1
|
Zhang D, Li G, Liu X, Wang Y, Wu J, Ren Y, She G, Zheng D, Zhao Y, Deng XL, Li M, Zhao L. K Ca3.1 upregulation mediated by Ang II-induced JNK/AP-1 activation contributes to atrial fibrosis. Cell Signal 2025; 131:111731. [PMID: 40064281 DOI: 10.1016/j.cellsig.2025.111731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 02/27/2025] [Accepted: 03/07/2025] [Indexed: 03/15/2025]
Abstract
Atrial fibrillation is strongly associated with an increased risk of embolism, stroke, and heart failure. Current therapeutic approaches often have limited efficacy, and controlling atrial fibrosis remains a critical objective for upstream therapies. The specific mechanisms driving atrial fibrosis remain incompletely understood. The intermediate-conductance calcium-activated potassium channel KCa3.1 has been implicated in promoting fibroblast activation in various fibrotic diseases. This study investigates the role of angiotensin II (Ang II) in regulating KCa3.1, as well as its involvement in the pathogenesis of atrial fibrosis and the underlying signaling mechanisms. In a rat model, chronic Ang II infusion for 4 weeks induced atrial fibrosis, which was significantly attenuated by TRAM-34, a specific KCa3.1 channel blocker. In cultured rat atrial fibroblasts, Ang II treatment promoted fibroblast differentiation, proliferation, migration and collagen production, effects that were suppressed by TRAM-34 and KCa3.1 knockdown. Overexpression of KCa3.1 in fibroblasts further confirmed its pro-fibrotic role. Mechanistically, Ang II upregulated KCa3.1 expression and current density by activating the JNK/AP-1 signaling pathway. This involved phosphorylation of JNK, c-Jun, and c-Fos, leading to the formation of c-Jun/c-Fos heterodimers that directly bound to the KCa3.1 promoter to enhance its transcription. Together, these findings demonstrate that KCa3.1 mediates fibroblast activation and atrial fibrosis through the JNK/AP-1 pathway.
Collapse
Affiliation(s)
- Dongmei Zhang
- Department of Pathology and Pathophysiology, Suzhou Medical College of Soochow University, 199 Ren-ai Road, Suzhou 215123, Jiangsu, China
| | - Guangyao Li
- Department of Pathology and Pathophysiology, Suzhou Medical College of Soochow University, 199 Ren-ai Road, Suzhou 215123, Jiangsu, China
| | - Xiang Liu
- Department of Pathology and Pathophysiology, Suzhou Medical College of Soochow University, 199 Ren-ai Road, Suzhou 215123, Jiangsu, China
| | - Yan Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an 710061, Shaanxi, China
| | - Jie Wu
- Department of Pathology and Pathophysiology, Suzhou Medical College of Soochow University, 199 Ren-ai Road, Suzhou 215123, Jiangsu, China
| | - Yujie Ren
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an 710061, Shaanxi, China
| | - Gang She
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an 710061, Shaanxi, China
| | - Dong Zheng
- Department of Pathology and Pathophysiology, Suzhou Medical College of Soochow University, 199 Ren-ai Road, Suzhou 215123, Jiangsu, China
| | - Yinxia Zhao
- Central Laboratory, Shanghai Xuhui Central Hospital, 366 North Longchuan Road, Shanghai 200031, China
| | - Xiu-Ling Deng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an 710061, Shaanxi, China
| | - Min Li
- Institute of Biology and Medical Sciences, Soochow University, 199 Ren-ai Road, Suzhou 215123, Jiangsu, China.
| | - Limei Zhao
- Department of Pathology and Pathophysiology, Suzhou Medical College of Soochow University, 199 Ren-ai Road, Suzhou 215123, Jiangsu, China; MOE Key Laboratory of Geriatric Diseases and Immunology, School of Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou 215123, Jiangsu, China.
| |
Collapse
|
2
|
Wang Z, Ren Y, Zhang D, She G, Wang Y, Li G, Sun X, Zheng D, Wang Z, Deng XL, Zhao Y, Zhao L. Elevated K Ca3.1 expression by angiotensin II via the ERK/NF-κB pathway contributes to atrial fibrosis. J Mol Cell Cardiol 2025; 202:133-143. [PMID: 40122157 DOI: 10.1016/j.yjmcc.2025.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 03/12/2025] [Accepted: 03/19/2025] [Indexed: 03/25/2025]
Abstract
Atrial fibrillation (AF) is a prevalent cardiac arrhythmia characterized by atrial fibrosis which involves excessed proliferation and increased activity of fibroblast and myofibroblast, as well as alterations in the extracellular matrix (ECM). The specific mechanism driving fibrosis in atrial fibroblasts and myofibroblsats remains incompletely understood. This study investigates the role of the intermediate-conductance Ca2+-activated K+ channel (KCa3.1) in Angiotensin II (Ang II)-induced atrial fibrosis and elucidates the underlying mechanisms. Primary rat atrial fibroblasts/myofibroblasts were treated with Ang II to evaluate KCa3.1 expression, cells proliferation and ECM production. The involvement of ERK/NF-κB signaling pathway was assessed using specific inhibitors. Ang II treatment increased KCa3.1 expression, stimulated the proliferation of fibroblasts/myofibroblasts, and enhanced ECM production, effects that were attenuated by the Ang II receptor antagonist Losartan and the KCa3.1 inhibitor TRAM-34. Knockdown of KCa3.1 using siRNA significantly reduced Ang II-induced collagen synthesis, confirming its critical role in fibrosis. The ERK/NF-κB pathway was found to mediate Ang II-induced upregulation of KCa3.1, as evidenced by inhibition with specific inhibitors. In vivo, Ang II infusion in rats increased KCa3.1 expression and atrial fibrosis, with atria showing greater susceptibility to fibrosis compared to ventricle. These effects were mitigated by losartan and TRAM-34. In conclusion, our findings demonstrate that Ang II-induced upregulation of KCa3.1 through ERK/NF-κB pathway activation in atrial fibroblasts/myofibroblasts promotes cellular proliferation and collagen deposition, ultimately contributing to atrial fibrosis. KCa3.1 represents a promising therapeutic target for the treatment of atrial fibrosis in AF.
Collapse
Affiliation(s)
- Zujuan Wang
- Department of Pathology and Pathophysiology, Suzhou Medical College of Soochow University, 199 Ren-ai Road, Suzhou 215123, Jiangsu, China
| | - Yujie Ren
- Department of Pathology, Xi'an People's Hospital (Xian Fourth Hospital), 21 Jiefang Road, Xi'an 710004, Shaanxi, China
| | - Dongmei Zhang
- Department of Pathology and Pathophysiology, Suzhou Medical College of Soochow University, 199 Ren-ai Road, Suzhou 215123, Jiangsu, China
| | - Gang She
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an 710061, Shaanxi, China
| | - Yan Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an 710061, Shaanxi, China
| | - Guangyao Li
- Department of Pathology and Pathophysiology, Suzhou Medical College of Soochow University, 199 Ren-ai Road, Suzhou 215123, Jiangsu, China
| | - Xiaodong Sun
- Department of Pathology and Pathophysiology, Suzhou Medical College of Soochow University, 199 Ren-ai Road, Suzhou 215123, Jiangsu, China
| | - Dong Zheng
- Department of Pathology and Pathophysiology, Suzhou Medical College of Soochow University, 199 Ren-ai Road, Suzhou 215123, Jiangsu, China
| | - Zhongjuan Wang
- Institute of Biology and Medical Sciences, Soochow University, 199 Ren-ai Road, Suzhou 215123, China
| | - Xiu-Ling Deng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an 710061, Shaanxi, China
| | - Ying Zhao
- Department of Pathology and Pathophysiology, Suzhou Medical College of Soochow University, 199 Ren-ai Road, Suzhou 215123, Jiangsu, China.
| | - Limei Zhao
- Department of Pathology and Pathophysiology, Suzhou Medical College of Soochow University, 199 Ren-ai Road, Suzhou 215123, Jiangsu, China.
| |
Collapse
|
3
|
Al Ali HS, Rodrigo GC, Lambert DG. Signalling pathways involved in urotensin II induced ventricular myocyte hypertrophy. PLoS One 2025; 20:e0313119. [PMID: 39820183 PMCID: PMC11737703 DOI: 10.1371/journal.pone.0313119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 10/20/2024] [Indexed: 01/19/2025] Open
Abstract
Sustained pathologic myocardial hypertrophy can result in heart failure(HF); a significant health issue affecting a large section of the population worldwide. In HF there is a marked elevation in circulating levels of the peptide urotensin II(UII) but it is unclear whether this is a result of hypertrophy or whether the high levels contribute to the development of hypertrophy. The aim of this study is to investigate a role of UII and its receptor UT in the development of cardiac hypertrophy and the signalling molecules involved. Ventricular myocytes isolated from adult rat hearts were treated with 200nM UII for 48hours and hypertrophy was quantified from measurements of length/width (L/W) ratio. UII resulted in a change in L/W ratio from 4.53±0.10 to 3.99±0.06; (p<0.0001) after 48hours. The response is reversed by the UT-antagonist SB657510 (1μM). UT receptor activation by UII resulted in the activation of ERK1/2, p38 and CaMKII signalling pathways measured by Western blotting; these are involved in the induction of hypertrophy. JNK was not involved. Moreover, ERK1/2, P38 and CaMKII inhibitors completely blocked UII-induced hypertrophy. Sarcoplasmic reticulum (SR) Ca2+-leak was investigated in isolated myocytes. There was no significant increase in SR Ca2+-leak. Our results suggest that activation of MAPK and CaMKII signalling pathways are involved in the hypertrophic response to UII. Collectively our data suggest that increased circulating UII may contribute to the development of left ventricular hypertrophy and pharmacological inhibition of the UII/UT receptor system may prove beneficial in reducing adverse remodeling and alleviating contractile dysfunction in heart disease.
Collapse
Affiliation(s)
- Hadeel S. Al Ali
- Department of Cardiovascular Sciences, Clinical Sciences Wing, Glenfield Hospital, University of Leicester, Leicester, United Kingdom
- Department of Physiology, Al-Zahraa College of Medicine, University of Basrah, Basrah, Iraq
| | - Glenn C. Rodrigo
- Department of Cardiovascular Sciences, Clinical Sciences Wing, Glenfield Hospital, University of Leicester, Leicester, United Kingdom
| | - David G. Lambert
- Department of Cardiovascular Sciences, Anaesthesia, Critical Care and Pain Management, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
4
|
Trum M, Riechel J, Schollmeier E, Lebek S, Hegner P, Reuthner K, Heers S, Keller K, Wester M, Klatt S, Hamdani N, Provaznik Z, Schmid C, Maier L, Arzt M, Wagner S. Empagliflozin inhibits increased Na influx in atrial cardiomyocytes of patients with HFpEF. Cardiovasc Res 2024; 120:999-1010. [PMID: 38728438 PMCID: PMC11288740 DOI: 10.1093/cvr/cvae095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/16/2024] [Accepted: 02/02/2024] [Indexed: 05/12/2024] Open
Abstract
AIMS Heart failure with preserved ejection fraction (HFpEF) causes substantial morbidity and mortality. Importantly, atrial remodelling and atrial fibrillation are frequently observed in HFpEF. Sodium-glucose cotransporter 2 inhibitors (SGLT2i) have recently been shown to improve clinical outcomes in HFpEF, and post-hoc analyses suggest atrial anti-arrhythmic effects. We tested if isolated human atrial cardiomyocytes from patients with HFpEF exhibit an increased Na influx, which is known to cause atrial arrhythmias, and if that is responsive to treatment with the SGTL2i empagliflozin. METHODS AND RESULTS Cardiomyocytes were isolated from atrial biopsies of 124 patients (82 with HFpEF) undergoing elective cardiac surgery. Na influx was measured with the Na-dye Asante Natrium Green-2 AM (ANG-2). Compared to patients without heart failure (NF), Na influx was doubled in HFpEF patients (NF vs. HFpEF: 0.21 ± 0.02 vs. 0.38 ± 0.04 mmol/L/min (N = 7 vs. 18); P = 0.0078). Moreover, late INa (measured via whole-cell patch clamp) was significantly increased in HFpEF compared to NF. Western blot and HDAC4 pulldown assay indicated a significant increase in CaMKII expression, CaMKII autophosphorylation, CaMKII activity, and CaMKII-dependent NaV1.5 phosphorylation in HFpEF compared to NF, whereas NaV1.5 protein and mRNA abundance remained unchanged. Consistently, increased Na influx was significantly reduced by treatment not only with the CaMKII inhibitor autocamtide-2-related inhibitory peptide (AIP), late INa inhibitor tetrodotoxin (TTX) but also with sodium/hydrogen exchanger 1 (NHE1) inhibitor cariporide. Importantly, empagliflozin abolished both increased Na influx and late INa in HFpEF. Multivariate linear regression analysis, adjusting for important clinical confounders, revealed HFpEF to be an independent predictor for changes in Na handling in atrial cardiomyocytes. CONCLUSION We show for the first time increased Na influx in human atrial cardiomyocytes from HFpEF patients, partly due to increased late INa and enhanced NHE1-mediated Na influx. Empagliflozin inhibits Na influx and late INa, which could contribute to anti-arrhythmic effects in patients with HFpEF.
Collapse
Affiliation(s)
- Maximilian Trum
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Johannes Riechel
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Elisa Schollmeier
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Simon Lebek
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Philipp Hegner
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Kathrin Reuthner
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Silvia Heers
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Karoline Keller
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Michael Wester
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Susanne Klatt
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Nazha Hamdani
- Department of Cellular and Translational Physiology, Ruhr-University Bochum, Bochum, Germany
| | - Zdenek Provaznik
- Department of Cardiothoracic Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Christof Schmid
- Department of Cardiothoracic Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Lars Maier
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Michael Arzt
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Stefan Wagner
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
5
|
Al Ashmar S, Anlar GG, Krzyslak H, Djouhri L, Kamareddine L, Pedersen S, Zeidan A. Proteomic Analysis of Prehypertensive and Hypertensive Patients: Exploring the Role of the Actin Cytoskeleton. Int J Mol Sci 2024; 25:4896. [PMID: 38732116 PMCID: PMC11084483 DOI: 10.3390/ijms25094896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 05/13/2024] Open
Abstract
Hypertension is a pervasive and widespread health condition that poses a significant risk factor for cardiovascular disease, which includes conditions such as heart attack, stroke, and heart failure. Despite its widespread occurrence, the exact cause of hypertension remains unknown, and the mechanisms underlying the progression from prehypertension to hypertension require further investigation. Recent proteomic studies have shown promising results in uncovering potential biomarkers related to disease development. In this study, serum proteomic data collected from Qatar Biobank were analyzed to identify altered protein expression between individuals with normal blood pressure, prehypertension, and hypertension and to elucidate the biological pathways contributing to this disease. The results revealed a cluster of proteins, including the SRC family, CAMK2B, CAMK2D, TEC, GSK3, VAV, and RAC, which were markedly upregulated in patients with hypertension compared to those with prehypertension (fold change ≥ 1.6 or ≤-1.6, area under the curve ≥ 0.8, and q-value < 0.05). Pathway analysis showed that the majority of these proteins play a role in actin cytoskeleton remodeling. Actin cytoskeleton reorganization affects various biological processes that contribute to the maintenance of blood pressure, including vascular tone, endothelial function, cellular signaling, inflammation, fibrosis, and mechanosensing. Therefore, the findings of this study suggest a potential novel role of actin cytoskeleton-related proteins in the progression from prehypertension to hypertension. The present study sheds light on the underlying pathological mechanisms involved in hypertension and could pave the way for new diagnostic and therapeutic approaches for the treatment of this disease.
