1
|
Yang Q, Downey R, Stark JS, Johnstone GJ, Mitchell JG. The Microbial Ecology of Antarctic Sponges. MICROBIAL ECOLOGY 2025; 88:44. [PMID: 40382475 DOI: 10.1007/s00248-025-02543-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Accepted: 05/03/2025] [Indexed: 05/20/2025]
Abstract
Microbial communities in Antarctic marine sponges have distinct taxonomic and functional profiles due to low temperatures, seasonal days and nights, and geographic isolation. These sponge holobionts contribute to nutrient cycling, structural habitat formation, and benthic ecosystem resilience. We review Antarctic sponge holobiont knowledge, integrating culture-based and molecular data across environmental and taxonomic gradients. Although microbiome data exist for only a fraction of the region's 593 known sponge species, these hosts support diverse symbionts spanning at least 63 bacterial, 5 archaeal, and 6 fungal phyla, highlighting the complexity and ecological significance of these understudied polar microbiomes. A conserved core microbiome, dominated by Proteobacteria, Bacteroidetes, Nitrospinae, and Planctomycetes, occurs across Antarctic sponges, alongside taxa shaped by host identity, depth, and environment. Metagenomic data indicate microbial nitrogen cycling, chemoautotrophic carbon fixation, and stress tolerance. Despite these advances, major knowledge gaps remain, particularly in deep-sea and sub-Antarctic regions, along with challenges in taxonomy, methodological biases, and limited functional insights. We identify key research priorities, including developing standardised methodologies, expanded sampling across ecological and depth gradients, and integrating multi-omics with environmental and host metadata. Antarctic sponge holobionts provide a tractable model for investigating microbial symbiosis, functional adaptation, and ecosystem processes in one of Earth's most rapidly changing marine environments.
Collapse
Affiliation(s)
- Qi Yang
- CSIRO Agriculture and Food, Urrbrae, SA, 5064, Australia.
- College of Science and Engineering, Flinders University, Bedford Park, SA, 5042, Australia.
| | - Rachel Downey
- Fenner School of Environment & Society, Australian National University, Canberra, ACT, 2601, Australia
| | - Jonathan S Stark
- East Antarctic Monitoring Program, Australian Antarctic Division, Kingston, TAS, 7050, Australia
| | - Glenn J Johnstone
- East Antarctic Monitoring Program, Australian Antarctic Division, Kingston, TAS, 7050, Australia
| | - James G Mitchell
- College of Science and Engineering, Flinders University, Bedford Park, SA, 5042, Australia
| |
Collapse
|
2
|
López-Rodríguez MR, Gérikas Ribeiro C, Rodríguez-Marconi S, Parada-Pozo G, Manrique-de-la-Cuba M, Trefault N. Stable dominance of parasitic dinoflagellates in Antarctic sponges. PeerJ 2024; 12:e18365. [PMID: 39529628 PMCID: PMC11552495 DOI: 10.7717/peerj.18365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/29/2024] [Indexed: 11/16/2024] Open
Abstract
Background Marine sponges are dominant components of Antarctic benthos and representative of the high endemism that characterizes this environment. All microbial groups are part of the Antarctic sponge holobionts, but microbial eukaryotes have been studied less, and their symbiotic role still needs to be better understood. Here, we characterize the dynamics of microbial eukaryotes associated with Antarctic sponges, focusing on dinoflagellates over three summer periods to better understand the members, interannual variations, and trophic and lifestyle strategies. Results The analysis revealed that dinoflagellates dominate microeukaryotic communities in Antarctic sponges. The results also showed significant differences in the diversity and composition of dinoflagellate communities associated with sponges compared to those in seawater. Antarctic sponges were dominated by a single dinoflagellate family, Syndiniales Dino-Group-I-Clade 1, which was present in high abundance in Antarctic sponges compared to seawater communities. Despite minor differences, the top microeukaryotic amplicon sequence variants (ASVs) showed no significant interannual abundance changes, indicating general temporal stability within the studied sponge species. Our findings highlight the abundance and importance of parasitic groups, particularly the classes Coccidiomorphea, Gregarinomorphea, and Ichthyosporea, with the exclusive dominance of Syndiniales Dino-Group-I-Clade 1 within sponges. Conclusions The present study comprehensively characterizes the microbial eukaryotes associated with Antarctic sponges, showing a remarkable stability of parasitic dinoflagellates in Antarctic sponges. These findings underscore the significant role of parasites in these marine hosts, with implications for population dynamics of the microeukaryome and the holobiont response to a changing ocean.
