1
|
Higher white-nose syndrome fungal isolate yields from UV-guided wing biopsies compared with skin swabs and optimal culture media. BMC Vet Res 2023; 19:40. [PMID: 36759833 PMCID: PMC9912490 DOI: 10.1186/s12917-023-03603-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 10/17/2022] [Indexed: 02/11/2023] Open
Abstract
BACKGROUND North American bat populations have suffered severe declines over the last decade due to the Pseudogymnoascus destructans fungus infection. The skin disease associated with this causative agent, known as white-nose syndrome (WNS), is specific to bats hibernating in temperate regions. As cultured fungal isolates are required for epidemiological and phylogeographical studies, the purpose of the present work was to compare the efficacy and reliability of different culture approaches based on either skin swabs or wing membrane tissue biopsies for obtaining viable fungal isolates of P. destructans. RESULTS In total, we collected and analysed 69 fungal and 65 bacterial skin swabs and 51 wing membrane tissue biopsies from three bat species in the Czech Republic, Poland and the Republic of Armenia. From these, we obtained 12 viable P. destructans culture isolates. CONCLUSIONS Our results indicated that the efficacy of cultures based on wing membrane biopsies were significantly higher. Cultivable samples tended to be based on collections from bats with lower body surface temperature and higher counts of UV-visualised lesions. While cultures based on both skin swabs and wing membrane tissue biopsies can be utilised for monitoring and surveillance of P. destructans in bat populations, wing membrane biopsies guided by UV light for skin lesions proved higher efficacy. Interactions between bacteria on the host's skin also appear to play an important role.
Collapse
|
2
|
France MT, Brown SE, Rompalo AM, Brotman RM, Ravel J. Identification of shared bacterial strains in the vaginal microbiota of related and unrelated reproductive-age mothers and daughters using genome-resolved metagenomics. PLoS One 2022; 17:e0275908. [PMID: 36288274 PMCID: PMC9604009 DOI: 10.1371/journal.pone.0275908] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/26/2022] [Indexed: 11/29/2022] Open
Abstract
It has been suggested that the human microbiome might be vertically transmitted from mother to offspring and that early colonizers may play a critical role in development of the immune system. Studies have shown limited support for the vertical transmission of the intestinal microbiota but the derivation of the vaginal microbiota remains largely unknown. Although the vaginal microbiota of children and reproductive age women differ in composition, the vaginal microbiota could be vertically transmitted. To determine whether there was any support for this hypothesis, we examined the vaginal microbiota of daughter-mother pairs from the Baltimore metropolitan area (ages 14-27, 32-51; n = 39). We assessed whether the daughter's microbiota was similar in composition to their mother's using metataxonomics. Permutation tests revealed that while some pairs did have similar vaginal microbiota, the degree of similarity did not exceed that expected by chance. Genome-resolved metagenomics was used to identify shared bacterial strains in a subset of the families (n = 22). We found a small number of bacterial strains that were shared between mother-daughter pairs but identified more shared strains between individuals from different families, indicating that vaginal bacteria may display biogeographic patterns. Earlier-in-life studies are needed to demonstrate vertical transmission of the vaginal microbiota.