Collapse
Affiliation(s)
- Sarah Al Ashmar
- Department of Basic Sciences, College of Medicine, QU Health, Qatar University, Doha 2713, Qatar; (S.A.A.); (G.G.A.); (L.D.)
| | - Gulsen Guliz Anlar
- Department of Basic Sciences, College of Medicine, QU Health, Qatar University, Doha 2713, Qatar; (S.A.A.); (G.G.A.); (L.D.)
| | - Hubert Krzyslak
- Department of Clinical Biochemistry, Aalborg University Hospital, 9000 Aalborg, Denmark;
| | - Laiche Djouhri
- Department of Basic Sciences, College of Medicine, QU Health, Qatar University, Doha 2713, Qatar; (S.A.A.); (G.G.A.); (L.D.)
| | - Layla Kamareddine
- Biomedical Sciences Department, College of Health Sciences, QU Health, Qatar University, Doha 2713, Qatar;
- Biomedical Research Center, Qatar University, Doha 2713, Qatar
| | - Shona Pedersen
- Department of Basic Sciences, College of Medicine, QU Health, Qatar University, Doha 2713, Qatar; (S.A.A.); (G.G.A.); (L.D.)
| | - Asad Zeidan
- Department of Basic Sciences, College of Medicine, QU Health, Qatar University, Doha 2713, Qatar; (S.A.A.); (G.G.A.); (L.D.)
| |
Collapse
|
6
|
Li Y, Bertozzi A, Mann MRW, Kühn B. Interdependent changes of nuclear lamins, nuclear pore complexes, and ploidy regulate cellular regeneration and stress response in the heart. Nucleus 2023; 14:2246310. [PMID: 37606283 PMCID: PMC10446781 DOI: 10.1080/19491034.2023.2246310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 07/28/2023] [Accepted: 08/04/2023] [Indexed: 08/23/2023] Open
Abstract
In adult mammals, many heart muscle cells (cardiomyocytes) are polyploid, do not proliferate (post-mitotic), and, consequently, cannot contribute to heart regeneration. In contrast, fetal and neonatal heart muscle cells are diploid, proliferate, and contribute to heart regeneration. We have identified interdependent changes of the nuclear lamina, nuclear pore complexes, and DNA-content (ploidy) in heart muscle cell maturation. These results offer new perspectives on how cells alter their nuclear transport and, with that, their gene regulation in response to extracellular signals. We present how changes of the nuclear lamina alter nuclear pore complexes in heart muscle cells. The consequences of these changes for cellular regeneration and stress response in the heart are discussed.
Collapse
Affiliation(s)
- Yao Li
- Division of Pediatric Cardiology, Pediatric Institute for Heart Regeneration and Therapeutics (I-HRT), UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA, USA
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Alberto Bertozzi
- Division of Pediatric Cardiology, Pediatric Institute for Heart Regeneration and Therapeutics (I-HRT), UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA, USA
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mellissa RW Mann
- Department of Obstetrics, Gynaecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Magee-Womens Research Institute, Pittsburgh, PA, USA
| | - Bernhard Kühn
- Division of Pediatric Cardiology, Pediatric Institute for Heart Regeneration and Therapeutics (I-HRT), UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA, USA
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- McGowan Institute of Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
7
|
Feng X, Zhang J, Yang R, Bai J, Deng B, Cheng L, Gao F, Xie J, Zhang B. The CaMKII Inhibitory Peptide AIP Alleviates Renal Fibrosis Through the TGF- β/Smad and RAF/ERK Pathways. J Pharmacol Exp Ther 2023; 386:310-322. [PMID: 37419684 DOI: 10.1124/jpet.123.001621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/03/2023] [Accepted: 06/09/2023] [Indexed: 07/09/2023] Open
Abstract
Renal fibrosis is characterized by the excessive deposition of extracellular matrix that destroys and replaces the functional renal parenchyma, ultimately leading to organ failure. It is a common pathway by which chronic kidney disease can develop into end-stage renal disease, which has high global morbidity and mortality, and there are currently no good therapeutic agents available. Calcium/calmodulin-dependent protein kinase II (CaMKII) has been indicated to be closely related to the occurrence of renal fibrosis, and its specific inhibitory peptide, autocamtide-2-related inhibitory peptide (AIP), was shown to directly bind the active site of CaMKII. In this study, we examined the effect of AIP on the progression of renal fibrosis and its possible mechanism. The results showed that AIP could inhibit the expression of the fibrosis markers fibronectin, collagen I, matrix metalloproteinase 2, and α-smooth muscle actin in vivo and in vitro. Further analysis revealed that AIP could inhibit the expression of various epithelial-to-mesenchymal transformation-related markers, such as vimentin and Snail 1, in vivo and in vitro. Mechanistically, AIP could significantly inhibit the activation of CaMKII, Smad 2, Raf, and extracellular regulated protein kinases (ERK) in vitro and in vivo and reduce the expression of transforming growth factor-β (TGF-β) in vivo. These results suggested that AIP could alleviate renal fibrosis by inhibiting CaMKII and blocking activation of the TGF-β/Smad2 and RAF/ERK pathways. Our study provides a possible drug candidate and demonstrates that CaMKII is a potential pharmacological target for the treatment of renal fibrosis. SIGNIFICANCE STATEMENT: We have demonstrated that AIP significantly attenuated transforming growth factor-β-1-induced fibrogenesis and ameliorated unilateral ureteral obstruction-induced renal fibrosis through the CaMKII/TGF-β/Smad and CaMKII/RAF/ERK signaling pathways in vitro and in vivo. Our study provides a possible drug candidate and demonstrates that CaMKII can be a potential pharmacological target for the treatment of renal fibrosis.
Collapse
Affiliation(s)
- Xiaocui Feng
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Science, 2019RU066, Lanzhou University, Lanzhou, China
| | - Jianfeng Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Science, 2019RU066, Lanzhou University, Lanzhou, China
| | - Runling Yang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Science, 2019RU066, Lanzhou University, Lanzhou, China
| | - Jingya Bai
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Science, 2019RU066, Lanzhou University, Lanzhou, China
| | - Bochuan Deng
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Science, 2019RU066, Lanzhou University, Lanzhou, China
| | - Lu Cheng
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Science, 2019RU066, Lanzhou University, Lanzhou, China
| | - Feiyun Gao
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Science, 2019RU066, Lanzhou University, Lanzhou, China
| | - Junqiu Xie
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Science, 2019RU066, Lanzhou University, Lanzhou, China
| | - Bangzhi Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Science, 2019RU066, Lanzhou University, Lanzhou, China
| |
Collapse
|
8
|
Bhat MA, Grampp T, Benke D. ERK1/2-Dependent Phosphorylation of GABA B1(S867/T872), Controlled by CaMKIIβ, Is Required for GABA B Receptor Degradation under Physiological and Pathological Conditions. Int J Mol Sci 2023; 24:13436. [PMID: 37686242 PMCID: PMC10488028 DOI: 10.3390/ijms241713436] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
GABAB receptor-mediated inhibition is indispensable for maintaining a healthy neuronal excitation/inhibition balance. Many neurological diseases are associated with a disturbed excitation/inhibition balance and downregulation of GABAB receptors due to enhanced sorting of the receptors to lysosomal degradation. A key event triggering the downregulation of the receptors is the phosphorylation of S867 in the GABAB1 subunit mediated by CaMKIIβ. Interestingly, close to S867 in GABAB1 exists another phosphorylation site, T872. Therefore, the question arose as to whether phosphorylation of T872 is involved in downregulating the receptors and whether phosphorylation of this site is also mediated by CaMKIIβ or by another protein kinase. Here, we show that mutational inactivation of T872 in GABAB1 prevented the degradation of the receptors in cultured neurons. We found that, in addition to CaMKIIβ, also ERK1/2 is involved in the degradation pathway of GABAB receptors under physiological and ischemic conditions. In contrast to our previous view, CaMKIIβ does not appear to directly phosphorylate S867. Instead, the data support a mechanism in which CaMKIIβ activates ERK1/2, which then phosphorylates S867 and T872 in GABAB1. Blocking ERK activity after subjecting neurons to ischemic stress completely restored downregulated GABAB receptor expression to normal levels. Thus, preventing ERK1/2-mediated phosphorylation of S867/T872 in GABAB1 is an opportunity to inhibit the pathological downregulation of the receptors after ischemic stress and is expected to restore a healthy neuronal excitation/inhibition balance.
Collapse
Affiliation(s)
- Musadiq A. Bhat
- Institute of Pharmacology and Toxicology, University of Zurich, 8057 Zurich, Switzerland; (M.A.B.); (T.G.)
| | - Thomas Grampp
- Institute of Pharmacology and Toxicology, University of Zurich, 8057 Zurich, Switzerland; (M.A.B.); (T.G.)
| | - Dietmar Benke
- Institute of Pharmacology and Toxicology, University of Zurich, 8057 Zurich, Switzerland; (M.A.B.); (T.G.)
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
9
|
Jankauskas SS, Mone P, Avvisato R, Varzideh F, De Gennaro S, Salemme L, Macina G, Kansakar U, Cioppa A, Frullone S, Gambardella J, Di Mauro M, Tesorio T, Santulli G. miR-181c targets Parkin and SMAD7 in human cardiac fibroblasts: Validation of differential microRNA expression in patients with diabetes and heart failure with preserved ejection fraction. Mech Ageing Dev 2023; 212:111818. [PMID: 37116731 DOI: 10.1016/j.mad.2023.111818] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/15/2023] [Accepted: 04/19/2023] [Indexed: 04/30/2023]
Abstract
BACKGROUND Cardiac fibrosis represents a key feature in the pathophysiology of heart failure with preserved ejection fraction (HFpEF), a condition highly prevalent amongst geriatric patients, especially if diabetic. The microRNA miR-181c has been shown to be associated with the response to exercise training in HFpEF patients and has been also linked to diabetic cardiovascular complications. However, the underlying mechanisms have not been fully elucidated. OBJECTIVE To measure circulating miR-181c in elderly patients with HFpEF and DM and identify gene targets pathophysiologically relevant in HFpEF. METHODS We quantified circulating miR-181c in frail older adults with a confirmed diagnosis of HFpEF and diabetes, and, as control, we enrolled age-matched subjects without HFpEF and without diabetes. We validated in human cardiac fibroblasts the molecular mechanisms linking miR-181c to a pro-fibrotic response. RESULTS 51 frail patients were included (34 patients with diabetes and HFpEF and 17 age-matched controls. We observed that miR-181c was significantly upregulated (p<0.0001) in HFpEF patients vs controls. We confirmed in vitro that miR-181c is targeting PRKN and SMAD7. CONCLUSIONS We demonstrate that miR-181c levels are significantly increased in frail elderly adults with diabetes and HFpEF and that miR-181c targets PRKN and SMAD7 in human cardiac fibroblasts.
Collapse
Affiliation(s)
- Stanislovas S Jankauskas
- Department of Medicine, Einstein Institute for Aging Research, Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Pasquale Mone
- Department of Medicine, Einstein Institute for Aging Research, Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, New York, NY 10461, USA; ASL Avellino, Avellino, 83100, Italy
| | - Roberta Avvisato
- Department of Medicine, Einstein Institute for Aging Research, Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Fahimeh Varzideh
- Department of Medicine, Einstein Institute for Aging Research, Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, New York, NY 10461, USA
| | | | - Luigi Salemme
- Casa di Cura "Montevergine", Mercogliano (Avellino), 83013, Italy
| | | | - Urna Kansakar
- Department of Medicine, Einstein Institute for Aging Research, Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Angelo Cioppa
- Casa di Cura "Montevergine", Mercogliano (Avellino), 83013, Italy
| | | | - Jessica Gambardella
- Department of Molecular Pharmacology, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Einstein Institute for Neuroimmunology and Inflammation (INI), Albert Einstein College of Medicine, New York, NY 10461, USA
| | | | - Tullio Tesorio
- Casa di Cura "Montevergine", Mercogliano (Avellino), 83013, Italy
| | - Gaetano Santulli
- Department of Medicine, Einstein Institute for Aging Research, Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, New York, NY 10461, USA; Department of Molecular Pharmacology, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Einstein Institute for Neuroimmunology and Inflammation (INI), Albert Einstein College of Medicine, New York, NY 10461, USA.
| |
Collapse
|
10
|
Jankauskas SS, Kansakar U, Sardu C, Varzideh F, Avvisato R, Wang X, Matarese A, Marfella R, Ziosi M, Gambardella J, Santulli G. COVID-19 Causes Ferroptosis and Oxidative Stress in Human Endothelial Cells. Antioxidants (Basel) 2023; 12:326. [PMID: 36829885 PMCID: PMC9952002 DOI: 10.3390/antiox12020326] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/17/2023] [Accepted: 01/30/2023] [Indexed: 02/03/2023] Open
Abstract
Oxidative stress and endothelial dysfunction have been shown to play crucial roles in the pathophysiology of COVID-19 (coronavirus disease 2019). On these grounds, we sought to investigate the impact of COVID-19 on lipid peroxidation and ferroptosis in human endothelial cells. We hypothesized that oxidative stress and lipid peroxidation induced by COVID-19 in endothelial cells could be linked to the disease outcome. Thus, we collected serum from COVID-19 patients on hospital admission, and we incubated these sera with human endothelial cells, comparing the effects on the generation of reactive oxygen species (ROS) and lipid peroxidation between patients who survived and patients who did not survive. We found that the serum from non-survivors significantly increased lipid peroxidation. Moreover, serum from non-survivors markedly regulated the expression levels of the main markers of ferroptosis, including GPX4, SLC7A11, FTH1, and SAT1, a response that was rescued by silencing TNFR1 on endothelial cells. Taken together, our data indicate that serum from patients who did not survive COVID-19 triggers lipid peroxidation in human endothelial cells.
Collapse
Affiliation(s)
- Stanislovas S. Jankauskas
- Department of Medicine, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Urna Kansakar
- Department of Medicine, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Celestino Sardu
- University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy
| | - Fahimeh Varzideh
- Department of Medicine, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Roberta Avvisato
- Department of Medicine, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA
- “Federico II” University, 80131 Naples, Italy
| | - Xujun Wang
- Department of Medicine, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA
| | | | | | | | - Jessica Gambardella
- Department of Medicine, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA
- “Federico II” University, 80131 Naples, Italy
| | - Gaetano Santulli
- Department of Medicine, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA
- “Federico II” University, 80131 Naples, Italy
- Department of Molecular Pharmacology, Einstein Institute for Neuroimmunology and Inflammation (INI), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Fleischer Institute for Diabetes and Metabolism (FIDAM), Albert Einstein College of Medicine, New York, NY 10461, USA
| |
Collapse
|
11
|
Beghi S, Furmanik M, Jaminon A, Veltrop R, Rapp N, Wichapong K, Bidar E, Buschini A, Schurgers LJ. Calcium Signalling in Heart and Vessels: Role of Calmodulin and Downstream Calmodulin-Dependent Protein Kinases. Int J Mol Sci 2022; 23:ijms232416139. [PMID: 36555778 PMCID: PMC9783221 DOI: 10.3390/ijms232416139] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/11/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Cardiovascular disease is the major cause of death worldwide. The success of medication and other preventive measures introduced in the last century have not yet halted the epidemic of cardiovascular disease. Although the molecular mechanisms of the pathophysiology of the heart and vessels have been extensively studied, the burden of ischemic cardiovascular conditions has risen to become a top cause of morbidity and mortality. Calcium has important functions in the cardiovascular system. Calcium is involved in the mechanism of excitation-contraction coupling that regulates numerous events, ranging from the production of action potentials to the contraction of cardiomyocytes and vascular smooth muscle cells. Both in the heart and vessels, the rise of intracellular calcium is sensed by calmodulin, a protein that regulates and activates downstream kinases involved in regulating calcium signalling. Among them is the calcium calmodulin kinase family, which is involved in the regulation of cardiac functions. In this review, we present the current literature regarding the role of calcium/calmodulin pathways in the heart and vessels with the aim to summarize our mechanistic understanding of this process and to open novel avenues for research.
