong, China
| |
Collapse
|
22
|
Yue P, Gao L, Wang X, Ding X, Teng J. Pretreatment of glial cell-derived neurotrophic factor and geranylgeranylacetone ameliorates brain injury in Parkinson's disease by its anti-apoptotic and anti-oxidative property. J Cell Biochem 2018; 119:5491-5502. [PMID: 29377238 DOI: 10.1002/jcb.26712] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 01/23/2018] [Indexed: 12/22/2022]
Abstract
The aim of the present study was to determine the combined effects of glial cell-derived neurotrophic factor (GDNF) and geranylgeranylacetone (GGA) on neuron apoptosis and oxidative stress in Parkinson's disease (PD). A mouse MPTP model of PD and cellular models of H2 O2 and MPP+ -treated PC12 cells were established. Swimming, pole, and traction tests were used to detect behavioral impairment. Tyrosine hydroxylase (TH) immunohistochemistry was used to evaluate the neuron loss. TUNEL and flow cytometer method were used to identify the neuron apoptosis. MDA levels and activities of antioxidant enzymes were used to detect the oxidative damage. The PD model of mice received GDNF and GGA exhibited a significant recovery in their swim, pole, and traction scores. Moreover, the combined treatment significantly reduced the neuron apoptosis in the substantia nigra (SN) of PD mice or in H2 O2 or MPP+ -induced PC12 cells compared with the single drug group. In addition, significant reduction of MDA levels and improvement of activities of CAT, SOD, and GSH-px were observed after GDNF and GGA treatment in the PD model and H2 O2 or MPP+ -induced PC12 cells. The combination of GDNF and GGA ameliorated neural apoptosis and oxidative damage in PD.
Collapse
Affiliation(s)
- Peijian Yue
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lin Gao
- Department of Neurological Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xuejing Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xuebing Ding
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Junfang Teng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
23
|
Kadam D, Palamthodi S, Lele SS. LC-ESI-Q-TOF-MS/MS profiling and antioxidant activity of phenolics from L. Sativum seedcake. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2018; 55:1154-1163. [PMID: 29487458 PMCID: PMC5821675 DOI: 10.1007/s13197-017-3031-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 12/28/2017] [Accepted: 12/29/2017] [Indexed: 01/03/2023]
Abstract
Lepidium sativum is widely used as a culinary and medicinal herb and is claimed to cure many diseases. In this study, an attempt was made to investigate the biochemical composition and functional properties of L. sativum ethanolic extract. The extract contained a total phenolic content of 11.03 ± 0.75 (mg GAE/g dw plant material) and a flavonoid content of 4.79 ± 0.24 (mg QE/100 g dw plant material). Further, the extract was characterized by LC-ESI-Q-TOF-MS/MS profiling and the results showed that the ethanolic fraction contains many important phenolics such as Kaempferol, Coumaroylquinic acid, p-Coumaroyl glycolic acid, Caffeic acid. The identified compounds are known for their biological properties and therefore, the functional properties of the extract as a whole were also studied. The extract showed significant antioxidant activity (IC50 values) 162.4 ± 2.3, 35.29 ± 1.02, 187.12 ± 3.4 and 119.32 ± 1.5 μg/ml in terms of DPPH, ABTS, Superoxide scavenging activity and metal chelating property respectively. Further, the extract showed IC50 values, 73.72 ± 1.23 and 121.78 ± 1.03 μg/ml in HRBC membrane stabilization ability and protein denaturation inhibition capacity respectively, which in turn is a measure of its anti-inflammatory activity. The results of the study are promising and serve basis for further investigation into the plant and possible consideration for use in nutraceuticals and functional foods.
