1
|
Ross IL, Le HP, Budiman S, Xiong D, Hemker F, Millen EA, Oey M, Hankamer B. A cyclical marker system enables indefinite series of oligonucleotide-directed gene editing in Chlamydomonas reinhardtii. PLANT PHYSIOLOGY 2024; 196:2330-2345. [PMID: 39179421 PMCID: PMC11637769 DOI: 10.1093/plphys/kiae427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/24/2024] [Accepted: 07/04/2024] [Indexed: 08/26/2024]
Abstract
CRISPR/Cas9 gene editing in the model green alga Chlamydomonas reinhardtii relies on the use of selective marker genes to enrich for nonselectable target mutations. This becomes challenging when many sequential modifications are required in a single-cell line, as useful markers are limited. Here, we demonstrate a cyclical selection process which only requires a single marker gene to identify an almost infinite sequential series of CRISPR-based target gene modifications. We used the NIA1 (Nit1, NR; nitrate reductase) gene as the selectable marker in this study. In the forward stage of the cycle, a stop codon was engineered into the NIA1 gene at the CRISPR target location. Cells retaining the wild-type NIA1 gene were killed by chlorate, while NIA1 knockout mutants survived. In the reverse phase of the cycle, the stop codon engineered into the NIA1 gene during the forward phase was edited back to the wild-type sequence. Using nitrate as the sole nitrogen source, only the reverted wild-type cells survived. By using CRISPR to specifically deactivate and reactivate the NIA1 gene, a marker system was established that flipped back and forth between chlorate- and auxotrophic (nitrate)-based selection. This provided a scarless cyclical marker system that enabled an indefinite series of CRISPR edits in other, nonselectable genes. We demonstrate that this "Sequential CRISPR via Recycling Endogenous Auxotrophic Markers (SCREAM)" technology enables an essentially limitless series of genetic modifications to be introduced into a single-cell lineage of C. reinhardtii in a fast and efficient manner to complete complex genetic engineering.
Collapse
Affiliation(s)
- Ian L Ross
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Hong Phuong Le
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Sabar Budiman
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Dake Xiong
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Fritz Hemker
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Elizabeth A Millen
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Melanie Oey
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Ben Hankamer
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
2
|
Peng D, Vangipuram M, Wong J, Leonetti M. protoSpaceJAM: an open-source, customizable and web-accessible design platform for CRISPR/Cas insertional knock-in. Nucleic Acids Res 2024; 52:e68. [PMID: 38922690 PMCID: PMC11347160 DOI: 10.1093/nar/gkae553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 06/06/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
CRISPR/Cas-mediated knock-in of DNA sequences enables precise genome engineering for research and therapeutic applications. However, designing effective guide RNAs (gRNAs) and homology-directed repair (HDR) donors remains a bottleneck. Here, we present protoSpaceJAM, an open-source algorithm to automate and optimize gRNA and HDR donor design for CRISPR/Cas insertional knock-in experiments, currently supporting SpCas9, SpCas9-VQR and enAsCas12a Cas enzymes. protoSpaceJAM utilizes biological rules to rank gRNAs based on specificity, distance to insertion site, and position relative to regulatory regions. protoSpaceJAM can introduce 'recoding' mutations (silent mutations and mutations in non-coding sequences) in HDR donors to prevent re-cutting and increase knock-in efficiency. Users can customize parameters and design double-stranded or single-stranded donors. We validated protoSpaceJAM's design rules by demonstrating increased knock-in efficiency with recoding mutations and optimal strand selection for single-stranded donors. An additional module enables the design of genotyping primers for deep sequencing of edited alleles. Overall, protoSpaceJAM streamlines and optimizes CRISPR knock-in experimental design in a flexible and modular manner to benefit diverse research and therapeutic applications. protoSpaceJAM is available open-source as an interactive web tool at protospacejam.czbiohub.org or as a standalone Python package at github.com/czbiohub-sf/protoSpaceJAM.
Collapse
Affiliation(s)
- Duo Peng
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | | | - Joan Wong
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | | |
Collapse
|
3
|
Arévalo S, Pérez Rico D, Abarca D, Dijkhuizen LW, Sarasa-Buisan C, Lindblad P, Flores E, Nierzwicki-Bauer S, Schluepmann H. Genome Engineering by RNA-Guided Transposition for Anabaena sp. PCC 7120. ACS Synth Biol 2024; 13:901-912. [PMID: 38445989 PMCID: PMC10949235 DOI: 10.1021/acssynbio.3c00583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/30/2024] [Accepted: 02/16/2024] [Indexed: 03/07/2024]
Abstract
In genome engineering, the integration of incoming DNA has been dependent on enzymes produced by dividing cells, which has been a bottleneck toward increasing DNA insertion frequencies and accuracy. Recently, RNA-guided transposition with CRISPR-associated transposase (CAST) was reported as highly effective and specific in Escherichia coli. Here, we developed Golden Gate vectors to test CAST in filamentous cyanobacteria and to show that it is effective in Anabaena sp. strain PCC 7120. The comparatively large plasmids containing CAST and the engineered transposon were successfully transferred into Anabaena via conjugation using either suicide or replicative plasmids. Single guide (sg) RNA encoding the leading but not the reverse complement strand of the target were effective with the protospacer-associated motif (PAM) sequence included in the sgRNA. In four out of six cases analyzed over two distinct target loci, the insertion site was exactly 63 bases after the PAM. CAST on a replicating plasmid was toxic, which could be used to cure the plasmid. In all six cases analyzed, only the transposon cargo defined by the sequence ranging from left and right elements was inserted at the target loci; therefore, RNA-guided transposition resulted from cut and paste. No endogenous transposons were remobilized by exposure to CAST enzymes. This work is foundational for genome editing by RNA-guided transposition in filamentous cyanobacteria, whether in culture or in complex communities.
Collapse
Affiliation(s)
- Sergio Arévalo
- Biology
Department, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
- Microbial
Chemistry, Department of Chemistry-Ångström Laboratory, Uppsala University, Lägerhyddsvägen 1, 751
20 Uppsala, Sweden
- Instituto
de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad
de Sevilla, Avenida Americo Vespucio 49, Sevilla 41092, Spain
- Department
of Biological Sciences, Rensselaer Polytechnic
Institute, 110 Eighth
Street, Troy, New York 12180-3590, United
States
| | - Daniel Pérez Rico
- Biology
Department, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Dolores Abarca
- Biology
Department, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Laura W. Dijkhuizen
- Biology
Department, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Cristina Sarasa-Buisan
- Instituto
de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad
de Sevilla, Avenida Americo Vespucio 49, Sevilla 41092, Spain
| | - Peter Lindblad
- Microbial
Chemistry, Department of Chemistry-Ångström Laboratory, Uppsala University, Lägerhyddsvägen 1, 751
20 Uppsala, Sweden
| | - Enrique Flores
- Instituto
de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad
de Sevilla, Avenida Americo Vespucio 49, Sevilla 41092, Spain
| | - Sandra Nierzwicki-Bauer
- Department
of Biological Sciences, Rensselaer Polytechnic
Institute, 110 Eighth
Street, Troy, New York 12180-3590, United
States
| | - Henriette Schluepmann
- Biology
Department, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
4
|
Werner AN, Kumar AI, Charest PG. CRISPR-mediated reversion of oncogenic KRAS mutation results in increased proliferation and reveals independent roles of Ras and mTORC2 in the migration of A549 lung cancer cells. Mol Biol Cell 2023; 34:ar128. [PMID: 37729017 PMCID: PMC10848948 DOI: 10.1091/mbc.e23-05-0152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/22/2023] Open
Abstract
Although the RAS oncogene has been extensively studied, new aspects concerning its role and regulation in normal biology and cancer continue to be discovered. Recently, others and we have shown that the mechanistic Target of Rapamycin Complex 2 (mTORC2) is a Ras effector in Dictyostelium and mammalian cells. mTORC2 plays evolutionarily conserved roles in cell survival and migration and has been linked to tumorigenesis. Because RAS is often mutated in lung cancer, we investigated whether a Ras-mTORC2 pathway contributes to enhancing the migration of lung cancer cells expressing oncogenic Ras. We used A549 cells and CRISPR/Cas9 to revert the cells' KRAS G12S mutation to wild-type and establish A549 revertant (REV) cell lines, which we then used to evaluate the Ras-mediated regulation of mTORC2 and cell migration. Interestingly, our results suggest that K-Ras and mTORC2 promote A549 cell migration but as part of different pathways and independently of Ras's mutational status. Moreover, further characterization of the A549REV cells revealed that loss of mutant K-Ras expression for the wild-type protein leads to an increase in cell growth and proliferation, suggesting that the A549 cells have low KRAS-mutant dependency and that recovering expression of wild-type K-Ras protein increases these cells tumorigenic potential.
Collapse
Affiliation(s)
- Alyssa N. Werner
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721
| | - Avani I. Kumar
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721
| | - Pascale G. Charest
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721
- University of Arizona Cancer Center, Tucson, AZ 85721
| |
Collapse
|
5
|
Lackner M, Helmbrecht N, Pääbo S, Riesenberg S. Detection of unintended on-target effects in CRISPR genome editing by DNA donors carrying diagnostic substitutions. Nucleic Acids Res 2023; 51:e26. [PMID: 36620901 PMCID: PMC10018342 DOI: 10.1093/nar/gkac1254] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/18/2022] [Accepted: 12/15/2022] [Indexed: 01/10/2023] Open
Abstract
CRISPR nucleases can introduce double-stranded DNA breaks in genomes at positions specified by guide RNAs. When repaired by the cell, this may result in the introduction of insertions and deletions or nucleotide substitutions provided by exogenous DNA donors. However, cellular repair can also result in unintended on-target effects, primarily larger deletions and loss of heterozygosity due to gene conversion. Here we present a strategy that allows easy and reliable detection of unintended on-target effects as well as the generation of control cells that carry wild-type alleles but have demonstratively undergone genome editing at the target site. Our 'sequence-ascertained favorable editing' (SAFE) donor approach relies on the use of DNA donor mixtures containing the desired nucleotide substitutions or the wild-type alleles together with combinations of additional 'diagnostic' substitutions unlikely to have any effects. Sequencing of the target sites then results in that two different sequences are seen when both chromosomes are edited with 'SAFE' donors containing different sets of substitutions, while a single sequence indicates unintended effects such as deletions or gene conversion. We analyzed more than 850 human embryonic stem cell clones edited with 'SAFE' donors and detect all copy number changes and almost all clones with gene conversion.
Collapse
Affiliation(s)
| | - Nelly Helmbrecht
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Sachsen 04103, Germany
| | - Svante Pääbo
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Sachsen 04103, Germany
- Okinawa Institute of Science and Technology, Onna-son, Okinawa 904-0495, Japan
| | | |
Collapse
|
6
|
Mollashahi B, Latifi-Navid H, Owliaee I, Shamdani S, Uzan G, Jamehdor S, Naserian S. Research and Therapeutic Approaches in Stem Cell Genome Editing by CRISPR Toolkit. Molecules 2023; 28:1982. [PMID: 36838970 PMCID: PMC9961668 DOI: 10.3390/molecules28041982] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/22/2023] Open
Abstract
The most widely used genome editing toolkit is CRISPR (clustered regularly interspaced short palindromic repeats). It provides the possibility of replacing and modifying DNA and RNA nucleotides. Furthermore, with advancements in biological technology, inhibition and activation of the transcription of specific gene(s) has become possible. Bioinformatics tools that target the evolution of CRISPR-associated protein 9 (Cas9) turn this protein into a vehicle that is specific for a DNA or RNA region with single guide RNA (sgRNA). This toolkit could be used by researchers to investigate the function of stem cell gene(s). Here, in this review article, we cover recent developments and applications of this technique in stem cells for research and clinical purposes and discuss different CRISPR/Cas technologies for knock-out, knock-in, activation, or inhibition of gene expression. Additionally, a comparison of several deliveries and off-target detecting strategies is discussed.
Collapse
Affiliation(s)
- Behrouz Mollashahi
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, 40126 Bologna, Italy
| | - Hamid Latifi-Navid
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran 14965/161, Iran
| | - Iman Owliaee
- Department of Virology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamedan 6517838636, Iran
| | - Sara Shamdani
- INSERM UMR-S-MD 1197, Hôpital Paul Brousse, Paris-Saclay University, 94807 Villejuif, France
- CellMedEx, 94100 Saint Maur Des Fossés, France
| | - Georges Uzan
- INSERM UMR-S-MD 1197, Hôpital Paul Brousse, Paris-Saclay University, 94807 Villejuif, France
| | - Saleh Jamehdor
- Department of Virology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamedan 6517838636, Iran
| | - Sina Naserian
- INSERM UMR-S-MD 1197, Hôpital Paul Brousse, Paris-Saclay University, 94807 Villejuif, France
- CellMedEx, 94100 Saint Maur Des Fossés, France
| |
Collapse
|
7
|
Tripathi S, Khatri P, Fatima Z, Pandey RP, Hameed S. A Landscape of CRISPR/Cas Technique for Emerging Viral Disease Diagnostics and Therapeutics: Progress and Prospects. Pathogens 2022; 12:56. [PMID: 36678404 PMCID: PMC9863163 DOI: 10.3390/pathogens12010056] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/22/2022] [Accepted: 12/25/2022] [Indexed: 12/31/2022] Open
Abstract
Viral diseases have emerged as a serious threat to humanity and as a leading cause of morbidity worldwide. Many viral diagnostic methods and antiviral therapies have been developed over time, but we are still a long way from treating certain infections caused by viruses. Acquired immunodeficiency syndrome (AIDS) is one of the challenges where current medical science advancements fall short. As a result, new diagnostic and treatment options are desperately needed. The CRISPR/Cas9 system has recently been proposed as a potential therapeutic approach for viral disease treatment. CRISPR/Cas9 is a specialised, effective, and adaptive gene-editing technique that can be used to modify, delete, or correct specific DNA sequences. It has evolved into an advanced, configurable nuclease-based single or multiple gene-editing tool with a wide range of applications. It is widely preferred simply because its operational procedures are simple, inexpensive, and extremely efficient. Exploration of infectious virus genomes is required for a comprehensive study of infectious viruses. Herein, we have discussed the historical timeline-based advancement of CRISPR, CRISPR/Cas9 as a gene-editing technology, the structure of CRISPR, and CRISPR as a diagnostic tool for studying emerging viral infections. Additionally, utilizing CRISPR/Cas9 technology to fight viral infections in plants, CRISPR-based diagnostics of viruses, pros, and cons, and bioethical issues of CRISPR/Cas9-based genomic modification are discussed.