Collapse
Affiliation(s)
- Sofia Beghi
- Cardiovascular Research Institute Maastricht (CARIM), Department of Biochemistry, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area Delle Scienze 11A, 43124 Parma, Italy
- Correspondence: ; Tel.: +39-3408473527
| | - Malgorzata Furmanik
- Cardiovascular Research Institute Maastricht (CARIM), Department of Biochemistry, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Armand Jaminon
- Cardiovascular Research Institute Maastricht (CARIM), Department of Biochemistry, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Rogier Veltrop
- Cardiovascular Research Institute Maastricht (CARIM), Department of Biochemistry, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Nikolas Rapp
- Cardiovascular Research Institute Maastricht (CARIM), Department of Biochemistry, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Kanin Wichapong
- Cardiovascular Research Institute Maastricht (CARIM), Department of Biochemistry, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Elham Bidar
- Department of Cardiothoracic Surgery, Heart and Vascular Centre, Maastricht University Medical Centre+, 6229 HX Maastricht, The Netherlands
| | - Annamaria Buschini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area Delle Scienze 11A, 43124 Parma, Italy
| | - Leon J. Schurgers
- Cardiovascular Research Institute Maastricht (CARIM), Department of Biochemistry, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| |
Collapse
|
12
|
Liu J, Yin Y, Ni J, Zhang P, Li WM, Liu Z. Dual Specific Phosphatase 7 Exacerbates Dilated Cardiomyopathy, Heart Failure, and Cardiac Death by Inactivating the ERK1/2 Signaling Pathway. J Cardiovasc Transl Res 2022; 15:1219-1238. [PMID: 35596107 DOI: 10.1007/s12265-022-10268-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 04/25/2022] [Indexed: 12/16/2022]
Abstract
Heart failure is one of the most common but complicated end-stage syndromes in clinical practice. Dilated cardiomyopathy is a myocardial structural abnormality that is associated with heart failure. Dual-specificity phosphatases (DUSPs) are a group of protein phosphatases that regulate signaling pathways in numerous diseases; however, their physiological and pathological impact on cardiovascular disease remains unknown. In the present study, we generated two transgenic mouse models, a DUSP7 knockout and a cardiac-specific DUSP7 overexpressor. Mice overexpressing DUSP7 showed an exacerbated disease phenotype, including severe dilated cardiomyopathy, heart failure, and cardiac death. We further demonstrated that high levels of DUSP7 inhibited ERK1/2 phosphorylation and influenced downstream c-MYC, c-FOS, and c-JUN gene expression but did not affect upstream activators. Taken together, our study reveals a novel molecular mechanism for DUSP7 and provides a new therapeutic target and clinical path to alleviate dilated cardiomyopathy and improve cardiac function.
Collapse
Affiliation(s)
- Jing Liu
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yihen Yin
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
- Heart, Lung, and Blood Center, Pan-Vascular Research Institute, Tongji University School of Medicine, Shanghai, China
| | - Jing Ni
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Peiyu Zhang
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wei-Ming Li
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.
- Heart, Lung, and Blood Center, Pan-Vascular Research Institute, Tongji University School of Medicine, Shanghai, China.
| | - Zheng Liu
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.
- Heart, Lung, and Blood Center, Pan-Vascular Research Institute, Tongji University School of Medicine, Shanghai, China.
- Cryo-electron Microscopy Center, Southern University of Science and Technology, Guangdong Province, Shenzhen, China.
| |
Collapse
|
13
|
Maione AS, Faris P, Iengo L, Catto V, Bisonni L, Lodola F, Negri S, Casella M, Guarino A, Polvani G, Cerrone M, Tondo C, Pompilio G, Sommariva E, Moccia F. Ca 2+ dysregulation in cardiac stromal cells sustains fibro-adipose remodeling in Arrhythmogenic Cardiomyopathy and can be modulated by flecainide. J Transl Med 2022; 20:522. [PMID: 36371290 PMCID: PMC9652790 DOI: 10.1186/s12967-022-03742-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/30/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Cardiac mesenchymal stromal cells (C-MSC) were recently shown to differentiate into adipocytes and myofibroblasts to promote the aberrant remodeling of cardiac tissue that characterizes arrhythmogenic cardiomyopathy (ACM). A calcium (Ca2+) signaling dysfunction, mainly demonstrated in mouse models, is recognized as a mechanism impacting arrhythmic risk in ACM cardiomyocytes. Whether similar mechanisms influence ACM C-MSC fate is still unknown. Thus, we aim to ascertain whether intracellular Ca2+ oscillations and the Ca2+ toolkit are altered in human C-MSC obtained from ACM patients, and to assess their link with C-MSC-specific ACM phenotypes. METHODS AND RESULTS ACM C-MSC show enhanced spontaneous Ca2+ oscillations and concomitant increased Ca2+/Calmodulin dependent kinase II (CaMKII) activation compared to control cells. This is manly linked to a constitutive activation of Store-Operated Ca2+ Entry (SOCE), which leads to enhanced Ca2+ release from the endoplasmic reticulum through inositol-1,4,5-trisphosphate receptors. By targeting the Ca2+ handling machinery or CaMKII activity, we demonstrated a causative link between Ca2+ oscillations and fibro-adipogenic differentiation of ACM C-MSC. Genetic silencing of the desmosomal gene PKP2 mimics the remodelling of the Ca2+ signalling machinery occurring in ACM C-MSC. The anti-arrhythmic drug flecainide inhibits intracellular Ca2+ oscillations and fibro-adipogenic differentiation by selectively targeting SOCE. CONCLUSIONS Altogether, our results extend the knowledge of Ca2+ dysregulation in ACM to the stromal compartment, as an etiologic mechanism of C-MSC-related ACM phenotypes. A new mode of action of flecainide on a novel mechanistic target is unveiled against the fibro-adipose accumulation in ACM.
Collapse
Affiliation(s)
- Angela S Maione
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, Via Parea 4, 20138, Milan, Italy.
| | - Pawan Faris
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Lara Iengo
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, Via Parea 4, 20138, Milan, Italy
| | - Valentina Catto
- Department of Clinical Electrophysiology and Cardiac Pacing, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Luca Bisonni
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, Via Parea 4, 20138, Milan, Italy
| | - Francesco Lodola
- Laboratory of Cardiac Cellular Physiology, Department of Biotechnology and Bioscience, University of Milano-Bicocca, Milan, Italy
| | - Sharon Negri
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Michela Casella
- Department of Clinical Electrophysiology and Cardiac Pacing, Centro Cardiologico Monzino IRCCS, Milan, Italy
- Cardiology and Arrhythmology Clinic, University Hospital "Umberto I-Salesi-Lancisi", Ancona, Italy
| | - Anna Guarino
- Cardiovascular Tissue Bank of Lombardy, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Gianluca Polvani
- Cardiovascular Tissue Bank of Lombardy, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Marina Cerrone
- Medicine, Leon H. Charney Division of Cardiology, Heart Rhythm Center and Cardiovascular Genetics Program, New York University School of Medicine, New York, USA
| | - Claudio Tondo
- Department of Clinical Electrophysiology and Cardiac Pacing, Centro Cardiologico Monzino IRCCS, Milan, Italy
- Department of Biomedical, Surgical and Dentist Sciences, University of Milano, Milan, Italy
| | - Giulio Pompilio
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, Via Parea 4, 20138, Milan, Italy
- Department of Biomedical, Surgical and Dentist Sciences, University of Milano, Milan, Italy
| | - Elena Sommariva
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, Via Parea 4, 20138, Milan, Italy
| | - Francesco Moccia
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| |
Collapse
|
14
|
Kong L, Zhang Y, Ning J, Xu C, Wang Z, Yang J, Yang L. CaMKII
orchestrates endoplasmic reticulum stress and apoptosis in doxorubicin‐induced cardiotoxicity by regulating the
IRE1α
/
XBP1s
pathway. J Cell Mol Med 2022; 26:5303-5314. [PMID: 36111515 PMCID: PMC9575131 DOI: 10.1111/jcmm.17560] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/16/2022] [Accepted: 09/05/2022] [Indexed: 11/29/2022] Open
Affiliation(s)
- Lingheng Kong
- Department of Anaesthesiology Xi'an Children's Hospital Xi'an China
- Institute of Basic Medical Science Xi'an Medical University Xi'an China
| | - Yimeng Zhang
- Institute of Basic Medical Science Xi'an Medical University Xi'an China
| | - Jiayi Ning
- Institute of Basic Medical Science Xi'an Medical University Xi'an China
| | - Chennian Xu
- Department of Cardiovascular Surgery, Xijing Hospital Air Force Medical University Xi'an China
- Department of Cardiovascular Surgery General Hospital of Northern Theatre Command Shenyang China
| | - Zhenyi Wang
- Department of Anaesthesiology Xi'an Children's Hospital Xi'an China
| | - Jian Yang
- Department of Cardiovascular Surgery, Xijing Hospital Air Force Medical University Xi'an China
| | - Lifang Yang
- Department of Anaesthesiology Xi'an Children's Hospital Xi'an China
| |
Collapse
|
15
|
Robison NJ, Su JA, Fang MJ, Malvar J, Menteer J. Cardiac Function in Children and Young Adults Treated with MEK Inhibitors: A Retrospective Cohort Study. Pediatr Cardiol 2022; 43:1223-1228. [PMID: 35233653 PMCID: PMC10284303 DOI: 10.1007/s00246-022-02842-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 02/03/2022] [Indexed: 11/26/2022]
Abstract
MEK inhibitors (MEKi) have shown efficacy in pediatric low-grade glioma as well as plexiform neurofibroma. MEKi have been associated with acute cardiac dysfunction in adults. Cardiac consequences in children are unknown. We performed a single center retrospective cohort study evaluating cardiac function by echocardiography (echo) in children and young adults < 21 years receiving MEKi between October 2013 and May 2018. Blinded assessment of left ventricular function by fractional shortening (FS) and ejection fraction (EF) was performed on all available echocardiograms performed before, during, and following therapy, as well as after re-initiation of therapy. Twenty-six patients underwent MEKi therapy with echo follow-up during the study period. Twenty-four of these had complete echo data. Median follow-up was 12 months. Borderline EF (EF 53-57.9%) occurred in 12 (50%) patients; and 3 (12.5%) progressed to abnormal EF (EF < 53%). Cardiac dysfunction, when it occurred, was mild (lowest documented EF was 45%, and lowest FS was 24.4%). EF abnormalities typically fluctuated during therapy, resolved off therapy, and recurred with MEKi re-initiation. No clinical or demographic differences were detected between those who maintained normal cardiac function and those who developed borderline or overt cardiac dysfunction. Symptomatic heart failure did not occur. In this cohort of children and young adults, MEKi use was associated with a high (50%) incidence of borderline or mildly decreased left ventricular function. There was no evidence of permanent cardiac dysfunction. Further evaluation in larger prospective trials is needed.
Collapse
Affiliation(s)
- Nathan J Robison
- Division of Hematology and Oncology, Children's Hospital Los Angeles, 4650 W. Sunset Blvd, MS#54, Los Angeles, CA, 90027, USA.
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| | - Jennifer A Su
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Division of Cardiology, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Melody J Fang
- Chicago Medical School at Rosalind Franklin University, North Chicago, IL, USA
| | - Jemily Malvar
- Division of Hematology and Oncology, Children's Hospital Los Angeles, 4650 W. Sunset Blvd, MS#54, Los Angeles, CA, 90027, USA
| | - Jondavid Menteer
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Division of Cardiology, Children's Hospital Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
16
|
The Regulatory Mechanism and Effect of RIPK3 on PE-induced Cardiomyocyte Hypertrophy. J Cardiovasc Pharmacol 2022; 80:236-250. [PMID: 35561290 DOI: 10.1097/fjc.0000000000001293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 04/26/2022] [Indexed: 12/07/2022]
Abstract
ABSTRACT As a critical regulatory molecule, receptor-interacting protein kinase 3 (RIPK3) can mediate the signaling pathway of programmed necrosis. Calcium/calmodulin-dependent protein kinase II (CaMKII) has been proved as a new substrate for RIPK3-induced necroptosis. In the present study, we aimed to investigate the regulatory mechanism of RIPK3 on phenylephrine (PE)-induced cardiomyocyte hypertrophy. Cardiomyocyte hypertrophy was induced by exposure to PE (100 μM) for 48 h. Primary cardiomyocytes were pretreated with RIPK3 inhibitor GSK'872 (10 μM), and RIPK3 siRNA was used to deplete the intracellular expression of RIPK3. The indexes related to myocardial hypertrophy, cell injury, necroptosis, CaMKII activation, gene expression, oxidative stress, and mitochondrial membrane potential were measured. We found that after cardiomyocytes were stimulated by PE, the expressions of hypertrophy markers, atrial and brain natriuretic peptides (ANP and BNP), were increased, the release of lactate dehydrogenase (LDH) was increased, the level of adenosine triphosphate (ATP)was decreased, the oxidation and phosphorylation levels of CaMKII were increased, and CaMKIIδ alternative splicing was disturbed. However, both GSK'872 and depletion of RIPK3 could reduce myocardial dysfunction, inhibit CaMKII activation and necroptosis, and finally alleviate myocardial hypertrophy. In addition, the pretreatment of RIPK3 could also lessen the accumulation of reactive oxygen species (ROS) induced by PE and stabilize the membrane potential of mitochondria. These results indicated that targeted inhibition of RIPK3 could suppress the activation of CaMKII and reduce necroptosis and oxidative stress, leading to alleviated myocardial hypertrophy. Collectively, our findings provided valuable insights into the clinical treatment of hypertrophic cardiomyopathy.