Collapse
Affiliation(s)
- Deepak Kadam
- Department of Food Engineering and Technology, Institute of Chemical Technology, Matunga, Mumbai, 400019 India
| | - Shanooba Palamthodi
- Department of Food Engineering and Technology, Institute of Chemical Technology, Matunga, Mumbai, 400019 India
| | - S. S. Lele
- Department of Food Engineering and Technology, Institute of Chemical Technology, Matunga, Mumbai, 400019 India
| |
Collapse
|
24
|
Shanuja SK, Iswarya S, Gnanamani A. Marine fungal DHICA as a UVB protectant: Assessment under in vitro and in vivo conditions. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 179:139-148. [PMID: 29367149 DOI: 10.1016/j.jphotobiol.2018.01.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 01/10/2018] [Accepted: 01/12/2018] [Indexed: 12/24/2022]
Abstract
The present study explores UVB protective role of a melanin precursor namely DHICA (5,6- Dihydroxyindole-2-carboxylic acid) expressed by the marine imperfect fungus Aspergillus nidulans. In brief, A. nidulans grown in a modified growth medium for the period of 5 days at 25 °C under shaking conditions and the extracellular medium free from fungal biomass used for the extraction of DHICA. The extracted DHICA further exposed to partial purification and subjected to UVB protection studies using HaCaT cells and Balb/c mice independently. DHICA obtained in the present study found soluble in water. Experiments on HaCaT cell compatibility revealed nil cell death up to 500 μM concentration of DHICA. UVB protection studies under in vitro conditions emphasizes DHICA significantly protect HaCaT cells from UVB exposure by quenching the generated ROS, reducing cell apoptosis, maintain the cellular integrity and sequentially down regulating the LPO (Lipid peroxidation) and up-regulating the antioxidant enzyme (SOD (Superoxide Dismutase), Catalase, GPx (Glutathione peroxidase)) respectively. Further, experiments on cell cycle arrest analysis, gelatin zymography, and western blot analysis on COX-2 and TNF-alpha, IHC (Immunohistochemistry) on apoptotic markers (Bax, Bcl2) substantiate the protective role of DHICA. Furthermore, in vivo studies on BALB/c mice carried out and compared with the sunscreen cream with sun protective factor (SPF) of 20. Analysis of skin sections of experimental samples revealed that an appreciable reduction in the epidermal thickness of the skin samples of mice pre-exposed to DHICA followed by UVB exposure compared to UVB exposure alone. RT-PCR results on various inflammatory apoptotic markers also suggested that DHICA has UVB protective potential. The observations made in the present study explore the possible application of DHICA alone as a sun-protective agent for skin care.
Collapse
Affiliation(s)
- S K Shanuja
- Microbiology Division, CSIR-CLRI, Adyar, Chennai 20, India
| | - S Iswarya
- Microbiology Division, CSIR-CLRI, Adyar, Chennai 20, India
| | - A Gnanamani
- Microbiology Division, CSIR-CLRI, Adyar, Chennai 20, India.
| |
Collapse
|
25
|
Deoxyschizandrin, Isolated from Schisandra Berries, Induces Cell Cycle Arrest in Ovarian Cancer Cells and Inhibits the Protumoural Activation of Tumour-Associated Macrophages. Nutrients 2018; 10:nu10010091. [PMID: 29342940 PMCID: PMC5793319 DOI: 10.3390/nu10010091] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 12/24/2017] [Accepted: 01/10/2018] [Indexed: 12/13/2022] Open
Abstract
Deoxyschizandrin, a major lignan of Schisandra berries, has been demonstrated to have various biological activities such as antioxidant, hepatoprotective, and antidiabetic effects. However, the anti-cancer effects of deoxyschizandrin are poorly characterized. In the present study, we investigated the anti-cancer effect of deoxyschizandrin on human ovarian cancer cell lines and tumour-associated macrophages (TAMs). Deoxyschizandrin induced G0/G1 phase cell cycle arrest and inhibited cyclin E expression in human ovarian cancer cells. Overexpression of cyclin E significantly reversed the deoxyschizandrin-induced cell growth inhibition. Interestingly, increased production of reactive oxygen species and decreased activation of Akt were observed in A2780 cells treated with deoxyschizandrin, and the antioxidant compromised the deoxyschizandrin-induced cell growth inhibition and Akt inactivation. Moreover, deoxyschizandrin-induced cell growth inhibition was markedly suppressed by Akt overexpression. In addition, deoxyschizandrin was found to inhibit the expression of the M2 phenotype markers CD163 and CD209 in TAMs, macrophages stimulated by the ovarian cancer cells. Moreover, expression and production of the tumour-promoting factors MMP-9, RANTES, and VEGF, which are highly enhanced in TAMs, was significantly suppressed by deoxyschizandrin treatment. Taken together, these data suggest that deoxyschizandrin exerts anti-cancer effects by inducing G0/G1 cell cycle arrest in ovarian cancer cells and reducing the protumoural phenotype of TAMs.
