1
|
Maciel F, Madureira L, Geada P, Teixeira JA, Silva J, Vicente AA. The potential of Pavlovophyceae species as a source of valuable carotenoids and polyunsaturated fatty acids for human consumption. Biotechnol Adv 2024; 74:108381. [PMID: 38777244 DOI: 10.1016/j.biotechadv.2024.108381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/17/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024]
Abstract
Microalgae are a group of microorganisms, mostly photoautotrophs with high CO2 fixation capacity, that have gained increased attention in the last decades due to their ability to produce a wide range of valuable metabolites, such as carotenoids and polyunsaturated fatty acids, for application in food/feed, pharmaceutical, and cosmeceutical industries. Their increasing relevance has highlighted the importance of identifying and culturing new bioactive-rich microalgae species, as well as of a thorough understanding of the growth conditions to optimize the biomass production and master the biochemical composition according to the desired application. Thus, this review intends to describe the main cell processes behind the production of carotenoids and polyunsaturated fatty acids, in order to understand the possible main triggers responsible for the accumulation of those biocompounds. Their economic value and the biological relevance for human consumption are also summarized. In addition, an extensive review of the impact of culture conditions on microalgae growth performance and their biochemical composition is presented, focusing mainly on the studies involving Pavlovophyceae species. A complementary description of the biochemical composition of these microalgae is also presented, highlighting their potential applications as a promising bioresource of compounds for large-scale production and human and animal consumption.
Collapse
Affiliation(s)
- Filipe Maciel
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal; LABBELS -Associate Laboratory, Braga/Guimarães, Portugal.
| | - Leandro Madureira
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal.
| | - Pedro Geada
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal; LABBELS -Associate Laboratory, Braga/Guimarães, Portugal.
| | - José António Teixeira
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal; LABBELS -Associate Laboratory, Braga/Guimarães, Portugal.
| | - Joana Silva
- ALLMICROALGAE, Natural Products S.A., R&D Department, Rua 25 de Abril 19, 2445-287 Pataias, Portugal.
| | - António Augusto Vicente
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal; LABBELS -Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
2
|
Wang D, de Los Reyes FL, Ducoste JJ. Microplate-Based Cell Viability Assay as a Cost-Effective Alternative to Flow Cytometry for Microalgae Analysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:21200-21211. [PMID: 38048183 DOI: 10.1021/acs.est.3c05675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
Cell viability is a critical indicator for assessing culture quality in microalgae cultivation for biorefinery and bioremediation. Fluorescent dyes that distinguish viable from nonviable cells can enable viability quantification based on the percentage of live cells. However, fluorescence analysis using the typical flow cytometry method is costly and impractical for industrial applications. To address this, we developed new microplate assays utilizing fluorescein diacetate as a live cell stain and erythrosine B as a dead cell stain. These assays provide a low-cost, simple, and reliable method of assessing cell viability. The proposed microplate assays were successfully applied to monitor the viability of the microalgae Dunaliella viridis under carbon and nitrogen limitation stresses and demonstrated good agreement with flow cytometry measurements. We conducted a systematic investigation of the effects of dye concentration, incubation time, and background fluorescence on the microplate assays' performance. Further, we provide a comprehensive review of commonly used fluorescent dyes for microalgae staining, discuss strategies to enhance assay performance, and offer recommendations for dye selection and protocol development. This study presents a comprehensive new method for microplate-based viability analysis, providing valuable insights for future microalgae viability assessments and applications.
Collapse
Affiliation(s)
- Diyuan Wang
- Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Francis L de Los Reyes
- Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Joel J Ducoste
- Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, North Carolina 27606, United States
| |
Collapse
|
3
|
Park YH, Han SI, Oh B, Kim HS, Jeon MS, Kim S, Choi YE. Microalgal secondary metabolite productions as a component of biorefinery: A review. BIORESOURCE TECHNOLOGY 2022; 344:126206. [PMID: 34715342 DOI: 10.1016/j.biortech.2021.126206] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
The interest in developing microalgae for industrial use has been increasing because of concerns about the depletion of petroleum resources and securing sustainable energy sources. Microalgae have high biomass productivity and short culture periods. However, despite these advantages, various barriers need to be overcome for industrial applications. Microalgal cultivation has a high unit price, thus rendering industrial application difficult. It is indispensably necessary to co-produce their primary and secondary metabolites to compensate for these shortcomings. In this regard, this article reviews the following aspects, (1) co-production of primary and secondary metabolites in microalgae, (2) induction methods for the promotion of the biosynthesis of secondary metabolites, and (3) perspectives on the co-production and co-extraction of primary and secondary metabolites. This paper presents various approaches for producing useful metabolites from microalgae and suggests strategies that can be utilized for the co-production of primary and secondary metabolites.