Collapse
|
17
|
Zhang L, Zhang H, Ma J, Wang Y, Pei Z, Ding H. Effects of thymoquinone against angiotensin II‑induced cardiac damage in apolipoprotein E‑deficient mice. Int J Mol Med 2022; 49:63. [PMID: 35293590 PMCID: PMC8930094 DOI: 10.3892/ijmm.2022.5119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/17/2022] [Indexed: 11/05/2022] Open
Abstract
Herbal medicines have attracted much attention in recent years and are increasingly being used as alternatives to pharmaceutical medicines. Thymoquinone (TQ) is one of the most active ingredients in Nigella sativa seeds, which has several beneficial properties, including anti‑inflammatory, anti‑oxidative stress, anti‑hypertensive, anti‑apoptotic and free radical‑scavenging effects. Angiotensin II (Ang II) is involved in cardiovascular diseases. The present study aimed to investigate the potential protective effects of TQ against Ang II‑induced cardiac damage in apolipoprotein E‑deficient (ApoE‑/‑) mice. Briefly, 8‑week‑old male ApoE‑/‑ mice were randomly divided into four groups: Control, TQ, Ang II and Ang II + TQ groups. Osmotic minipumps, filled with either a saline vehicle or an Ang II solution (1,000 ng/kg/min), were implanted in ApoE‑/‑ mice for up to 4 weeks. The serum levels of high‑sensitivity C‑reactive protein (hs‑CRP) and histopathological alterations in heart tissue were assessed. In addition, the mRNA and protein expression levels of molecules associated with fibrosis (collagen I and III), oxidative stress and apoptosis (Nox4 and p53), and inflammation [tumor necrosis factor (TNF)‑α, interleukin (IL)‑1β and IL‑6] were analyzed by reverse transcription‑quantitative PCR (RT‑qPCR) and western blotting. In the in vitro study, H9c2 cells were incubated with different concentrations of Ang II, and the expression levels of pro‑inflammatory cytokines were evaluated using RT‑qPCR, whereas the protein expression levels of phosphorylated‑extracellular signal‑regulated kinase (p‑ERK) were determined using western blotting. Western blotting was also performed to detect the expression levels of collagen I, collagen III, Nox4 and p53 in H9c2 cells. The results revealed that TQ inhibited the Ang II‑induced increases in serum hs‑CRP levels. TQ also significantly inhibited the high levels of TNF‑α, IL‑1β, IL‑6, collagen I, collagen III, Nox4 and p53 in Ang II‑treated mice. Furthermore, TQ protected against Ang II‑induced cardiac damage by inhibiting inflammatory cell infiltration, proinflammatory cytokine expression, fibrosis, oxidative stress and apoptosis by suppressing activation of the p‑ERK signaling pathway. In conclusion, TQ could be considered a potential therapeutic agent for Ang II‑induced cardiac damage.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Cardiology, Xi'an No. 3 Hospital, Xi'an, Shaanxi 710018, P.R. China
| | - Hujin Zhang
- Department of Neurosurgery, Xi'an Central Hospital, Xi'an, Shaanxi 710000, P.R. China
| | - Jing Ma
- Department of Cardiology, Xi'an No. 3 Hospital, Xi'an, Shaanxi 710018, P.R. China
| | - Yun Wang
- Department of Cardiology, Xi'an No. 3 Hospital, Xi'an, Shaanxi 710018, P.R. China
| | - Zuowei Pei
- Department of Cardiology, Beijing Hospital, Beijing 100730, P.R. China
- National Centre of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
| | - Hui Ding
- Department of Cardiology, Xi'an No. 3 Hospital, Xi'an, Shaanxi 710018, P.R. China
| |
Collapse
|
18
|
Qian D, Tian J, Wang S, Shan X, Zhao P, Chen H, Xu M, Guo W, Zhang C, Lu R. Trans-cinnamaldehyde protects against phenylephrine-induced cardiomyocyte hypertrophy through the CaMKII/ERK pathway. BMC Complement Med Ther 2022; 22:115. [PMID: 35468773 PMCID: PMC9040265 DOI: 10.1186/s12906-022-03594-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 04/14/2022] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Trans-cinnamaldehyde (TCA) is one of the main pharmaceutical ingredients of Cinnamomum cassia Presl, which has been shown to have therapeutic effects on a variety of cardiovascular diseases. This study was carried out to characterize and reveal the underlying mechanisms of the protective effects of TCA against cardiac hypertrophy. METHODS We used phenylephrine (PE) to induce cardiac hypertrophy and treated with TCA in vivo and in vitro. In neonatal rat cardiomyocytes (NRCMs), RNA sequencing and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were carried out to identify potential pathways of TCA. Then, the phosphorylation and nuclear localization of calcium/calmodulin-dependent protein kinase II (CaMKII) and extracellular signal-related kinase (ERK) were detected. In adult mouse cardiomyocytes (AMCMs), calcium transients, calcium sparks, sarcomere shortening and the phosphorylation of several key proteins for calcium handling were evaluated. For mouse in vivo experiments, cardiac hypertrophy was evaluated by assessing morphological changes, echocardiographic parameters, and the expression of hypertrophic genes and proteins. RESULTS TCA suppressed PE-induced cardiac hypertrophy and the phosphorylation and nuclear localization of CaMKII and ERK in NRCMs. Our data also demonstrate that TCA blocked the hyperphosphorylation of ryanodine receptor type 2 (RyR2) and phospholamban (PLN) and restored Ca2+ handling and sarcomere shortening in AMCMs. Moreover, our data revealed that TCA alleviated PE-induced cardiac hypertrophy in adult mice and downregulated the phosphorylation of CaMKII and ERK. CONCLUSION TCA has a protective effect against PE-induced cardiac hypertrophy that may be associated with the inhibition of the CaMKII/ERK pathway.
Collapse
Affiliation(s)
- Dongdong Qian
- School of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jing Tian
- School of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Department of Endocrinology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Sining Wang
- Department of Comprehensive Internal Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, China
| | - Xiaoli Shan
- Public Experiment Platform, School of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Pei Zhao
- Public Experiment Platform, School of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Huihua Chen
- School of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ming Xu
- Department of Physiology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Wei Guo
- Department of Pathology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Chen Zhang
- Department of Pathology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Rong Lu
- School of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
19
|
Winkle AJ, Nassal DM, Shaheen R, Thomas E, Mohta S, Gratz D, Weinberg SH, Hund TJ. Emerging therapeutic targets for cardiac hypertrophy. Expert Opin Ther Targets 2022; 26:29-40. [PMID: 35076342 PMCID: PMC8885901 DOI: 10.1080/14728222.2022.2031974] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 01/17/2022] [Indexed: 01/29/2023]
Abstract
INTRODUCTION Cardiac hypertrophy is associated with adverse outcomes across cardiovascular disease states. Despite strides over the last three decades in identifying molecular and cellular mechanisms driving hypertrophy, the link between pathophysiological stress stimuli and specific myocyte/heart growth profiles remains unclear. Moreover, the optimal strategy for preventing pathology in the setting of hypertrophy remains controversial. AREAS COVERED This review discusses molecular mechanisms underlying cardiac hypertrophy with a focus on factors driving the orientation of myocyte growth and the impact on heart function. We highlight recent work showing a novel role for the spectrin-based cytoskeleton, emphasizing regulation of myocyte dimensions but not hypertrophy per se. Finally, we consider opportunities for directing the orientation of myocyte growth in response to hypertrophic stimuli as an alternative therapeutic approach. Relevant publications on the topic were identified through Pubmed with open-ended search dates. EXPERT OPINION To define new therapeutic avenues, more precision is required when describing changes in myocyte and heart structure/function in response to hypertrophic stimuli. Recent developments in computational modeling of hypertrophic networks, in concert with more refined experimental approaches will catalyze translational discovery to advance the field and further our understanding of cardiac hypertrophy and its relationship with heart disease.
Collapse
Affiliation(s)
- Alex J. Winkle
- The Frick Center for Heart Failure and Arrhythmia, The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH, USA
| | - Drew M. Nassal
- The Frick Center for Heart Failure and Arrhythmia, The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH, USA
| | - Rebecca Shaheen
- The Frick Center for Heart Failure and Arrhythmia, The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH, USA
| | - Evelyn Thomas
- The Frick Center for Heart Failure and Arrhythmia, The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH, USA
| | - Shivangi Mohta
- The Frick Center for Heart Failure and Arrhythmia, The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH, USA
| | - Daniel Gratz
- The Frick Center for Heart Failure and Arrhythmia, The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH, USA
| | - Seth H. Weinberg
- The Frick Center for Heart Failure and Arrhythmia, The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH, USA
| | - Thomas J. Hund
- The Frick Center for Heart Failure and Arrhythmia, The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH, USA
- Department of Internal Medicine, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| |
Collapse
|
20
|
Mao Q, Wu S, Peng C, Peng B, Luo X, Huang L, Zhang H. Interactions between the ERK1/2 signaling pathway and PCAF play a key role in PE‑induced cardiomyocyte hypertrophy. Mol Med Rep 2021; 24:636. [PMID: 34278478 PMCID: PMC8281443 DOI: 10.3892/mmr.2021.12275] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 06/23/2021] [Indexed: 11/30/2022] Open
Abstract
Cardiomyocyte hypertrophy is a compensatory phase of chronic heart failure that is induced by the activation of multiple signaling pathways. The extracellular signal-regulated protein kinase (ERK) signaling pathway is an important regulator of cardiomyocyte hypertrophy. In our previous study, it was demonstrated that phenylephrine (PE)-induced cardiomyocyte hypertrophy involves the hyperacetylation of histone H3K9ac by P300/CBP-associated factor (PCAF). However, the upstream signaling pathway has yet to be fully identified. In the present study, the role of the extracellular signal-regulated protein kinase (ERK)1/2 signaling pathway in PE-induced cardiomyocyte hypertrophy was investigated. The mice cardiomyocyte hypertrophy model was successfully established by treating cells with PE in vitro. The results showed that phospho-(p-)ERK1/2 interacted with PCAF and modified the pattern of histone H3K9ac acetylation. An ERK inhibitor (U0126) and/or a histone acetylase inhibitor (anacardic acid; AA) attenuated the overexpression of phospho-ERK1/2 and H3K9ac hyperacetylation by inhibiting the expression of PCAF in PE-induced cardiomyocyte hypertrophy. Moreover, U0126 and/or AA could attenuate the overexpression of several biomarker genes related to cardiac hypertrophy (myocyte enhancer factor 2C, atrial natriuretic peptide, brain natriuretic peptide and β-myosin heavy chain) and prevented cardiomyocyte hypertrophy. These results revealed a novel mechanism in that AA protects against PE-induced cardiomyocyte hypertrophy in mice via the ERK1/2 signaling pathway, and by modifying the acetylation of H3K9ac. These findings may assist in the development of novel methods for preventing and treating hypertrophic cardiomyopathy.
Collapse
Affiliation(s)
- Qian Mao
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Shuqi Wu
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Chang Peng
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Bohui Peng
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Xiaomei Luo
- Department of Physiology, School of Basic Medical Sciences, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Lixin Huang
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Huanting Zhang
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| |
Collapse
|
21
|
Tao H, Xu W, Qu W, Gao H, Zhang J, Cheng X, Liu N, Chen J, Xu GL, Li X, Shu Q. Loss of ten-eleven translocation 2 induces cardiac hypertrophy and fibrosis through modulating ERK signaling pathway. Hum Mol Genet 2021; 30:865-879. [PMID: 33791790 DOI: 10.1093/hmg/ddab046] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 01/04/2021] [Accepted: 01/29/2021] [Indexed: 01/25/2023] Open
Abstract
The ten-eleven translocation (Tet) family of dioxygenases convert 5-methylcytosine to 5-hydroxymethylcytosine (5hmC). Previous studies have shown that 5hmC-mediated epigenetic modifications play essential roles in diverse biological processes and diseases. Here, we show that Tet proteins and 5hmC display dynamic features during postnatal cardiac development and that Tet2 is the predominant dioxygenase present in heart. Tet2 knockout results in abnormal cardiac function, progressive cardiac hypertrophy and fibrosis. Mechanistically, Tet2 deficiency leads to reduced hydroxymethylation in the cardiac genome and alters the cardiac transcriptome. Mechanistically, Tet2 loss leads to a decrease of Hspa1b expression, a regulator of the extracellular signal-regulated protein kinase (Erk) signaling pathway, which leads to over-activation of Erk signaling. Acute Hspa1b knock down (KD) increased the phosphorylation of Erk and induced hypertrophy of cardiomyocytes, which could be blocked by Erk signaling inhibitor. Consistently, ectopic expression of Hspa1b was able to rescue the deficits of cardiomyocytes induced by Tet2 depletion. Taken together, our study's results reveal the important roles of Tet2-mediated DNA hydroxymethylation in cardiac development and function.
Collapse
Affiliation(s)
- Huikang Tao
- The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou 310052, China.,The Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou 310029, China.,National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Weize Xu
- The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou 310052, China.,National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Wenzheng Qu
- The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou 310052, China.,The Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou 310029, China.,National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Hui Gao
- The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou 310052, China.,National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Jinyu Zhang
- The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou 310052, China.,The Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou 310029, China.,National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Xuejun Cheng
- The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou 310052, China.,National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Ning Liu
- The Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou 310029, China
| | - Jinghai Chen
- The Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou 310029, China
| | - Guo-Liang Xu
- Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China.,Laboratory of Medical Epigenetics, Institute of Biomedical Sciences, Medical College of Fudan University, Chinese Academy of Medical Sciences (RU069), Shanghai 200032, China
| | - Xuekun Li
- The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou 310052, China.,The Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou 310029, China.,National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Qiang Shu
- The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou 310052, China.,National Clinical Research Center for Child Health, Hangzhou 310052, China
| |
Collapse
|
22
|
Duran J, Nickel L, Estrada M, Backs J, van den Hoogenhof MMG. CaMKIIδ Splice Variants in the Healthy and Diseased Heart. Front Cell Dev Biol 2021; 9:644630. [PMID: 33777949 PMCID: PMC7991079 DOI: 10.3389/fcell.2021.644630] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/22/2021] [Indexed: 01/16/2023] Open
Abstract
RNA splicing has been recognized in recent years as a pivotal player in heart development and disease. The Ca2+/calmodulin dependent protein kinase II delta (CaMKIIδ) is a multifunctional Ser/Thr kinase family and generates at least 11 different splice variants through alternative splicing. This enzyme, which belongs to the CaMKII family, is the predominant family member in the heart and functions as a messenger toward adaptive or detrimental signaling in cardiomyocytes. Classically, the nuclear CaMKIIδB and cytoplasmic CaMKIIδC splice variants are described as mediators of arrhythmias, contractile function, Ca2+ handling, and gene transcription. Recent findings also put CaMKIIδA and CaMKIIδ9 as cardinal players in the global CaMKII response in the heart. In this review, we discuss and summarize the new insights into CaMKIIδ splice variants and their (proposed) functions, as well as CaMKII-engineered mouse phenotypes and cardiac dysfunction related to CaMKIIδ missplicing. We also discuss RNA splicing factors affecting CaMKII splicing. Finally, we discuss the translational perspective derived from these insights and future directions on CaMKIIδ splicing research in the healthy and diseased heart.
Collapse
Affiliation(s)
- Javier Duran
- Institute of Experimental Cardiology, Heidelberg University, Heidelberg, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Lennart Nickel
- Institute of Experimental Cardiology, Heidelberg University, Heidelberg, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Manuel Estrada
- Faculty of Medicine, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Johannes Backs
- Institute of Experimental Cardiology, Heidelberg University, Heidelberg, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Maarten M G van den Hoogenhof
- Institute of Experimental Cardiology, Heidelberg University, Heidelberg, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| |
Collapse
|
23
|
Xiong Z, Lo HP, McMahon KA, Martel N, Jones A, Hill MM, Parton RG, Hall TE. In vivo proteomic mapping through GFP-directed proximity-dependent biotin labelling in zebrafish. eLife 2021; 10:64631. [PMID: 33591275 PMCID: PMC7906605 DOI: 10.7554/elife.64631] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 02/15/2021] [Indexed: 12/21/2022] Open
Abstract
Protein interaction networks are crucial for complex cellular processes. However, the elucidation of protein interactions occurring within highly specialised cells and tissues is challenging. Here, we describe the development, and application, of a new method for proximity-dependent biotin labelling in whole zebrafish. Using a conditionally stabilised GFP-binding nanobody to target a biotin ligase to GFP-labelled proteins of interest, we show tissue-specific proteomic profiling using existing GFP-tagged transgenic zebrafish lines. We demonstrate the applicability of this approach, termed BLITZ (Biotin Labelling In Tagged Zebrafish), in diverse cell types such as neurons and vascular endothelial cells. We applied this methodology to identify interactors of caveolar coat protein, cavins, in skeletal muscle. Using this system, we defined specific interaction networks within in vivo muscle cells for the closely related but functionally distinct Cavin4 and Cavin1 proteins.