Collapse
|
26
|
Lai Q, Luo Z, Wu C, Lai S, Wei H, Li T, Wang Q, Yu Y. Attenuation of cyclosporine A induced nephrotoxicity by schisandrin B through suppression of oxidative stress, apoptosis and autophagy. Int Immunopharmacol 2017; 52:15-23. [PMID: 28846887 DOI: 10.1016/j.intimp.2017.08.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 08/21/2017] [Accepted: 08/22/2017] [Indexed: 12/17/2022]
Abstract
Cyclosporine A (CsA) is a potent immunosuppressive agent whose clinical usage is limited by nephrotoxicity. Schisandrin B (SchB), isolated from the fruit of Schisandra chinensis, is a natural compound with multiple pharmacological activities that has been shown to attenuate organ injury caused by CsA. Hence, the primary objective of the current study was to evaluate whether SchB has a cytoprotective effect on CsA-induced nephrotoxicity in human proximal tubular epithelial cell line (HK-2). This study demonstrated that pre-incubation of HK-2 cells with 2.5-10.0μM SchB ameliorated CsA induced cytotoxicity caused by oxidative stress as evidenced by reduced levels of intracellular reactive oxygen species (ROS) and LDH release along with increased levels of mitochondrial membrane potential (ΔΨm) and glutathione (GSH). Also, it was demonstrated that nuclear factor erythroid 2-related factor 2 (Nrf2) activation was involved in modulating cellular oxidative stress, where SchB promoted Nrf2 translocation into the nucleus and downstream target gene expression of heme oxygenase-1 (HO-1), NAD(P)H:quinone oxidoreductase 1 (NQO1) and Glutamate-cysteine ligase modifier subunit (GCLM). Additionally, SchB was found to enhance cell survival via reducing apoptosis rate as well as recover the CsA induced blockade of autophagic flux. Collectively, these findings demonstrated that SchB mediated alleviation of CsA induced nephrotoxicity by preventing the accumulation of ROS by way of suppressing oxidative stress, apoptosis and autophagy.
Collapse
Affiliation(s)
- Qiao Lai
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Zhengzhong Luo
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Chunying Wu
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Sisi Lai
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Hanmei Wei
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Tongming Li
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Qing Wang
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China.
| | - Yang Yu
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
27
|
Linalool prevents oxidative stress activated protein kinases in single UVB-exposed human skin cells. PLoS One 2017; 12:e0176699. [PMID: 28467450 PMCID: PMC5415184 DOI: 10.1371/journal.pone.0176699] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 04/14/2017] [Indexed: 12/19/2022] Open
Abstract
Ultraviolet-B radiation (285–320 nm) elicits a number of cellular signaling elements. We investigated the preventive effect of linalool, a natural monoterpene, against UVB-induced oxidative imbalance, activation of mitogen-activated protein kinase (MAPK) and nuclear factor kappa-B (NF-κB) signaling in HDFa cells. We observed that linalool treatment (30 μM) prevented acute UVB-irradiation (20 mJ/cm2) mediated loss of activities of antioxidant enzymes in HDFa cells. The comet assay results illustrate that linalool significantly prevents UVB-mediated 8-deoxy guanosine formation (oxidative DNA damage) rather than UVB-induced cyclobutane pyrimidine (CPD) formation. This might be due to its ability to prevent UVB-induced ROS formation and to restore the oxidative imbalance of cells. This has been reflected in UVB-induced overexpression of MAPK and NF-κB signaling. We observed that linalool inhibited UVB-induced phosphorylation of ERK1, JNK and p38 proteins of MAPK family. Linalool inhibited UVB-induced activation of NF-κB/p65 by activating IκBa. We further observed that UVB-induced expression of TNF-α, IL6, IL-10, MMP-2 and MMP-9 was modulated by linalool treatment in HDFa cells. Thus, linalool protects the human skin cells from the oxidative damages of UVB radiation and modulates MAPK and NF-κB signaling in HDFa cells. The present findings substantiate that linalool may act as a photoprotective agent against UVB-induced skin damages.