Collapse
Affiliation(s)
| | | | | | - Génesis Parada-Pozo
- GEMA Center for Genomics, Ecology & Environment, Universidad Mayor, Santiago, Chile
- Millenium Nucleus in Marine Agronomy of Seaweed Holobionts (MASH), Puerto Montt, Chile
| | | | - Nicole Trefault
- GEMA Center for Genomics, Ecology & Environment, Universidad Mayor, Santiago, Chile
- Millenium Nucleus in Marine Agronomy of Seaweed Holobionts (MASH), Puerto Montt, Chile
- FONDAP Center IDEAL- Dynamics of High Latitude Marine Ecosystem, Valdivia, Chile
| |
Collapse
|
3
|
Turner TL, Rouse GW, Weigel BL, Janusson C, Lemay MA, Thacker RW. Taxonomy and phylogeny of the family Suberitidae (Porifera: Demospongiae) in California. Zootaxa 2024; 5447:1-28. [PMID: 39645850 DOI: 10.11646/zootaxa.5447.1.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Indexed: 12/10/2024]
Abstract
This study presents a comprehensive taxonomic revision of the family Suberitidae (Porifera: Demospongiae) for California, USA. We include the three species previously known from the region, document two additional species previously known from other regions, and formally describe four new species as Pseudosuberites latke sp. nov., Suberites californiana sp. nov., Suberites kumeyaay sp. nov., and Suberites agaricus sp. nov. Multi-locus DNA sequence data is presented for seven of the nine species, and was combined with all publicly available data to produce the most comprehensive global phylogeny for the family to date. By integrating morphological and genetic data, we show that morphological characters may be sufficient for regional species identification but are likely inadequate for global classification into genera that reflect the evolutionary history of the family. We therefore propose that DNA sequencing is a critical component to support future taxonomic revisions.
Collapse
Affiliation(s)
- Thomas L Turner
- Ecology; Evolution; and Marine Biology Department; University of California; Santa Barbara.
| | - Greg W Rouse
- Scripps Oceanography; University of California San Diego; 9500 Gilman Drive; La Jolla; CA; 92093 USA.
| | - Brooke L Weigel
- Committee on Evolutionary Biology; University of Chicago; Chicago; IL; USA; Current affiliation: Western Washington University; Bellingham; WA; USA.
| | | | | | - Robert W Thacker
- Department of Ecology and Evolution; Stony Brook University; Stony Brook; NY; USA; and Smithsonian Tropical Research Institute; PO Box 0843-03092; Balboa; Republic of Panama.
| |
Collapse
|
4
|
Ruocco N, Esposito R, Zagami G, Bertolino M, De Matteo S, Sonnessa M, Andreani F, Crispi S, Zupo V, Costantini M. Microbial diversity in Mediterranean sponges as revealed by metataxonomic analysis. Sci Rep 2021; 11:21151. [PMID: 34707182 PMCID: PMC8551288 DOI: 10.1038/s41598-021-00713-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 09/20/2021] [Indexed: 11/13/2022] Open
Abstract
Although the Mediterranean Sea covers approximately a 0.7% of the world's ocean area, it represents a major reservoir of marine and coastal biodiversity. Among marine organisms, sponges (Porifera) are a key component of the deep-sea benthos, widely recognized as the dominant taxon in terms of species richness, spatial coverage, and biomass. Sponges are evolutionarily ancient, sessile filter-feeders that harbor a largely diverse microbial community within their internal mesohyl matrix. In the present work, we firstly aimed at exploring the biodiversity of marine sponges from four different areas of the Mediterranean: Faro Lake in Sicily and "Porto Paone", "Secca delle fumose", "Punta San Pancrazio" in the Gulf of Naples. Eight sponge species were collected from these sites and identified by morphological analysis and amplification of several conserved molecular markers (18S and 28S RNA ribosomal genes, mitochondrial cytochrome oxidase subunit 1 and internal transcribed spacer). In order to analyze the bacterial diversity of symbiotic communities among these different sampling sites, we also performed a metataxonomic analysis through an Illumina MiSeq platform, identifying more than 1500 bacterial taxa. Amplicon Sequence Variants (ASVs) analysis revealed a great variability of the host-specific microbial communities. Our data highlight the occurrence of dominant and locally enriched microbes in the Mediterranean, together with the biotechnological potential of these sponges and their associated bacteria as sources of bioactive natural compounds.