Collapse
Affiliation(s)
- Zherui Xiong
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Harriet P Lo
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Kerrie-Ann McMahon
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Nick Martel
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Alun Jones
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Michelle M Hill
- QIMR Berghofer Medical Research Institute, Herston, Australia
| | - Robert G Parton
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia.,Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, Australia
| | - Thomas E Hall
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| |
Collapse
|
24
|
Khalilimeybodi A, Paap AM, Christiansen SLM, Saucerman JJ. Context-specific network modeling identifies new crosstalk in β-adrenergic cardiac hypertrophy. PLoS Comput Biol 2020; 16:e1008490. [PMID: 33338038 PMCID: PMC7781532 DOI: 10.1371/journal.pcbi.1008490] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 01/04/2021] [Accepted: 11/05/2020] [Indexed: 11/25/2022] Open
Abstract
Cardiac hypertrophy is a context-dependent phenomenon wherein a myriad of biochemical and biomechanical factors regulate myocardial growth through a complex large-scale signaling network. Although numerous studies have investigated hypertrophic signaling pathways, less is known about hypertrophy signaling as a whole network and how this network acts in a context-dependent manner. Here, we developed a systematic approach, CLASSED (Context-specific Logic-bASed Signaling nEtwork Development), to revise a large-scale signaling model based on context-specific data and identify main reactions and new crosstalks regulating context-specific response. CLASSED involves four sequential stages with an automated validation module as a core which builds a logic-based ODE model from the interaction graph and outputs the model validation percent. The context-specific model is developed by estimation of default parameters, classified qualitative validation, hybrid Morris-Sobol global sensitivity analysis, and discovery of missing context-dependent crosstalks. Applying this pipeline to our prior-knowledge hypertrophy network with context-specific data revealed key signaling reactions which distinctly regulate cell response to isoproterenol, phenylephrine, angiotensin II and stretch. Furthermore, with CLASSED we developed a context-specific model of β-adrenergic cardiac hypertrophy. The model predicted new crosstalks between calcium/calmodulin-dependent pathways and upstream signaling of Ras in the ISO-specific context. Experiments in cardiomyocytes validated the model’s predictions on the role of CaMKII-Gβγ and CaN-Gβγ interactions in mediating hypertrophic signals in ISO-specific context and revealed a difference in the phosphorylation magnitude and translocation of ERK1/2 between cardiac myocytes and fibroblasts. CLASSED is a systematic approach for developing context-specific large-scale signaling networks, yielding insights into new-found crosstalks in β-adrenergic cardiac hypertrophy. Pathological cardiac hypertrophy is a disease in which the heart grows abnormally in response to different motivators such as high blood pressure or variations in hormones and growth factors. The shape of the heart after its growth depends on the context in which it grows. Since cell signaling in the cardiac cells plays a key role in the determination of heart shape, a thorough understanding of cardiac cells signaling in each context enlightens the mechanisms which control response of cardiac cells. However, cell signaling in cardiac hypertrophy comprises a complex web of pathways with numerous interactions, and predicting how these interactions control the hypertrophic signal in each context is not achievable by only experiments or general computational models. To address this need, we developed an approach to bring together the experimental data of each context with a signaling network curated from literature to identify the main players of cardiac cells response in each context and attain the context-specific models of cardiac hypertrophy. By utilizing our approach, we identified the main regulators of cardiac hypertrophy in four important contexts. We developed a network model of β-adrenergic cardiac hypertrophy, and predicted and validated new interactions that regulate cardiac cells response in this context.
Collapse
Affiliation(s)
- Ali Khalilimeybodi
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States of America
| | - Alexander M. Paap
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States of America
| | - Steven L. M. Christiansen
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States of America
| | - Jeffrey J. Saucerman
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States of America
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia, United States of America
- * E-mail:
| |
Collapse
|
25
|
Yu YD, Xiu YP, Li YF, Xue YT. To Explore the Mechanism and Equivalent Molecular Group of Fuxin Mixture in Treating Heart Failure Based on Network Pharmacology. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:8852877. [PMID: 33273955 PMCID: PMC7700035 DOI: 10.1155/2020/8852877] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/25/2020] [Accepted: 11/11/2020] [Indexed: 12/27/2022]
Abstract
Fuxin mixture (FXHJ) is a prescription for the treatment of heart failure. It has been shown to be effective in clinical trials, but its active ingredients and mechanism of action are not completely clear, which limits its clinical application and international promotion. In this study, we used network pharmacology to find, conclude, and summarize the mechanism of FXHJ in the treatment of heart failure. From FXHJ, we found 39 active ingredients and 47 action targets. Next, we constructed the action network and was conducted enrichment analysis. The results showed that FXHJ mainly treated heart failure by regulating the MAPK signaling pathway, PI3KAkt signaling pathway, cAMP signaling pathway, TNF signaling pathway, toll-like receptor signaling pathway, VEGF signaling pathway, NF-kappa B signaling pathway, and the apoptotic signaling molecule BCL2. Through the research method of network pharmacology, this study summarized the preliminary experiments of the research group and revealed the probable mechanism of FXHJ in the treatment of heart failure to a certain extent, which provided some ideas for the development of new drugs.
Collapse
Affiliation(s)
- Yi-ding Yu
- Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Yi-ping Xiu
- Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Yang-fan Li
- Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Yi-tao Xue
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| |
Collapse
|
26
|
Junho CVC, Caio-Silva W, Trentin-Sonoda M, Carneiro-Ramos MS. An Overview of the Role of Calcium/Calmodulin-Dependent Protein Kinase in Cardiorenal Syndrome. Front Physiol 2020; 11:735. [PMID: 32760284 PMCID: PMC7372084 DOI: 10.3389/fphys.2020.00735] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 06/08/2020] [Indexed: 12/14/2022] Open
Abstract
Calcium/calmodulin-dependent protein kinases (CaMKs) are key regulators of calcium signaling in health and disease. CaMKII is the most abundant isoform in the heart; although classically described as a regulator of excitation–contraction coupling, recent studies show that it can also mediate inflammation in cardiovascular diseases (CVDs). Among CVDs, cardiorenal syndrome (CRS) represents a pressing issue to be addressed, considering the growing incidence of kidney diseases worldwide. In this review, we aimed to discuss the role of CaMK as an inflammatory mediator in heart and kidney interaction by conducting an extensive literature review using the database PubMed. Here, we summarize the role and regulating mechanisms of CaMKII present in several quality studies, providing a better understanding for future investigations of CamKII in CVDs. Surprisingly, despite the obvious importance of CaMKII in the heart, very little is known about CaMKII in CRS. In conclusion, more studies are necessary to further understand the role of CaMKII in CRS.
Collapse
Affiliation(s)
| | - Wellington Caio-Silva
- Center of Natural and Human Sciences (CCNH), Universidade Federal do ABC, Santo André, Brazil
| | - Mayra Trentin-Sonoda
- Division of Nephrology, Department of Medicine, Kidney Research Centre, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada
| | | |
Collapse
|
27
|
Hanses U, Kleinsorge M, Roos L, Yigit G, Li Y, Barbarics B, El-Battrawy I, Lan H, Tiburcy M, Hindmarsh R, Lenz C, Salinas G, Diecke S, Müller C, Adham I, Altmüller J, Nürnberg P, Paul T, Zimmermann WH, Hasenfuss G, Wollnik B, Cyganek L. Intronic CRISPR Repair in a Preclinical Model of Noonan Syndrome-Associated Cardiomyopathy. Circulation 2020; 142:1059-1076. [PMID: 32623905 DOI: 10.1161/circulationaha.119.044794] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Noonan syndrome (NS) is a multisystemic developmental disorder characterized by common, clinically variable symptoms, such as typical facial dysmorphisms, short stature, developmental delay, intellectual disability as well as cardiac hypertrophy. The underlying mechanism is a gain-of-function of the RAS-mitogen-activated protein kinase signaling pathway. However, our understanding of the pathophysiological alterations and mechanisms, especially of the associated cardiomyopathy, remains limited and effective therapeutic options are lacking. METHODS Here, we present a family with two siblings displaying an autosomal recessive form of NS with massive hypertrophic cardiomyopathy as clinically the most prevalent symptom caused by biallelic mutations within the leucine zipper-like transcription regulator 1 (LZTR1). We generated induced pluripotent stem cell-derived cardiomyocytes of the affected siblings and investigated the patient-specific cardiomyocytes on the molecular and functional level. RESULTS Patients' induced pluripotent stem cell-derived cardiomyocytes recapitulated the hypertrophic phenotype and uncovered a so-far-not-described causal link between LZTR1 dysfunction, RAS-mitogen-activated protein kinase signaling hyperactivity, hypertrophic gene response and cellular hypertrophy. Calcium channel blockade and MEK inhibition could prevent some of the disease characteristics, providing a molecular underpinning for the clinical use of these drugs in patients with NS, but might not be a sustainable therapeutic option. In a proof-of-concept approach, we explored a clinically translatable intronic CRISPR (clustered regularly interspaced short palindromic repeats) repair and demonstrated a rescue of the hypertrophic phenotype. CONCLUSIONS Our study revealed the human cardiac pathogenesis in patient-specific induced pluripotent stem cell-derived cardiomyocytes from NS patients carrying biallelic variants in LZTR1 and identified a unique disease-specific proteome signature. In addition, we identified the intronic CRISPR repair as a personalized and in our view clinically translatable therapeutic strategy to treat NS-associated hypertrophic cardiomyopathy.
Collapse
Affiliation(s)
- Ulrich Hanses
- Clinic for Cardiology and Pneumology (U.H., M.K., L.R., R.H., G.H., L.C.).,DZHK (German Center for Cardiovascular Research), partner site Göttingen, Mannheim and Berlin, Germany (U.H., M.K., L.R., G.Y., B.B., I.E-B., M.T., R.H., S.D., T.P., W.-H.Z., G.H., B.W., L.C.)
| | - Mandy Kleinsorge
- Clinic for Cardiology and Pneumology (U.H., M.K., L.R., R.H., G.H., L.C.).,DZHK (German Center for Cardiovascular Research), partner site Göttingen, Mannheim and Berlin, Germany (U.H., M.K., L.R., G.Y., B.B., I.E-B., M.T., R.H., S.D., T.P., W.-H.Z., G.H., B.W., L.C.)
| | - Lennart Roos
- Clinic for Cardiology and Pneumology (U.H., M.K., L.R., R.H., G.H., L.C.).,DZHK (German Center for Cardiovascular Research), partner site Göttingen, Mannheim and Berlin, Germany (U.H., M.K., L.R., G.Y., B.B., I.E-B., M.T., R.H., S.D., T.P., W.-H.Z., G.H., B.W., L.C.)
| | - Gökhan Yigit
- Institute of Human Genetics (G.Y., Y.L., G.S., C.M., I.A., B.W.).,DZHK (German Center for Cardiovascular Research), partner site Göttingen, Mannheim and Berlin, Germany (U.H., M.K., L.R., G.Y., B.B., I.E-B., M.T., R.H., S.D., T.P., W.-H.Z., G.H., B.W., L.C.)
| | - Yun Li
- Institute of Human Genetics (G.Y., Y.L., G.S., C.M., I.A., B.W.)
| | - Boris Barbarics
- Clinic for Pediatric Cardiology and Intensive Care Medicine (B.B., T.P.).,DZHK (German Center for Cardiovascular Research), partner site Göttingen, Mannheim and Berlin, Germany (U.H., M.K., L.R., G.Y., B.B., I.E-B., M.T., R.H., S.D., T.P., W.-H.Z., G.H., B.W., L.C.)
| | - Ibrahim El-Battrawy
- DZHK (German Center for Cardiovascular Research), partner site Göttingen, Mannheim and Berlin, Germany (U.H., M.K., L.R., G.Y., B.B., I.E-B., M.T., R.H., S.D., T.P., W.-H.Z., G.H., B.W., L.C.).,First Department of Medicine, Medical Faculty Mannheim, University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany (I.E-B., H.L.)
| | - Huan Lan
- First Department of Medicine, Medical Faculty Mannheim, University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany (I.E-B., H.L.)
| | - Malte Tiburcy
- Institute of Pharmacology and Toxicology (M.T., W-H.Z.).,DZHK (German Center for Cardiovascular Research), partner site Göttingen, Mannheim and Berlin, Germany (U.H., M.K., L.R., G.Y., B.B., I.E-B., M.T., R.H., S.D., T.P., W.-H.Z., G.H., B.W., L.C.)
| | - Robin Hindmarsh
- Clinic for Cardiology and Pneumology (U.H., M.K., L.R., R.H., G.H., L.C.).,DZHK (German Center for Cardiovascular Research), partner site Göttingen, Mannheim and Berlin, Germany (U.H., M.K., L.R., G.Y., B.B., I.E-B., M.T., R.H., S.D., T.P., W.-H.Z., G.H., B.W., L.C.)
| | - Christof Lenz
- Institute for Clinical Chemistry (C.L.), University Medical Center Göttingen, Germany.,Bioanalytical Mass Spectrometry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany (C.L.)
| | - Gabriela Salinas
- Institute of Human Genetics (G.Y., Y.L., G.S., C.M., I.A., B.W.)
| | - Sebastian Diecke
- DZHK (German Center for Cardiovascular Research), partner site Göttingen, Mannheim and Berlin, Germany (U.H., M.K., L.R., G.Y., B.B., I.E-B., M.T., R.H., S.D., T.P., W.-H.Z., G.H., B.W., L.C.).,Stem Cell Core Facility, Max Delbrück Center for Molecular Medicine, Berlin, Germany (S.D.).,Berlin Institute of Health, Germany (S.D.)
| | - Christian Müller
- Institute of Human Genetics (G.Y., Y.L., G.S., C.M., I.A., B.W.)
| | - Ibrahim Adham
- Institute of Human Genetics (G.Y., Y.L., G.S., C.M., I.A., B.W.)
| | - Janine Altmüller
- Cologne Center for Genomics, University of Cologne, Germany (J.A., P.N.)
| | - Peter Nürnberg
- Cologne Center for Genomics, University of Cologne, Germany (J.A., P.N.)
| | - Thomas Paul
- Clinic for Pediatric Cardiology and Intensive Care Medicine (B.B., T.P.).,DZHK (German Center for Cardiovascular Research), partner site Göttingen, Mannheim and Berlin, Germany (U.H., M.K., L.R., G.Y., B.B., I.E-B., M.T., R.H., S.D., T.P., W.-H.Z., G.H., B.W., L.C.)
| | - Wolfram-Hubertus Zimmermann
- Institute of Pharmacology and Toxicology (M.T., W-H.Z.).,DZHK (German Center for Cardiovascular Research), partner site Göttingen, Mannheim and Berlin, Germany (U.H., M.K., L.R., G.Y., B.B., I.E-B., M.T., R.H., S.D., T.P., W.-H.Z., G.H., B.W., L.C.).,Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Germany (W-H.Z., G.H., B.W.)
| | - Gerd Hasenfuss
- Clinic for Cardiology and Pneumology (U.H., M.K., L.R., R.H., G.H., L.C.).,DZHK (German Center for Cardiovascular Research), partner site Göttingen, Mannheim and Berlin, Germany (U.H., M.K., L.R., G.Y., B.B., I.E-B., M.T., R.H., S.D., T.P., W.-H.Z., G.H., B.W., L.C.).,Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Germany (W-H.Z., G.H., B.W.)
| | - Bernd Wollnik
- Institute of Human Genetics (G.Y., Y.L., G.S., C.M., I.A., B.W.).,DZHK (German Center for Cardiovascular Research), partner site Göttingen, Mannheim and Berlin, Germany (U.H., M.K., L.R., G.Y., B.B., I.E-B., M.T., R.H., S.D., T.P., W.-H.Z., G.H., B.W., L.C.).,Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Germany (W-H.Z., G.H., B.W.)
| | - Lukas Cyganek
- Clinic for Cardiology and Pneumology (U.H., M.K., L.R., R.H., G.H., L.C.).,DZHK (German Center for Cardiovascular Research), partner site Göttingen, Mannheim and Berlin, Germany (U.H., M.K., L.R., G.Y., B.B., I.E-B., M.T., R.H., S.D., T.P., W.-H.Z., G.H., B.W., L.C.)
| |
Collapse
|
28
|
Li WJ, Liao HH, Feng H, Zhou ZY, Mou SQ, Zhang N, Wu HM, Xia H, Tang QZ. Combination treatment of perifosine and valsartan showed more efficiency in protecting against pressure overload induced mouse heart failure. J Pharmacol Sci 2020; 143:199-208. [PMID: 32414690 DOI: 10.1016/j.jphs.2020.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 02/22/2020] [Accepted: 03/18/2020] [Indexed: 01/13/2023] Open
Abstract
The optimum strategy for heart failure (HF) treatment has yet to be elucidated. This study intended to test the benefit of a combination of valsartan (VAL) and perifosine (PER), a specific AKT inhibitor, in protecting against pressure overload induced mouse HF. Mouse were subjected to aortic banding (AB) surgery to establish HF models and then were given vehicle (HF), VAL (50 mg/kg/d), PER (30 mg/kg/d) or combination of VAL and PER for 4 weeks. Mouse with sham surgery treated with VEH were used for control (VEH). VAL or PER treatment could significantly alleviate mouse heart weight, attenuate cardiac fibrosis and improve cardiac function. The combination treatment of VAL and PER presented much better benefit compared with VAL or PER group respectively. PER treatment significantly inhibited AKT/GSK3β/mTORC1 signaling. Besides the classic AT1 inhibition, VAL treatment significantly inhibited MAPK (ERK1/2) signaling. Furthermore, VAL and PER treatment could markedly prevent neonatal rat cardiomyocyte hypertrophy and the activation of neonatal rat cardiac fibroblast. Combination of VAL and PER also presented superior beneficial effects than single treatment of VAL or PER in vitro experiments respectively. This study presented that the combination of valsartan and PER may be a potential treatment for HF prevention.