Collapse
|
28
|
Tang SC, Liao PY, Hung SJ, Ge JS, Chen SM, Lai JC, Hsiao YP, Yang JH. Topical application of glycolic acid suppresses the UVB induced IL-6, IL-8, MCP-1 and COX-2 inflammation by modulating NF-κB signaling pathway in keratinocytes and mice skin. J Dermatol Sci 2017; 86:238-248. [PMID: 28330776 DOI: 10.1016/j.jdermsci.2017.03.004] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 01/24/2017] [Accepted: 03/08/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND Glycolic acid (GA), commonly present in fruits, has been used to treat dermatological diseases. Extensive exposure to solar ultraviolet B (UVB) irradiation plays a crucial role in the induction of skin inflammation. The development of photo prevention from natural materials represents an effective strategy for skin keratinocytes. OBJECTIVE The aim of this study was to investigate the molecular mechanisms underlying the glycolic acid (GA)-induced reduction of UVB-mediated inflammatory responses. METHODS We determined the effects of different concentrations of GA on the inflammatory response of human keratinocytes HaCaT cells and C57BL/6J mice dorsal skin. After GA was topically applied, HaCaT and mice skin were exposed to UVB irradiation. RESULTS GA reduced the production of UVB-induced nuclear factor kappa B (NF-κB)-dependent inflammatory mediators [interleukin (IL)-1β, IL-6, IL-8, cyclooxygenase (COX)-2, tumor necrosis factor-α, and monocyte chemoattractant protein (MCP-1)] at both mRNA and protein levels. GA inhibited the UVB-induced promoter activity of NF-κB in HaCaT cells. GA attenuated the elevation of senescence associated with β-galactosidase activity but did not affect the wound migration ability. The topical application of GA inhibited the genes expression of IL-1β, IL-6, IL-8, COX-2, and MCP-1 in UVB-exposed mouse skin. The mice to UVB irradiation after GA was topically applied for 9 consecutive days and reported that 1-1.5% of GA exerted anti-inflammatory effects on mouse skin. CONCLUSION We clarified the molecular mechanism of GA protection against UVB-induced inflammation by modulating NF-κB signaling pathways and determined the optimal concentration of GA in mice skin exposed to UVB irradiation.
Collapse
Affiliation(s)
- Sheau-Chung Tang
- Department of Dermatology, Buddhist Tzu Chi General Hospital, Hualien 97004, Taiwan; Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan
| | - Pei-Yun Liao
- Department of Dermatology, Buddhist Tzu Chi General Hospital, Hualien 97004, Taiwan; Institute of Medical Sciences, Tzu Chi University, Hualien 97004, Taiwan
| | - Sung-Jen Hung
- Department of Dermatology, Buddhist Tzu Chi General Hospital, Hualien 97004, Taiwan
| | - Jheng-Siang Ge
- Department of Dermatology, Buddhist Tzu Chi General Hospital, Hualien 97004, Taiwan
| | - Shiou-Mei Chen
- Department of Dermatology, Buddhist Tzu Chi General Hospital, Hualien 97004, Taiwan
| | - Ji-Ching Lai
- Research Assistant Center, Chang Hua Show Chwan Health, Care System, Changhua 50008, Taiwan
| | - Yu-Ping Hsiao
- Institute of Medicine, School of Medicine, Chung Shan Medical University, Taichung 40244, Taiwan; Department of Dermatology, Chung Shan Medical University Hospital, Taichung 40244, Taiwan
| | - Jen-Hung Yang
- Department of Dermatology, Buddhist Tzu Chi General Hospital, Hualien 97004, Taiwan; Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan; Institute of Medicine, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan.
| |
Collapse
|
29
|
Szopa A, Ekiert R, Ekiert H. Current knowledge of Schisandra chinensis (Turcz.) Baill. (Chinese magnolia vine) as a medicinal plant species: a review on the bioactive components, pharmacological properties, analytical and biotechnological studies. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2016; 16:195-218. [PMID: 28424569 PMCID: PMC5378736 DOI: 10.1007/s11101-016-9470-4] [Citation(s) in RCA: 205] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 05/06/2016] [Indexed: 05/03/2023]
Abstract
Schisandra chinensis Turcz. (Baill.) is a plant species whose fruits have been well known in Far Eastern medicine for a long time. However, schisandra seems to be a plant still underestimated in contemporary therapy still in the countries of East Asia. The article presents latest available information on the chemical composition of this plant species. Special attention is given to dibenzo cyclooctadiene lignans. In addition, recent studies of the biological activity of dibenzocyclooctadiene lignans and schisandra fruit extracts are recapitulated. The paper gives a short resume of their beneficial effects in biological systems in vitro, in animals, and in humans, thus underlining their medicinal potential. The cosmetic properties are depicted, too. The analytical methods used for assaying schisandra lignans in the scientific studies and also in industry are also presented. Moreover, special attention is given to the information on the latest biotechnological studies of this plant species. The intention of this review is to contribute to a better understanding of the huge potential of the pharmacological relevance of S. chinensis.
