1
|
Reul ON, Surowiec RK, Chowdhury NN, Segvich DM, Wallace JM. Skeletal impacts of dual in vivo compressive axial tibial and ulnar loading in mice. J Mech Behav Biomed Mater 2025; 165:106950. [PMID: 39961220 PMCID: PMC11893231 DOI: 10.1016/j.jmbbm.2025.106950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/03/2025] [Accepted: 02/12/2025] [Indexed: 03/12/2025]
Abstract
The use of compressive axial tibial loading for evaluation of bone adaptation and mechanotransduction has become a common technique in recent years. Despite its popularity, it only produces a single experimental limb per animal which can escalate sample sizes depending on study endpoints. We hypothesized the combination of compressive axial tibial and ulnar loading in a single animal would induce bone formation in loaded limbs, providing two experimental limbs per animal thereby reducing the animals required per study by half. Male and female C57BL/6J mice were purchased at 9 and 19 weeks (wks). Based on sex and age they were divided into 4 groups of N = 17. From each group, N = 5 were sacrificed at 10 and 20 wks for strain gauge calibration. At 11 wks and 21 wks, the left ulnae and right tibiae of the remaining animals (N = 12/group) were loaded 3 days/week for 4 weeks. Tibiae of all groups experienced significant increases in architectural properties due to loading in both trabecular and cortical compartments while there were no significant improvements in the ulna. Female tibiae showed improvements in mechanical properties, but these were not observed in the male tibiae where detrimental impacts were observed. In the ulna, females showed limited mechanical changes due to loading. Contrastingly, loading in males at 11 wks led to decreased mechanical properties while at 21 wks no impacts were observed. Overall, reported beneficial impacts of loading in tibiae were observed in architectural properties but were not maintained in the males' mechanical properties. Impacts of ulnar loading on architectural and whole bone mechanical properties that have been reported elsewhere were not observed in any groups. These data suggest when architectural and mechanical properties are end points, combined loading is not optimal for reducing the number of animals required per study.
Collapse
Affiliation(s)
- Olivia N Reul
- Weldon School of Biomedical Engineering, Purdue University, Indianapolis, IN, United States
| | - Rachel K Surowiec
- Weldon School of Biomedical Engineering, Purdue University, Indianapolis, IN, United States
| | - Nusaiba N Chowdhury
- Weldon School of Biomedical Engineering, Purdue University, Indianapolis, IN, United States
| | - Dyann M Segvich
- Weldon School of Biomedical Engineering, Purdue University, Indianapolis, IN, United States
| | - Joseph M Wallace
- Weldon School of Biomedical Engineering, Purdue University, Indianapolis, IN, United States.
| |
Collapse
|
2
|
Creecy A, Segvich D, Metzger C, Kohler R, Wallace JM. Combining anabolic loading and raloxifene improves bone quantity and some quality measures in a mouse model of osteogenesis imperfecta. Bone 2024; 184:117106. [PMID: 38641232 PMCID: PMC11130993 DOI: 10.1016/j.bone.2024.117106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/20/2024] [Accepted: 04/15/2024] [Indexed: 04/21/2024]
Abstract
Osteogenesis imperfecta (OI) increases fracture risk due to changes in bone quantity and quality caused by mutations in collagen and its processing proteins. Current therapeutics improve bone quantity, but do not treat the underlying quality deficiencies. Male and female G610C+/- mice, a murine model of OI, were treated with a combination of raloxifene and in vivo axial tibial compressive loading starting at 10 weeks of age and continuing for 6 weeks to improve bone quantity and quality. Bone geometry and mechanical properties were measured to determine whole bone and tissue-level material properties. A colocalized Raman/nanoindentation system was used to measure chemical composition and nanomechanical properties in newly formed bone compared to old bone to determine if bone formed during the treatment regimen differed in quality compared to bone formed prior to treatment. Lastly, lacunar geometry and osteocyte apoptosis were assessed. OI mice were able to build bone in response to the loading, but this response was less robust than in control mice. Raloxifene improved some bone material properties in female but not male OI mice. Raloxifene did not alter nanomechanical properties, but loading did. Lacunar geometry was largely unchanged with raloxifene and loading. However, osteocyte apoptosis was increased with loading in raloxifene treated female mice. Overall, combination treatment with raloxifene and loading resulted in positive but subtle changes to bone quality.