Collapse
Affiliation(s)
- Wen-Jing Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, Hubei, 430060, China
| | - Hai-Han Liao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, Hubei, 430060, China
| | - Hong Feng
- Department of Geriatrics, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China
| | - Zi-Ying Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, Hubei, 430060, China
| | - Shan-Qi Mou
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, Hubei, 430060, China
| | - Nan Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, Hubei, 430060, China
| | - Hai-Ming Wu
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, Hubei, 430060, China
| | - Hao Xia
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China.
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, Hubei, 430060, China.
| |
Collapse
|
29
|
Maione AS, Pilato CA, Casella M, Gasperetti A, Stadiotti I, Pompilio G, Sommariva E. Fibrosis in Arrhythmogenic Cardiomyopathy: The Phantom Thread in the Fibro-Adipose Tissue. Front Physiol 2020; 11:279. [PMID: 32317983 PMCID: PMC7147329 DOI: 10.3389/fphys.2020.00279] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 03/12/2020] [Indexed: 12/22/2022] Open
Abstract
Arrhythmogenic cardiomyopathy (ACM) is an inherited heart disorder, predisposing to malignant ventricular arrhythmias leading to sudden cardiac death, particularly in young and athletic patients. Pathological features include a progressive loss of myocardium with fibrous or fibro-fatty substitution. During the last few decades, different clinical aspects of ACM have been well investigated but still little is known about the molecular mechanisms that underlie ACM pathogenesis, leading to these phenotypes. In about 50% of ACM patients, a genetic mutation, predominantly in genes that encode for desmosomal proteins, has been identified. However, the mutation-associated mechanisms, causing the observed cardiac phenotype are not always clear. Until now, the attention has been principally focused on the study of molecular mechanisms that lead to a prominent myocardium adipose substitution, an uncommon marker for a cardiac disease, thus often recognized as hallmark of ACM. Nonetheless, based on Task Force Criteria for the diagnosis of ACM, cardiomyocytes death associated with fibrous replacement of the ventricular free wall must be considered the main tissue feature in ACM patients. For this reason, it urges to investigate ACM cardiac fibrosis. In this review, we give an overview on the cellular effectors, possible triggers, and molecular mechanisms that could be responsible for the ventricular fibrotic remodeling in ACM patients.
Collapse
Affiliation(s)
- Angela Serena Maione
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Chiara Assunta Pilato
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Michela Casella
- Heart Rhythm Center, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Alessio Gasperetti
- Heart Rhythm Center, Centro Cardiologico Monzino IRCCS, Milan, Italy
- University Heart Center, Zurich University Hospital, Zurich, Switzerland
| | - Ilaria Stadiotti
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Giulio Pompilio
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino IRCCS, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Elena Sommariva
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino IRCCS, Milan, Italy
| |
Collapse
|
30
|
Ajasin D, Eugenin EA. HIV-1 Tat: Role in Bystander Toxicity. Front Cell Infect Microbiol 2020; 10:61. [PMID: 32158701 PMCID: PMC7052126 DOI: 10.3389/fcimb.2020.00061] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 02/06/2020] [Indexed: 12/21/2022] Open
Abstract
HIV Tat protein is a critical protein that plays multiple roles in HIV pathogenesis. While its role as the transactivator of HIV transcription is well-established, other non-viral replication-associated functions have been described in several HIV-comorbidities even in the current antiretroviral therapy (ART) era. HIV Tat protein is produced and released into the extracellular space from cells with active HIV replication or from latently HIV-infected cells into neighboring uninfected cells even in the absence of active HIV replication and viral production due to effective ART. Neighboring uninfected and HIV-infected cells can take up the released Tat resulting in the upregulation of inflammatory genes and activation of pathways that leads to cytotoxicity observed in several comorbidities such as HIV associated neurocognitive disorder (HAND), HIV associated cardiovascular impairment, and accelerated aging. Thus, understanding how Tat modulates host and viral response is important in designing novel therapeutic approaches to target the chronic inflammatory effects of soluble viral proteins in HIV infection.
Collapse
Affiliation(s)
- David Ajasin
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch, Galveston, TX, United States
| | - Eliseo A Eugenin
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
31
|
Di Mattia RA, Mariángelo JI, Blanco PG, Jaquenod De Giusti C, Portiansky EL, Mundiña-Weilenmann C, Aiello EA, Orlowski A. The activation of the G protein-coupled estrogen receptor (GPER) prevents and regresses cardiac hypertrophy. Life Sci 2020; 242:117211. [DOI: 10.1016/j.lfs.2019.117211] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 12/06/2019] [Accepted: 12/18/2019] [Indexed: 12/25/2022]
|
32
|
CaMKII Activity in the Inflammatory Response of Cardiac Diseases. Int J Mol Sci 2019; 20:ijms20184374. [PMID: 31489895 PMCID: PMC6770001 DOI: 10.3390/ijms20184374] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/02/2019] [Accepted: 09/03/2019] [Indexed: 12/20/2022] Open
Abstract
Inflammation is a physiological process by which the body responds to external insults and stress conditions, and it is characterized by the production of pro-inflammatory mediators such as cytokines. The acute inflammatory response is solved by removing the threat. Conversely, a chronic inflammatory state is established due to a prolonged inflammatory response and may lead to tissue damage. Based on the evidence of a reciprocal regulation between inflammation process and calcium unbalance, here we described the involvement of a calcium sensor in cardiac diseases with inflammatory drift. Indeed, the Ca2+/calmodulin-dependent protein kinase II (CaMKII) is activated in several diseases with an inflammatory component, such as myocardial infarction, ischemia/reperfusion injury, pressure overload/hypertrophy, and arrhythmic syndromes, in which it actively regulates pro-inflammatory signaling, among which includes nuclear factor kappa-B (NF-κB), thus contributing to pathological cardiac remodeling. Thus, CaMKII may represent a key target to modulate the severity of the inflammatory-driven degeneration.
Collapse
|
33
|
Ehret G. In the Age of Genomics, Is it Still Worth it to Investigate Individual Loci? Hypertension 2019; 74:495-496. [PMID: 31327265 DOI: 10.1161/hypertensionaha.119.12521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Georg Ehret
- From the Division of Cardiology, Geneva University Hospitals, Switzerland
| |
Collapse
|
34
|
Myosin IIA suppresses glioblastoma development in a mechanically sensitive manner. Proc Natl Acad Sci U S A 2019; 116:15550-15559. [PMID: 31235578 DOI: 10.1073/pnas.1902847116] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The ability of glioblastoma to disperse through the brain contributes to its lethality, and blocking this behavior has been an appealing therapeutic approach. Although a number of proinvasive signaling pathways are active in glioblastoma, many are redundant, so targeting one can be overcome by activating another. However, these pathways converge on nonredundant components of the cytoskeleton, and we have shown that inhibiting one of these-the myosin II family of cytoskeletal motors-blocks glioblastoma invasion even with simultaneous activation of multiple upstream promigratory pathways. Myosin IIA and IIB are the most prevalent isoforms of myosin II in glioblastoma, and we now show that codeleting these myosins markedly impairs tumorigenesis and significantly prolongs survival in a rodent model of this disease. However, while targeting just myosin IIA also impairs tumor invasion, it surprisingly increases tumor proliferation in a manner that depends on environmental mechanics. On soft surfaces myosin IIA deletion enhances ERK1/2 activity, while on stiff surfaces it enhances the activity of NFκB, not only in glioblastoma but in triple-negative breast carcinoma and normal keratinocytes as well. We conclude myosin IIA suppresses tumorigenesis in at least two ways that are modulated by the mechanics of the tumor and its stroma. Our results also suggest that inhibiting tumor invasion can enhance tumor proliferation and that effective therapy requires targeting cellular components that drive both proliferation and invasion simultaneously.
Collapse
|
35
|
Ortega MA, Asúnsolo Á, Romero B, Álvarez-Rocha MJ, Sainz F, Leal J, Álvarez-Mon M, Buján J, García-Honduvilla N. Unravelling the Role of MAPKs (ERK1/2) in Venous Reflux in Patients with Chronic Venous Disorder. Cells Tissues Organs 2019; 206:272-282. [PMID: 31203288 DOI: 10.1159/000500449] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 04/15/2019] [Indexed: 11/19/2022] Open
Abstract
Chronic venous disorder (CVeD), is a disorder in which there is a modification in the conditions of blood return to the heart. The disorder may arise from incompetent valves and the resultant venous reflux (chronic venous insufficiency, CVI). The economic burden of CVeD on health systems is high, and research efforts have sought to elucidate the mechanisms involved as possible therapeutic targets. The mitogen-activated protein kinase (MAPK) enzymes mediate a wide array of physiopathological processes in human tissues. In this family of proteins, extracellular signal-regulated kinase (ERK)1/2 plays a direct role in the cell homeostasis that determines the viability of mammalian tissues. This study sought to examine whether ERK1/2 plays a role in venous reflux. This was a prospective study performed on 56 participants including 11 healthy controls. Of the CVeD patients, 23 had venous reflux with CVI (CVI-R) and 22 had no reflux (NR). Distribution by age was: controls <50 years (n = 4) and ≥50 years (n = 7); NR <50 years (n = 9) and ≥50 years (n = 13); CVI-R <50 years (n = 11) and ≥50 years (n = 12). Great saphenous vein specimens were subjected to gene (real-time polymerase chain reaction, RT-qPCR) and protein (immunohistochemistry, IHC) expression techniques to identify ERK1/2. Data was compared between groups using the Mann Whitney U test. Patients with CVI showed significant gene activation of ERK1/2 protein, and, in those with venous reflux, the expression of this gene was significantly greater. The CVI-R group <50 years showed significantly greater ERK1/2 gene expression than their age-matched controls. Expression patterns were consistent with IHC findings. Our studies suggest that ERK1/2 expression is involved in venous vascular disease.
Collapse
Affiliation(s)
- Miguel A Ortega
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences and Networking Biomedical Research Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), University of Alcalá, Alcalá de Henares, Spain.,Ramón y Cajal Institute of Healthcare Research (IRYCIS), Madrid, Spain
| | - Ángel Asúnsolo
- Ramón y Cajal Institute of Healthcare Research (IRYCIS), Madrid, Spain.,Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Spain
| | - Beatriz Romero
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences and Networking Biomedical Research Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), University of Alcalá, Alcalá de Henares, Spain.,Ramón y Cajal Institute of Healthcare Research (IRYCIS), Madrid, Spain
| | - María J Álvarez-Rocha
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences and Networking Biomedical Research Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), University of Alcalá, Alcalá de Henares, Spain
| | - Felipe Sainz
- Angiology and Vascular Surgery Service, Central University Hospital of Defence-UAH Madrid, Madrid, Spain
| | - Javier Leal
- Angiology and Vascular Surgery Service, Ruber International Hospital, Madrid, Spain
| | - Melchor Álvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences and Networking Biomedical Research Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), University of Alcalá, Alcalá de Henares, Spain.,Ramón y Cajal Institute of Healthcare Research (IRYCIS), Madrid, Spain.,Immune System Diseases-Rheumatology and Oncology Service, University Hospital Príncipe de Asturias, Alcalá de Henares, Spain
| | - Julia Buján
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences and Networking Biomedical Research Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), University of Alcalá, Alcalá de Henares, Spain, .,Ramón y Cajal Institute of Healthcare Research (IRYCIS), Madrid, Spain,
| | - Natalio García-Honduvilla
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences and Networking Biomedical Research Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), University of Alcalá, Alcalá de Henares, Spain.,Ramón y Cajal Institute of Healthcare Research (IRYCIS), Madrid, Spain.,University Center of Defense of Madrid (CUD-ACD), Madrid, Spain
| |
Collapse
|
36
|
Yan K, Wang K, Li P. The role of post-translational modifications in cardiac hypertrophy. J Cell Mol Med 2019; 23:3795-3807. [PMID: 30950211 PMCID: PMC6533522 DOI: 10.1111/jcmm.14330] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/06/2019] [Accepted: 03/19/2019] [Indexed: 12/19/2022] Open
Abstract
Pathological cardiac hypertrophy involves excessive protein synthesis, increased cardiac myocyte size and ultimately the development of heart failure. Thus, pathological cardiac hypertrophy is a major risk factor for many cardiovascular diseases and death in humans. Extensive research in the last decade has revealed that post‐translational modifications (PTMs), including phosphorylation, ubiquitination, SUMOylation, O‐GlcNAcylation, methylation and acetylation, play important roles in pathological cardiac hypertrophy pathways. These PTMs potently mediate myocardial hypertrophy responses via the interaction, stability, degradation, cellular translocation and activation of receptors, adaptors and signal transduction events. These changes occur in response to pathological hypertrophy stimuli. In this review, we summarize the roles of PTMs in regulating the development of pathological cardiac hypertrophy. Furthermore, PTMs are discussed as potential targets for treating or preventing cardiac hypertrophy.
Collapse
Affiliation(s)
- Kaowen Yan
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, China
| | - Kun Wang
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, China
| | - Peifeng Li
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
37
|
A Novel Small Peptide Inhibitor of NF κB, RH10, Blocks Oxidative Stress-Dependent Phenotypes in Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:5801807. [PMID: 30524659 PMCID: PMC6247396 DOI: 10.1155/2018/5801807] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 09/04/2018] [Indexed: 12/26/2022]
Abstract
Background The RH domain of GRK5 is an effective modulator of cancer growth through the inhibition of NFκB activity. The aim of this study was to identify the minimum effective sequence of RH that is still able to inhibit tumor growth and could be used as a peptide-based drug for therapy. Methods Starting from the RH sequence, small peptides were cloned and tested in KAT-4 cells. The effects on NFκB signaling and its dependent phenotypes were evaluated by Western blot, TUNEL assay, proliferation assay, and angiogenesis in vitro. In vivo experiments were performed in KAT-4 xenografts in Balb/c nude mice. Results A minimum RH ten amino acids long sequence (RH10) was able to interact with IκB, to increase IκB levels, to induce apoptosis, to inhibit KAT4-cell proliferation, NFκB activation, ROS production, and angiogenesis in vitro. In vivo, the peptide inhibited tumor growth in a dose-dependent manner. We also tested its effects in combination with chemotherapeutic drugs and radiotherapy. RH10 ameliorated the antitumor responses to cisplatin, doxorubicin, and ionizing radiation. Conclusion Our data propose RH10 as a potential peptide-based drug to use for cancer treatment both alone or in combination with anticancer therapies.