Collapse
Affiliation(s)
- Michael T. France
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Sarah E. Brown
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Anne M. Rompalo
- Division of Infectious Diseases, John Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Rebecca M. Brotman
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Jacques Ravel
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
3
|
Fanelli F, Caputo L, Quintieri L. Phenotypic and genomic characterization of Pseudomonas putida ITEM 17297 spoiler of fresh vegetables: Focus on biofilm and antibiotic resistance interaction. Curr Res Food Sci 2021; 4:74-82. [PMID: 33718885 PMCID: PMC7932912 DOI: 10.1016/j.crfs.2021.02.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 11/30/2022] Open
Abstract
Pseudomonas putida is widely recognized as a spoiler of fresh foods under cold storage, and recently associated also with infections in clinical settings. The presence of antibiotic resistance genes (ARGs) could be acquired and transmitted by horizontal genetic transfer and further increase the risk associated with its persistence in food and the need to be deeper investigated. Thus, in this work we presented a genomic and phenotypic analysis of the psychrotrophic P. putida ITEM 17297 to provide new insight into AR mechanisms by this species until now widely studied only for its spoilage traits. ITEM 17297 displayed resistance to several classes of antibiotics and it also formed huge amounts of biofilm; this latter registered increases at 15 °C in comparison to the optimum growth condition (30 °C). After ITEM 17297 biofilms exposure to antibiotic concentrations higher than 10-fold their MIC values no eradication occurred; interestingly, biomasses of biofilm cultivated at 15 °C increased their amount in a dose-dependent manner. Genomic analyses revealed determinants (RND-systems, ABC-transporters, and MFS-efflux pumps) for multi-drugs resistance (β-lactams, macrolides, nalidixic acid, tetracycline, fusidic acid and bacitracin) and a novel ampC allele. Biofilm and motility related pathways were depicted underlying their contribution to AR. Based on these results, underestimated psychrotrophic pseudomonas, such as the herein studied ITEM 17297 strain, might assume relevance in relation to the risk associated with the transfer of antimicrobial resistance genes to humans through cold stored contaminated foods. P. putida biofilm and AR related molecular targets herein identified will provide a basis to clarify the interaction between AR and biofilm formation and to develop novel strategies to counteract the persistence of multidrug resistant P. putida in the food chain. Multidrug resistant Pseudomonas putida ITEM 17297 was isolated from fresh vegetables. Determinants for AR and biofilm formation were identified by genomic analysis. Biofilm increased more than 10-fold antibiotic MIC value of planktonic cells. Cold adapted biofilm increased its biomass under CHL, NA, and ERY pressure. New insight into the risk for P. putida spread in the food chain were provided.
Collapse
Affiliation(s)
- Francesca Fanelli
- Institute of Sciences of Food Production, National Research Council of Italy, V. G. Amendola 122/O, 70126, Bari, Italy
| | - Leonardo Caputo
- Institute of Sciences of Food Production, National Research Council of Italy, V. G. Amendola 122/O, 70126, Bari, Italy
| | - Laura Quintieri
- Institute of Sciences of Food Production, National Research Council of Italy, V. G. Amendola 122/O, 70126, Bari, Italy
| |
Collapse
|
4
|
McFarland AG, Bertucci HK, Littman E, Shen J, Huttenhower C, Hartmann EM. Triclosan Tolerance Is Driven by a Conserved Mechanism in Diverse Pseudomonas Species. Appl Environ Microbiol 2021; 87:e02924-20. [PMID: 33483311 PMCID: PMC8091609 DOI: 10.1128/aem.02924-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/20/2021] [Indexed: 02/04/2023] Open
Abstract
Perturbation of natural microbial communities by antimicrobials, such as triclosan, can result in selection for antibiotic tolerance, which is of particular concern when pathogens are present. Members of the genus Pseudomonas are found in many natural microbial communities and frequently demonstrate increased abundance following triclosan exposure. The pathogen and well-studied model organism Pseudomonas aeruginosa exhibits high triclosan tolerance; however, it is unknown if all Pseudomonas species share this trait or if there are susceptible strains. We characterized the triclosan tolerance phenotypes of diverse Pseudomonas isolates obtained from triclosan-exposed built environments and identified both tolerant and sensitive strains. High tolerance is associated with carriage of the enoyl-acyl carrier reductase (ENR) isozyme gene fabV, compared to the lesser protective effects of efflux or presence of ENRs. Given its unique importance, we examined