Collapse
Affiliation(s)
- Amy Creecy
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, United States of America.
| | - Dyann Segvich
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, United States of America
| | - Corinne Metzger
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Rachel Kohler
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, United States of America
| | - Joseph M Wallace
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, United States of America
| |
Collapse
|
3
|
Surowiec RK, Reul ON, Chowdhury NN, Rai RK, Segvich D, Tomaschke AA, Damrath J, Jacobson AM, Allen MR, Wallace JM. Combining raloxifene and mechanical loading improves bone composition and mechanical properties in a murine model of chronic kidney disease (CKD). Bone 2024; 183:117089. [PMID: 38575047 PMCID: PMC11210703 DOI: 10.1016/j.bone.2024.117089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/19/2024] [Accepted: 03/26/2024] [Indexed: 04/06/2024]
Abstract
INTRODUCTION Patients with chronic kidney disease (CKD) are at an alarming risk of fracture compared to age and sex-matched non-CKD individuals. Clinical and preclinical data highlight two key factors in CKD-induced skeletal fragility: cortical porosity and reduced matrix-level properties including bone hydration. Thus, strategies are needed to address these concerns to improve mechanical properties and ultimately lower fracture risk in CKD. We sought to evaluate the singular and combined effects of mechanical and pharmacological interventions on modulating porosity, bone hydration, and mechanical properties in CKD. METHODS Sixteen-week-old male C57BL/6J mice underwent a 10-week CKD induction period via a 0.2 % adenine-laced casein-based diet (n = 48) or remained as non-CKD littermate controls (Con, n = 48). Following disease induction (26 weeks of age), n = 7 CKD and n = 7 Con were sacrificed (baseline cohort) to confirm a steady-state CKD state was achieved prior to the initiation of treatment. At 27 weeks of age, all remaining mice underwent right tibial loading to a maximum tensile strain of 2050 μƐ 3× a week for five weeks with the contralateral limb as a non-loaded control. Half of the mice (equal number CKD and Con) received subcutaneous injections of 0.5 mg/kg raloxifene (RAL) 5× a week, and the other half remained untreated (UN). Mice were sacrificed at 31 weeks of age. Serum biochemistries were performed, and bi-lateral tibiae were assessed for microarchitecture, whole bone and tissue level mechanical properties, and composition including bone hydration. RESULTS Regardless of intervention, BUN and PTH were higher in CKD animals throughout the study. In CKD, the combined effects of loading and RAL were quantified as lower cortical porosity and improved mechanical, material, and compositional properties, including higher matrix-bound water. Loading was generally responsible for positive impacts in cortical geometry and structural mechanical properties, while RAL treatment improved some trabecular outcomes and material-level mechanical properties and was responsible for improvements in several compositional parameters. While control animals responded positively to loading, their bones were less impacted by the RAL treatment, showing no deformation, toughness, or bound water improvements which were all evident in CKD. Serum PTH levels were negatively correlated with matrix-bound water. DISCUSSION An effective treatment program to improve fracture risk in CKD ideally focuses on the cortical bone and considers both cortical porosity and matrix properties. Loading-induced bone formation and mechanical improvements were observed across groups, and in the CKD cohort, this included lower cortical porosity. This study highlights that RAL treatment superimposed on active bone formation may be ideal for reducing skeletal complications in CKD by forming new bone with enhanced matrix properties.
Collapse
Affiliation(s)
- Rachel K Surowiec
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States of America; Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, United States of America; Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN, United States of America.
| | - Olivia N Reul
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN, United States of America.
| | - Nusaiba N Chowdhury
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN, United States of America.
| | - Ratan K Rai
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States of America.
| | - Dyann Segvich
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN, United States of America.
| | - Andrew A Tomaschke
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN, United States of America.
| | - John Damrath
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States of America.
| | - Andrea M Jacobson
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN, United States of America.
| | - Matthew R Allen
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, IN, United States of America; Roudebush Veterans Administration Medical Center, Indianapolis, IN, United States of America.
| | - Joseph M Wallace
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN, United States of America.