Collapse
Affiliation(s)
- Shyam Tripathi
- Centre for Drug Design Discovery and Development (C4D), SRM University, Delhi-NCR, Rajiv Gandhi Education City, Sonepat 131029, India
| | - Purnima Khatri
- Centre for Drug Design Discovery and Development (C4D), SRM University, Delhi-NCR, Rajiv Gandhi Education City, Sonepat 131029, India
- Department of Microbiology, SRM University, Delhi-NCR, Rajiv Gandhi Education City, Sonepat 131029, India
| | - Zeeshan Fatima
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha 61922, Saudi Arabia
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram 122413, India
| | - Ramendra Pati Pandey
- Centre for Drug Design Discovery and Development (C4D), SRM University, Delhi-NCR, Rajiv Gandhi Education City, Sonepat 131029, India
- Department of Microbiology, SRM University, Delhi-NCR, Rajiv Gandhi Education City, Sonepat 131029, India
| | - Saif Hameed
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram 122413, India
| |
Collapse
|
8
|
Smith TA, Lopez-Perez GS, Herneisen AL, Shortt E, Lourido S. Screening the Toxoplasma kinome with high-throughput tagging identifies a regulator of invasion and egress. Nat Microbiol 2022; 7:868-881. [PMID: 35484233 PMCID: PMC9167752 DOI: 10.1038/s41564-022-01104-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 03/11/2022] [Indexed: 12/26/2022]
Abstract
Protein kinases regulate fundamental aspects of eukaryotic cell biology, making them attractive chemotherapeutic targets in parasites like Plasmodium spp. and Toxoplasma gondii. To systematically examine the parasite kinome, we developed a high-throughput tagging (HiT) strategy to endogenously label protein kinases with an auxin-inducible degron and fluorophore. Hundreds of tagging vectors were assembled from synthetic sequences in a single reaction and used to generate pools of mutants to determine localization and function. Examining 1,160 arrayed clones, we assigned 40 protein localizations and associated 15 kinases with distinct defects. The fitness of tagged alleles was also measured by pooled screening, distinguishing delayed from acute phenotypes. A previously unstudied kinase, associated with a delayed phenotype, was shown to be a regulator of invasion and egress. We named the kinase Store Potentiating/Activating Regulatory Kinase (SPARK), based on its impact on intracellular Ca2+ stores. Despite homology to mammalian 3-phosphoinositide-dependent protein kinase-1 (PDK1), SPARK lacks a lipid-binding domain, suggesting a rewiring of the pathway in parasites. HiT screening extends genome-wide approaches into complex cellular phenotypes, providing a scalable and versatile platform to dissect parasite biology.
Collapse
Affiliation(s)
- Tyler A Smith
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Alice L Herneisen
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Emily Shortt
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Sebastian Lourido
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
9
|
Abstract
The rapid development of CRISPR-Cas genome editing tools has greatly changed the way to conduct research and holds tremendous promise for clinical applications. During genome editing, CRISPR-Cas enzymes induce DNA breaks at the target sites and subsequently the DNA repair pathways are recruited to generate diverse editing outcomes. Besides off-target cleavage, unwanted editing outcomes including chromosomal structural variations and exogenous DNA integrations have recently raised concerns for clinical safety. To eliminate these unwanted editing byproducts, we need to explore the underlying mechanisms for the formation of diverse editing outcomes from the perspective of DNA repair. Here, we describe the involved DNA repair pathways in sealing Cas enzyme-induced DNA double-stranded breaks and discuss the origins and effects of unwanted editing byproducts on genome stability. Furthermore, we propose the potential risk of inhibiting DNA repair pathways to enhance gene editing. The recent combined studies of DNA repair and CRISPR-Cas editing provide a framework for further optimizing genome editing to enhance editing safety.
Collapse
|
10
|
Induced Pluripotent Stem Cells (iPSCs) and Gene Therapy: A New Era for the Treatment of Neurological Diseases. Int J Mol Sci 2021; 22:ijms222413674. [PMID: 34948465 PMCID: PMC8706293 DOI: 10.3390/ijms222413674] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/13/2021] [Accepted: 12/16/2021] [Indexed: 12/18/2022] Open
Abstract
To date, gene therapy has employed viral vectors to deliver therapeutic genes. However, recent progress in molecular and cell biology has revolutionized the field of stem cells and gene therapy. A few years ago, clinical trials started using stem cell replacement therapy, and the induced pluripotent stem cells (iPSCs) technology combined with CRISPR-Cas9 gene editing has launched a new era in gene therapy for the treatment of neurological disorders. Here, we summarize the latest findings in this research field and discuss their clinical applications, emphasizing the relevance of recent studies in the development of innovative stem cell and gene editing therapeutic approaches. Even though tumorigenicity and immunogenicity are existing hurdles, we report how recent progress has tackled them, making engineered stem cell transplantation therapy a realistic option.
Collapse
|
11
|
Schubert MS, Thommandru B, Woodley J, Turk R, Yan S, Kurgan G, McNeill MS, Rettig GR. Optimized design parameters for CRISPR Cas9 and Cas12a homology-directed repair. Sci Rep 2021; 11:19482. [PMID: 34593942 PMCID: PMC8484621 DOI: 10.1038/s41598-021-98965-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 09/13/2021] [Indexed: 12/26/2022] Open
Abstract
CRISPR-Cas proteins are RNA-guided nucleases used to introduce double-stranded breaks (DSBs) at targeted genomic loci. DSBs are repaired by endogenous cellular pathways such as non-homologous end joining (NHEJ) and homology-directed repair (HDR). Providing an exogenous DNA template during repair allows for the intentional, precise incorporation of a desired mutation via the HDR pathway. However, rates of repair by HDR are often slow compared to the more rapid but less accurate NHEJ-mediated repair. Here, we describe comprehensive design considerations and optimized methods for highly efficient HDR using single-stranded oligodeoxynucleotide (ssODN) donor templates for several CRISPR-Cas systems including S.p. Cas9, S.p. Cas9 D10A nickase, and A.s. Cas12a delivered as ribonucleoprotein (RNP) complexes. Features relating to guide RNA selection, donor strand preference, and incorporation of blocking mutations in the donor template to prevent re-cleavage were investigated and were implemented in a novel online tool for HDR donor template design. These findings allow for high frequencies of precise repair utilizing HDR in multiple mammalian cell lines. Tool availability: https://www.idtdna.com/HDR.
Collapse
Affiliation(s)
- Mollie S Schubert
- Integrated DNA Technologies, Inc., 1710 Commercial Park, Coralville, IA, 52241, USA
| | - Bernice Thommandru
- Integrated DNA Technologies, Inc., 1710 Commercial Park, Coralville, IA, 52241, USA
| | - Jessica Woodley
- Integrated DNA Technologies, Inc., 1710 Commercial Park, Coralville, IA, 52241, USA
| | - Rolf Turk
- Integrated DNA Technologies, Inc., 1710 Commercial Park, Coralville, IA, 52241, USA
| | - Shuqi Yan
- Integrated DNA Technologies, Inc., 1710 Commercial Park, Coralville, IA, 52241, USA
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Gavin Kurgan
- Integrated DNA Technologies, Inc., 1710 Commercial Park, Coralville, IA, 52241, USA
| | - Matthew S McNeill
- Integrated DNA Technologies, Inc., 1710 Commercial Park, Coralville, IA, 52241, USA
| | - Garrett R Rettig
- Integrated DNA Technologies, Inc., 1710 Commercial Park, Coralville, IA, 52241, USA.
| |
Collapse
|
12
|
Cai J, Kropf E, Hou YM, Iacovitti L. A stress-free strategy to correct point mutations in patient iPS cells. Stem Cell Res 2021; 53:102332. [PMID: 33857832 PMCID: PMC8283763 DOI: 10.1016/j.scr.2021.102332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 02/23/2021] [Accepted: 04/01/2021] [Indexed: 11/06/2022] Open
Abstract
When studying patient specific induced pluripotent stem cells (iPS cells) as a disease model, the ideal control is an isogenic line that has corrected the point mutation, instead of iPS cells from siblings or other healthy subjects. However, repairing a point mutation in iPS cells even with the newly developed CRISPR-Cas9 technique remains difficult and time-consuming. Here we report a strategy that makes the Cas9 "knock-in" methodology both hassle-free and error-free. Instead of selecting a Cas9 recognition site close to the point mutation, we chose a site located in the nearest intron. We constructed a donor template with the fragment containing the corrected point mutation as one of the homologous recombination arms flanking a PGK-PuroR cassette. After selection with puromycin, positive clones were identified and further transfected with a CRE vector to remove the PGK-PuroR cassette. Using this methodology, we successfully repaired the point mutation G2019S of the LRRK2 gene in a Parkinson Disease (PD) patient iPS line and the point mutation R329H of the AARS1 gene in a Charcot-Marie-Tooth disease (CMT) patient iPS line. These isogenic iPS lines are ideal as a control in future studies.
Collapse
Affiliation(s)
- Jingli Cai
- Department of Neuroscience Vickie & Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, 900 Walnut Street, JHN Suite 461, Philadelphia, PA 19107, USA
| | - Elizabeth Kropf
- Department of Neuroscience Vickie & Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, 900 Walnut Street, JHN Suite 461, Philadelphia, PA 19107, USA
| | - Ya-Ming Hou
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, 233 South 10th Street, BLSB Suite 220, Philadelphia, PA 19107, USA
| | - Lorraine Iacovitti
- Department of Neuroscience Vickie & Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, 900 Walnut Street, JHN Suite 461, Philadelphia, PA 19107, USA.
| |
Collapse
|
13
|
Bloh K, Rivera-Torres N. A Consensus Model of Homology-Directed Repair Initiated by CRISPR/Cas Activity. Int J Mol Sci 2021; 22:3834. [PMID: 33917142 PMCID: PMC8067812 DOI: 10.3390/ijms22083834] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/31/2021] [Accepted: 04/05/2021] [Indexed: 12/26/2022] Open
Abstract
The mechanism of action of ssODN-directed gene editing has been a topic of discussion within the field of CRISPR gene editing since its inception. Multiple comparable, but distinct, pathways have been discovered for DNA repair both with and without a repair template oligonucleotide. We have previously described the ExACT pathway for oligo-driven DNA repair, which consisted of a two-step DNA synthesis-driven repair catalyzed by the simultaneous binding of the repair oligonucleotide (ssODN) upstream and downstream of the double-strand break. In order to better elucidate the mechanism of ExACT-based repair, we have challenged the assumptions of the pathway with those outlines in other similar non-ssODN-based DNA repair mechanisms. This more comprehensive iteration of the ExACT pathway better described the many different ways where DNA repair can occur in the presence of a repair oligonucleotide after CRISPR cleavage, as well as how these previously distinct pathways can overlap and lead to even more unique repair outcomes.
Collapse
Affiliation(s)
- Kevin Bloh
- Gene Editing Institute, Helen F. Graham Cancer Center & Research Institute, ChristianaCare, 4701 Ogletown-Stanton Road, Newark, DE 19710, USA;
- Department of Medical and Molecular Sciences, University of Delaware, Newark, DE 19710, USA
| | - Natalia Rivera-Torres
- Gene Editing Institute, Helen F. Graham Cancer Center & Research Institute, ChristianaCare, 4701 Ogletown-Stanton Road, Newark, DE 19710, USA;
| |
Collapse
|
14
|
On the Origins of Homology Directed Repair in Mammalian Cells. Int J Mol Sci 2021; 22:ijms22073348. [PMID: 33805897 PMCID: PMC8037881 DOI: 10.3390/ijms22073348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 03/22/2021] [Indexed: 11/26/2022] Open
Abstract
Over the course of the last five years, expectations surrounding our capacity to selectively modify the human genome have never been higher. The reduction to practice site-specific nucleases designed to cleave at a unique site within the DNA is now centerstage in the development of effective molecular therapies. Once viewed as being impossible, this technology now has great potential and, while cellular and molecular barriers persist to clinical implementations, there is little doubt that these barriers will be crossed, and human beings will soon be treated with gene editing tools. The most ambitious of these desires is the correction of genetic mutations resident within the human genome that are responsible for oncogenesis and a wide range of inherited diseases. The process by which gene editing activity could act to reverse these mutations to wild-type and restore normal protein function has been generally categorized as homology directed repair. This is a catch-all basket term that includes the insertion of short fragments of DNA, the replacement of long fragments of DNA, and the surgical exchange of single bases in the correction of point mutations. The foundation of homology directed repair lies in pioneering work that unravel the mystery surrounding genetic exchange using single-stranded DNA oligonucleotides as the sole gene editing agent. Single agent gene editing has provided guidance on how to build combinatorial approaches to human gene editing using the remarkable programmable nuclease complexes known as Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and their closely associated (Cas) nucleases. In this manuscript, we outline the historical pathway that has helped evolve the current molecular toolbox being utilized for the genetic re-engineering of the human genome.