Collapse
Affiliation(s)
- Nadia Ruocco
- grid.6401.30000 0004 1758 0806Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Roberta Esposito
- grid.6401.30000 0004 1758 0806Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy ,grid.4691.a0000 0001 0790 385XDepartment of Biology, University of Naples Federico II, Complesso Universitario Di Monte Sant’Angelo, Via Cinthia 21, 80126 Naples, Italy
| | - Giacomo Zagami
- grid.10438.3e0000 0001 2178 8421Dipartimento Di Scienze Biologiche, Chimiche, Farmaceutiche Ed Ambientali, Università Di Messina, 98100 Messina, Italy
| | - Marco Bertolino
- grid.5606.50000 0001 2151 3065DISTAV, Università Degli Studi Di Genova, Corso Europa 26, 16132 Genoa, Italy
| | - Sergio De Matteo
- grid.10438.3e0000 0001 2178 8421Dipartimento Di Scienze Biologiche, Chimiche, Farmaceutiche Ed Ambientali, Università Di Messina, 98100 Messina, Italy
| | | | | | - Stefania Crispi
- grid.6401.30000 0004 1758 0806Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy ,grid.5326.20000 0001 1940 4177Institute of Biosciences and BioResources Naples, National Research Council of Italy, Naples, Italy
| | - Valerio Zupo
- grid.6401.30000 0004 1758 0806Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Maria Costantini
- grid.6401.30000 0004 1758 0806Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| |
Collapse
|
5
|
Schuster A, Pomponi SA, Pisera A, Cárdenas P, Kelly M, Wörheide G, Erpenbeck D. Systematics of 'lithistid' tetractinellid demosponges from the Tropical Western Atlantic-implications for phylodiversity and bathymetric distribution. PeerJ 2021; 9:e10775. [PMID: 33859870 PMCID: PMC8020874 DOI: 10.7717/peerj.10775] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 12/22/2020] [Indexed: 11/20/2022] Open
Abstract
Background Among all present demosponges, lithistids represent a polyphyletic group with exceptionally well-preserved fossils dating back to the Cambrian. Knowledge of their recent diversity, particularly in the Tropical Western Atlantic Ocean (TWA) where they are common in deep waters, is scarce making any comparison between present and past major 'lithistid' faunas difficult. In addition, the lack of sufficient molecular and morphological data hamper any predictions on phylogenetic relationships or phylodiversity from this region. The Harbor Branch Oceanographic Institute (HBOI, Fort Pierce, Florida) holds the largest collection of TWA lithistid sponges worldwide, however, the majority remain to be taxonomically identified and revised. Principal Findings In this study we provide sequences of 249 lithistid demosponges using two independent molecular markers (28S rDNA (C1-D2) and cox1 mtDNA). In addition, a morphological documentation of 70 lithistid specimens is provided in the database of the Sponge Barcoding Project (SBP). This integrated dataset represents the largest and most comprehensive of the TWA lithistids to date. The phylogenetic diversity of 'lithistid' demosponges in the Bahamas and Jamaica are high in comparison to other TWA regions; Theonellidae and Corallistidae dominate the fauna, while Neopeltidae and Macandrewiidae are rare. A proposed tetractinellid suborder, one undescribed genus and several undescribed species are recognized and the Pacific 'lithistid' genera, Herengeria and Awhiowhio, are reported from the TWA for the first time. The higher-taxa relationships of desma-bearing tetractinellids are discussed and topics for revision suggested. Conclusion This first integrative approach of TWA 'lithistid' demosponges contributes to a better understanding of their phylogenetic affinities, diversity and bathymetric distribution patterns within the TWA. As in the Pacific, the TWA 'lithistid' demosponges dominate deep-water habitats. Deeper taxonomic investigations will undoubtedly contribute to a better comparison between present major 'lithistid' faunas and their fossil record in the Mesozoic.