| |
Collapse
|
4
|
Barak MM. Cortical and Trabecular Bone Modeling and Implications for Bone Functional Adaptation in the Mammalian Tibia. Bioengineering (Basel) 2024; 11:514. [PMID: 38790379 PMCID: PMC11118124 DOI: 10.3390/bioengineering11050514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/14/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
Bone modeling involves the addition of bone material through osteoblast-mediated deposition or the removal of bone material via osteoclast-mediated resorption in response to perceived changes in loads by osteocytes. This process is characterized by the independent occurrence of deposition and resorption, which can take place simultaneously at different locations within the bone due to variations in stress levels across its different regions. The principle of bone functional adaptation states that cortical and trabecular bone tissues will respond to mechanical stimuli by adjusting (i.e., bone modeling) their morphology and architecture to mechanically improve their mechanical function in line with the habitual in vivo loading direction. This principle is relevant to various research areas, such as the development of improved orthopedic implants, preventative medicine for osteopenic elderly patients, and the investigation of locomotion behavior in extinct species. In the present review, the mammalian tibia is used as an example to explore cortical and trabecular bone modeling and to examine its implications for the functional adaptation of bones. Following a short introduction and an exposition on characteristics of mechanical stimuli that influence bone modeling, a detailed critical appraisal of the literature on cortical and trabecular bone modeling and bone functional adaptation is given. By synthesizing key findings from studies involving small mammals (rodents), large mammals, and humans, it is shown that examining both cortical and trabecular bone structures is essential for understanding bone functional adaptation. A combined approach can provide a more comprehensive understanding of this significant physiological phenomenon, as each structure contributes uniquely to the phenomenon.
Collapse
Affiliation(s)
- Meir M Barak
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, Long Island University, Brookville, NY 11548, USA
| |
Collapse
|
5
|
Lamantia J, Sloan K, Wallace JM, Roper RJ. Compromised femoral and lumbovertebral bone in the Dp(16)1Yey Down syndrome mouse model. Bone 2024; 181:117046. [PMID: 38336158 PMCID: PMC11000152 DOI: 10.1016/j.bone.2024.117046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/30/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
Down syndrome (DS), affecting ∼1 in 800 live births, is caused by the triplication of human chromosome 21 (Hsa21). Individuals with DS have skeletal features including craniofacial abnormalities and decreased bone mineral density (BMD). Lowered BMD can lead to increased fracture risk, with common fracture points at the femoral neck and lumbar spine. While the femur has been studied in DS mouse models, there is little research done on the vertebrae despite evidence that humans with DS have affected vertebrae. Additionally, it is important to establish when skeletal deficits occur to find times of potential intervention. The Dp(16)1Yey DS mouse model has all genes triplicated on mouse chromosome 16 orthologous to Hsa21 and displayed deficits in long bone, including trabecular and cortical deficits in male but not female mice, at 12 weeks. We hypothesized that the long bone and lumbovertebral microarchitecture would exhibit sexually dimorphic deficits in Dp(16)1Yey mice compared to control mice and long bone strength would be diminished in Dp(16)1Yey mice at 6 weeks. The trabecular region of the 4th lumbar (L4) vertebra and the trabecular and cortical regions of the femur were analyzed via micro-computed tomography and 3-point bending in 6-week-old male and female Dp(16)1Yey and control mice. Trabecular and cortical deficits were observed in femurs from male Dp(16)1Yey mice, and cortical deficits were seen in femurs of male and female Dp(16)1Yey mice. Male Dp(16)1Yey femurs had more deficits in bone strength at whole bone and tissue-estimate level properties, but female Dp(16)1Yey mice were also affected. Additionally, the L4 of male and female Dp(16)1Yey mice show trabecular deficits, which have not been previously reported in a DS mouse model. Our results indicate that skeletal deficits associated with DS occur early in skeletal development, are dependent on skeletal compartment and site, are sex dependent, and potential interventions should likely begin early in skeletal development of DS mouse models.
Collapse
Affiliation(s)
- Joshua Lamantia
- Department of Biology, Indiana University-Purdue University Indianapolis (IUPUI), United States of America
| | - Kourtney Sloan
- Department of Biology, Indiana University-Purdue University Indianapolis (IUPUI), United States of America
| | - Joseph M Wallace
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis (IUPUI), United States of America
| | - Randall J Roper
- Department of Biology, Indiana University-Purdue University Indianapolis (IUPUI), United States of America.
| |
Collapse
|
6
|
Kohler R, Creecy A, Williams DR, Allen MR, Wallace JM. Effects of novel raloxifene analogs alone or in combination with mechanical loading in the Col1a2 G610c/+ murine model of osteogenesis imperfecta. Bone 2024; 179:116970. [PMID: 37977416 PMCID: PMC10843597 DOI: 10.1016/j.bone.2023.116970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023]
Abstract
Osteogenesis imperfecta (OI) is a hereditary bone disease in which gene mutations affect collagen formation, leading to a weak, brittle bone phenotype that can cause severe skeletal deformity and increased fracture risk. OI interventions typically repurpose osteoporosis medications to increase bone mass, but this approach does not address compromised tissue-level material properties. Raloxifene (RAL) is a mild anti-resorptive used to treat osteoporosis that has also been shown to increase bone strength by a-cellularly increasing bone bound water content, but RAL cannot be administered to children due to its hormonal activity. The goal of this study was to test a RAL analog with no estrogen receptor (ER) signaling but maintained ability to reduce fracture risk. The best performing analog from a previous analog characterization project, named RAL-ADM, was tested in an in vivo study. Female wildtype (WT) and Col1a2G610C/+ (G610C) mice were randomly assigned to treated or untreated groups, for a total of 4 groups (n = 15). Starting at 10 weeks of age, all mice underwent compressive tibial loading 3×/week to induce an anabolic bone formation response in conjunction with RAL-ADM treatment (0.5 mg/kg; 5×/week) for 6 weeks. Tibiae were scanned via microcomputed tomography then tested to failure in four-point bending. RAL-ADM had reduced ER affinity, and increased post-yield properties, but did not improve bone strength in OI animals, suggesting some properties can be improved by RAL analogs but further development is needed to create an analog with decidedly positive impacts to OI bone.