Collapse
|
15
|
Pöhler M, Guttmann S, Nadzemova O, Lenders M, Brand E, Zibert A, Schmidt HH, Sandfort V. CRISPR/Cas9-mediated correction of mutated copper transporter ATP7B. PLoS One 2020; 15:e0239411. [PMID: 32997714 PMCID: PMC7526882 DOI: 10.1371/journal.pone.0239411] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 09/05/2020] [Indexed: 01/14/2023] Open
Abstract
Wilson's disease (WD) is a monogenetic liver disease that is based on a mutation of the ATP7B gene and leads to a functional deterioration in copper (Cu) excretion in the liver. The excess Cu accumulates in various organs such as the liver and brain. WD patients show clinical heterogeneity, which can range from acute or chronic liver failure to neurological symptoms. The course of the disease can be improved by a life-long treatment with zinc or chelators such as D-penicillamine in a majority of patients, but serious side effects have been observed in a significant portion of patients, e.g. neurological deterioration and nephrotoxicity, so that a liver transplant would be inevitable. An alternative therapy option would be the genetic correction of the ATP7B gene. The novel gene therapy method CRISPR/Cas9, which has recently been used in the clinic, may represent a suitable therapeutic opportunity. In this study, we first initiated an artificial ATP7B point mutation in a human cell line using CRISPR/Cas9 gene editing, and corrected this mutation by the additional use of single-stranded oligo DNA nucleotides (ssODNs), simulating a gene correction of a WD point mutation in vitro. By the addition of 0.5 mM of Cu three days after lipofection, a high yield of CRISPR/Cas9-mediated ATP7B repaired cell clones was achieved (60%). Moreover, the repair efficiency was enhanced using ssODNs that incorporated three blocking mutations. The repaired cell clones showed a high resistance to Cu after exposure to increasing Cu concentrations. Our findings indicate that CRISPR/Cas9-mediated correction of ATP7B point mutations is feasible and may have the potential to be transferred to the clinic.
Collapse
Affiliation(s)
- Michael Pöhler
- Medizinische Klinik B, Gastroenterologie, Hepatologie, Endokrinologie, Klinische Infektiologie, Universitätsklinikum Münster, Münster, Germany
| | - Sarah Guttmann
- Medizinische Klinik B, Gastroenterologie, Hepatologie, Endokrinologie, Klinische Infektiologie, Universitätsklinikum Münster, Münster, Germany
| | - Oksana Nadzemova
- Medizinische Klinik B, Gastroenterologie, Hepatologie, Endokrinologie, Klinische Infektiologie, Universitätsklinikum Münster, Münster, Germany
| | - Malte Lenders
- Medizinische Klinik D, Allgemeine Innere Medizin und Notaufnahme sowie Nieren- und Hochdruckkrankheiten und Rheumatologie, Universitätsklinikum Münster, Münster, Germany
| | - Eva Brand
- Medizinische Klinik D, Allgemeine Innere Medizin und Notaufnahme sowie Nieren- und Hochdruckkrankheiten und Rheumatologie, Universitätsklinikum Münster, Münster, Germany
| | - Andree Zibert
- Medizinische Klinik B, Gastroenterologie, Hepatologie, Endokrinologie, Klinische Infektiologie, Universitätsklinikum Münster, Münster, Germany
| | - Hartmut H. Schmidt
- Medizinische Klinik B, Gastroenterologie, Hepatologie, Endokrinologie, Klinische Infektiologie, Universitätsklinikum Münster, Münster, Germany
| | - Vanessa Sandfort
- Medizinische Klinik B, Gastroenterologie, Hepatologie, Endokrinologie, Klinische Infektiologie, Universitätsklinikum Münster, Münster, Germany
- * E-mail:
| |
Collapse
|
16
|
Hewes AM, Sansbury BM, Kmiec EB. The Diversity of Genetic Outcomes from CRISPR/Cas Gene Editing is Regulated by the Length of the Symmetrical Donor DNA Template. Genes (Basel) 2020; 11:genes11101160. [PMID: 33008045 PMCID: PMC7599521 DOI: 10.3390/genes11101160] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/22/2020] [Accepted: 09/28/2020] [Indexed: 12/27/2022] Open
Abstract
Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas gene editing systems have enabled molecular geneticists to manipulate prokaryotic and eukaryotic genomes with greater efficiency and precision. CRISPR/Cas provides adaptive immunity in bacterial cells by degrading invading viral genomes. By democratizing this activity into human cells, it is possible to knock out specific genes to disable their function and repair errors. The latter of these activities requires the participation of a single-stranded donor DNA template that provides the genetic information to execute correction in a process referred to as homology directed repair (HDR). Here, we utilized an established cell-free extract system to determine the influence that the donor DNA template length has on the diversity of products from CRISPR-directed gene editing. This model system enables us to view all outcomes of this reaction and reveals that donor template length can influence the efficiency of the reaction and the categories of error-prone products that accompany it. A careful measurement of the products revealed a category of error-prone events that contained the corrected template along with insertions and deletions (indels). Our data provides foundational information for those whose aim is to translate CRISPR/Cas from bench to bedside.
Collapse
Affiliation(s)
- Amanda M. Hewes
- Gene Editing Institute, Helen F. Graham Cancer Center & Research Institute, Christiana Care Health System, Newark, DE 19713, USA; (A.M.H.); (B.M.S.)
| | - Brett M. Sansbury
- Gene Editing Institute, Helen F. Graham Cancer Center & Research Institute, Christiana Care Health System, Newark, DE 19713, USA; (A.M.H.); (B.M.S.)
- Department of Medical and Molecular Sciences, University of Delaware, Newark, DE 19716, USA
| | - Eric B. Kmiec
- Gene Editing Institute, Helen F. Graham Cancer Center & Research Institute, Christiana Care Health System, Newark, DE 19713, USA; (A.M.H.); (B.M.S.)
- Department of Medical and Molecular Sciences, University of Delaware, Newark, DE 19716, USA
- Correspondence: ; Tel.: +1-(0)302-623-0628
| |
Collapse
|
17
|
Hewes AM, Sansbury BM, Barth S, Tarcic G, Kmiec EB. gRNA Sequence Heterology Tolerance Catalyzed by CRISPR/Cas in an In Vitro Homology-Directed Repair Reaction. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 20:568-579. [PMID: 32330873 PMCID: PMC7177190 DOI: 10.1016/j.omtn.2020.03.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/17/2020] [Accepted: 03/24/2020] [Indexed: 12/17/2022]
Abstract
CRISPR and associated Cas nucleases are genetic engineering tools revolutionizing innovative approaches to cancer and inherited diseases. CRISPR-directed gene editing relies heavily on proper DNA sequence alignment between the guide RNA (gRNA)/CRISPR complex and its genomic target. Accurate hybridization of complementary DNA initiates gene editing in human cells, but inherent gRNA sequence variation that could influence the gene editing reaction has been clearly established among diverse genetic populations. As this technology advances toward clinical implementation, it will be essential to assess what degree of gRNA variation generates unwanted and erroneous CRISPR activity. With the use of a system in which a cell-free extract catalyzes nonhomologous end joining (NHEJ) and homology-directed repair (HDR), it is possible to observe a more representative population of all forms of gene editing outcomes. In this manuscript, we demonstrate CRISPR/Cas complexation at heterologous binding sites that facilitate precise and error-prone HDR. The tolerance of mispairing between the gRNA and target site of the DNA to enable HDR is surprisingly high and greatly influenced by polarity of the donor DNA strand in the reaction. These results suggest that some collateral genomic activity could occur at unintended sites in CRISPR-directed gene editing in human cells.
Collapse
Affiliation(s)
- Amanda M Hewes
- Gene Editing Institute, Helen F. Graham Cancer Center & Research Institute, Christiana Care Health System, Newark, DE, USA
| | - Brett M Sansbury
- Gene Editing Institute, Helen F. Graham Cancer Center & Research Institute, Christiana Care Health System, Newark, DE, USA; Department of Medical and Molecular Sciences, University of Delaware, Newark, DE, USA
| | - Shaul Barth
- Novellus, Jerusalem Bio-Park, 1(st) Kiryat Hadassah, Hadassah Ein-Kerem Medical Center Campus, Jerusalem, Israel, 9112001
| | - Gabi Tarcic
- Novellus, Jerusalem Bio-Park, 1(st) Kiryat Hadassah, Hadassah Ein-Kerem Medical Center Campus, Jerusalem, Israel, 9112001
| | - Eric B Kmiec
- Gene Editing Institute, Helen F. Graham Cancer Center & Research Institute, Christiana Care Health System, Newark, DE, USA; Department of Medical and Molecular Sciences, University of Delaware, Newark, DE, USA.
| |
Collapse
|
18
|
Li Y, Li X, Qu J, Luo D, Hu Z. Cas9 Mediated Correction of β-catenin Mutation and Restoring the Expression of Protein Phosphorylation in Colon Cancer HCT-116 Cells Decrease Cell Proliferation in vitro and Hamper Tumor Growth in Mice in vivo. Onco Targets Ther 2020; 13:17-29. [PMID: 32021251 PMCID: PMC6954092 DOI: 10.2147/ott.s225556] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 12/17/2019] [Indexed: 12/14/2022] Open
Abstract
Purpose Colorectal cancer (CRC) is one of the major contributors to cancer mortality and morbidity. Finding strategies to fight against CRC is urgently required. Mutations in driver genes of APC or β-catenin play an important role in the occurrence and progression of CRC. In the present study, we jointly apply CRISPR/Cas9-sgRNA system and Single-stranded oligodeoxynucleotide (ssODN) as templates to correct a heterozygous ΔTCT deletion mutation of β-catenin present in a colon cancer cell line HCT-116. This method provides a potential strategy in gene therapy for cancer. Methods A Cas9/β-catenin-sgRNA-eGFP co-expression vector was constructed and co-transfected with ssODN into HCT-116 cells. Mutation-corrected single-cell clones were sorted by FACS and judged by TA cloning and DNA sequencing. Effects of CRISPR/Cas9-mediated correction were tested by real-time quantitative PCR, Western blotting, CCK8, EDU dyeing and cell-plated clones. Moreover, the growth of cell clones derived tumors was analyzed at nude mice xenografts. Results CRISPR/Cas9-mediated β-catenin mutation correction resulted in the presence of TCT sequence and the re-expression of phosphorylation β-catenin at Ser45, which restored the normal function of phosphorylation β-catenin including reduction of the transportation of nuclear β-catenin and the expression of downstream c-myc, survivin. Significantly reduced cell growth was observed in β-catenin mutation-corrected cells. Mice xenografted with mutation-corrected HCT-116 cells showed significantly smaller tumor size than uncorrected xenografts. Conclusion The data of this study documented that correction of the driven mutation by the combination of CRISPR/Cas9 and ssODN could greatly remedy the biological behavior of the cancer cell line, suggesting a potential application of this strategy in gene therapy of cancer.
Collapse
Affiliation(s)
- Yanlan Li
- Translational Medicine Institute, the First People's Hospital of Chenzhou Affiliated to University of South China, Hunan 432000, People's Republic of China.,Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, University of South China, Hunan 421001, People's Republic of China
| | - Xiangning Li
- Translational Medicine Institute, the First People's Hospital of Chenzhou Affiliated to University of South China, Hunan 432000, People's Republic of China.,National & Local Joint Engineering Laboratory for High-Through Molecular Diagnosis Technology, The First People's Hospital of Chenzhou, Hunan 432000, People's Republic of China
| | - Jiayao Qu
- Translational Medicine Institute, the First People's Hospital of Chenzhou Affiliated to University of South China, Hunan 432000, People's Republic of China.,National & Local Joint Engineering Laboratory for High-Through Molecular Diagnosis Technology, The First People's Hospital of Chenzhou, Hunan 432000, People's Republic of China
| | - Dixian Luo
- Translational Medicine Institute, the First People's Hospital of Chenzhou Affiliated to University of South China, Hunan 432000, People's Republic of China.,National & Local Joint Engineering Laboratory for High-Through Molecular Diagnosis Technology, The First People's Hospital of Chenzhou, Hunan 432000, People's Republic of China
| | - Zheng Hu
- Translational Medicine Institute, the First People's Hospital of Chenzhou Affiliated to University of South China, Hunan 432000, People's Republic of China.,National & Local Joint Engineering Laboratory for High-Through Molecular Diagnosis Technology, The First People's Hospital of Chenzhou, Hunan 432000, People's Republic of China
| |
Collapse
|
19
|
Sansbury BM, Hewes AM, Kmiec EB. Understanding the diversity of genetic outcomes from CRISPR-Cas generated homology-directed repair. Commun Biol 2019; 2:458. [PMID: 31840103 PMCID: PMC6898364 DOI: 10.1038/s42003-019-0705-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 11/11/2019] [Indexed: 02/06/2023] Open
Abstract
As CRISPR-Cas systems advance toward clinical application, it is essential to identify all the outcomes of gene-editing activity in human cells. Reports highlighting the remarkable success of homology-directed repair (HDR) in the treatment of inherited diseases may inadvertently underreport the collateral activity of this remarkable technology. We are utilizing an in vitro gene-editing system in which a CRISPR-Cas complex provides the double-stranded cleavage and a mammalian cell-free extract provides the enzymatic activity to promote non-homologous end joining, micro-homology mediated end joining, and homology-directed repair. Here, we detail the broad spectrum of gene-editing reaction outcomes utilizing Cas9 and Cas12a in combination with single-stranded donor templates of the sense and nonsense polarity. This system offers the opportunity to see the range of outcomes of gene-editing reactions in an unbiased fashion, detailing the distribution of DNA repair outcomes as a function of a set of genetic tools.