Collapse
Affiliation(s)
- Astrid Schuster
- Department of Earth and Environmental Sciences, Ludwig-Maximilians-Universität München, Munich, Germany.,Current affiliation: Department of Biology, Nordcee, Southern University of Denmark, Odense, Denmark
| | - Shirley A Pomponi
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Ft Pierce, FL, USA
| | - Andrzej Pisera
- Institute of Paleobiology, Polish Academy of Sciences, Warszawa, Poland
| | - Paco Cárdenas
- Pharmacognosy, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Michelle Kelly
- National Centre for Coasts and Oceans, National Institute of Water and Atmospheric Research, Newmarket, Auckland, New Zealand
| | - Gert Wörheide
- Department of Earth and Environmental Sciences, Ludwig-Maximilians-Universität München, Munich, Germany.,GeoBio-Center, Ludwig-Maximilians-Universität München, Munich, Germany.,SNSB-Bayerische Staatssammlung für Paläontologie und Geologie, Munich, Germany
| | - Dirk Erpenbeck
- Department of Earth and Environmental Sciences, Ludwig-Maximilians-Universität München, Munich, Germany.,GeoBio-Center, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
6
|
Sponge communities in the eastern Canadian Arctic: species richness, diversity and density determined using targeted benthic sampling and underwater video analysis. Polar Biol 2020. [DOI: 10.1007/s00300-020-02709-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
7
|
First Report of the Coral-Killing Sponge Terpios hoshinota Rützler and Muzik, 1993 in Western Australia: A New Threat to Kimberley Coral Reefs? DIVERSITY 2019. [DOI: 10.3390/d11100184] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The cyanobacteriosponge Terpios hoshinota has been reported throughout the Indo-Pacific including the Great Barrier Reef, Australia. The species encrusts live coral, giant clams, and other benthos and can be a threat to benthic communities on coral reefs. The Kimberley region of Western Australia has some of the least impacted reefs globally. We report for the first time the presence of T. hoshinota in the eastern Indian Ocean on Kimberley inshore coral reefs. Given its invasive potential, reef health surveys should include this species, and monitoring approaches developed to audit the remote Kimberley for this and other invasive species.
Collapse
|
8
|
Knestrick MA, Wilson NG, Roth A, Adams JH, Baker BJ. Friomaramide, a Highly Modified Linear Hexapeptide from an Antarctic Sponge, Inhibits Plasmodium falciparum Liver-Stage Development. JOURNAL OF NATURAL PRODUCTS 2019; 82:2354-2358. [PMID: 31403291 DOI: 10.1021/acs.jnatprod.9b00362] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The cold waters of Antarctica are known to harbor a rich biodiversity. Our continuing interest in the chemical analysis of Antarctic invertebrates has resulted in the isolation of friomaramide (1), a new, highly modified hexapeptide, from the Antarctic sponge Inflatella coelosphaeroides. The structure of friomaramide was determined using spectroscopic methods and its configuration established by Marfey's method. Friomaramide, which bears the unusual permethylation of the amino acid backbone and is the longest polypeptide bearing a tryptenamine C-terminus, blocks >90% of Plasmodium falciparum liver-stage parasite development at 6.1 μM.
Collapse
Affiliation(s)
- Matthew A Knestrick
- Department of Chemistry , University of South Florida , 4202 E. Fowler Avenue, CHE205 , Tampa , Florida 33620 , United States
| | - Nerida G Wilson
- Western Australia Museum and University of Western Australia Perth , Fremantle , Western Australia 6106 , Australia
| | - Alison Roth
- Center for Global Health and Infectious Diseases Research, College of Public Health , University of South Florida , Tampa , Florida 33620 , United States
| | - John H Adams
- Center for Global Health and Infectious Diseases Research, College of Public Health , University of South Florida , Tampa , Florida 33620 , United States
| | - Bill J Baker
- Department of Chemistry , University of South Florida , 4202 E. Fowler Avenue, CHE205 , Tampa , Florida 33620 , United States
- Center for Global Health and Infectious Diseases Research, College of Public Health , University of South Florida , Tampa , Florida 33620 , United States
| |
Collapse
|
9
|
Comparative ultrastructure of the spermatogenesis of three species of Poecilosclerida (Porifera, Demospongiae). ZOOMORPHOLOGY 2018. [DOI: 10.1007/s00435-018-0429-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Li F, Janussen D, Peifer C, Pérez-Victoria I, Tasdemir D. Targeted Isolation of Tsitsikammamines from the Antarctic Deep-Sea Sponge Latrunculia biformis by Molecular Networking and Anticancer Activity. Mar Drugs 2018; 16:md16080268. [PMID: 30072656 PMCID: PMC6117724 DOI: 10.3390/md16080268] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 07/23/2018] [Accepted: 07/30/2018] [Indexed: 12/12/2022] Open