Collapse
Affiliation(s)
- Rachel Kohler
- Department of Biomedical Engineering, Indiana University Purdue University of Indianapolis, Indianapolis, IN, United States
| | - Amy Creecy
- Department of Biomedical Engineering, Indiana University Purdue University of Indianapolis, Indianapolis, IN, United States
| | - David R Williams
- Department of Chemistry, Indiana University, Bloomington, IN, USA
| | - Matthew R Allen
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Joseph M Wallace
- Department of Biomedical Engineering, Indiana University Purdue University of Indianapolis, Indianapolis, IN, United States.
| |
Collapse
|
7
|
Rickman J, Burtner AE, Linden TJ, Santana SE, Law CJ. Size And Locomotor Ecology Have Differing Effects on the External and Internal Morphologies of Squirrel (Rodentia: Sciuridae) Limb Bones. Integr Org Biol 2023; 5:obad017. [PMID: 37361915 PMCID: PMC10286724 DOI: 10.1093/iob/obad017] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/19/2023] [Accepted: 05/10/2023] [Indexed: 06/28/2023] Open
Abstract
Mammals exhibit a diverse range of limb morphologies that are associated with different locomotor ecologies and structural mechanics. Much remains to be investigated, however, about the combined effects of locomotor modes and scaling on the external shape and structural properties of limb bones. Here, we used squirrels (Sciuridae) as a model clade to examine the effects of locomotor mode and scaling on the external shape and structure of the two major limb bones, the humerus and femur. We quantified humeral and femoral morphologies using 3D geometric morphometrics and bone structure analyses on a sample of 76 squirrel species across their four major ecotypes. We then used phylogenetic generalized linear models to test how locomotor ecology, size, and their interaction influenced morphological traits. We found that size and locomotor mode exhibit different relationships with the external shape and structure of the limb bones, and that these relationships differ between the humerus and femur. External shapes of the humerus and, to a lesser extent, the femur are best explained by locomotor ecology rather than by size, whereas structures of both bones are best explained by interactions between locomotor ecology and scaling. Interestingly, the statistical relationships between limb morphologies and ecotype were lost when accounting for phylogenetic relationships among species under Brownian motion. That assuming Brownian motion confounded these relationships is not surprising considering squirrel ecotypes are phylogenetically clustered; our results suggest that humeral and femoral variation partitioned early between clades and their ecomorphologies were maintained to the present. Overall, our results show how mechanical constraints, locomotor ecology, and evolutionary history may enact different pressures on the shape and structure of limb bones in mammals.
Collapse
Affiliation(s)
| | | | - T J Linden
- Department of Biology and Burke Museum of Natural History and Culture, University of Washington, Seattle, WA 98105, USA
| | - S E Santana
- Department of Biology and Burke Museum of Natural History and Culture, University of Washington, Seattle, WA 98105, USA
| | | |
Collapse
|
8
|
Sloan K, Thomas J, Blackwell M, Voisard D, Lana-Elola E, Watson-Scales S, Roper DL, Wallace JM, Fisher EMC, Tybulewicz VLJ, Roper RJ. Genetic dissection of triplicated chromosome 21 orthologs yields varying skeletal traits in Down syndrome model mice. Dis Model Mech 2023; 16:dmm049927. [PMID: 36939025 PMCID: PMC10163323 DOI: 10.1242/dmm.049927] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 03/02/2023] [Indexed: 03/21/2023] Open
Abstract
Down syndrome (DS) phenotypes result from triplicated genes, but the effects of three copy genes are not well known. A mouse mapping panel genetically dissecting human chromosome 21 (Hsa21) syntenic regions was used to investigate the contributions and interactions of triplicated Hsa21 orthologous genes on mouse chromosome 16 (Mmu16) on skeletal phenotypes. Skeletal structure and mechanical properties were assessed in femurs of male and female Dp9Tyb, Dp2Tyb, Dp3Tyb, Dp4Tyb, Dp5Tyb, Dp6Tyb, Ts1Rhr and Dp1Tyb;Dyrk1a+/+/- mice. Dp1Tyb mice, with the entire Hsa21 homologous region of Mmu16 triplicated, display bone deficits similar to those of humans with DS and served as a baseline for other strains in the panel. Bone phenotypes varied based on triplicated gene content, sex and bone compartment. Three copies of Dyrk1a played a sex-specific, essential role in trabecular deficits and may interact with other genes to influence cortical deficits related to DS. Triplicated genes in Dp9Tyb and Dp2Tyb mice improved some skeletal parameters. As triplicated genes can both improve and worsen bone deficits, it is important to understand the interaction between and molecular mechanisms of skeletal alterations affected by these genes.