fabV distribution throughout Pseudomonas species using large-scale phylogenomic analyses. We find fabV presence or absence is largely invariant at the species level but demonstrates multiple gain and loss events in its evolutionary history. We further provide evidence of its presence on mobile genetic elements. Our results demonstrate the surprising variability in triclosan tolerance in Pseudomonas and confirm fabV to be a useful indicator for high triclosan tolerance in Pseudomonas These findings provide a framework for better monitoring of Pseudomonas in triclosan-exposed environments and interpreting effects on species and gene composition.IMPORTANCE Closely related species are typically assumed to demonstrate similar phenotypes driven by underlying conserved genotypes. When monitoring for the effect of antimicrobials on the types of species that may be selected for, this assumption may prove to be incorrect, and identification of additional genetic markers may be necessary. We isolated several phylogenetically diverse members of Pseudomonas from indoor environments and tested their phenotypic tolerance toward the commonly used antimicrobial triclosan. Although Pseudomonas isolates are broadly regarded to be highly triclosan tolerant, we demonstrate the presence of both triclosan-tolerant and -susceptible strains, separated by a difference in tolerance of nearly 3 orders of magnitude. Bioinformatic and experimental investigation demonstrated that the presence of the gene fabV was associated with high tolerance. We demonstrate that fabV is not evenly distributed in all Pseudomonas species and that its presence could be a useful predictor of high triclosan tolerance suitable for antimicrobial monitoring efforts involving triclosan.
Collapse
Affiliation(s)
- Alexander G McFarland
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, Illinois, USA
| | - Hanna K Bertucci
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, Illinois, USA
| | - Erica Littman
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, Illinois, USA
| | - Jiaxian Shen
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, Illinois, USA
| | - Curtis Huttenhower
- Harvard Chan Microbiome in Public Health Center, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Infectious Disease and Microbiome Program, Broad Institute, Cambridge, Massachusetts, USA
| | - Erica M Hartmann
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, Illinois, USA
| |
Collapse
|
5
|
Pereira RPA, Peplies J, Mushi D, Brettar I, Höfle MG. Pseudomonas-Specific NGS Assay Provides Insight Into Abundance and Dynamics of Pseudomonas Species Including P. aeruginosa in a Cooling Tower. Front Microbiol 2018; 9:1958. [PMID: 30186269 PMCID: PMC6110898 DOI: 10.3389/fmicb.2018.01958] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 08/02/2018] [Indexed: 12/23/2022] Open
Abstract
Pseudomonas species are frequent inhabitants of freshwater environments and colonizers of water supply networks via bioadhesion and biofilm formation. P. aeruginosa is the species most commonly associated with human disease, causing a wide variety of infections with links to its presence in freshwater systems. Though several other Pseudomonas species are of ecological and public health importance, little knowledge exists regarding environmental abundances of these species. In the present study, an Illumina-based next-generation sequencing (NGS) approach using Pseudomonas-specific primers targeting the 16S rRNA gene was evaluated and applied to a set of freshwater samples from different environments including a cooling tower sampled monthly during 2 years. Our approach showed high in situ specificity and accuracy. NGS read counts revealed a precise quantification of P. aeruginosa and a good correlation with the absolute number of Pseudomonas genome copies in a validated genus-specific qPCR assay, demonstrating the ability of the NGS approach to determine both relative and absolute abundances of Pseudomonas species and P. aeruginosa. The characterization of Pseudomonas communities in cooling tower water allowed us to identify 43 phylotypes, with P. aeruginosa being the most abundant. A shift existed within each year from a community dominated by phylotypes belonging to P. fluorescens and P. oleovorans phylogenetic groups to a community where P. aeruginosa was highly abundant. Co-occurrence was observed between P. aeruginosa and other phylotypes of P. aeruginosa group as well as the potentially pathogenic species P. stutzeri, but not with phylotypes of the P. fluorescens group, indicating the need to further investigate the metabolic networks and ecological traits of Pseudomonas species. This study demonstrates the potential of deep sequencing as a valuable tool in environmental diagnostics and surveillance of health-related pathogens in freshwater environments.