Collapse
Affiliation(s)
- Brett M. Sansbury
- Gene Editing Institute, Helen F. Graham Cancer Center & Research Institute, Christiana Care Health System, Newark, DE USA
- Department of Medical and Molecular Sciences, University of Delaware, Newark, DE USA
| | - Amanda M. Hewes
- Department of Medical and Molecular Sciences, University of Delaware, Newark, DE USA
| | - Eric B. Kmiec
- Gene Editing Institute, Helen F. Graham Cancer Center & Research Institute, Christiana Care Health System, Newark, DE USA
- Department of Medical and Molecular Sciences, University of Delaware, Newark, DE USA
| |
Collapse
|
20
|
Batır MB, Şahin E, Çam FS. Evaluation of the CRISPR/Cas9 directed mutant TP53 gene repairing effect in human prostate cancer cell line PC-3. Mol Biol Rep 2019; 46:6471-6484. [PMID: 31571107 DOI: 10.1007/s11033-019-05093-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 09/22/2019] [Indexed: 12/15/2022]
Abstract
Prostate cancer is a common health problem among men worldwide and most of these prostate cancer cases are related to a dysfunctional mutant Tumor Protein p53 (TP53) gene. However, the CRISPR/Cas9 system can be used for repairing of a dysfunctional mutant TP53 gene in combination with donor single-stranded oligodeoxynucleotide (ssODN) via cells' own homology-directed repair (HDR) mechanism. In this study, we aimed to evaluate the CRISPR/Cas9 repairing efficiency on TP53 414delC (p.K139fs*31) null mutation, located in the TP53 gene, of human prostate cancer cell line PC-3 in combination with ssODNs. According to the next-generation sequencing results, TP53 414delC mutation was repaired with an efficiency of 19.95% and 26.0% at the TP53 414delC position with ssODN1 and ssODN2 accompanied by sgRNA2 guided CRISPR/Cas9, respectively. Besides, qPCR and immunofluorescence analysis showed that PC-3 cells, the TP53 414delC mutation of which were repaired, expressed wild type p53 again. Also, significantly increased number of apoptotic cells, driven by the repaired TP53 gene were detected compared to the control cells by flow cytometry analysis. As a result, sgRNA2 guided CRISPR/Cas9 system accompanied by ssODN was shown to effectively repair the TP53 414delC gene region and inhibit the cell proliferation of PC-3 cells. Therefore, the effects of the TP53 414delC mutation repairment in PC-3 cells will be investigated in the in vivo models for tumor clearance analysis in the near future.
Collapse
Affiliation(s)
- Muhammet Burak Batır
- Department of Biology, Faculty of Science and Letters, Manisa Celal Bayar University, Manisa, Turkey.
| | - Ergin Şahin
- Department of Biology, Faculty of Science, Ankara University, Ankara, Turkey
| | - Fethi Sırrı Çam
- Department of Medical Genetics, Faculty of Medicine, Manisa Celal Bayar University, Manisa, Turkey
| |
Collapse
|
21
|
Pesch T, Bonati L, Kelton W, Parola C, Ehling RA, Csepregi L, Kitamura D, Reddy ST. Molecular Design, Optimization, and Genomic Integration of Chimeric B Cell Receptors in Murine B Cells. Front Immunol 2019; 10:2630. [PMID: 31798579 PMCID: PMC6868064 DOI: 10.3389/fimmu.2019.02630] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 10/23/2019] [Indexed: 11/13/2022] Open
Abstract
Immune cell therapies based on the integration of synthetic antigen receptors comprise a powerful strategy for the treatment of diverse diseases, most notably T cells engineered to express chimeric antigen receptors (CAR) for targeted cancer therapy. In addition to T lymphocytes, B lymphocytes may also represent valuable immune cells that can be engineered for therapeutic purposes such as protein replacement therapy or recombinant antibody production. In this article, we report a promising concept for the molecular design, optimization, and genomic integration of a novel class of synthetic antigen receptors, chimeric B cell receptors (CBCR). We initially optimized CBCR expression and detection by modifying the extracellular surface tag, the transmembrane regions and intracellular signaling domains. For this purpose, we stably integrated a series of CBCR variants using CRISPR-Cas9 into immortalized B cell hybridomas. Subsequently, we developed a reliable and consistent pipeline to precisely introduce cassettes of several kb size into the genome of primary murine B cells also using CRISPR-Cas9 induced HDR. Finally, we were able to show the robust surface expression and antigen recognition of a synthetic CBCR in primary B cells. We anticipate CBCRs and our approach for engineering primary B cells will be a valuable tool for the advancement of future B cell- based immune cell therapies.
Collapse
Affiliation(s)
- Theresa Pesch
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Lucia Bonati
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - William Kelton
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Cristina Parola
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
- Life Science Graduate School, Systems Biology, ETH Zürich, University of Zurich, Zurich, Switzerland
| | - Roy A. Ehling
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Lucia Csepregi
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
- Life Science Graduate School, Microbiology and Immunology, ETH Zürich, University of Zurich, Zurich, Switzerland
| | - Daisuke Kitamura
- Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Japan
| | - Sai T. Reddy
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| |
Collapse
|
22
|
Xiong Z, Xie Y, Yang Y, Xue Y, Wang D, Lin S, Chen D, Lu D, He L, Song B, Yang Y, Sun X. Efficient gene correction of an aberrant splice site in β-thalassaemia iPSCs by CRISPR/Cas9 and single-strand oligodeoxynucleotides. J Cell Mol Med 2019; 23:8046-8057. [PMID: 31631510 PMCID: PMC6850948 DOI: 10.1111/jcmm.14669] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 08/15/2019] [Accepted: 08/18/2019] [Indexed: 12/19/2022] Open
Abstract
β‐thalassaemia is a prevalent hereditary haematological disease caused by mutations in the human haemoglobin β (HBB) gene. Among them, the HBB IVS2‐654 (C > T) mutation, which is in the intron, creates an aberrant splicing site. Bone marrow transplantation for curing β‐thalassaemia is limited due to the lack of matched donors. The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR‐associated protein 9 (Cas9), as a widely used tool for gene editing, is able to target specific sequence and create double‐strand break (DSB), which can be combined with the single‐stranded oligodeoxynucleotide (ssODN) to correct mutations. In this study, according to two different strategies, the HBB IVS2‐654 mutation was seamlessly corrected in iPSCs by CRISPR/Cas9 system and ssODN. To reduce the occurrence of secondary cleavage, a more efficient strategy was adopted. The corrected iPSCs kept pluripotency and genome stability. Moreover, they could differentiate normally. Through CRISPR/Cas9 system and ssODN, our study provides improved strategies for gene correction of β‐Thalassaemia, and the expression of the HBB gene can be restored, which can be used for gene therapy in the future.
Collapse
Affiliation(s)
- Zeyu Xiong
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yingjun Xie
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yi Yang
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yanting Xue
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ding Wang
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Shouheng Lin
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Diyu Chen
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Dian Lu
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Lina He
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Bing Song
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yinghong Yang
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiaofang Sun
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
23
|
Time origin and structural analysis of the induced CRISPR/cas9 megabase-sized deletions and duplications involving the Cntn6 gene in mice. Sci Rep 2019; 9:14161. [PMID: 31578377 PMCID: PMC6775113 DOI: 10.1038/s41598-019-50649-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 09/13/2019] [Indexed: 01/23/2023] Open
Abstract
In a previous study using one-step CRISPR/Cas9 genome editing in mouse zygotes, we created five founders carrying a 1,137 kb deletion and two founders carrying the same deletion, plus a 2,274 kb duplication involving the Cntn6 gene (encoding contactin-6). Using these mice, the present study had the following aims: (i) to establish stage of origin of these rearrangements; (ii) to determine the fate of the deleted DNA fragments; and (iii) to estimate the scale of unpredicted DNA changes accompanying the rearrangements. The present study demonstrated that all targeted deletions and duplications occurred at the one-cell stage and more often in one pronucleus only. FISH analysis revealed that there were no traces of the deleted DNA fragments either within chromosome 6 or on other chromosomes. These data were consistent with the Southern blot analysis showing that chromosomes with deletion often had close to expected sizes of removed DNA fragments. High-throughput DNA sequencing of two homozygotes for duplication demonstrated that there were no unexpected significant or scale DNA changes either at the gRNA and joint sites or other genome sites. Thus, our data suggested that CRISPR/Cas9 technology could generate megabase-sized deletions and duplications in mouse gametes at a reasonably specific level.
Collapse
|
24
|
Johnston AD, Simões-Pires CA, Suzuki M, Greally JM. High-efficiency genomic editing in Epstein-Barr virus-transformed lymphoblastoid B cells using a single-stranded donor oligonucleotide strategy. Commun Biol 2019; 2:312. [PMID: 31428700 PMCID: PMC6694121 DOI: 10.1038/s42003-019-0559-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 07/29/2019] [Indexed: 12/29/2022] Open
Abstract
While human lymphoblastoid cell lines represent a valuable resource for population genetic studies, they have usually been regarded as difficult for CRISPR-mediated genomic editing because of very inefficient DNA transfection and retroviral or lentiviral transduction in these cells, which becomes a substantial problem when multiple constructs need to be co-expressed. Here we describe a protocol using a single-stranded donor oligonucleotide strategy for 'scarless' editing in lymphoblastoid cells, yielding 12/60 (20%) of clones with homology-directed recombination, when rates of <5-10% are frequently typical for many other cell types. The protocol does not require the use of lentiviruses or stable transfection, permitting lymphoblastoid cell lines to be used for CRISPR-mediated genomic targeting and screening in population genetic studies.
Collapse
Affiliation(s)
- Andrew D. Johnston
- Center for Epigenomics and Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461 USA
| | - Claudia A. Simões-Pires
- Center for Epigenomics and Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461 USA
| | - Masako Suzuki
- Center for Epigenomics and Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461 USA
| | - John M. Greally
- Center for Epigenomics and Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461 USA
| |
Collapse
|
25
|
Prykhozhij SV, Fuller C, Steele SL, Veinotte CJ, Razaghi B, Robitaille JM, McMaster CR, Shlien A, Malkin D, Berman JN. Optimized knock-in of point mutations in zebrafish using CRISPR/Cas9. Nucleic Acids Res 2019; 46:e102. [PMID: 29905858 PMCID: PMC6158492 DOI: 10.1093/nar/gky512] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 05/23/2018] [Indexed: 12/21/2022] Open
Abstract
We have optimized point mutation knock-ins into zebrafish genomic sites using clustered regularly interspaced palindromic repeats (CRISPR)/Cas9 reagents and single-stranded oligodeoxynucleotides. The efficiency of knock-ins was assessed by a novel application of allele-specific polymerase chain reaction and confirmed by high-throughput sequencing. Anti-sense asymmetric oligo design was found to be the most successful optimization strategy. However, cut site proximity to the mutation and phosphorothioate oligo modifications also greatly improved knock-in efficiency. A previously unrecognized risk of off-target trans knock-ins was identified that we obviated through the development of a workflow for correct knock-in detection. Together these strategies greatly facilitate the study of human genetic diseases in zebrafish, with additional applicability to enhance CRISPR-based approaches in other animal model systems.
Collapse
Affiliation(s)
- Sergey V Prykhozhij
- Departments of Pediatrics, Microbiology & Immunology, and Pathology, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Charlotte Fuller
- Michael G. DeGroote School of Medicine, McMaster University,Hamilton, ON, L8S4L8, Canada
| | | | - Chansey J Veinotte
- Departments of Pediatrics, Microbiology & Immunology, and Pathology, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Babak Razaghi
- Departments of Pediatrics, Microbiology & Immunology, and Pathology, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Johane M Robitaille
- Departments of Pediatrics, Microbiology & Immunology, and Pathology, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Christopher R McMaster
- Departments of Pediatrics, Microbiology & Immunology, and Pathology, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Adam Shlien
- Departments of Pediatrics and Medical Biophysics, University of Toronto, Toronto, ON, M5G 1X8, Canada
| | - David Malkin
- Departments of Pediatrics and Medical Biophysics, University of Toronto, Toronto, ON, M5G 1X8, Canada
| | - Jason N Berman
- Departments of Pediatrics, Microbiology & Immunology, and Pathology, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| |
Collapse
|
26
|
Okamoto S, Amaishi Y, Maki I, Enoki T, Mineno J. Highly efficient genome editing for single-base substitutions using optimized ssODNs with Cas9-RNPs. Sci Rep 2019; 9:4811. [PMID: 30886178 PMCID: PMC6423289 DOI: 10.1038/s41598-019-41121-4] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 02/27/2019] [Indexed: 12/12/2022] Open
Abstract
Target-specific genome editing using engineered nucleases has become widespread in various fields. Long gene knock-in and single-base substitutions can be performed by homologous recombination (HR), but the efficiency is usually very low. To improve the efficiency of knock-in with single-stranded oligo DNA nucleotides (ssODNs), we have investigated optimal design of ssODNs in terms of the blocking mutation, orientation, size, and length of homology arms to explore the optimal parameters of ssODN design using reporter systems for the detection of single-base substitutions. We have also investigated the difference in knock-in efficiency among the delivery forms and methods of Cas9 and sgRNA. The knock-in efficiencies for optimized ssODNs were much higher than those for ssODNs with no blocking mutation. We have also demonstrated that Cas9 protein/sgRNA ribonucleoprotein complexes (Cas9-RNPs) can dramatically reduce the re-cutting of the edited sites.