Collapse
Affiliation(s)
- Kourtney Sloan
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Jared Thomas
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Matthew Blackwell
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Deanna Voisard
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | | | | | | | - Joseph M. Wallace
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | | | | | - Randall J. Roper
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| |
Collapse
|
9
|
Meslier QA, DiMauro N, Somanchi P, Nano S, Shefelbine SJ. Manipulating load-induced fluid flow in vivo to promote bone adaptation. Bone 2022; 165:116547. [PMID: 36113842 DOI: 10.1016/j.bone.2022.116547] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/01/2022] [Accepted: 09/12/2022] [Indexed: 11/02/2022]
Abstract
Mechanical stimulation is critical to maintaining bone mass and strength. Strain has been commonly thought of as the mechanical stimulus driving bone adaptation. However, numerous studies have hypothesized that fluid flow in the lacunar-canalicular system plays a role in mechanoadaptation. The role of fluid flow compared to strain magnitude on bone remodeling has yet to be characterized. This study aimed to determine the contribution of fluid flow velocity compared to strain on bone adaptation. We used finite element modeling to design in vivo experiments, manipulating strain and fluid flow contributions. Using a uniaxial compression tibia model in mice, we demonstrated that high fluid flow velocity results in significant bone adaptation even under low strain magnitude. In contrast, high strain magnitude paired with low fluid velocity does not trigger a bone response. These findings support previous hypotheses stating that fluid flow is the principal mechanical stimulus driving bone adaptation. Moreover, they give new insights regarding bone adaptative response and provide new pathways toward treatment against age-related mechanosensitivity loss in bone.
Collapse
Affiliation(s)
- Quentin A Meslier
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Nicole DiMauro
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Priya Somanchi
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Sarah Nano
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Sandra J Shefelbine
- Department of Bioengineering, Northeastern University, Boston, MA, USA; Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA, USA.
| |
Collapse
|
10
|
Migotsky N, Brodt MD, Cheverud JM, Silva MJ. Cortical bone relationships are maintained regardless of sex and diet in a large population of LGXSM advanced intercross mice. Bone Rep 2022; 17:101615. [PMID: 36091331 PMCID: PMC9449555 DOI: 10.1016/j.bonr.2022.101615] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/06/2022] [Accepted: 08/25/2022] [Indexed: 10/25/2022] Open
Abstract
Introduction Knowledge of bone structure-function relationships in mice has been based on relatively small sample sets that limit generalizability. We sought to investigate structure-function relationships of long bones from a large population of genetically diverse mice. Therefore, we analyzed previously published data from the femur and radius of male and female mice from the F34 generation of the Large-by-Small advanced intercross line (LGXSM AI), which have over a two-fold continuous spread of bone and body sizes (Silva et al. 2019 JBMR). Methods Morphological traits, mechanical properties, and estimated material properties were collected from the femur and radius from 1113 LGXSM AI adult mice (avg. age 25 wks). Males and females fed a low-fat or high-fat diet were evaluated to increase population variation. The data were analyzed using principal component analysis (PCA), Pearson's correlation, and multivariate linear regression. Results Using PCA groupings and hierarchical clustering, we identified a reduced set of traits that span the population variation and are relatively independent of each other. These include three morphometry parameters (cortical area, medullary area, and length), two mechanical properties (ultimate force and post-yield displacement), and one material property (ultimate stress). When comparing traits of the femur to the radius, morphological traits are moderately well correlated (r2: 0.18-0.44) and independent of sex and diet. However, mechanical and material properties are weakly correlated or uncorrelated between the long bones. Ultimate force can be predicted from morphology with moderate accuracy for both long bones independent of variations due to genetics, sex, or diet; however, predictions miss up to 50 % of the variation in the population. Estimated material properties in the femur are moderately to strongly correlated with bone size parameters, while these correlations are very weak in the radius. Discussion Our results indicate that variation in cortical bone phenotype in the F34 LGXSM AI mouse population can be adequately described by a reduced set of bone traits. These traits include cortical area, medullary area, bone length, ultimate force, post-yield displacement, and ultimate stress. The weak correlation of mechanical and material properties between the femur and radius indicates that the results from routine three-point bending tests of one long bone (e.g., femur) may not be generalizable to another long bone (e.g., radius). Additionally, these properties could not be fully predicted from bone morphology alone, confirming the importance of mechanical testing. Finally, material properties of the femur estimated based on beam theory equations showed a strong dependence on geometry that was not seen in the radius, suggesting that differences in femur size within a study may confound interpretation of estimated material properties.