Collapse
|
38
|
Zhao Y, Wang C, Wang C, Hong X, Miao J, Liao Y, Zhou L, Liu Y. An essential role for Wnt/β-catenin signaling in mediating hypertensive heart disease. Sci Rep 2018; 8:8996. [PMID: 29895976 PMCID: PMC5997634 DOI: 10.1038/s41598-018-27064-2] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 05/24/2018] [Indexed: 12/11/2022] Open
Abstract
Activation of the renin-angiotensin system (RAS) is associated with hypertension and heart disease. However, how RAS activation causes cardiac lesions remains elusive. Here we report the involvement of Wnt/β-catenin signaling in this process. In rats with chronic infusion of angiotensin II (Ang II), eight Wnt ligands were induced and β-catenin activated in both cardiomyocytes and cardiac fibroblasts. Blockade of Wnt/β-catenin signaling by small molecule inhibitor ICG-001 restrained Ang II-induced cardiac hypertrophy by normalizing heart size and inhibiting hypertrophic marker genes. ICG-001 also attenuated myocardial fibrosis and inhibited α-smooth muscle actin, fibronectin and collagen I expression. These changes were accompanied by a reduced expression of atrial natriuretic peptide and B-type natriuretic peptide. Interestingly, ICG-001 also lowered blood pressure induced by Ang II. In vitro, Ang II induced multiple Wnt ligands and activated β-catenin in rat primary cardiomyocytes and fibroblasts. ICG-001 inhibited myocyte hypertrophy and Snail1, c-Myc and atrial natriuretic peptide expression, and abolished the fibrogenic effect of Ang II in cardiac fibroblasts. Finally, recombinant Wnt3a was sufficient to induce cardiomyocyte injury and fibroblast activation in vitro. Taken together, these results illustrate an essential role for Wnt/β-catenin in mediating hypertension, cardiac hypertrophy and myocardial fibrosis. Therefore, blockade of this pathway may be a novel strategy for ameliorating hypertensive heart disease.
Collapse
Affiliation(s)
- Yue Zhao
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chunhong Wang
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Cong Wang
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xue Hong
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jinhua Miao
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yulin Liao
- Division of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lili Zhou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Youhua Liu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
39
|
Giamouridis D, Gao MH, Lai NC, Tan Z, Kim YC, Guo T, Miyanohara A, Blankesteijn WM, Biessen E, Hammond HK. Effects of Urocortin 2 Versus Urocortin 3 Gene Transfer on Left Ventricular Function and Glucose Disposal. JACC Basic Transl Sci 2018; 3:249-264. [PMID: 30062211 PMCID: PMC6059348 DOI: 10.1016/j.jacbts.2017.12.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 12/13/2017] [Accepted: 12/21/2017] [Indexed: 12/20/2022]
Abstract
UCn2 and UCn3 peptides have recently been infused to treat patients with heart failure (HF) but are limited by their short half-lives. A 1-time intravenous injection of virus vectors encoding UCn2 or UCn3 provided sustained increases in plasma concentrations of the peptides. This was associated with increases in both systolic and diastolic left ventricular (LV) function, mediated by increased LV SERCA2a expression and Ca2+ handling. UCn2, but not UCn3, gene transfer reduced fasting glucose and increased glucose disposal. These findings support UCn2 and UCn3 gene transfer as potential treatments for HF and indicate that UCn2 may be an optimal selection in patients with diabetes and HF.
Collapse
Key Words
- AAV, adeno-associated virus
- CO, cardiac output
- CRF, corticotropin-releasing factor
- CRHR, corticotropin-releasing hormone receptor
- CaMKII, Ca2+/calmodulin-dependent protein kinase II
- EDD, end-diastolic diameter
- EF, ejection fraction
- ESD, end-systolic diameter
- ESPVR, end-systolic pressure-volume relationship
- HF, heart failure
- IP, intraperitoneal
- IV, intravenous
- LV, left ventricle/ventricular
- PKA, protein kinase A
- RYR2, ryanodine receptor 2
- SERCA2a, sarco/endoplasmic reticulum Ca2+-ATPase
- Tau, time constant of left ventricular pressure decline
- UCn2, urocortin 2
- UCn3, urocortin 3
- VCFc, velocity of circumferential fiber shortening corrected for heart rate
- adeno-associated virus
- cAMP, 3′,5′-cyclic adenosine monophosphate
- contractile function
- diastolic function
- gc, genome copies
- gene therapy
- insulin sensitivity
Collapse
Affiliation(s)
- Dimosthenis Giamouridis
- Department of Medicine, Veterans Affairs San Diego Healthcare System, San Diego, California
- Department of Medicine, University of California San Diego, San Diego, California
- Department of Pharmacology and Toxicology, Cardiovascular Research Institute Maastricht University, Maastricht, the Netherlands
| | - Mei Hua Gao
- Department of Medicine, Veterans Affairs San Diego Healthcare System, San Diego, California
- Department of Medicine, University of California San Diego, San Diego, California
| | - N. Chin Lai
- Department of Medicine, Veterans Affairs San Diego Healthcare System, San Diego, California
- Department of Medicine, University of California San Diego, San Diego, California
| | - Zhen Tan
- Department of Medicine, Veterans Affairs San Diego Healthcare System, San Diego, California
- Department of Medicine, University of California San Diego, San Diego, California
| | - Young Chul Kim
- Department of Medicine, Veterans Affairs San Diego Healthcare System, San Diego, California
- Department of Medicine, University of California San Diego, San Diego, California
| | - Tracy Guo
- Department of Medicine, Veterans Affairs San Diego Healthcare System, San Diego, California
- Department of Medicine, University of California San Diego, San Diego, California
| | - Atsushi Miyanohara
- Department of Medicine, University of California San Diego, San Diego, California
| | - W. Matthijs Blankesteijn
- Department of Pharmacology and Toxicology, Cardiovascular Research Institute Maastricht University, Maastricht, the Netherlands
| | - Erik Biessen
- Department of Pharmacology and Toxicology, Cardiovascular Research Institute Maastricht University, Maastricht, the Netherlands
| | - H. Kirk Hammond
- Department of Medicine, Veterans Affairs San Diego Healthcare System, San Diego, California
- Department of Medicine, University of California San Diego, San Diego, California
| |
Collapse
|
40
|
Jin L, Piao ZH, Liu CP, Sun S, Liu B, Kim GR, Choi SY, Ryu Y, Kee HJ, Jeong MH. Gallic acid attenuates calcium calmodulin-dependent kinase II-induced apoptosis in spontaneously hypertensive rats. J Cell Mol Med 2017; 22:1517-1526. [PMID: 29266709 PMCID: PMC5824377 DOI: 10.1111/jcmm.13419] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 09/21/2017] [Indexed: 11/28/2022] Open
Abstract
Hypertension causes cardiac hypertrophy and leads to heart failure. Apoptotic cells are common in hypertensive hearts. Ca2+/calmodulin‐dependent protein kinase II (CaMKII) is associated with apoptosis. We recently demonstrated that gallic acid reduces nitric oxide synthase inhibition‐induced hypertension. Gallic acid is a trihydroxybenzoic acid and has been shown to have beneficial effects, such as anti‐cancer, anti‐calcification and anti‐oxidant activity. The purpose of this study was to determine whether gallic acid regulates cardiac hypertrophy and apoptosis in essential hypertension. Gallic acid significantly lowered systolic and diastolic blood pressure in spontaneously hypertensive rats (SHRs). Wheat germ agglutinin (WGA) and H&E staining revealed that gallic acid reduced cardiac enlargement in SHRs. Gallic acid treatment decreased cardiac hypertrophy marker genes, including atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP), in SHRs. The four isoforms, α, β, δ and γ, of CaMKII were increased in SHRs and were significantly reduced by gallic acid administration. Gallic acid reduced cleaved caspase‐3 protein as well as bax, p53 and p300 mRNA levels in SHRs. CaMKII δ overexpression induced bax and p53 expression, which was attenuated by gallic acid treatment in H9c2 cells. Gallic acid treatment reduced DNA fragmentation and the TUNEL positive cells induced by angiotensin II. Taken together, gallic acid could be a novel therapeutic for the treatment of hypertension through suppression of CaMKII δ‐induced apoptosis.
Collapse
Affiliation(s)
- Li Jin
- Heart Research Center of Chonnam National University Hospital, Gwangju, Korea.,Jilin Hospital Affiliated with Jilin University, Chuanying, Jilin, China
| | - Zhe Hao Piao
- The Second Hospital of Jilin University, Nanguan, Changchun, China
| | - Chun Ping Liu
- Jilin Hospital Affiliated with Jilin University, Chuanying, Jilin, China
| | - Simei Sun
- Heart Research Center of Chonnam National University Hospital, Gwangju, Korea
| | - Bin Liu
- The Second Hospital of Jilin University, Nanguan, Changchun, China
| | - Gwi Ran Kim
- Heart Research Center of Chonnam National University Hospital, Gwangju, Korea
| | - Sin Young Choi
- Heart Research Center of Chonnam National University Hospital, Gwangju, Korea
| | - Yuhee Ryu
- Heart Research Center of Chonnam National University Hospital, Gwangju, Korea
| | - Hae Jin Kee
- Heart Research Center of Chonnam National University Hospital, Gwangju, Korea
| | - Myung Ho Jeong
- Heart Research Center of Chonnam National University Hospital, Gwangju, Korea
| |
Collapse
|
41
|
Goncalves GK, Scalzo S, Alves AP, Agero U, Guatimosim S, Reis AM. Neonatal cardiomyocyte hypertrophy induced by endothelin-1 is blocked by estradiol acting on GPER. Am J Physiol Cell Physiol 2017; 314:C310-C322. [PMID: 29167148 DOI: 10.1152/ajpcell.00060.2017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Estradiol (E2) prevents cardiac hypertrophy, and these protective actions are mediated by estrogen receptor (ER)α and ERβ. The G protein-coupled estrogen receptor (GPER) mediates many estrogenic effects, and its activation in the heart has been observed in ischemia and reperfusion injury or hypertension models; however, the underlying mechanisms need to be fully elucidated. Herein, we investigated whether the protective effect of E2 against cardiomyocyte hypertrophy induced by endothelin-1 (ET-1) is mediated by GPER and the signaling pathways involved. Isolated neonatal female rat cardiomyocytes were treated with ET-1 (100 nmol/l) for 48 h in the presence or absence of E2 (10 nmol/l) or GPER agonist G-1 (10 nmol/l) and GPER antagonist G-15 (10 nmol/l). ET-1 increased the surface area of cardiomyocytes, and this was associated with increased expression of atrial and brain natriuretic peptides. Additionally, ET-1 increased the phosphorylation of extracellular signal-related protein kinases-1/2 (ERK1/2). Notably, E2 or G-1 abolished the hypertrophic actions of ET-1, and that was reversed by G-15. Likewise, E2 reversed the ET-1-mediated increase of ERK1/2 phosphorylation as well as the decrease of phosphorylated Akt and its upstream activator 3-phosphoinositide-dependent protein kinase-1 (PDK1). These effects were inhibited by G-15, indicating that they are GPER dependent. Confirming the participation of GPER, siRNA silencing of GPER inhibited the antihypertrophic effect of E2. In conclusion, E2 plays a key role in antagonizing ET-1-induced hypertrophy in cultured neonatal cardiomyocytes through GPER signaling by a mechanism involving activation of the PDK1 pathway, which would prevent the increase of ERK1/2 activity and consequently the development of hypertrophy.
Collapse
Affiliation(s)
- Gleisy Kelly Goncalves
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais , Belo Horizonte, Minas Gerais , Brazil
| | - Sergio Scalzo
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais , Belo Horizonte, Minas Gerais , Brazil
| | - Ana Paula Alves
- Departament of Physics, Universidade Federal de Minas Gerais , Belo Horizonte, Minas Gerais , Brazil
| | - Ubirajara Agero
- Departament of Physics, Universidade Federal de Minas Gerais , Belo Horizonte, Minas Gerais , Brazil
| | - Silvia Guatimosim
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais , Belo Horizonte, Minas Gerais , Brazil
| | - Adelina M Reis
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais , Belo Horizonte, Minas Gerais , Brazil
| |
Collapse
|
42
|
Li J, Yuan YP, Xu SC, Zhang N, Xu CR, Wan CX, Ren J, Zeng XF, Tang QZ. Arctiin protects against cardiac hypertrophy through inhibiting MAPKs and AKT signaling pathways. J Pharmacol Sci 2017; 135:97-104. [DOI: 10.1016/j.jphs.2017.05.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 05/11/2017] [Accepted: 05/15/2017] [Indexed: 12/20/2022] Open
|
43
|
Zhong P, Quan D, Peng J, Xiong X, Liu Y, Kong B, Huang H. Role of CaMKII in free fatty acid/hyperlipidemia-induced cardiac remodeling both in vitro and in vivo. J Mol Cell Cardiol 2017; 109:1-16. [DOI: 10.1016/j.yjmcc.2017.06.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 06/19/2017] [Accepted: 06/27/2017] [Indexed: 01/24/2023]
|
44
|
Cipolletta E, Del Giudice C, Santulli G, Trimarco B, Iaccarino G. Opposite effects of β 2-adrenoceptor gene deletion on insulin signaling in liver and skeletal muscle. Nutr Metab Cardiovasc Dis 2017; 27:615-623. [PMID: 28684080 DOI: 10.1016/j.numecd.2017.05.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 05/21/2017] [Accepted: 05/29/2017] [Indexed: 02/04/2023]
Abstract
BACKGROUND AND AIM β2-Adrenoceptors (β2-ARs) are G protein-coupled receptors (GPCRs) expressed in the major insulin target tissues. The interplay between β2-AR and insulin pathways is involved in the maintenance of glucose homeostasis. The aim of this study was to explore the consequences of β2-ARs deletion on insulin sensitivity and insulin signaling cascade in metabolically active tissues. METHODS AND RESULTS We evaluated glucose homeostasis in skeletal muscle and liver of β2-AR-null mice (β2-AR-/-) by performing in vivo (glucose tolerance test and insulin tolerance test) and ex vivo (glucose uptake and glycogen determination) experiments. β2-AR gene deletion is associated with hepatic insulin resistance and preserved skeletal muscle insulin sensitivity. Importantly, we demonstrate that hepatic β2-AR regulates insulin-induced AKT activation via Grb2-mediated SRC recruitment through a Gi-independent mechanism. CONCLUSIONS β-AR stimulation contributes to the development of early stages of insulin resistance progression in the liver. Our findings indicate that the cross-talk between β2-AR and insulin signaling represents a fundamental target towards the development of novel therapeutic approaches to treat type 2 diabetes and metabolic syndrome.