Collapse
Affiliation(s)
- Yun Hwan Park
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Sang-Il Han
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea; Institute of Green Manufacturing Technology, Korea University, Seoul 02841, Republic of Korea
| | - Byeolnim Oh
- Department of Electronic Engineering, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Hyun Soo Kim
- Department of Electronic Engineering, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Min Seo Jeon
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Sok Kim
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea; OJEong Resilience Institute, Korea University, Seoul 02841, Republic of Korea
| | - Yoon-E Choi
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
4
|
Arena R, Lima S, Villanova V, Moukri N, Curcuraci E, Messina C, Santulli A, Scargiali F. Cultivation and biochemical characterization of isolated Sicilian microalgal species in salt and temperature stress conditions. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102430] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
5
|
Assessment of the potential of Dunaliella microalgae for different biotechnological applications: A systematic review. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102396] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
6
|
Enhancing carbohydrate repartitioning into lipid and carotenoid by disruption of microalgae starch debranching enzyme. Commun Biol 2021; 4:450. [PMID: 33837247 PMCID: PMC8035404 DOI: 10.1038/s42003-021-01976-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 03/11/2021] [Indexed: 02/01/2023] Open
Abstract
Light/dark cycling is an inherent condition of outdoor microalgae cultivation, but is often unfavorable for lipid accumulation. This study aims to identify promising targets for metabolic engineering of improved lipid accumulation under outdoor conditions. Consequently, the lipid-rich mutant Chlamydomonas sp. KOR1 was developed through light/dark-conditioned screening. During dark periods with depressed CO2 fixation, KOR1 shows rapid carbohydrate degradation together with increased lipid and carotenoid contents. KOR1 was subsequently characterized with extensive mutation of the ISA1 gene encoding a starch debranching enzyme (DBE). Dynamic time-course profiling and metabolomics reveal dramatic changes in KOR1 metabolism throughout light/dark cycles. During light periods, increased flux from CO2 through glycolytic intermediates is directly observed to accompany enhanced formation of small starch-like particles, which are then efficiently repartitioned in the next dark cycle. This study demonstrates that disruption of DBE can improve biofuel production under light/dark conditions, through accelerated carbohydrate repartitioning into lipid and carotenoid.
Collapse
|
7
|
Abu-Ghosh S, Dubinsky Z, Iluz D. Acclimation of thermotolerant algae to light and temperature interaction 1. JOURNAL OF PHYCOLOGY 2020; 56:662-670. [PMID: 31913505 DOI: 10.1111/jpy.12964] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 12/17/2019] [Indexed: 06/10/2023]
Abstract
Here, we explore the responses of photosynthesis and related cellular processes in the thermotolerant microalga Micractinium sp. acclimated to limiting and saturating irradiances combined with elevated temperatures, using a novel computer-controlled multi-sensor system. This system allows for the monitoring of online values of oxygen exchange during photosynthesis and respiration with high accuracy. Micractinium sp. cells showed maximum growth and net oxygen production rates under the optimal temperature of 25°C regardless of the light acclimation conditions. Our results show that the upper thermal threshold for Micractinium sp. photosynthesis and growth ranges between 35°C and 40°C. This microalga exhibited stable photosynthetic efficiency and effective non-photochemical quenching (NPQ) under saturating light, and was more susceptible to temperature change when acclimated to limiting light levels. These results demonstrate that the acclimation of thermotolerant microalgae to saturating light helps to enhance the thermal tolerance of PSII. This feature results from enhanced heat stability of PSII photochemistry and oxygen evolution.