Collapse
Affiliation(s)
- Nicole Migotsky
- Department of Orthopaedic Surgery and Musculoskeletal Research Center, Washington University in St. Louis, 660 S. Euclid, St. Louis, MO 63110, United States of America
- Department of Biomedical Engineering, Washington University in St. Louis, 1 Brookings Drive, St. Louis, MO 63130, United States of America
- Corresponding author at: Department of Orthopaedic Surgery and Musculoskeletal Research Center, Washington University in St. Louis, 660 S. Euclid, St. Louis, MO 63110, United States of America.
| | - Michael D. Brodt
- Department of Orthopaedic Surgery and Musculoskeletal Research Center, Washington University in St. Louis, 660 S. Euclid, St. Louis, MO 63110, United States of America
| | - James M. Cheverud
- Department of Biology, Loyola University, 1032 W. Sheridan Road, Chicago, IL 60660, United States of America
| | - Matthew J. Silva
- Department of Orthopaedic Surgery and Musculoskeletal Research Center, Washington University in St. Louis, 660 S. Euclid, St. Louis, MO 63110, United States of America
- Department of Biomedical Engineering, Washington University in St. Louis, 1 Brookings Drive, St. Louis, MO 63130, United States of America
| |
Collapse
|
11
|
An in silico model for woven bone adaptation to heavy loading conditions in murine tibia. Biomech Model Mechanobiol 2022; 21:1425-1440. [PMID: 35796844 DOI: 10.1007/s10237-022-01599-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 06/10/2022] [Indexed: 11/02/2022]
Abstract
Existing in silico models for lamellar bone adaptation to mechanical loading are unsuitable for predicting woven bone growth. This anomaly is due to the difference in mechanobiology of the woven bone with respect to that of the lamellar bone. The present study is aimed at developing an in silico bone-adaptation model for woven bone at cellular and tissue levels. The diffusion of Ca2+ ions reaching lining cells from the osteocytic network and the bone cortex in response to a mechanical loading on the cortical bone has been considered as a stimulus. The diffusion of ions within osteocytic network has been computed with a lacunar-canalicular network (LCN) in which bone cells are uniformly arranged. Strain energy density is assumed to regulate ion flow within the network when the induced normal strain is above a threshold level. If the induced strain exceeds another higher threshold level, then the strain with a power constant is additionally assumed to regulate the stimulus. The intracellular flow of Ca2+ ions within the LCN has been simulated using Fick's laws of diffusion, using a finite element method. The ion diffusion from bone cortex to vesicles has been formulated as a normal strain with a power constant. The stimuli reaching the surface cells are assumed to form the new bone. The mathematical model closely predicts woven bone growth in mouse and rat tibia for various in vivo loading conditions. This model is the first to predict woven bone growth at tissue and cellular levels in response to heavy mechanical loading.