Abstract
The Antarctic deep-sea sponge Latrunculia (Latrunculia) biformis Kirkpatrick, 1908 (Class Demospongiae Sollas, Order Poecilosclerida Topsent, Latrunculiidae Topsent) was selected for chemical analyses due to its potent anticancer activity. Metabolomic analysis of its crude extract by HRMS/MS-based molecular networking showed the presence of several clusters of pyrroloiminoquinone alkaloids, i.e., discorhabdin and epinardin-type brominated pyridopyrroloquinolines and tsitsikammamines, the non-brominated bis-pyrroloiminoquinones. Molecular networking approach combined with a bioactivity-guided isolation led to the targeted isolation of the known pyrroloiminoquinone tsitsikammamine A (1) and its new analog 16,17-dehydrotsitsikammamine A (2). The chemical structures of the compounds 1 and 2 were elucidated by spectroscopic analysis (one-dimensional (1D) and two-dimensional (2D) NMR, HR-ESIMS). Due to minute amounts, molecular modeling and docking was used to assess potential affinities to potential targets of the isolated compounds, including DNA intercalation, topoisomerase I-II, and indoleamine 2,3-dioxygenase enzymes. Tsitsikammamines represent a small class of pyrroloiminoquinone alkaloids that have only previously been reported from the South African sponge genus Tsitsikamma Samaai & Kelly and an Australian species of the sponge genus Zyzzya de Laubenfels. This is the first report of tsitsikammamines from the genus Latrunculia du Bocage and the successful application of molecular networking in the identification of comprehensive chemical inventory of L.biformis followed by targeted isolation of new molecules. This study highlights the high productivity of secondary metabolites of Latrunculia sponges and may shed new light on their biosynthetic origin and chemotaxonomy.
Collapse
Affiliation(s)
- Fengjie Li
- GEOMAR Centre for Marine Biotechnology (GEOMAR-Biotech), Marine Natural Products Research Unit Chemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Am Kiel-Kanal 44, 24106 Kiel, Germany.
| | - Dorte Janussen
- Senckenberg Research Institute and Natural History Museum, Senckenberganlage 25, 60325 Frankfurt, Germany.
| | - Christian Peifer
- Pharmaceutical Chemistry, Kiel University, Gutenbergstraße 76, 24118 Kiel, Germany.
| | - Ignacio Pérez-Victoria
- Fundación MEDINA, Parque Tecnológico de la Salud, Av. Conocimiento 18016 Granada, Spain.
| | - Deniz Tasdemir
- GEOMAR Centre for Marine Biotechnology (GEOMAR-Biotech), Marine Natural Products Research Unit Chemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Am Kiel-Kanal 44, 24106 Kiel, Germany.
- Faculty of Mathematics and Natural Sciences, Kiel University, Christian-Albrechts-Platz 4, 24118 Kiel, Germany.
| |
Collapse
|
11
|
Yang Q, Franco CMM, Sorokin SJ, Zhang W. Development of a multilocus-based approach for sponge (phylum Porifera) identification: refinement and limitations. Sci Rep 2017; 7:41422. [PMID: 28150727 PMCID: PMC5288722 DOI: 10.1038/srep41422] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 12/19/2016] [Indexed: 01/29/2023] Open
Abstract
For sponges (phylum Porifera), there is no reliable molecular protocol available for species identification. To address this gap, we developed a multilocus-based Sponge Identification Protocol (SIP) validated by a sample of 37 sponge species belonging to 10 orders from South Australia. The universal barcode COI mtDNA, 28S rRNA gene (D3-D5), and the nuclear ITS1-5.8S-ITS2 region were evaluated for their suitability and capacity for sponge identification. The highest Bit Score was applied to infer the identity. The reliability of SIP was validated by phylogenetic analysis. The 28S rRNA gene and COI mtDNA performed better than the ITS region in classifying sponges at various taxonomic levels. A major limitation is that the databases are not well populated and possess low diversity, making it difficult to conduct the molecular identification protocol. The identification is also impacted by the accuracy of the morphological classification of the sponges whose sequences have been submitted to the database. Re-examination of the morphological identification further demonstrated and improved the reliability of sponge identification by SIP. Integrated with morphological identification, the multilocus-based SIP offers an improved protocol for more reliable and effective sponge identification, by coupling the accuracy of different DNA markers.