Collapse
Affiliation(s)
- Said Abu-Ghosh
- Faculty of Life Sciences, The Mina and Everard Goodman, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Zvy Dubinsky
- Faculty of Life Sciences, The Mina and Everard Goodman, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - David Iluz
- Faculty of Life Sciences, The Mina and Everard Goodman, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| |
Collapse
|
8
|
Kato Y, Fujihara Y, Vavricka CJ, Chang JS, Hasunuma T, Kondo A. Light/dark cycling causes delayed lipid accumulation and increased photoperiod-based biomass yield by altering metabolic flux in oleaginous Chlamydomonas sp. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:39. [PMID: 30828384 PMCID: PMC6383270 DOI: 10.1186/s13068-019-1380-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 02/16/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Light/dark cycling is an inevitable outdoor culture condition for microalgal biofuel production; however, the influence of this cycling on cellular lipid production has not been clearly established. The general aim of this study was to determine the influence of light/dark cycling on microalgal biomass production and lipid accumulation. To achieve this goal, specific causative mechanisms were investigated using a metabolomics approach. Laboratory scale photoautotrophic cultivations of the oleaginous green microalga Chlamydomonas sp. JSC4 were performed under continuous light (LL) and light/dark (LD) conditions. RESULTS Lipid accumulation and carbohydrate degradation were delayed under the LD condition compared with that under the LL condition. Metabolomic analysis revealed accumulation of phosphoenolpyruvate and decrease of glycerol 3-phosphate under the LD condition, suggesting that the imbalance of these metabolites is a source of delayed lipid accumulation. When accounting for light dosage, biomass yield under the LD condition was significantly higher than that under the LL condition. Dynamic metabolic profiling showed higher levels of lipid/carbohydrate anabolism (including production of 3-phosphoglycerate, fructose 6-phosphate, glucose 6-phosphate, phosphoenolpyruvate and acetyl-CoA) from CO2 under the LD condition, indicating higher CO2 fixation than that of the LL condition. CONCLUSIONS Photoperiods define lipid accumulation and biomass production, and light/dark cycling was determined as a critical obstacle for lipid production in JSC4. Conversions of phosphoenolpyruvate to pyruvate and 3-phosphoglycerate to glycerol 3-phosphate are the candidate rate-limiting steps responsible for delayed lipid accumulation. The accumulation of substrates including ribulose 5-phosphate could be explained by the close relationship of increased biomass yield with enhanced CO2 fixation. The present study investigated the influence of light/dark cycling on lipid production by direct comparison with continuous illumination for the first time, and revealed underlying metabolic mechanisms and candidate metabolic rate-limiting steps during light/dark cycling. These findings suggest promising targets to metabolically engineer improved lipid production.
Collapse
Affiliation(s)
- Yuichi Kato
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, 657-8501 Japan
| | - Yusuke Fujihara
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, 657-8501 Japan
| | - Christopher J. Vavricka
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, 657-8501 Japan
| | - Jo-Shu Chang
- Department of Chemical Engineering, National Cheng Kung University, Tainan, 701 Taiwan
- Research Center for Energy Technology and Strategy, National Cheng Kung University, Tainan, 701 Taiwan
| | - Tomohisa Hasunuma
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, 657-8501 Japan
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, 657-8501 Japan
| | - Akihiko Kondo
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, 657-8501 Japan
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, 657-8501 Japan
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, 657-8501 Japan
| |
Collapse
|
9
|
He Q, Yang H, Hu C. Effects of temperature and its combination with high light intensity on lipid production of Monoraphidium dybowskii Y2 from semi-arid desert areas. BIORESOURCE TECHNOLOGY 2018; 265:407-414. [PMID: 29933188 DOI: 10.1016/j.biortech.2018.06.044] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 06/12/2018] [Accepted: 06/13/2018] [Indexed: 06/08/2023]
Abstract
Temperature and light intensity are important environmental factors influencing microalgae for biodiesel production. The aim of present work was to study the effects of temperature (15 °C, 25 °C, and 35 °C) and its combination with high light intensity (HL, 400 μmol photon m-2 s-1) on lipid production of Monoraphidium dybowskii Y2 which was isolated from desert. The results demonstrated that algal growth was only inhibited at 15 °C. Promoted lipid content and decreased Fv/Fm were observed in 15 °C and 35 °C. Cellular carbohydrate, protein conversion and membrane lipid (MGDG, DGDG and SQDG) remodeling contributes for lipid accumulation. Stress combined temperatures with HL are benefit for lipid production, especially desired neutral lipid productivity all exceed 40 mg L-1 d-1. Fatty acids compositions of C16:0 and C18:1 were further promoted under 15 °C or 35 °C combined with HL. Thus, M. dybowskii Y2 will well-adapted to outdoors cultivation for biodiesel production.