Collapse
|
12
|
Swallow EA, Metzger CE, Chen NX, Wallace JM, Tippen SP, Kohler R, Moe SM, Allen MR. Cortical porosity is elevated after a single dose of zoledronate in two rodent models of chronic kidney disease. Bone Rep 2022; 16:101174. [PMID: 35252482 PMCID: PMC8891946 DOI: 10.1016/j.bonr.2022.101174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/04/2022] [Accepted: 02/05/2022] [Indexed: 11/19/2022] Open
Abstract
PURPOSE Patients with chronic kidney disease (CKD) have high risk of fracture in part due to cortical bone deterioration. The goal of this study was to assess the impact of two different bisphosphonates and dosing regimens on cortical microstructure (porosity, thickness, area) and bone mechanical properties in animal models of CKD. METHODS In experiment 1, Male Cy/+ (CKD) rats were treated with either a single dose or ten fractionated doses of zoledronate at 18 weeks of age. Fractionated animals received 1/10th of single dose given weekly for 10 weeks, with study endpoint at 28 weeks of age. In experiment 2, male C57Bl/6 J mice were given dietary adenine (0.2%) to induce CKD. Bisphosphonate treated groups were given either a single dose of zoledronate or weekly risedronate injections for 4 weeks. Cortical microstructure was assessed via μCT and mechanical parameters evaluated by monotonic bending tests. RESULTS Exp 1: CKD rats had higher blood urea nitrogen (BUN) and parathyroid hormone (PTH) compared to NL littermate controls. Single dose zoledronate had significantly higher cortical porosity in CKD S.Zol (2.29%) compared to NL control (0.04%) and untreated CKD (0.14%) (p = 0.004). Exp 2: All adenine groups had significantly higher BUN and PTH compared to control mice. Mice treated with single dose zoledronate (Ad + Zol) had the highest porosity (~6%), which was significantly higher compared to either Ad or Ad + Ris (~3%; p < 0.0001) and control mice had the lowest cortical porosity (0.35%). In both experiments, mechanics were minimally affected by any bisphosphonate dosing regimen. CONCLUSION A single dose of zoledronate leads to higher cortical porosity compared to more frequent dosing of bisphosphonates (fractionated zoledronate or risedronate). Bisphosphonate treatment demonstrated limited effectiveness in preventing cortical bone microstructure deterioration with mechanical parameters remaining compromised due to CKD and/or secondary hyperparathyroidism irrespective of bisphosphonate treatment.
Collapse
Affiliation(s)
- Elizabeth A. Swallow
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Corinne E. Metzger
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Neal X. Chen
- Department of Medicine, Division of Nephrology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Joseph M. Wallace
- Department of Biomedical Engineering, Indiana University Purdue University of Indianapolis, Indianapolis, IN, United States
| | - Samantha P. Tippen
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Rachel Kohler
- Department of Biomedical Engineering, Indiana University Purdue University of Indianapolis, Indianapolis, IN, United States
| | - Sharon M. Moe
- Department of Medicine, Division of Nephrology, Indiana University School of Medicine, Indianapolis, IN, United States
- Roudebush Veterans Administration Medical Center, Indianapolis, IN, United States
| | - Matthew R. Allen
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Medicine, Division of Nephrology, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Biomedical Engineering, Indiana University Purdue University of Indianapolis, Indianapolis, IN, United States
- Roudebush Veterans Administration Medical Center, Indianapolis, IN, United States
| |
Collapse
|
13
|
Wang H, Du T, Li R, Main RP, Yang H. Interactive effects of various loading parameters on the fluid dynamics within the lacunar-canalicular system for a single osteocyte. Bone 2022; 158:116367. [PMID: 35181573 DOI: 10.1016/j.bone.2022.116367] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/11/2022] [Accepted: 02/11/2022] [Indexed: 12/26/2022]
Abstract
The osteocyte lacunar-canalicular system (LCS) serves as a mechanotransductive core where external loading applied to the skeleton is transduced into mechanical signals (e.g., fluid shear) that can be sensed by mechanosensors (osteocytes). The fluid velocity and shear stress within the LCS are affected by various loading parameters. However, the interactive effect of distinct loading parameters on the velocity and shear stress in the LCS remains unclear. To address this issue, we developed a multiscale modeling approach, combining a poroelastic finite element (FE) model with a single osteocytic LCS unit model to calculate the flow velocity and shear stress within the LCS. Next, a sensitivity analysis was performed to investigate individual and interactive effects of strain magnitude, strain rate, number of cycles, and intervening short rests between loading cycles on the velocity and shear stress around the osteocyte. Lastly, we developed a relatively simple regression model to predict those outcomes. Our results demonstrated that the strain magnitude or rate alone were the main factors affecting the velocity and shear stress; however, the combination of these two was not directly additive, and addition of a short rest between cycles could enhance the combination of these two related factors. These results show highly interactive effects of distinct loading parameters on fluid velocity and shear stress in the LCS. Specifically, our results suggest that an enhanced fluid dynamics environment in the LCS can be achieved with a brief number of load cycles combined with short rest insertion and high strain magnitude and rate.