Collapse
Affiliation(s)
- Sachiko Okamoto
- CDM Center, Takara Bio Inc. Nojihigashi 7-4-38, Kusatsu, Shiga, 525-0058, Japan
| | - Yasunori Amaishi
- CDM Center, Takara Bio Inc. Nojihigashi 7-4-38, Kusatsu, Shiga, 525-0058, Japan
| | - Izumi Maki
- CDM Center, Takara Bio Inc. Nojihigashi 7-4-38, Kusatsu, Shiga, 525-0058, Japan
| | - Tatsuji Enoki
- CDM Center, Takara Bio Inc. Nojihigashi 7-4-38, Kusatsu, Shiga, 525-0058, Japan
| | - Junichi Mineno
- CDM Center, Takara Bio Inc. Nojihigashi 7-4-38, Kusatsu, Shiga, 525-0058, Japan.
| |
Collapse
|
27
|
O'Brien AR, Wilson LOW, Burgio G, Bauer DC. Unlocking HDR-mediated nucleotide editing by identifying high-efficiency target sites using machine learning. Sci Rep 2019; 9:2788. [PMID: 30808944 PMCID: PMC6391469 DOI: 10.1038/s41598-019-39142-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 01/18/2019] [Indexed: 12/31/2022] Open
Abstract
Editing individual nucleotides is a crucial component for validating genomic disease association. It is currently hampered by CRISPR-Cas-mediated "base editing" being limited to certain nucleotide changes, and only achievable within a small window around CRISPR-Cas target sites. The more versatile alternative, HDR (homology directed repair), has a 3-fold lower efficiency with known optimization factors being largely immutable in experiments. Here, we investigated the variable efficiency-governing factors on a novel mouse dataset using machine learning. We found the sequence composition of the single-stranded oligodeoxynucleotide (ssODN), i.e. the repair template, to be a governing factor. Furthermore, different regions of the ssODN have variable influence, which reflects the underlying mechanism of the repair process. Our model improves HDR efficiency by 83% compared to traditionally chosen targets. Using our findings, we developed CUNE (Computational Universal Nucleotide Editor), which enables users to identify and design the optimal targeting strategy using traditional base editing or - for-the-first-time - HDR-mediated nucleotide changes.
Collapse
Affiliation(s)
- Aidan R O'Brien
- CSIRO, Sydney, NSW, Australia
- John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | | | - Gaetan Burgio
- John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia.
| | | |
Collapse
|
28
|
Prykhozhij SV, Fuller C, Steele SL, Veinotte CJ, Razaghi B, Robitaille JM, McMaster CR, Shlien A, Malkin D, Berman JN. Optimized knock-in of point mutations in zebrafish using CRISPR/Cas9. Nucleic Acids Res 2018; 46:e102. [PMID: 29905858 PMCID: PMC6158492 DOI: 10.1093/nar/gky512 10.1093/nar/gky674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 03/28/2018] [Accepted: 05/23/2018] [Indexed: 01/19/2024] Open
Abstract
We have optimized point mutation knock-ins into zebrafish genomic sites using clustered regularly interspaced palindromic repeats (CRISPR)/Cas9 reagents and single-stranded oligodeoxynucleotides. The efficiency of knock-ins was assessed by a novel application of allele-specific polymerase chain reaction and confirmed by high-throughput sequencing. Anti-sense asymmetric oligo design was found to be the most successful optimization strategy. However, cut site proximity to the mutation and phosphorothioate oligo modifications also greatly improved knock-in efficiency. A previously unrecognized risk of off-target trans knock-ins was identified that we obviated through the development of a workflow for correct knock-in detection. Together these strategies greatly facilitate the study of human genetic diseases in zebrafish, with additional applicability to enhance CRISPR-based approaches in other animal model systems.
Collapse
Affiliation(s)
- Sergey V Prykhozhij
- Departments of Pediatrics, Microbiology & Immunology, and Pathology, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Charlotte Fuller
- Michael G. DeGroote School of Medicine, McMaster University,Hamilton, ON, L8S4L8, Canada
| | | | - Chansey J Veinotte
- Departments of Pediatrics, Microbiology & Immunology, and Pathology, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Babak Razaghi
- Departments of Pediatrics, Microbiology & Immunology, and Pathology, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Johane M Robitaille
- Departments of Pediatrics, Microbiology & Immunology, and Pathology, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Christopher R McMaster
- Departments of Pediatrics, Microbiology & Immunology, and Pathology, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Adam Shlien
- Departments of Pediatrics and Medical Biophysics, University of Toronto, Toronto, ON, M5G 1X8, Canada
| | - David Malkin
- Departments of Pediatrics and Medical Biophysics, University of Toronto, Toronto, ON, M5G 1X8, Canada
| | - Jason N Berman
- Departments of Pediatrics, Microbiology & Immunology, and Pathology, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| |
Collapse
|
29
|
T315I mutation of BCR-ABL1 into human Philadelphia chromosome-positive leukemia cell lines by homologous recombination using the CRISPR/Cas9 system. Sci Rep 2018; 8:9966. [PMID: 29967475 PMCID: PMC6028382 DOI: 10.1038/s41598-018-27767-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 06/07/2018] [Indexed: 11/23/2022] Open
Abstract
In many cancers, somatic mutations confer tumorigenesis and drug-resistance. The recently established clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system is a potentially elegant approach to functionally evaluate mutations in cancers. To reproduce mutations by homologous recombination (HR), the HR pathway must be functional, but DNA damage repair is frequently impaired in cancers. Imatinib is a tyrosine kinase inhibitor for BCR-ABL1 in Philadelphia chromosome-positive (Ph+) leukemia, and development of resistance due to kinase domain mutation is an important issue. We attempted to introduce the T315I gatekeeper mutation into three Ph+ myeloid leukemia cell lines with a seemingly functional HR pathway due to resistance to the inhibitor for poly (ADP) ribose polymerase1. Imatinib-resistant sublines were efficiently developed by the CRISPR/Cas9 system after short-term selection with imatinib; resulting sublines acquired the T315I mutation after HR. Thus, the usefulness of CRISPR/Cas9 system for functional analysis of somatic mutations in cancers was demonstrated.
Collapse
|
30
|
Gerlach M, Kraft T, Brenner B, Petersen B, Niemann H, Montag J. Efficient Knock-in of a Point Mutation in Porcine Fibroblasts Using the CRISPR/Cas9- GMNN Fusion Gene. Genes (Basel) 2018; 9:genes9060296. [PMID: 29899280 PMCID: PMC6027509 DOI: 10.3390/genes9060296] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 05/30/2018] [Accepted: 06/08/2018] [Indexed: 12/21/2022] Open
Abstract
During CRISPR/Cas9 mediated genome editing, site-specific double strand breaks are introduced and repaired either unspecific by non-homologous end joining (NHEJ) or sequence dependent by homology directed repair (HDR). Whereas NHEJ-based generation of gene knock-out is widely performed, the HDR-based knock-in of specific mutations remains a bottleneck. Especially in primary cell lines that are essential for the generation of cell culture and animal models of inherited human diseases, knock-in efficacy is insufficient and needs significant improvement. Here, we tested two different approaches to increase the knock-in frequency of a specific point mutation into the MYH7-gene in porcine fetal fibroblasts. We added a small molecule inhibitor of NHEJ, SCR7 (5,6-bis((E)-benzylideneamino)-2-mercaptopyrimidin-4-ol), during genome editing and screened cell cultures for the point mutation. However, this approach did not yield increased knock-in rates. In an alternative approach, we fused humanized Cas9 (hCas9) to the N-terminal peptide of the Geminin gene (GMNN). The fusion protein is degraded in NHEJ-dominated cell cycle phases, which should increase HDR-rates. Using hCas9-GMNN and point mutation-specific real time PCR screening, we found a two-fold increase in genome edited cell cultures. This increase of HDR by hCas9-GMNN provides a promising way to enrich specific knock-in in porcine fibroblast cultures for somatic cloning approaches.
Collapse
Affiliation(s)
- Max Gerlach
- Institute for Molecular and Cell Physiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| | - Theresia Kraft
- Institute for Molecular and Cell Physiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| | - Bernhard Brenner
- Institute for Molecular and Cell Physiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| | - Björn Petersen
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Hoeltystrasse 10, Mariensee, 31535 Neustadt, Germany.
| | - Heiner Niemann
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Hoeltystrasse 10, Mariensee, 31535 Neustadt, Germany.
| | - Judith Montag
- Institute for Molecular and Cell Physiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| |
Collapse
|
31
|
Karlapudi AP, T.C V, Tammineedi J, Srirama K, Kanumuri L, Prabhakar Kodali V. In silico sgRNA tool design for CRISPR control of quorum sensing in Acinetobacter species. Genes Dis 2018; 5:123-129. [PMID: 30258941 PMCID: PMC6146548 DOI: 10.1016/j.gendis.2018.03.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 03/29/2018] [Indexed: 12/31/2022] Open
Abstract
CRISPR genome editing utilizes Cas9 nuclease and single guide RNA (sgRNA), which directs the nuclease to a specific site in the genome and makes a double-stranded break (DSB). Design of sgRNA for CRISPR-Cas targeting, and to promote CRISPR adaptation, uses a regulatory mechanism that ensures maximum CRISPR-Cas9 system functions when a bacterial population is at highest risk of phage infection. Acinetobacter baumannii is the most regularly identified gram-negative bacterium infecting patients. Recent reports have demonstrated that the extent of diseases caused by A. baumannii is expanding and, in a few cases, now surpasses the quantity of infections caused by P. aeruginosa. Most Acinetobacter strains possess biofilm-forming ability, which plays a major role in virulence and drug resistance. Biofilm bacteria use quorum sensing, a cell-to-cell communication process, to activate gene expression. Many genes are involved in biofilm formation and the mechanism to disrupt the biofilm network is still not clearly understood. In this study, we performed in silico gene editing to exploit the AbaI gene, responsible for biofilm formation. The study explored different tools available for genome editing to create gene knockouts, selecting the A. baumannii AbaI gene as a target.
Collapse
Affiliation(s)
- Abraham Peele Karlapudi
- Department of Biotechnology, Vignan's Foundation for Science Technology and Research, Vadlamudi, Guntur 522213, India
| | - Venkateswarulu T.C
- Department of Biotechnology, Vignan's Foundation for Science Technology and Research, Vadlamudi, Guntur 522213, India
| | - Jahnavi Tammineedi
- Department of Biotechnology, Vignan's Foundation for Science Technology and Research, Vadlamudi, Guntur 522213, India
| | - Krupanidhi Srirama
- Department of Biotechnology, Vignan's Foundation for Science Technology and Research, Vadlamudi, Guntur 522213, India
| | - Lohit Kanumuri
- Department of Biotechnology, Vignan's Foundation for Science Technology and Research, Vadlamudi, Guntur 522213, India
| | | |
Collapse
|
32
|
Dewari PS, Southgate B, Mccarten K, Monogarov G, O'Duibhir E, Quinn N, Tyrer A, Leitner MC, Plumb C, Kalantzaki M, Blin C, Finch R, Bressan RB, Morrison G, Jacobi AM, Behlke MA, von Kriegsheim A, Tomlinson S, Krijgsveld J, Pollard SM. An efficient and scalable pipeline for epitope tagging in mammalian stem cells using Cas9 ribonucleoprotein. eLife 2018; 7:e35069. [PMID: 29638216 PMCID: PMC5947990 DOI: 10.7554/elife.35069] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 04/10/2018] [Indexed: 01/09/2023] Open
Abstract
CRISPR/Cas9 can be used for precise genetic knock-in of epitope tags into endogenous genes, simplifying experimental analysis of protein function. However, Cas9-assisted epitope tagging in primary mammalian cell cultures is often inefficient and reliant on plasmid-based selection strategies. Here, we demonstrate improved knock-in efficiencies of diverse tags (V5, 3XFLAG, Myc, HA) using co-delivery of Cas9 protein pre-complexed with two-part synthetic modified RNAs (annealed crRNA:tracrRNA) and single-stranded oligodeoxynucleotide (ssODN) repair templates. Knock-in efficiencies of ~5-30%, were achieved without selection in embryonic stem (ES) cells, neural stem (NS) cells, and brain-tumor-derived stem cells. Biallelic-tagged clonal lines were readily derived and used to define Olig2 chromatin-bound interacting partners. Using our novel web-based design tool, we established a 96-well format pipeline that enabled V5-tagging of 60 different transcription factors. This efficient, selection-free and scalable epitope tagging pipeline enables systematic surveys of protein expression levels, subcellular localization, and interactors across diverse mammalian stem cells.