Collapse
Affiliation(s)
- Qiaoning He
- Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Environmental Microbial Technology Center of Hubei Province, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan 430062, China
| | - Haijian Yang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Chunxiang Hu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
10
|
Abu-Ghosh S, Dubinsky Z, Banet G, Iluz D. Optimizing photon dose and frequency to enhance lipid productivity of thermophilic algae for biofuel production. BIORESOURCE TECHNOLOGY 2018; 260:374-379. [PMID: 29665528 DOI: 10.1016/j.biortech.2018.03.110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 03/21/2018] [Accepted: 03/22/2018] [Indexed: 05/18/2023]
Abstract
The aim of this work was to examine the potential of the thermophilic green microalga Micractinium sp. to accumulate triacylglycerols (TAGs) and to develop a light strategy to increase TAG productivity in this alga. To this end, dense cultures of Micractinium sp. were grown at 37 °C under nitrogen (N) starvation and exposed to a light intensity of 1000 µmol photons m-2 s-1 of different light regimes. The highest per-biomass TAG-content and maximal volumetric productivities of TAG were displayed by the cultures grown under flashing light of 5 Hz with 50% duty cycle. Based on the results, a sufficiently high-starting culture density should be combined with a high irradiance delivered by an appropriate light regime to enhance the production of biomass enriched TAGs.
Collapse
Affiliation(s)
- Said Abu-Ghosh
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel; Bar Ilan Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan 5290002, Israel.
| | - Zvy Dubinsky
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Gabi Banet
- The Dead Sea and Arava Science Center, 86910, Israel
| | - David Iluz
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| |
Collapse
|
11
|
Murphree CA, Dums JT, Jain SK, Zhao C, Young DY, Khoshnoodi N, Tikunov A, Macdonald J, Pilot G, Sederoff H. Amino Acids Are an Ineffective Fertilizer for Dunaliella spp. Growth. FRONTIERS IN PLANT SCIENCE 2017; 8:847. [PMID: 28603530 PMCID: PMC5445130 DOI: 10.3389/fpls.2017.00847] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 05/08/2017] [Indexed: 06/01/2023]
Abstract
Autotrophic microalgae are a promising bioproducts platform. However, the fundamental requirements these organisms have for nitrogen fertilizer severely limit the impact and scale of their cultivation. As an alternative to inorganic fertilizers, we investigated the possibility of using amino acids from deconstructed biomass as a nitrogen source in the genus Dunaliella. We found that only four amino acids (glutamine, histidine, cysteine, and tryptophan) rescue Dunaliella spp. growth in nitrogen depleted media, and that supplementation of these amino acids altered the metabolic profile of Dunaliella cells. Our investigations revealed that histidine is transported across the cell membrane, and that glutamine and cysteine are not transported. Rather, glutamine, cysteine, and tryptophan are degraded in solution by a set of oxidative chemical reactions, releasing ammonium that in turn supports growth. Utilization of biomass-derived amino acids is therefore not a suitable option unless additional amino acid nitrogen uptake is enabled through genetic modifications of these algae.
Collapse
Affiliation(s)
- Colin A. Murphree
- Department of Plant and Microbial Biology, North Carolina State University, RaleighNC, United States
| | - Jacob T. Dums
- Department of Plant and Microbial Biology, North Carolina State University, RaleighNC, United States
| | - Siddharth K. Jain
- Department of Plant and Microbial Biology, North Carolina State University, RaleighNC, United States
| | - Chengsong Zhao
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Polytechnic Institute and State University, BlacksburgVA, United States
| | - Danielle Y. Young
- Department of Plant and Microbial Biology, North Carolina State University, RaleighNC, United States
| | | | - Andrey Tikunov
- Department of Biomedical Engineering, University of North Carolina School of Medicine, Chapel HillNC, United States
| | - Jeffrey Macdonald
- Department of Biomedical Engineering, University of North Carolina School of Medicine, Chapel HillNC, United States
| | - Guillaume Pilot
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Polytechnic Institute and State University, BlacksburgVA, United States
| | - Heike Sederoff
- Department of Plant and Microbial Biology, North Carolina State University, RaleighNC, United States
| |
Collapse
|
12
|
Mullick A, Neogi S. A review on acoustic methods of algal growth control by ultrasonication through existing and novel emerging technologies. REV CHEM ENG 2017. [DOI: 10.1515/revce-2016-0010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractThe uncontrolled proliferation of algae and algal blooms due to excessive nutrient loading in natural and industrial water bodies is a major issue for water quality maintenance. It reduces usability of the water, imposes hazardous effects of algal toxins released from algal blooms, and creates nuisance in the operation of several industrial water units. Among several existing water treatment methods to diminish the post-algae growth effects, ultrasonication has emerged as an environmentally safe technology that does not involve any use of algaecide. The interaction of several parameters, including climatic and environmental conditions with algae growth rate, have been reviewed in this article. The effects of different acoustic operating conditions for inhibition of algae growth have also been discussed. Concern about high energy consumption led other technologies to be integrated with ultrasonication. It has enhanced the process efficiency and reduced the energy consumption as reported in some long-term field investigations and patent proposals. Several issues that require further research for making this technology widely applicable or to install an effective system design have been highlighted in this article.