Collapse
Affiliation(s)
- Agnieszka Szopa
- Chair and Department of Pharmaceutical Botany, Jagiellonian University, Collegium Medicum, ul. Medyczna 9, 30-688 Kraków, Poland
| | - Radosław Ekiert
- "Herbapol" Krakow S.A., ul Chałupnika 14, 31-464 Kraków, Poland
| | - Halina Ekiert
- Chair and Department of Pharmaceutical Botany, Jagiellonian University, Collegium Medicum, ul. Medyczna 9, 30-688 Kraków, Poland
| |
Collapse
|
30
|
Yi H, Chen Y, Liu J, Zhang J, Guo W, Xiao W, Yao Y. Extraction and Separation of Active Ingredients in Schisandra chinensis (Turcz.) Baill and the Study of their Antifungal Effects. PLoS One 2016; 11:e0154731. [PMID: 27152614 PMCID: PMC4859564 DOI: 10.1371/journal.pone.0154731] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 04/18/2016] [Indexed: 02/07/2023] Open
Abstract
Schisandra chinensis extracts (SEs) have traditionally been used as an oriental medicine for the treatment of various human diseases, however, their further application in the biocontrol of plant disease remains poorly understood. This study was conducted to develop eco-friendly botanical pesticides from extracts of S. chinensis and assess whether they could play a key role in plant disease defense. Concentrated active fractions (SE-I, SE-II, and SE-III) were obtained from S. chinensis via specific extraction and separation. Then, lignan-like substances, such as Schisanhenol B, were detected via High-Performance Liquid Chromatography-ElectroSpray Ionization-Mass Spectrometry (HPLC-ESI-MS) analyses of the active fractions. Moreover, the results from biological tests on colony growth inhibition and spore germination indicated that SE-I, SE-II, and SE-III could inhibit hyphal growth and spore generation of three important plant pathogenic fungi (Monilinia fructicola, Fusarium oxysporum, and Botryosphaeria dothidea). The study of the mechanisms of resistant fungi revealed that the oxidation resistance system, including reactive oxygen species (ROS), malondialdehyde (MDA), catalase (CAT), and superoxide dismutase (SOD), was activated. The expression of genes related to defense, such as pathogenesis-related protein (PR4), α-farnesene synthase (AFS), polyphenol oxidase (PPO), and phenylalanine ammonia lyase (PAL) were shown to be up-regulated after treatment with SEs, which suggested an increase in apple immunity and that fruits were induced to effectively defend against the infection of pathogenic fungi (B. dothidea). This study revealed that SEs and their lignans represent promising resources for the development of safe, effective, and multi-targeted agents against pathogenic fungi.
Collapse
Affiliation(s)
- Haijing Yi
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
- Beijing Key Laboratory of New Technology in Agriculture Application, Beijing University of Agriculture, 102206, Beijing, China
| | - Yan Chen
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
- Beijing Key Laboratory of New Technology in Agriculture Application, Beijing University of Agriculture, 102206, Beijing, China
| | - Jun Liu
- Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Jie Zhang
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
- Beijing Key Laboratory of New Technology in Agriculture Application, Beijing University of Agriculture, 102206, Beijing, China
| | - Wei Guo
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
- Beijing Key Laboratory of New Technology in Agriculture Application, Beijing University of Agriculture, 102206, Beijing, China
| | - Weilie Xiao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Yuncong Yao
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
- Beijing Key Laboratory of New Technology in Agriculture Application, Beijing University of Agriculture, 102206, Beijing, China
- * E-mail:
| |
Collapse
|
31
|
DNA Damage Signalling and Repair Inhibitors: The Long-Sought-After Achilles' Heel of Cancer. Biomolecules 2015; 5:3204-59. [PMID: 26610585 PMCID: PMC4693276 DOI: 10.3390/biom5043204] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 11/09/2015] [Indexed: 12/16/2022] Open
Abstract
For decades, radiotherapy and chemotherapy were the two only approaches exploiting DNA repair processes to fight against cancer. Nowadays, cancer therapeutics can be a major challenge when it comes to seeking personalized targeted medicine that is both effective and selective to the malignancy. Over the last decade, the discovery of new targeted therapies against DNA damage signalling and repair has offered the possibility of therapeutic improvements in oncology. In this review, we summarize the current knowledge of DNA damage signalling and repair inhibitors, their molecular and cellular effects, and future therapeutic use.
Collapse
|