Collapse
Affiliation(s)
- Pooran Singh Dewari
- Edinburgh Cancer Research United Kingdom CentreUniversity of EdinburghEdinburghUnited Kingdom
- MRC Centre for Regenerative MedicineUniversity of EdinburghEdinburghUnited Kingdom
| | - Benjamin Southgate
- Edinburgh Cancer Research United Kingdom CentreUniversity of EdinburghEdinburghUnited Kingdom
- MRC Centre for Regenerative MedicineUniversity of EdinburghEdinburghUnited Kingdom
| | - Katrina Mccarten
- Edinburgh Cancer Research United Kingdom CentreUniversity of EdinburghEdinburghUnited Kingdom
- MRC Centre for Regenerative MedicineUniversity of EdinburghEdinburghUnited Kingdom
| | - German Monogarov
- German Cancer Research CenterUniversity of HeidelbergHeidelbergGermany
| | - Eoghan O'Duibhir
- Edinburgh Cancer Research United Kingdom CentreUniversity of EdinburghEdinburghUnited Kingdom
- MRC Centre for Regenerative MedicineUniversity of EdinburghEdinburghUnited Kingdom
| | - Niall Quinn
- Institute of Genetics and Molecular Medicine, Edinburgh Cancer Research United Kingdom CentreUniversity of EdinburghEdinburghUnited Kingdom
| | - Ashley Tyrer
- Edinburgh Cancer Research United Kingdom CentreUniversity of EdinburghEdinburghUnited Kingdom
- MRC Centre for Regenerative MedicineUniversity of EdinburghEdinburghUnited Kingdom
| | - Marie-Christin Leitner
- Edinburgh Cancer Research United Kingdom CentreUniversity of EdinburghEdinburghUnited Kingdom
- MRC Centre for Regenerative MedicineUniversity of EdinburghEdinburghUnited Kingdom
| | - Colin Plumb
- Edinburgh Cancer Research United Kingdom CentreUniversity of EdinburghEdinburghUnited Kingdom
- MRC Centre for Regenerative MedicineUniversity of EdinburghEdinburghUnited Kingdom
| | - Maria Kalantzaki
- Edinburgh Cancer Research United Kingdom CentreUniversity of EdinburghEdinburghUnited Kingdom
- MRC Centre for Regenerative MedicineUniversity of EdinburghEdinburghUnited Kingdom
| | - Carla Blin
- Edinburgh Cancer Research United Kingdom CentreUniversity of EdinburghEdinburghUnited Kingdom
- MRC Centre for Regenerative MedicineUniversity of EdinburghEdinburghUnited Kingdom
| | - Rebecca Finch
- Edinburgh Cancer Research United Kingdom CentreUniversity of EdinburghEdinburghUnited Kingdom
- MRC Centre for Regenerative MedicineUniversity of EdinburghEdinburghUnited Kingdom
| | - Raul Bardini Bressan
- Edinburgh Cancer Research United Kingdom CentreUniversity of EdinburghEdinburghUnited Kingdom
- MRC Centre for Regenerative MedicineUniversity of EdinburghEdinburghUnited Kingdom
| | - Gillian Morrison
- Edinburgh Cancer Research United Kingdom CentreUniversity of EdinburghEdinburghUnited Kingdom
- MRC Centre for Regenerative MedicineUniversity of EdinburghEdinburghUnited Kingdom
| | | | - Mark A Behlke
- Integrated DNA Technologies, Inc.CoralvilleUnited States
| | - Alex von Kriegsheim
- Institute of Genetics and Molecular Medicine, Edinburgh Cancer Research United Kingdom CentreUniversity of EdinburghEdinburghUnited Kingdom
| | - Simon Tomlinson
- Edinburgh Cancer Research United Kingdom CentreUniversity of EdinburghEdinburghUnited Kingdom
- MRC Centre for Regenerative MedicineUniversity of EdinburghEdinburghUnited Kingdom
| | - Jeroen Krijgsveld
- German Cancer Research CenterUniversity of HeidelbergHeidelbergGermany
| | - Steven M Pollard
- Edinburgh Cancer Research United Kingdom CentreUniversity of EdinburghEdinburghUnited Kingdom
- MRC Centre for Regenerative MedicineUniversity of EdinburghEdinburghUnited Kingdom
| |
Collapse
|
33
|
Sansbury BM, Wagner AM, Nitzan E, Tarcic G, Kmiec EB. CRISPR-Directed In Vitro Gene Editing of Plasmid DNA Catalyzed by Cpf1 (Cas12a) Nuclease and a Mammalian Cell-Free Extract. CRISPR J 2018; 1:191-202. [PMID: 30687813 PMCID: PMC6345151 DOI: 10.1089/crispr.2018.0006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/27/2018] [Accepted: 04/06/2018] [Indexed: 12/20/2022] Open
Abstract
Extraordinary efforts are underway to offer greater versatility and broader applications for CRISPR-directed gene editing. Here, we report the establishment of a system for studying this process in a mammalian cell-free extract prepared from HEK-293 human embryonic kidney cells. A ribonucleoprotein (RNP) particle and a mammalian cell-free extract coupled with a genetic readout are used to generate and identify specific deletions or insertions within a plasmid target. A Cpf1 (Cas12a) RNP induces a double-stranded break, and the cell-free extract provides the appropriate enzymatic activities to direct specific deletion through resection and homology directed repair in the presence of single- and double-stranded donor DNA. This cell-free system establishes a foundation to study the heterogeneous products of gene editing, as well as the relationship between nonhomologous end joining and homology directed repair and related regulatory circuitries simultaneously in a controlled environment.
Collapse
Affiliation(s)
- Brett M Sansbury
- Department of Medical Laboratory Sciences, University of Delaware, Newark, Delaware.,Gene Editing Insitute, Helen F. Graham Cancer Center & Research Institute, Christiana Care Health System, Newark, Delaware
| | - Amanda M Wagner
- Gene Editing Insitute, Helen F. Graham Cancer Center & Research Institute, Christiana Care Health System, Newark, Delaware
| | - Erez Nitzan
- NovellusDx, Jerusalem Bio-Park, Hadassah Ein-Kerem Medical Center Campus, Jerusalem, Israel
| | - Gabi Tarcic
- NovellusDx, Jerusalem Bio-Park, Hadassah Ein-Kerem Medical Center Campus, Jerusalem, Israel
| | - Eric B Kmiec
- Department of Medical Laboratory Sciences, University of Delaware, Newark, Delaware.,Gene Editing Insitute, Helen F. Graham Cancer Center & Research Institute, Christiana Care Health System, Newark, Delaware
| |
Collapse
|
34
|
Ringer KP, Roth MG, Garey MS, Piorczynski TB, Suli A, Hansen JM, Alder JK. Comparative analysis of lipid-mediated CRISPR-Cas9 genome editing techniques. Cell Biol Int 2018; 42:849-858. [PMID: 29457665 DOI: 10.1002/cbin.10952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 02/12/2018] [Indexed: 12/11/2022]
Abstract
CRISPR-Cas technology has revolutionized genome engineering. While Cas9 was not the first programmable endonuclease identified, its simplicity of use has driven widespread adoption in a short period of time. While CRISPR-Cas genome editing holds enormous potential for clinical applications, its use in laboratory settings for genotype-phenotype studies and genome-wide screens has led to breakthroughs in the understanding of many molecular pathways. Numerous protocols have been described for introducing CRISPR-Cas components into cells, and here we sought to simplify and optimize a protocol for genome editing using readily available and inexpensive tools. We compared plasmid, ribonucleoprotein (RNP), and RNA transfection to determine which was method was most optimal for editing cells in a laboratory setting. We limited our comparison to lipofection-mediated introduction because the reagents are widely available. To facilitate optimization, we developed a novel reporter assay to measure gene disruption and the introduction of a variety of exogenous DNA tags. Each method efficiently disrupted endogenous genes and was able to stimulate the introduction of foreign DNA at specific sites, albeit to varying efficiencies. RNP transfection produced the highest level of gene disruption and was the most rapid and efficient method overall. Finally, we show that very short homology arms of 30 base pairs can mediate site-specific editing. The methods described here should broaden the accessibility of RNP-mediated lipofection for laboratory genome-editing experiments.
Collapse
Affiliation(s)
- Kelsey P Ringer
- Physiology & Developmental Biology, Brigham Young University, Provo, Utah, 84602, USA
| | - Mark G Roth
- Physiology & Developmental Biology, Brigham Young University, Provo, Utah, 84602, USA
| | - Mitchell S Garey
- Physiology & Developmental Biology, Brigham Young University, Provo, Utah, 84602, USA
| | - Ted B Piorczynski
- Physiology & Developmental Biology, Brigham Young University, Provo, Utah, 84602, USA
| | - Arminda Suli
- Physiology & Developmental Biology, Brigham Young University, Provo, Utah, 84602, USA
| | - Jason M Hansen
- Physiology & Developmental Biology, Brigham Young University, Provo, Utah, 84602, USA
| | - Jonathan K Alder
- Physiology & Developmental Biology, Brigham Young University, Provo, Utah, 84602, USA
| |
Collapse
|
35
|
Modarai SR, Man D, Bialk P, Rivera-Torres N, Bloh K, Kmiec EB. Efficient Delivery and Nuclear Uptake Is Not Sufficient to Detect Gene Editing in CD34+ Cells Directed by a Ribonucleoprotein Complex. MOLECULAR THERAPY-NUCLEIC ACIDS 2018; 11:116-129. [PMID: 29858048 PMCID: PMC5992347 DOI: 10.1016/j.omtn.2018.01.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 01/31/2018] [Accepted: 01/31/2018] [Indexed: 01/01/2023]
Abstract
CD34+ cells are prime targets for therapeutic strategies for gene editing, because modified progenitor cells have the capacity to differentiate through an erythropoietic lineage. Although experimental advances have been reported, the associated experimental protocols have largely been less than clear or robust. As such, we evaluated the relationships among cellular delivery; nuclear uptake, often viewed as the benchmark metric of successful gene editing; and single base repair. We took a combinatorial approach using single-stranded oligonucleotide and a CRISPR/Cas9 ribonucleoprotein to convert wild-type HBB into the sickle cell genotype by evaluating conditions for two common delivery strategies of gene editing tools into CD34+ cells. Confocal microscopy data show that the CRISPR/Cas9 ribonucleoprotein tends to accumulate at the outer membrane of the CD34+ cell nucleus when the Neon Transfection System is employed, while the ribonucleoproteins do pass into the cell nucleus when nucleofection is used. Despite the high efficiency of cellular transformation, and the traditional view of success in efficient nuclear uptake, neither delivery methodology enabled gene editing activity. Our results indicate that more stringent criteria must be established to facilitate the clinical translation and scientific robustness of gene editing for sickle cell disease.
Collapse
Affiliation(s)
- Shirin R Modarai
- Gene Editing Institute, Helen F. Graham Cancer Center, Newark, DE 19713, USA
| | - Dula Man
- Gene Editing Institute, Helen F. Graham Cancer Center, Newark, DE 19713, USA
| | - Pawel Bialk
- Gene Editing Institute, Helen F. Graham Cancer Center, Newark, DE 19713, USA
| | | | - Kevin Bloh
- Nemours Center for Childhood Cancer Research, Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA
| | - Eric B Kmiec
- Gene Editing Institute, Helen F. Graham Cancer Center, Newark, DE 19713, USA.
| |
Collapse
|
36
|
Korablev AN, Serova IA, Serov OL. Generation of megabase-scale deletions, inversions and duplications involving the Contactin-6 gene in mice by CRISPR/Cas9 technology. BMC Genet 2017; 18:112. [PMID: 29297312 PMCID: PMC5751523 DOI: 10.1186/s12863-017-0582-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background Copy Number Variation (CNV) of the human CNTN6 gene (encoding the contactin-6 protein), caused by deletions or duplications, is responsible for severe neurodevelopmental impairments, often in combination with facial dysmorphias. Conversely, deleterious point mutations of this gene do not show any clinical phenotypes. The aim of this study is to generate mice carrying large deletions, duplications and inversions involving the Cntn6 gene as a new experimental model to study CNV of the human CNTN6 locus. Results To generate large chromosomal rearrangements on mouse chromosome 6, we applied CRISPR/Cas9 technology in zygotes. Two guide RNAs (gRNAs) (flanking a DNA fragment of 1137 Mb) together with Cas9 mRNA and single-stranded DNA oligonucleotides (ssODN) were microinjected into the cytoplasm of 599 zygotes of F1 (C57BL x CBA) mice, and 256 of them were transplanted into oviducts of CD-1 females. As a result, we observed the birth of 41 viable F0 offspring. Genotyping of these mice was performed by PCR analysis and sequencing of PCR products. Among the 41 F0 offspring, we identified seven mice with deletions, two animals carrying duplications of the gene and four carrying inversions. Interestingly, two F0 offspring had both deletions and duplications. It is important to note that while three of seven deletion carriers showed expected sequences at the new joint sites, in another three, we identified an absence of 1–10 nucleotides at the CRISPR/Cas9 cut sites, and in one animal, 103 bp were missing, presumably due to error-prone non-homologous end joining. In addition, we detected the absence of 5 and 13 nucleotides at these sites in two F0 duplication carriers. Similar sequence changes at CRISPR/Cas9 cut sites were observed at the right and left boundaries of inversions. Thus, megabase-scale deletions, duplications and inversions were identified in 11 F0 offspring among 41 analyzed, i.e., approximately 25% efficiency. All genetically modified F0 offspring were viable and able to transmit these large chromosomal rearrangements to the next generation. Conclusions Using CRISPR/Cas9 technology, we created mice carrying megabase-scale deletions, duplications, and inversions involving the full-sized Cntn6 gene. These mice became founders of new mouse lines, which may be more appropriate experimental models of CNV in the human 3p26.3 region than Сntn6 knockout mice.
Collapse
Affiliation(s)
- Alexei N Korablev
- Department of Molecular Mechanisms of Development, Institute of Cytology and Genetics, Russia Academy of Sciences, Siberian Branch, Novosibirsk, 630090, Russia.,Research Institute of Medical Genetics, Tomsk National Research Medical Center Russian Academy of Sciences, Tomsk, 634050, Russia
| | - Irina A Serova
- Department of Molecular Mechanisms of Development, Institute of Cytology and Genetics, Russia Academy of Sciences, Siberian Branch, Novosibirsk, 630090, Russia
| | - Oleg L Serov
- Department of Molecular Mechanisms of Development, Institute of Cytology and Genetics, Russia Academy of Sciences, Siberian Branch, Novosibirsk, 630090, Russia. .,Research Institute of Medical Genetics, Tomsk National Research Medical Center Russian Academy of Sciences, Tomsk, 634050, Russia.
| |
Collapse
|
37
|
Radecke S, Schwarz K, Radecke F. Genome-wide Mapping of Off-Target Events in Single-Stranded Oligodeoxynucleotide-Mediated Gene Repair Experiments. Mol Ther 2017; 26:115-131. [PMID: 28988714 DOI: 10.1016/j.ymthe.2017.09.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 09/08/2017] [Accepted: 09/08/2017] [Indexed: 10/18/2022] Open
Abstract
Short single-stranded oligodeoxynucleotides are versatile molecular tools used in different applications. They enable gene repair and genome editing, and they are central to the antisense technology. Because the usability of single-stranded oligodeoxynucleotides depends on their efficiencies, as well as their specificities, analyzing their genotoxic off-target activities is important. Thus, we have developed a protocol that follows the fate of a biotin-labeled single-stranded oligodeoxynucleotide in human cells based on its physical incorporation into the targeted genome. Affected chromosomal fragments are enriched and preferably sequenced by nanopore sequencing. This protocol was validated in gene repair experiments without intentionally inducing a DNA double-strand break. For a 21-nucleotide-long phosphorothioate-modified oligodeoxynucleotide, we compiled a broad array of error-free incorporations, point mutations, indels, and structural rearrangements from actively dividing HEK293-derived cells. Additionally, we demonstrated the usefulness of this approach for primary cells by treating human CD34+ hematopoietic stem and progenitor cells with a 100-nucleotide-long unmodified oligodeoxynucleotide directed against the endogenous CYBB locus. This work should pave the way for future genotoxicity analyses. Concerning genome engineering approaches based on nuclease-induced DNA double-strand breaks, this protocol could aid in detecting the unwanted effects caused by the donor fragments themselves.