Collapse
|
13
|
Growth and palmitoleic acid accumulation of filamentous oleaginous microalgae Tribonema minus at varying temperatures and light regimes. Bioprocess Biosyst Eng 2016; 39:1589-95. [DOI: 10.1007/s00449-016-1633-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 05/27/2016] [Indexed: 12/17/2022]
|
14
|
Matulka RA, Chan T, Green R, Carney JR, Franklin S, Licari P. 13-week dietary study and in vitro and in vivo genotoxicity studies of a structuring fat produced through a microalgal fermentation process. Toxicol Rep 2015; 3:123-134. [PMID: 28959530 PMCID: PMC5615418 DOI: 10.1016/j.toxrep.2015.12.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 12/23/2015] [Indexed: 11/24/2022] Open
Abstract
Microalgae are increasingly being utilized as food ingredients for a variety of applications, including as sources of protein, egg and dairy substitutes, and cooking oils. The dietary safety of a new structuring fat produced using a heterotrophic fermentation process by a strain of Prototheca moriformis was evaluated in a 13-week dietary toxicity study and compared with kokum fat, a structuring fat of similar composition used in the food industry and derived from Garcinia indica seeds. The algal structuring fat was evaluated for its genotoxic potential using both in vitro and in vivo assays. No treatment-related adverse events occurred in rats consuming algal structuring fat or kokum fat in the 13-week study; no treatment-related effects were reported for body weight, food consumption, urinalysis, hematology, clinical chemistry, gross pathology, organ weights, or histopathology. While statistically significant effects occurred in some parameters, none were dose-related or considered adverse. Overall, the NOAELs for the algal structuring fat and the kokum fat were 100 000 ppm, the highest concentrations tested. The algal structuring fat was not mutagenic in the bacterial reverse mutation assay in the Salmonella typhimurium or Escherichia coli strains tested and was not clastogenic in the in vivo mouse bone marrow chromosome aberration assay.
Collapse
Key Words
- 2-AA, 2-aminoanthracene
- 4-NOPD, 4-nitro-o-phenylene-diamine
- AAALAC, Association for Assessment and Accreditation of Laboratory Animal Care International
- ANOVA, Analysis of Variance
- AOAC, Association of Analytical Communities
- AOCS, American Oil Chemists’ Society
- ASTM, American Society for Testing and Materials
- CPA, Cyclophosphamide
- DHA, Docosahexaenoic acid
- EPA, Eicosapentaenoic acid
- GLP, Good laboratory practice
- GRAS, Generally recognized as safe
- GRN, GRAS notification
- ISO, International Organization for Standardization
- Kokum
- LDL, Low-density lipoprotein
- MMS, Methylmethansulfonate
- MTD, Maximum tolerated dose
- Microalgae
- NOAEL, No-observed-adverse-effect level
- OECD, Organisation for Economic Cooperation and Development
- OSD, Open source diet
- PHOs, Partially hydrogenated oils
- Prototheca moriformis
- RSD, Relative standard deviation
- SOS, Stearic-oleic-stearic triglyceride
- Stearic acid
- Structuring fat
- Subchronic toxicity
- TAG, Triacylglycerol
- TFA, Total fatty acid
- US FDA, United States Food and Drug Administration
- bw, Body weight
- cps, Centipoise
- g, Gram
- kg, Kilogram
- mg, Milligram
- ppm, Parts-per-million
Collapse
Affiliation(s)
- R A Matulka
- Burdock Group, 859 Outer Road, Orlando, FL 32814, United States
| | - T Chan
- Solazyme, Inc., 225 Gateway Blvd., South San Francisco, CA 94080, United States
| | - R Green
- Solazyme, Inc., 225 Gateway Blvd., South San Francisco, CA 94080, United States
| | - J R Carney
- Solazyme, Inc., 225 Gateway Blvd., South San Francisco, CA 94080, United States
| | - S Franklin
- Solazyme, Inc., 225 Gateway Blvd., South San Francisco, CA 94080, United States
| | - P Licari
- Solazyme, Inc., 225 Gateway Blvd., South San Francisco, CA 94080, United States
| |
Collapse
|