Collapse
Affiliation(s)
- Rui P A Pereira
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | - Douglas Mushi
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Department of Biological Sciences, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Ingrid Brettar
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Manfred G Höfle
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| |
Collapse
|
6
|
Vásquez-Ponce F, Higuera-Llantén S, Pavlov MS, Marshall SH, Olivares-Pacheco J. Phylogenetic MLSA and phenotypic analysis identification of three probable novel Pseudomonas species isolated on King George Island, South Shetland, Antarctica. Braz J Microbiol 2018; 49:695-702. [PMID: 29598976 PMCID: PMC6175711 DOI: 10.1016/j.bjm.2018.02.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Revised: 02/03/2018] [Accepted: 02/14/2018] [Indexed: 02/07/2023] Open
Abstract
Antarctica harbors a great diversity of microorganisms, including bacteria, archaea, microalgae and yeasts. The Pseudomonas genus is one of the most diverse and successful bacterial groups described to date, but only eight species isolated from Antarctica have been characterized. Here, we present three potentially novel species isolated on King George Island. The most abundant isolates from four different environments, were genotypically and phenotypically characterized. Multilocus sequence analysis and 16S rRNA gene analysis of a sequence concatenate for six genes (16S, aroE, glnS, gyrB, ileS and rpoD), determined one of the isolates to be a new Pseudomonas mandelii strain, while the other three are good candidates for new Pseudomonas species. Additionally, genotype analyses showed the three candidates to be part of a new subgroup within the Pseudomonas fluorescens complex, together with the Antarctic species Pseudomonas antarctica and Pseudomonas extremaustralis. We propose terming this new subgroup P. antarctica. Likewise, phenotypic analyses using API 20 NE and BIOLOG® corroborated the genotyping results, confirming that all presented isolates form part of the P. fluorescens complex. Pseudomonas genus research on the Antarctic continent is in its infancy. To understand these microorganisms’ role in this extreme environment, the characterization and description of new species is vital.
Collapse
Affiliation(s)
- Felipe Vásquez-Ponce
- Pontificia Universidad Católica de Valparaíso, Facultad de Ciencias, Instituto de Biología, Laboratorio de Genética e Inmunología Molecular, Valparaíso, Chile
| | - Sebastián Higuera-Llantén
- Pontificia Universidad Católica de Valparaíso, Facultad de Ciencias, Instituto de Biología, Laboratorio de Genética e Inmunología Molecular, Valparaíso, Chile
| | - María S Pavlov
- Pontificia Universidad Católica de Valparaíso, Facultad de Ciencias, Instituto de Biología, Laboratorio de Genética e Inmunología Molecular, Valparaíso, Chile
| | - Sergio H Marshall
- Pontificia Universidad Católica de Valparaíso, Facultad de Ciencias, Instituto de Biología, Laboratorio de Genética e Inmunología Molecular, Valparaíso, Chile
| | - Jorge Olivares-Pacheco
- Pontificia Universidad Católica de Valparaíso, Facultad de Ciencias, Instituto de Biología, Laboratorio de Genética e Inmunología Molecular, Valparaíso, Chile.
| |
Collapse
|
7
|
France MT, Remold SK. Interference Competition Among Household Strains of Pseudomonas. MICROBIAL ECOLOGY 2016; 72:821-830. [PMID: 26276409 DOI: 10.1007/s00248-015-0652-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 07/16/2015] [Indexed: 06/04/2023]
Abstract
Bacterial species exhibit biogeographical patterns like those observed in larger organisms. The distribution of bacterial species is driven by environmental selection through abiotic and biotic factors as well dispersal limitations. We asked whether interference competition, a biotic factor, could explain variability in habitat use by Pseudomonas species in the human home. To answer this question, we screened almost 8000 directional, pairwise interactions between 89 Pseudomonas strains including members of the Pseudomonas aeruginosa (n = 29), Pseudomonas fluorescens (n = 21), and Pseudomonas putida (n = 39) species groups for the presence of killing. This diverse set of Pseudomonas strains includes those isolated from several different habitats within the home environment and includes combinations of strains that were isolated from different spatial scales. The use of this strain set not only allowed us to analyze the commonality and phylogenetic scale of interference competition within the genus Pseudomonas but also allowed us to investigate the influence of spatial scale on this trait. Overall, the probability of killing was found to decrease with increasing phylogenetic distance, making it unlikely that interference competition accounts for previously observed differential habitat use among Pseudomonas species and species groups. Strikingly, conspecific P. aeruginosa killing accounted for the vast majority of the observed killing, and this killing was found to differ across the habitat type and spatial scale of the strains' isolation. These data suggest that interference competition likely plays a large role in the within-species dynamics of P. aeruginosa but not other household Pseudomonas species.