Collapse
Affiliation(s)
- Sarah Radecke
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Service Baden-Württemberg-Hessen, 89081 Ulm, Germany
| | - Klaus Schwarz
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Service Baden-Württemberg-Hessen, 89081 Ulm, Germany; Institute for Transfusion Medicine, University of Ulm, 89081 Ulm, Germany
| | - Frank Radecke
- Institute for Transfusion Medicine, University of Ulm, 89081 Ulm, Germany.
| |
Collapse
|
38
|
Rivera-Torres N, Kmiec EB. A Standard Methodology to Examine On-site Mutagenicity As a Function of Point Mutation Repair Catalyzed by CRISPR/Cas9 and SsODN in Human Cells. J Vis Exp 2017. [PMID: 28872131 PMCID: PMC5614406 DOI: 10.3791/56195] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Combinatorial gene editing using CRISPR/Cas9 and single-stranded oligonucleotides is an effective strategy for the correction of single-base point mutations, which often are responsible for a variety of human inherited disorders. Using a well-established cell-based model system, the point mutation of a single-copy mutant eGFP gene integrated into HCT116 cells has been repaired using this combinatorial approach. The analysis of corrected and uncorrected cells reveals both the precision of gene editing and the development of genetic lesions, when indels are created in uncorrected cells in the DNA sequence surrounding the target site. Here, the specific methodology used to analyze this combinatorial approach to the gene editing of a point mutation, coupled with a detailed experimental strategy to measuring indel formation at the target site, is outlined. This protocol outlines a foundational approach and workflow for investigations aimed at developing CRISPR/Cas9-based gene editing for human therapy. The conclusion of this work is that on-site mutagenesis takes place as a result of CRISPR/Cas9 activity during the process of point mutation repair. This work puts in place a standardized methodology to identify the degree of mutagenesis, which should be an important and critical aspect of any approach destined for clinical implementation.
Collapse
Affiliation(s)
- Natalia Rivera-Torres
- Gene Editing Institute, Helen F. Graham Cancer Center and Research Institute, Christiana Care Health Services; Department of Medical Sciences, University of Delaware
| | - Eric B Kmiec
- Gene Editing Institute, Helen F. Graham Cancer Center and Research Institute, Christiana Care Health Services; Department of Medical Sciences, University of Delaware;
| |
Collapse
|
39
|
Cebrian-Serrano A, Davies B. CRISPR-Cas orthologues and variants: optimizing the repertoire, specificity and delivery of genome engineering tools. Mamm Genome 2017; 28:247-261. [PMID: 28634692 PMCID: PMC5569134 DOI: 10.1007/s00335-017-9697-4] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 05/26/2017] [Indexed: 12/17/2022]
Abstract
Robust and cost-effective genome editing in a diverse array of cells and model organisms is now possible thanks to the discovery of the RNA-guided endonucleases of the CRISPR-Cas system. The commonly used Cas9 of Streptococcus pyogenes shows high levels of activity but, depending on the application, has been associated with some shortcomings. Firstly, the enzyme has been shown to cause mutagenesis at genomic sequences resembling the target sequence. Secondly, the stringent requirement for a specific motif adjacent to the selected target site can limit the target range of this enzyme. Lastly, the physical size of Cas9 challenges the efficient delivery of genomic engineering tools based on this enzyme as viral particles for potential therapeutic applications. Related and parallel strategies have been employed to address these issues. Taking advantage of the wealth of structural information that is becoming available for CRISPR-Cas effector proteins, Cas9 has been redesigned by mutagenizing key residues contributing to activity and target recognition. The protein has also been shortened and redesigned into component subunits in an attempt to facilitate its efficient delivery. Furthermore, the CRISPR-Cas toolbox has been expanded by exploring the properties of Cas9 orthologues and other related effector proteins from diverse bacterial species, some of which exhibit different target site specificities and reduced molecular size. It is hoped that the improvements in accuracy, target range and efficiency of delivery will facilitate the therapeutic application of these site-specific nucleases.
Collapse
Affiliation(s)
| | - Benjamin Davies
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK.
| |
Collapse
|
40
|
Skvarova Kramarzova K, Osborn MJ, Webber BR, DeFeo AP, McElroy AN, Kim CJ, Tolar J. CRISPR/Cas9-Mediated Correction of the FANCD1 Gene in Primary Patient Cells. Int J Mol Sci 2017; 18:ijms18061269. [PMID: 28613254 PMCID: PMC5486091 DOI: 10.3390/ijms18061269] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 06/02/2017] [Accepted: 06/09/2017] [Indexed: 11/16/2022] Open
Abstract
Fanconi anemia (FA) is an inherited condition characterized by impaired DNA repair, physical anomalies, bone marrow failure, and increased incidence of malignancy. Gene editing holds great potential to precisely correct the underlying genetic cause such that gene expression remains under the endogenous control mechanisms. This has been accomplished to date only in transformed cells or their reprogrammed induced pluripotent stem cell counterparts; however, it has not yet been reported in primary patient cells. Here we show the ability to correct a mutation in Fanconi anemia D1 (FANCD1) primary patient fibroblasts. The clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system was employed to target and correct a FANCD1 gene deletion. Homologous recombination using an oligonucleotide donor was achieved and a pure population of modified cells was obtained by using inhibitors of poly adenosine diphosphate-ribose polymerase (poly ADP-ribose polymerase). FANCD1 function was restored and we did not observe any promiscuous cutting of the CRISPR/Cas9 at off target sites. This consideration is crucial in the context of the pre-malignant FA phenotype. Altogether we show the ability to correct a patient mutation in primary FANCD1 cells in a precise manner. These proof of principle studies support expanded application of gene editing for FA.
Collapse
Affiliation(s)
- Karolina Skvarova Kramarzova
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN 55455, USA.
- Childhood Leukemia Investigation Prague (CLIP), Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University, Prague 15006, Czech Republic.
| | - Mark J Osborn
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN 55455, USA.
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA.
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA.
- Asan-Minnesota Institute for Innovating Transplantation, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Beau R Webber
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Anthony P DeFeo
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Amber N McElroy
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Chong Jai Kim
- Asan Institute for Life Sciences, Asan Medical Center, Asan-Minnesota Institute for Innovating Transplantation, Seoul 138-736, Korea.
| | - Jakub Tolar
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN 55455, USA.
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA.
- Asan-Minnesota Institute for Innovating Transplantation, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
41
|
Higashijima Y, Hirano S, Nangaku M, Nureki O. Applications of the CRISPR-Cas9 system in kidney research. Kidney Int 2017; 92:324-335. [PMID: 28433382 DOI: 10.1016/j.kint.2017.01.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 12/26/2016] [Accepted: 01/09/2017] [Indexed: 12/26/2022]
Abstract
The recently discovered clustered regularly interspaced short palindromic repeat (CRISPR)-CRISPR-associated protein 9 (Cas9) is an RNA-guided DNA nuclease, and has been harnessed for the development of simple, efficient, and relatively inexpensive technologies to precisely manipulate the genomic information in virtually all cell types and organisms. The CRIPSR-Cas9 systems have already been effectively used to disrupt multiple genes simultaneously, create conditional alleles, and generate reporter proteins, even in vivo. The ability of Cas9 to target a specific genomic region has also been exploited for various applications, such as transcriptional regulation, epigenetic control, and chromosome labeling. Here we first describe the molecular mechanism of the RNA-guided DNA targeting by the CRISPR-Cas9 system and then outline the current applications of this system as a genome-editing tool in mice and other species, to better model and study human diseases. We also discuss the practical and potential uses of the CRISPR-Cas9 system in kidney research and highlight the further applications of this technology beyond genome editing. Undoubtedly, the CRISPR-Cas9 system holds enormous potential for revolutionizing and accelerating kidney research and therapeutic applications in the future.
Collapse
Affiliation(s)
- Yoshiki Higashijima
- Division of Nephrology and Endocrinology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan; Isotope Science Center, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Seiichi Hirano
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Masaomi Nangaku
- Division of Nephrology and Endocrinology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
42
|
Bloh KM, Bialk PA, Gopalakrishnapillai A, Kolb EA, Kmiec EB. CRISPR/Cas9-Directed Reassignment of the GATA1 Initiation Codon in K562 Cells to Recapitulate AML in Down Syndrome. MOLECULAR THERAPY. NUCLEIC ACIDS 2017. [PMID: 28624204 PMCID: PMC5415552 DOI: 10.1016/j.omtn.2017.04.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Using a CRISPR/Cas9 system, we have reengineered a translational start site in the GATA1 gene in K562 cells. This mutation accounts largely for the onset of myeloid leukemia in Down syndrome (ML-DS). For this reengineering, we utilized CRISPR/Cas9 to generate mammalian cell lines that express truncated versions of the Gata1s protein similar to that seen in ML-DS, as determined by analyzing specific genetic alterations resulting from CRISPR/Cas9 cleavage. During this work, 73 cell lines were clonally expanded, with allelic variance analyzed. Using Tracking of Indels by DEcomposition (TIDE) and Sanger sequencing, we defined the DNA sequence and variations within each allele. We found significant heterogeneity between alleles in the same clonally expanded cell, as well as among alleles from other clonal expansions. Our data demonstrate and highlight the importance of the randomness of resection promoted by non-homologous end joining after CRISPR/Cas9 cleavage in cells undergoing genetic reengineering. Such heterogeneity must be fully characterized to predict altered functionality inside target tissues and to accurately interpret the associated phenotype. Our data suggest that in cases where the objective is to rearrange specific nucleotides to redirect gene expression in human cells, it is imperative to analyze genetic composition at the individual allelic level.
Collapse
Affiliation(s)
- Kevin M Bloh
- Gene Editing Institute, Helen F. Graham Cancer Center & Research Institute, Christiana Care Health Services, Inc., Newark, DE 19713, USA; Nemours Center for Childhood Cancer Research, Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA
| | - Pawel A Bialk
- Gene Editing Institute, Helen F. Graham Cancer Center & Research Institute, Christiana Care Health Services, Inc., Newark, DE 19713, USA
| | | | - E Anders Kolb
- Nemours Center for Childhood Cancer Research, Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA
| | - Eric B Kmiec
- Gene Editing Institute, Helen F. Graham Cancer Center & Research Institute, Christiana Care Health Services, Inc., Newark, DE 19713, USA.
| |
Collapse
|
43
|
Abstract
CRISPR/Cas9 is a promising tool for genome-editing DNA in cells with single-base-pair precision, which allows novel in vitro models of human disease to be generated-e.g., in pluripotent stem cells. However, the accuracy of intended sequence changes can be severely diminished by CRISPR/Cas9's propensity to re-edit previously modified loci, causing unwanted mutations (indels) alongside intended changes. Here we describe a genome-editing framework termed consecutive re-guide or re-Cas steps to erase CRISPR/Cas-blocked targets (CORRECT), which, by exploiting the use of highly efficacious CRISPR/Cas-blocking mutations in two rounds of genome editing, enables accurate, efficient and scarless introduction of specific base changes-for example, in human induced pluripotent (iPS) stem cells. This protocol outlines in detail how to implement either the re-Guide or re-Cas variants of CORRECT to generate scarlessly edited isogenic stem cell lines with intended monoallelic and biallelic sequence changes in ∼3 months.
Collapse
|
44
|
Rivera-Torres N, Banas K, Bialk P, Bloh KM, Kmiec EB. Insertional Mutagenesis by CRISPR/Cas9 Ribonucleoprotein Gene Editing in Cells Targeted for Point Mutation Repair Directed by Short Single-Stranded DNA Oligonucleotides. PLoS One 2017; 12:e0169350. [PMID: 28052104 PMCID: PMC5214427 DOI: 10.1371/journal.pone.0169350] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 12/15/2016] [Indexed: 11/18/2022] Open
Abstract
CRISPR/Cas9 and single-stranded DNA oligonucleotides (ssODNs) have been used to direct the repair of a single base mutation in human genes. Here, we examine a method designed to increase the precision of RNA guided genome editing in human cells by utilizing a CRISPR/Cas9 ribonucleoprotein (RNP) complex to initiate DNA cleavage. The RNP is assembled in vitro and induces a double stranded break at a specific site surrounding the mutant base designated for correction by the ssODN. We use an integrated mutant eGFP gene, bearing a single base change rendering the expressed protein nonfunctional, as a single copy target in HCT 116 cells. We observe significant gene correction activity of the mutant base, promoted by the RNP and single-stranded DNA oligonucleotide with validation through genotypic and phenotypic readout. We demonstrate that all individual components must be present to obtain successful gene editing. Importantly, we examine the genotype of individually sorted corrected and uncorrected clonally expanded cell populations for the mutagenic footprint left by the action of these gene editing tools. While the DNA sequence of the corrected population is exact with no adjacent sequence modification, the uncorrected population exhibits heterogeneous mutagenicity with a wide variety of deletions and insertions surrounding the target site. We designate this type of DNA aberration as on-site mutagenicity. Analyses of two clonal populations bearing specific DNA insertions surrounding the target site, indicate that point mutation repair has occurred at the level of the gene. The phenotype, however, is not rescued because a section of the single-stranded oligonucleotide has been inserted altering the reading frame and generating truncated proteins. These data illustrate the importance of analysing mutagenicity in uncorrected cells. Our results also form the basis of a simple model for point mutation repair directed by a short single-stranded DNA oligonucleotides and CRISPR/Cas9 ribonucleoprotein complex.