Collapse
Affiliation(s)
- Qi Yang
- Centre for Marine Bioproducts Development, Flinders University, Adelaide, South Australia, SA 5042, Australia.,Department of Medical Biotechnology, School of Medicine, Faculty of Medicine, Nursing and Health Sciences, Flinders University, Adelaide, South Australia, SA 5042, Australia
| | - Christopher M M Franco
- Centre for Marine Bioproducts Development, Flinders University, Adelaide, South Australia, SA 5042, Australia.,Department of Medical Biotechnology, School of Medicine, Faculty of Medicine, Nursing and Health Sciences, Flinders University, Adelaide, South Australia, SA 5042, Australia
| | - Shirley J Sorokin
- Centre for Marine Bioproducts Development, Flinders University, Adelaide, South Australia, SA 5042, Australia.,Department of Medical Biotechnology, School of Medicine, Faculty of Medicine, Nursing and Health Sciences, Flinders University, Adelaide, South Australia, SA 5042, Australia.,SARDI Aquatic Sciences, 2 Hamra Ave, West Beach, SA 5024, Australia
| | - Wei Zhang
- Centre for Marine Bioproducts Development, Flinders University, Adelaide, South Australia, SA 5042, Australia.,Department of Medical Biotechnology, School of Medicine, Faculty of Medicine, Nursing and Health Sciences, Flinders University, Adelaide, South Australia, SA 5042, Australia.,Centre for Marine Drugs, Renji Hospital, Shanghai Jiaotong University, Shanghai, 200240, China
| |
Collapse
|
12
|
The role of sponge-bacteria interactions: the sponge Aplysilla rosea challenged by its associated bacterium Streptomyces ACT-52A in a controlled aquarium system. Appl Microbiol Biotechnol 2016; 100:10609-10626. [PMID: 27717966 DOI: 10.1007/s00253-016-7878-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 09/05/2016] [Accepted: 09/16/2016] [Indexed: 10/20/2022]
Abstract
Sponge-associated bacteria play a critical role in sponge biology, metabolism and ecology, but how they interact with their host sponges and the role of these interactions are poorly understood. This study investigated the role of the interaction between the sponge Aplysilla rosea and its associated actinobacterium, Streptomyces ACT-52A, in modifying sponge microbial diversity, metabolite profile and bioactivity. A recently developed experimental approach that exposes sponges to bacteria of interest in a controlled aquarium system was improved by including the capture and analysis of secreted metabolites by the addition of an absorbent resin in the seawater. In a series of controlled aquaria, A. rosea was exposed to Streptomyces ACT-52A at 106 cfu/ml and monitored for up to 360 h. Shifts in microbial communities associated with the sponges occurred within 24 to 48 h after bacterial exposure and continued until 360 h, as revealed by TRFLP. The metabolite profiles of sponge tissues also changed substantially as the microbial community shifted. Control sponges (without added bacteria) and Streptomyces ACT-52A-exposed sponges released different metabolites into the seawater that was captured by the resin. The antibacterial activity of compounds collected from the seawater increased at 96 and 360 h of exposure for the treated sponges compared to the control group due to new compounds being produced and released. Increased antibacterial activity of metabolites from treated sponge tissue was observed only at 360 h, whereas that of control sponge tissue remained unchanged. The results demonstrate that the interaction between sponges and their associated bacteria plays an important role in regulating secondary metabolite production.
Collapse
|
13
|
Plotkin A, Voigt O, Willassen E, Rapp HT. Molecular phylogenies challenge the classification of Polymastiidae (Porifera, Demospongiae) based on morphology. ORG DIVERS EVOL 2016. [DOI: 10.1007/s13127-016-0301-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
da Silva JM, Willows-Munro S. A review of over a decade of DNA barcoding in South Africa: a faunal perspective. AFRICAN ZOOLOGY 2016. [DOI: 10.1080/15627020.2016.1151377] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
15
|
Vargas S, Kelly M, Schnabel K, Mills S, Bowden D, Wörheide G. Correction: Diversity in a Cold Hot-Spot: DNA-Barcoding Reveals Patterns of Evolution among Antarctic Demosponges (Class Demospongiae, Phylum Porifera). PLoS One 2015; 10:e0133096. [PMID: 26173012 PMCID: PMC4501711 DOI: 10.1371/journal.pone.0133096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
|