Collapse
MESH Headings
- Animals
- Blood Glucose/metabolism
- Cells, Cultured
- GRB2 Adaptor Protein/metabolism
- GTP-Binding Protein alpha Subunits, Gi-Go/metabolism
- Genotype
- Homeostasis
- Insulin/metabolism
- Insulin Resistance
- Liver/metabolism
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle, Skeletal/metabolism
- Phenotype
- Proto-Oncogene Proteins c-akt/metabolism
- Receptors, Adrenergic, beta-2/deficiency
- Receptors, Adrenergic, beta-2/genetics
- Receptors, Adrenergic, beta-2/metabolism
- Signal Transduction
- Time Factors
- Transduction, Genetic
- src-Family Kinases/metabolism
Collapse
Affiliation(s)
- E Cipolletta
- Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, University of Salerno, Salerno, Italy
| | - C Del Giudice
- Department of Advanced Biomedical Science, Federico II University, Naples, Italy
| | - G Santulli
- Department of Advanced Biomedical Science, Federico II University, Naples, Italy
| | - B Trimarco
- Department of Advanced Biomedical Science, Federico II University, Naples, Italy
| | - G Iaccarino
- Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, University of Salerno, Salerno, Italy.
| |
Collapse
|
45
|
Wongrakpanich A, Morris AS, Geary SM, Joiner MLA, Salem AK. Surface-modified particles loaded with CaMKII inhibitor protect cardiac cells against mitochondrial injury. Int J Pharm 2017; 520:275-283. [PMID: 28167264 DOI: 10.1016/j.ijpharm.2017.01.061] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 01/16/2017] [Accepted: 01/28/2017] [Indexed: 12/30/2022]
Abstract
An excess of calcium (Ca2+) influx into mitochondria during mitochondrial re-energization is one of the causes of myocardial cell death during ischemic/reperfusion injury. This overload of Ca2+ triggers the mitochondrial permeability transition pore (mPTP) opening which leads to programmed cell death. During the ischemic/reperfusion stage, the activated Ca2+/calmodulin-dependent protein kinase II (CaMKII) enzyme is responsible for Ca2+ influx. To reduce CaMKII-related cell death, sub-micron particles composed of poly(lactic-co-glycolic acid) (PLGA), loaded with a CaMKII inhibitor peptide were fabricated. The CaMKII inhibitor peptide-loaded (CIP) particles were coated with a mitochondria targeting moiety, triphenylphosphonium cation (TPP), which allowed the particles to accumulate and release the peptide inside mitochondria to inhibit CaMKII activity. The fluorescently labeled TPP-CIP was taken up by mitochondria and successfully reduced reactive oxygen species (ROS) caused by Isoprenaline (ISO) in a differentiated rat cardiomyocyte-like cell line. When cells were treated with TPP-CIP prior to ISO exposure, they maintained mitochondrial membrane potential. The TPP-CIP protected cells from ISO-induced ROS production and decreased mitochondrial membrane potential. Thus, TPP-CIP has the potential to be used in protection against ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Amaraporn Wongrakpanich
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, United States; Department of Pharmacy, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand.
| | - Angie S Morris
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, United States
| | - Sean M Geary
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, United States
| | - Mei-Ling A Joiner
- Department of Molecular Physiology & Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA 52241, United States.
| | - Aliasger K Salem
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, United States.
| |
Collapse
|
46
|
Chang Y, Li Y, Guo X, Li T, Chen Y, Dai D, Sun Y. The association of ideal cardiovascular health and left ventricle hypertrophy in rural population of northeast China: A cross-sectional observational study. Medicine (Baltimore) 2017; 96:e6050. [PMID: 28178152 PMCID: PMC5313009 DOI: 10.1097/md.0000000000006050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
In 2010, the American Heart Association (AHA) published a new concept "ideal cardiovascular health" (CVH), which consisted of 4 behaviors (smoking, body mass index [BMI], physical activity, and diet score) and 3 health factors (total cholesterol [TC], blood pressure [BP], and fasting plasma glucose [FPG]). This study was aimed to investigate the association between CVH with left ventricle hypertrophy (LVH) in a rural general population.From January 2012 to August 2013, we conducted this cross-sectional study using a multi-stage cluster sampling method. A representative sample of individuals who were at 35 years or older was selected. All the 7 CVH metrics were estimated for ideal, intermediate, and poor levels. LVH was accessed by echocardiography and classified into concentric remodeling, concentric LVH, and eccentric LVH. The association between CVH and LVH was determined.The final data were obtained from 10,684 adults (5497 men and 5187 women) in the rural areas of northeast China. Overall, the prevalence rates of concentric remodeling, concentric LVH, and eccentric LVH were 5.1%, 4.9%, and 12.8%, respectively. The prevalence of concentric/eccentric LVH was inversely related to the numbers of ideal CVH metrics. Multivariate logistic regression analysis indicated that only poor BP was associated with concentric remodeling among the 7 CVH metrics; poor BP was highly associated with concentric LVH (OR: 8.49; 95% CI: 4.59-15.7); poor BMI was highly associated with eccentric LVH (OR: 5.87; 95% CI: 4.83-7.14). Compared to subjects with 5 to 7 ideal CVH metrics, subjects with 4, 3, 2, 1, and 0 ideal CVH metrics had an increased risk for both concentric and eccentric LVH in a number-dependent manner. The subjects with poor CVH status had a 5.90-fold higher risk of developing concentric LVH and a 3.24-fold higher risk of developing eccentric LVH, compared to subjects with ideal-intermediate CVH.Our study found that an inversely gradient relationship existed between the prevalence of concentric/eccentric LVH with the numbers of ideal CVH metrics. Although not all the 7 CVH metrics were associated with LVH, the components of CVH metrics carried a synergistic effect beyond the risk related to the component alone.
Collapse
Affiliation(s)
| | | | | | - Tan Li
- Department of Cardiovascular Ultrasound, the First Hospital of China Medical University, Shenyang, People's Republic of China
| | | | | | | |
Collapse
|
47
|
Rocha-Resende C, Guedes de Jesus IC, Roman-Campos D, Miranda AS, Alves F, Resende RR, Dos Santos Cruz J, Machado FS, Guatimosim S. Absence of suppressor of cytokine signaling 2 turns cardiomyocytes unresponsive to LIF-dependent increases in Ca 2+ levels. Am J Physiol Cell Physiol 2017; 312:C478-C486. [PMID: 28122728 DOI: 10.1152/ajpcell.00004.2016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 01/10/2017] [Accepted: 01/10/2017] [Indexed: 01/12/2023]
Abstract
Little is known regarding the role of suppressor of cytokine signaling (SOCS) in the control of cytokine signaling in cardiomyocytes. We investigated the consequences of SOCS2 ablation for leukemia inhibitory factor (LIF)-induced enhancement of intracellular Ca2+ ([Ca2+]i) transient by performing experiments with cardiomyocytes from SOCS2-knockout (ko) mice. Similar levels of SOCS3 transcripts were seen in cardiomyocytes from wild-type and SOCS2-ko mice, while SOCS1 mRNA was reduced in SOCS2-ko. Immunoprecipitation experiments showed increased SOCS3 association with gp130 receptor in SOCS2-ko myocytes. Measurements of Ca2+ in wild-type myocytes exposed to LIF showed a significant increase in the magnitude of the Ca2+ transient. This change was absent in LIF-treated SOCS2-ko cells. LIF activation of ERK and STAT3 was observed in both wild-type and SOCS2-ko cells, indicating that in SOCS2-ko, LIF receptors were functional, despite the lack of effect in the Ca2+ transient. In wild-type cells, LIF-induced increase in [Ca2+]i and phospholamban Thr17 [PLN(Thr17)] phosphorylation was inhibited by KN-93, indicating a role for CaMKII in LIF-induced Ca2+ raise. LIF-induced phosphorylation of PLN(Thr17) was abrogated in SOCS2-ko myocytes. In wild-type cardiomyocytes, LIF treatment increased L-type Ca2+ current (ICa,L), a key activator of CaMKII in response to LIF. Conversely, SOCS2-ko myocytes failed to activate ICa,L in response to LIF, providing a rationale for the lack of LIF effect on Ca2+ transient. Our data show that absence of SOCS2 turns cardiomyocytes unresponsive to LIF-induced [Ca2+] raise, indicating that endogenous levels of SOCS2 are crucial for full activation of LIF signaling in the heart.
Collapse
Affiliation(s)
- Cibele Rocha-Resende
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Itamar Couto Guedes de Jesus
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Danilo Roman-Campos
- Department of Biophysics, Paulista School of Medicine, Universidade Federal de São Paulo, Sao Paulo, Brazil
| | - Artur S Miranda
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; and
| | - Fabiana Alves
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Rodrigo Ribeiro Resende
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; and
| | - Jader Dos Santos Cruz
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; and
| | - Fabiana Simão Machado
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; and
| | - Silvia Guatimosim
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil;
| |
Collapse
|
48
|
Zhang P. CaMKII: The molecular villain that aggravates cardiovascular disease. Exp Ther Med 2017; 13:815-820. [PMID: 28450904 PMCID: PMC5403363 DOI: 10.3892/etm.2017.4034] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 01/05/2017] [Indexed: 01/03/2023] Open
Abstract
Pathological remodeling of the myocardium is an integral part of the events that lead to heart failure (HF), which involves altered gene expression, disturbed signaling pathways and altered Ca2+ homeostasis and the players involved in this process. Of particular interest is the chronic activation of Ca2+/calmodulin-dependent protein kinase II (CaMKII) isoforms in heart, which further aggravate the injury to myocardium. Expression and activity of CaMKII have been found to be elevated in various conditions of stressed myocardium and in different heart diseases in both animal models as well as heart patients. CaMKII is a signaling molecule that regulates many cellular pathways by phosphorylating several proteins involved in excitation-contraction coupling and relaxation events in heart, cardiomyocyte apoptosis, transcriptional activation of genes related to cardiac hypertrophy, inflammation, and arrhythmias. CaMKII is activated by reactive oxygen species (ROS), which are elevated under conditions of ischemia-reperfusion injury and in a cyclical manner, CaMKII in turn elevates ROS production. Both ROS and activated CaMKII increase Ca-induced Ca release from sarcoplasmic reticulum, which leads to cardiomyocyte membrane depolarization and arrhythmias. These CaMKII-mediated changes in heart ultimately culminate in dysfunctional myocardium and HF. Genetic studies in animal models clearly demonstrated that inactivation of CaMKII is protective against a variety of stress induced cardiac dysfunctions. Despite significant leaps in understanding the structural details of CaMKII, which is a very complicated and multimeric modular protein, currently there is no specific and potent inhibitor of this enzyme, that can be developed for therapeutic purposes.
Collapse
Affiliation(s)
- Peiying Zhang
- Department of Cardiology, Xuzhou Central Hospital, The Affiliated Xuzhou Hospital of Medical College of Southeast University, Xuzhou, Jiangsu 221009, P.R. China
| |
Collapse
|
49
|
Sodium Ferulate Protects against Angiotensin II-Induced Cardiac Hypertrophy in Mice by Regulating the MAPK/ERK and JNK Pathways. BIOMED RESEARCH INTERNATIONAL 2017; 2017:3754942. [PMID: 28164119 PMCID: PMC5259600 DOI: 10.1155/2017/3754942] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Revised: 10/18/2016] [Accepted: 11/02/2016] [Indexed: 11/17/2022]
Abstract
Background and Objective. It has been reported that sodium ferulate (SF) has hematopoietic function against anemia and immune regulation, inflammatory reaction inhibition, inhibition of tumor cell proliferation, cardiovascular and cerebrovascular protection, and other functions. Thus, this study aimed to investigate the effects of SF on angiotensin II- (AngII-) induced cardiac hypertrophy in mice through the MAPK/ERK and JNK signaling pathways. Methods. Seventy-two male C57BL/6J mice were selected and divided into 6 groups: control group, PBS group, model group (AngII), model + low-dose SF group (AngII + 10 mg/kg SF), model + high-dose SF group (AngII + 40 mg/kg SF), and model + high-dose SF + agonist group (AngII + 40 mg/kg SCU + 10 mg/kg TBHQ). After 7 d/14 d/28 days of treatments, the changes of blood pressure and heart rates of mice were compared. The morphology of myocardial tissue and the apoptosis rate of myocardial cells were observed. The mRNA and protein expressions of atrial natriuretic peptide (ANP), transforming growth factor-β (TGF-β), collagen III (Col III), and MAPK/ERK and JNK pathway-related proteins were detected after 28 days of treatments. Results. SF improved the mice's cardiac abnormality and decreased the apoptosis rate of myocardial cells in a time- and dose-dependent manner (all P < 0.05). MAPK/ERK pathway activator inhibited the protective effect of SF in myocardial tissue of mice (P < 0.05). SF could inhibit the expression of p-ERK, p-p38MAPK, and p-JNK and regulate the expressions of ANP, TGF-β, and Col III (all P < 0.05). Conclusion. Our findings provide evidence that SF could protect against AngII-induced cardiac hypertrophy in mice by downregulating the MAPK/ERK and JNK pathways.
Collapse
|
50
|
Maione AS, Cipolletta E, Sorriento D, Borriello F, Soprano M, Rusciano MR, D'Esposito V, Markabaoui AK, De Palma GD, Martino G, Maresca L, Nobile G, Campiglia P, Formisano P, Ciccarelli M, Marone G, Trimarco B, Iaccarino G, Illario M. Cellular subtype expression and activation of CaMKII regulate the fate of atherosclerotic plaque. Atherosclerosis 2017; 256:53-61. [PMID: 28011257 DOI: 10.1016/j.atherosclerosis.2016.11.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 11/02/2016] [Accepted: 11/03/2016] [Indexed: 10/20/2022]
Abstract
BACKGROUND AND AIMS Atherosclerosis is a degenerative process of the arterial wall implicating activation of macrophages and proliferation of vascular smooth muscle cells. Calcium-calmodulin dependent kinase type II (CaMKII) in vascular smooth muscle cells (VSMCs) regulates proliferation, while in macrophages, this kinase governs diapedesis, infiltration and release of extracellular matrix enzymes. We aimed at understanding the possible role of CaMKII in atherosclerosis plaques to regulate plaque evolution towards stability or instability. METHODS Clinically defined stable and unstable plaques obtained from patients undergoing carotid end arteriectomy were processed for evaluation of CaMKs protein expression, activity and localization. RESULTS The larger content of CaMKII was found in CD14+myeloid cells that were more abundant in unstable rather than stable plaques. To test the biological effect of activated CD14+myeloid cells, VSMCs were exposed to the conditioned medium (CM) of macrophages extracted from carotid plaques. CM induced attenuation of CaMKs expression and activity in VSMCs, leading to the reduction of VSMCs proliferation. This appears to be due to the CaMKII dependent release of cytokines. CONCLUSIONS These results indicate a pivotal role of CaMKs in atherosclerosis by regulating activated myeloid cells on VSMCs activity. CaMKII could represent a possible target for therapeutic strategies based on macrophages specific inhibition for the stabilization of arteriosclerotic lesions.
Collapse
MESH Headings
- Aged
- Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism
- Carotid Arteries/enzymology
- Carotid Arteries/pathology
- Carotid Arteries/surgery
- Carotid Artery Diseases/enzymology
- Carotid Artery Diseases/pathology
- Carotid Artery Diseases/surgery
- Cell Proliferation
- Cells, Cultured
- Culture Media, Conditioned/metabolism
- Cytokines/metabolism
- Endarterectomy, Carotid
- Enzyme Activation
- Female
- Humans
- Macrophage Activation
- Macrophages/enzymology
- Macrophages/pathology
- Male
- Middle Aged
- Monocytes/enzymology
- Monocytes/pathology
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/enzymology
- Myocytes, Smooth Muscle/pathology
- Plaque, Atherosclerotic
- Rupture, Spontaneous
- Time Factors
Collapse
Affiliation(s)
- Angela Serena Maione
- Department of Translational Medical Science, Federico II University, Naples, Italy
| | - Ersilia Cipolletta
- Department of Medicine, Surgery Odontoiatrics-Scuola Medica Salernitana, University of Salerno, Salerno, Italy
| | - Daniela Sorriento
- Department of Advanced Biomedical Science, Federico II University, Naples, Italy
| | - Francesco Borriello
- Department of Translational Medical Science, Federico II University, Naples, Italy; Center for Basic and Clinical Immunology Research (CISI), Italy
| | - Maria Soprano
- Department of Translational Medical Science, Federico II University, Naples, Italy
| | | | - Vittoria D'Esposito
- Department of Translational Medical Science, Federico II University, Naples, Italy
| | - Abdul Karim Markabaoui
- Department of Gastroenterology, Endocrinology and Surgery, Federico II University, Naples, Italy
| | | | - Giovanni Martino
- Department of Gastroenterology, Endocrinology and Surgery, Federico II University, Naples, Italy
| | - Lucio Maresca
- AziendadeiColli Hospital, Department of Vascular Surgery, Naples, Italy
| | - Giuseppe Nobile
- AziendadeiColli Hospital, Department of Vascular Surgery, Naples, Italy
| | | | - Pietro Formisano
- Department of Translational Medical Science, Federico II University, Naples, Italy
| | - Michele Ciccarelli
- Department of Medicine, Surgery Odontoiatrics-Scuola Medica Salernitana, University of Salerno, Salerno, Italy
| | - Gianni Marone
- Department of Translational Medical Science, Federico II University, Naples, Italy; Center for Basic and Clinical Immunology Research (CISI), Italy; CNR Institute of Experimental Endocrinology and Oncology "G. Salvatore", Naples, Italy
| | - Bruno Trimarco
- Department of Advanced Biomedical Science, Federico II University, Naples, Italy
| | - Guido Iaccarino
- Department of Medicine, Surgery Odontoiatrics-Scuola Medica Salernitana, University of Salerno, Salerno, Italy
| | - Maddalena Illario
- Department of Translational Medical Science, Federico II University, Naples, Italy; Federico II University and Hospital, Naples, Italy.
| |
Collapse
|