Collapse
Affiliation(s)
- Natalia Rivera-Torres
- Gene Editing Institute, Helen F. Graham Cancer Center and Research Institute, Newark, Delaware, United States of America
- Department of Medical Sciences University of Delaware, Newark, Delaware, United States of America
| | - Kelly Banas
- Gene Editing Institute, Helen F. Graham Cancer Center and Research Institute, Newark, Delaware, United States of America
- Department of Medical Sciences University of Delaware, Newark, Delaware, United States of America
| | - Pawel Bialk
- Gene Editing Institute, Helen F. Graham Cancer Center and Research Institute, Newark, Delaware, United States of America
| | - Kevin M. Bloh
- Gene Editing Institute, Helen F. Graham Cancer Center and Research Institute, Newark, Delaware, United States of America
- Nemours Center for Childhood Cancer Research, Alfred I. duPont Hospital for Children, Wilmington, Delaware, United States of America
| | - Eric B. Kmiec
- Gene Editing Institute, Helen F. Graham Cancer Center and Research Institute, Newark, Delaware, United States of America
- Department of Medical Sciences University of Delaware, Newark, Delaware, United States of America
- * E-mail:
| |
Collapse
|
45
|
Wang K, Tang X, Liu Y, Xie Z, Zou X, Li M, Yuan H, Ouyang H, Jiao H, Pang D. Efficient Generation of Orthologous Point Mutations in Pigs via CRISPR-assisted ssODN-mediated Homology-directed Repair. MOLECULAR THERAPY. NUCLEIC ACIDS 2016; 5:e396. [PMID: 27898095 PMCID: PMC5155319 DOI: 10.1038/mtna.2016.101] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 10/18/2016] [Indexed: 12/13/2022]
Abstract
Precise genome editing in livestock is of great value for the fundamental investigation of disease modeling. However, genetically modified pigs carrying subtle point mutations were still seldom reported despite the rapid development of programmable endonucleases. Here, we attempt to investigate single-stranded oligonucleotides (ssODN) mediated knockin by introducing two orthologous pathogenic mutations, p.E693G for Alzheimer's disease and p.G2019S for Parkinson's disease, into porcine APP and LRRK2 loci, respectively. Desirable homology-directed repair (HDR) efficiency was achieved in porcine fetal fibroblasts (PFFs) by optimizing the dosage and length of ssODN templates. Interestingly, incomplete HDR alleles harboring partial point mutations were observed in single-cell colonies, which indicate the complex mechanism of ssODN-mediated HDR. The effect of mutation-to-cut distance on incorporation rate was further analyzed by deep sequencing. We demonstrated that a mutation-to-cut distance of 11 bp resulted in a remarkable difference in HDR efficiency between two point mutations. Finally, we successfully obtained one cloned piglet harboring the orthologous p.C313Y mutation at the MSTN locus via somatic cell nuclear transfer (SCNT). Our proof-of-concept study demonstrated efficient ssODN-mediated incorporation of pathogenic point mutations in porcine somatic cells, thus facilitating further development of disease modeling and genetic breeding in pigs.
Collapse
Affiliation(s)
- Kankan Wang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, Department of Animal Biotechnology, College of Animal Science, Jilin University, Changchun, PR China
| | - Xiaochun Tang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, Department of Animal Biotechnology, College of Animal Science, Jilin University, Changchun, PR China
| | - Yan Liu
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, PR China
| | - Zicong Xie
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, Department of Animal Biotechnology, College of Animal Science, Jilin University, Changchun, PR China
| | - Xiaodong Zou
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, Department of Animal Biotechnology, College of Animal Science, Jilin University, Changchun, PR China
| | - Mengjing Li
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, Department of Animal Biotechnology, College of Animal Science, Jilin University, Changchun, PR China
| | - Hongming Yuan
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, Department of Animal Biotechnology, College of Animal Science, Jilin University, Changchun, PR China
| | - Hongsheng Ouyang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, Department of Animal Biotechnology, College of Animal Science, Jilin University, Changchun, PR China
| | - Huping Jiao
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, Department of Animal Biotechnology, College of Animal Science, Jilin University, Changchun, PR China
| | - Daxin Pang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, Department of Animal Biotechnology, College of Animal Science, Jilin University, Changchun, PR China
| |
Collapse
|
46
|
Yi L, Li J. CRISPR-Cas9 therapeutics in cancer: promising strategies and present challenges. Biochim Biophys Acta Rev Cancer 2016; 1866:197-207. [PMID: 27641687 DOI: 10.1016/j.bbcan.2016.09.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 09/13/2016] [Accepted: 09/14/2016] [Indexed: 01/05/2023]
Abstract
Cancer is characterized by multiple genetic and epigenetic alterations that drive malignant cell proliferation and confer chemoresistance. The ability to correct or ablate such mutations holds immense promise for combating cancer. Recently, because of its high efficiency and accuracy, the CRISPR-Cas9 genome editing technique has been widely used in cancer therapeutic explorations. Several studies used CRISPR-Cas9 to directly target cancer cell genomic DNA in cellular and animal cancer models which have shown therapeutic potential in expanding our anticancer protocols. Moreover, CRISPR-Cas9 can also be employed to fight oncogenic infections, explore anticancer drugs, and engineer immune cells and oncolytic viruses for cancer immunotherapeutic applications. Here, we summarize these preclinical CRISPR-Cas9-based therapeutic strategies against cancer, and discuss the challenges and improvements in translating therapeutic CRISPR-Cas9 into clinical use, which will facilitate better application of this technique in cancer research. Further, we propose potential directions of the CRISPR-Cas9 system in cancer therapy.
Collapse
Affiliation(s)
- Lang Yi
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Beijing, People's Republic of China; Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, People's Republic of China
| | - Jinming Li
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Beijing, People's Republic of China; Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, People's Republic of China.
| |
Collapse
|
47
|
Kim EY, Page P, Dellefave-Castillo LM, McNally EM, Wyatt EJ. Direct reprogramming of urine-derived cells with inducible MyoD for modeling human muscle disease. Skelet Muscle 2016; 6:32. [PMID: 27651888 PMCID: PMC5025576 DOI: 10.1186/s13395-016-0103-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 08/23/2016] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Cellular models of muscle disease are taking on increasing importance with the large number of genes and mutations implicated in causing myopathies and the concomitant need to test personalized therapies. Developing cell models relies on having an easily obtained source of cells, and if the cells are not derived from muscle itself, a robust reprogramming process is needed. Fibroblasts are a human cell source that works well for the generation of induced pluripotent stem cells, which can then be differentiated into cardiomyocyte lineages, and with less efficiency, skeletal muscle-like lineages. Alternatively, direct reprogramming with the transcription factor MyoD has been used to generate myotubes from cultured human fibroblasts. Although useful, fibroblasts require a skin biopsy to obtain and this can limit their access, especially from pediatric populations. RESULTS We now demonstrate that direct reprogramming of urine-derived cells is a highly efficient and reproducible process that can be used to establish human myogenic cells. We show that this method can be applied to urine cells derived from normal individuals as well as those with muscle diseases. Furthermore, we show that urine-derived cells can be edited using CRISPR/Cas9 technology. CONCLUSIONS With progress in understanding the molecular etiology of human muscle diseases, having a readily available, noninvasive source of cells from which to generate muscle-like cells is highly useful.
Collapse
Affiliation(s)
- Ellis Y Kim
- Molecular Pathogenesis and Molecular Medicine, The University of Chicago, Chicago, USA
| | - Patrick Page
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, 303 E. Superior St., Chicago, IL 60611 USA
| | - Lisa M Dellefave-Castillo
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, 303 E. Superior St., Chicago, IL 60611 USA
| | - Elizabeth M McNally
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, 303 E. Superior St., Chicago, IL 60611 USA
| | - Eugene J Wyatt
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, 303 E. Superior St., Chicago, IL 60611 USA
| |
Collapse
|
48
|
Bialk P, Sansbury B, Rivera-Torres N, Bloh K, Man D, Kmiec EB. Analyses of point mutation repair and allelic heterogeneity generated by CRISPR/Cas9 and single-stranded DNA oligonucleotides. Sci Rep 2016; 6:32681. [PMID: 27609304 PMCID: PMC5016854 DOI: 10.1038/srep32681] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 08/10/2016] [Indexed: 11/25/2022] Open
Abstract
The repair of a point mutation can be facilitated by combined activity of a single-stranded oligonucleotide and a CRISPR/Cas9 system. While the mechanism of action of combinatorial gene editing remains to be elucidated, the regulatory circuitry of nucleotide exchange executed by oligonucleotides alone has been largely defined. The presence of the appropriate CRISPR/Cas9 system leads to an enhancement in the frequency of gene editing directed by single-stranded DNA oligonucleotides. While CRISPR/Cas9 executes double-stranded DNA cleavage efficiently, closure of the broken chromosomes is dynamic, as varying degrees of heterogeneity of the cleavage products appear to accompany the emergence of the corrected base pair. We provide a detailed analysis of allelic variance at and surrounding the target site. In one particular case, we report sequence alteration directed by a distinct member of the same gene family. Our data suggests that single-stranded DNA molecules may influence DNA junction heterogeneity created by CRISPR/Cas9.
Collapse
Affiliation(s)
- Pawel Bialk
- Gene Editing Institute, Helen F. Graham Cancer Center and Research Institute, Newark, Delaware, United States of America
| | - Brett Sansbury
- Gene Editing Institute, Helen F. Graham Cancer Center and Research Institute, Newark, Delaware, United States of America.,Department of Medical Laboratory Science, College of Health Sciences, University of Delaware, Newark, Delaware, United States of America
| | - Natalia Rivera-Torres
- Gene Editing Institute, Helen F. Graham Cancer Center and Research Institute, Newark, Delaware, United States of America.,Department of Medical Laboratory Science, College of Health Sciences, University of Delaware, Newark, Delaware, United States of America
| | - Kevin Bloh
- Gene Editing Institute, Helen F. Graham Cancer Center and Research Institute, Newark, Delaware, United States of America.,Nemours Center for Childhood Cancer Research, Alfred I. duPont Hospital for Children, Wilmington, Delaware, United States of America
| | - Dula Man
- Department of Chemistry, Delaware State University, Dover, Delaware, United States of America
| | - Eric B Kmiec
- Gene Editing Institute, Helen F. Graham Cancer Center and Research Institute, Newark, Delaware, United States of America.,Department of Medical Laboratory Science, College of Health Sciences, University of Delaware, Newark, Delaware, United States of America
| |
Collapse
|
49
|
Niu X, He W, Song B, Ou Z, Fan D, Chen Y, Fan Y, Sun X. Combining Single Strand Oligodeoxynucleotides and CRISPR/Cas9 to Correct Gene Mutations in β-Thalassemia-induced Pluripotent Stem Cells. J Biol Chem 2016; 291:16576-85. [PMID: 27288406 DOI: 10.1074/jbc.m116.719237] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Indexed: 01/01/2023] Open
Abstract
β-Thalassemia (β-Thal) is one of the most common genetic diseases in the world. The generation of patient-specific β-Thal-induced pluripotent stem cells (iPSCs), correction of the disease-causing mutations in those cells, and then differentiation into hematopoietic stem cells offers a new therapeutic strategy for this disease. Here, we designed a CRISPR/Cas9 to specifically target the Homo sapiens hemoglobin β (HBB) gene CD41/42(-CTTT) mutation. We demonstrated that the combination of single strand oligodeoxynucleotides with CRISPR/Cas9 was capable of correcting the HBB gene CD41/42 mutation in β-Thal iPSCs. After applying a correction-specific PCR assay to purify the corrected clones followed by sequencing to confirm mutation correction, we verified that the purified clones retained full pluripotency and exhibited normal karyotyping. Additionally, whole-exome sequencing showed that the mutation load to the exomes was minimal after CRISPR/Cas9 targeting. Furthermore, the corrected iPSCs were selected for erythroblast differentiation and restored the expression of HBB protein compared with the parental iPSCs. This method provides an efficient and safe strategy to correct the HBB gene mutation in β-Thal iPSCs.
Collapse
Affiliation(s)
- Xiaohua Niu
- From the Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Wenyin He
- From the Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Bing Song
- From the Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Zhanhui Ou
- From the Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Di Fan
- From the Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Yuchang Chen
- From the Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Yong Fan
- From the Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Xiaofang Sun
- From the Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| |
Collapse
|
50
|
Miano JM, Zhu QM, Lowenstein CJ. A CRISPR Path to Engineering New Genetic Mouse Models for Cardiovascular Research. Arterioscler Thromb Vasc Biol 2016; 36:1058-75. [PMID: 27102963 PMCID: PMC4882230 DOI: 10.1161/atvbaha.116.304790] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 04/06/2016] [Indexed: 12/26/2022]
Abstract
Previous efforts to target the mouse genome for the addition, subtraction, or substitution of biologically informative sequences required complex vector design and a series of arduous steps only a handful of laboratories could master. The facile and inexpensive clustered regularly interspaced short palindromic repeats (CRISPR) method has now superseded traditional means of genome modification such that virtually any laboratory can quickly assemble reagents for developing new mouse models for cardiovascular research. Here, we briefly review the history of CRISPR in prokaryotes, highlighting major discoveries leading to its formulation for genome modification in the animal kingdom. Core components of CRISPR technology are reviewed and updated. Practical pointers for 2-component and 3-component CRISPR editing are summarized with many applications in mice including frameshift mutations, deletion of enhancers and noncoding genes, nucleotide substitution of protein-coding and gene regulatory sequences, incorporation of loxP sites for conditional gene inactivation, and epitope tag integration. Genotyping strategies are presented and topics of genetic mosaicism and inadvertent targeting discussed. Finally, clinical applications and ethical considerations are addressed as the biomedical community eagerly embraces this astonishing innovation in genome editing to tackle previously intractable questions.
Collapse
Affiliation(s)
- Joseph M Miano
- From the Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY (J.M.M., Q.M.Z., C.J.L.); and Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA (Q.M.Z.).
| | - Qiuyu Martin Zhu
- From the Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY (J.M.M., Q.M.Z., C.J.L.); and Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA (Q.M.Z.)
| | - Charles J Lowenstein
- From the Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY (J.M.M., Q.M.Z., C.J.L.); and Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA (Q.M.Z.)
| |
Collapse
|