Collapse
Affiliation(s)
- Michael T France
- Department of Biological Sciences, University of Idaho, 875 Perimeter Drive MS 3051, Moscow, ID, 83844, USA.
- Institute for Bioinformatics and Evolutionary Studies, University of Idaho, 875 Perimeter Drive MS 3051, Moscow, ID, 83844, USA.
| | - Susanna K Remold
- Department of Biology, University of Louisville, 137 Life Sciences Building, Louisville, KY, 40292, USA
| |
Collapse
|
8
|
Muturi EJ, Kim CH, Bara J, Bach EM, Siddappaji MH. Culex pipiens and Culex restuans mosquitoes harbor distinct microbiota dominated by few bacterial taxa. Parasit Vectors 2016; 9:18. [PMID: 26762514 PMCID: PMC4712599 DOI: 10.1186/s13071-016-1299-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 01/07/2016] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Mosquitoes host diverse microbial communities that influence many aspects of their biology including reproduction, digestion, and ability to transmit pathogens. Unraveling the composition, structure, and function of these microbiota can provide new opportunities for exploiting microbial function for mosquito-borne disease control. METHODS MiSeq® sequencing of 16S rRNA gene amplicons was used to characterize the microbiota of adult females of Culex pipiens L. and Cx. restuans Theobald collected from nine study sites in central Illinois. RESULTS Out of 195 bacterial OTUs that were identified, 86 were shared between the two mosquito species while 16 and 93 OTUs were unique to Cx. pipiens and Cx. restuans, respectively. The composition and structure of microbial communities differed significantly between the two mosquito species with Cx. restuans hosting a more diverse bacterial community compared to Cx. pipiens. Wolbachia (OTU836919) was the dominant bacterial species in Cx. pipiens accounting for 91% of total microbiota while Sphingomonas (OTU817982) was the dominant bacterial species in Cx. restuans accounting for 31% of total microbiota. Only 3 and 6 OTUs occurred in over 60% of individuals in Cx. pipiens and Cx. restuans, respectively. There was little effect of study site on bacterial community structure of either mosquito species. CONCLUSION These results suggest that the two mosquito species support distinct microbial communities that are sparsely distributed between individuals. These findings will allow investigations of the role of identified microbiota on the spatial and temporal heterogeneity in WNV transmission and their potential application in disease control.
Collapse
Affiliation(s)
- Ephantus J Muturi
- Illinois Natural History Survey, University of Illinois, 1816 S. Oak St., Champaign, IL, 61820, USA.
| | - Chang-Hyun Kim
- Illinois Natural History Survey, University of Illinois, 1816 S. Oak St., Champaign, IL, 61820, USA.
| | - Jeffrey Bara
- Department of Biology, University of Louisville, Louisville, KY, 40292, USA.
| | - Elizabeth M Bach
- Illinois Natural History Survey, University of Illinois, 1816 S. Oak St., Champaign, IL, 61820, USA.
| | - Madhura H Siddappaji
- Illinois Natural History Survey, University of Illinois, 1816 S. Oak St., Champaign, IL, 61820, USA.
| |
Collapse
|