Collapse
Affiliation(s)
- Huiru Wang
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Tianming Du
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Rui Li
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Russell P Main
- Musculoskeletal Biology and Mechanics Lab, Department of Basic Medical Sciences, Purdue University, IN, USA; Weldon School of Biomedical Engineering, Purdue University, IN, USA
| | - Haisheng Yang
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
14
|
The adaptive response of rat tibia to different levels of peak strain and durations of experiment. Med Eng Phys 2022; 102:103785. [DOI: 10.1016/j.medengphy.2022.103785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 02/24/2022] [Accepted: 02/24/2022] [Indexed: 11/18/2022]
|
15
|
Yao CH, Yang BY, Li YCE. Remodeling Effects of the Combination of GGT Scaffolds, Percutaneous Electrical Stimulation, and Acupuncture on Large Bone Defects in Rats. Front Bioeng Biotechnol 2022; 10:832808. [PMID: 35295647 PMCID: PMC8919371 DOI: 10.3389/fbioe.2022.832808] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/04/2022] [Indexed: 11/13/2022] Open
Abstract
The regeneration defect of bone is a long-term physiological process after bone injuries. To accelerate the bone remodeling process, the combination of chemical and physical stimulations provides an efficient strategy to allow maturation and to functionalize osteoclasts and osteoblasts. This study aims to investigate the dual effects of a tricalcium phosphate (TCP)-based gelatin scaffold (GGT) in combination with electroacupuncture stimulation on the activation of osteoclasts and osteoblasts, as well as new bone regrowth in vitro and in vivo. We demonstrated that electrical stimulation changes the pH of a culture medium and activates osteoblasts and osteoclasts in an in vitro co-culture system. Furthermore, we showed that electroacupuncture stimulation can enhance osteogenesis and new bone regrowth in vivo and can upregulate the mechanism among parathyroid hormone intact (PTH-i), calcium, osteoclasts, and osteoblasts in the bone-defected rats. Those results showed the potential interest to combine the electroacupuncture technique with GGT scaffolds to improve bone remodeling after injury.
Collapse
Affiliation(s)
- Chun-Hsu Yao
- School of Chinese Medicine, College of Chinese Medicine, Graduate Institute of Chinese Medicine, China Medical University, Taichung, Taiwan.,Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, Taiwan.,Biomaterials Translational Research Center, China Medical University Hospital, Taichung, Taiwan.,Department of Biomedical Informatics, Asia University, Taichung, Taiwan
| | - Bo-Yin Yang
- School of Chinese Medicine, College of Chinese Medicine, Graduate Institute of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Yi-Chen Ethan Li
- Department of Chemical Engineering, Feng Chia University, Taichung, Taiwan
| |
Collapse
|
16
|
Arakawa K, Takahata K, Enomoto S, Oka Y, Ozone K, Nakagaki S, Murata K, Kanemura N, Kokubun T. The difference in joint instability affects the onset of cartilage degeneration or subchondral bone changes. Osteoarthritis Cartilage 2022; 30:451-460. [PMID: 34906679 DOI: 10.1016/j.joca.2021.12.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 02/02/2023]
Abstract
OBJECTIVE It has been debated whether the onset of knee osteoarthritis is initiated in cartilage or subchondral bone. The purpose of this study was to clarify the effects of increasing or decreasing joint instability on cartilage degeneration and subchondral bone changes in knee OA by comparing different models of joint instability. DESIGN We used the anterior cruciate ligament transection (ACL-T) model and the destabilization of the medial meniscus (DMM) model. In addition, we created a controlled abnormal tibial translation (CATT) model and a controlled abnormal tibial rotation (CATR) model. We performed joint instability analysis, micro-computed tomography analysis, histological and immunohistological analysis in 4 and 6 weeks. RESULTS The CATT group suppressed joint instability in the ACL-T group (6 weeks; P = 0.032), and the CATR group suppressed joint instability in the DMM group (6 weeks; P = 0.032). Chondrocyte hypertrophy in the ACL-T and DMM groups was increased compared to the Sham group (6 weeks; [ACL-T vs Sham], P = 0.002, 95%CI [5.983-33.025]; [DMM vs Sham], P = 0.022, 95%CI [1.691-28.733]). In the subchondral bone, the BV/TV in the DMM and CATR groups was increased compared to the ACL-T and CATT groups (6 weeks; [DMM vs ACL-T], P = 0.002, 95%CI [7.404-37.582]; [DMM vs CATT], P = 0.014, 95%CI [2.881-33.059]; [CATR vs ACL-T], P = 0.006, 95%CI [4.615-34.793]; [CATR vs CATT], P = 0.048, 95%CI [0.092-30.270]). CONCLUSIONS This study showed that joint instability promotes chondrocyte hypertrophy, but subchondral bone changes were influenced by differences in ACL and meniscus function.
Collapse
Affiliation(s)
- K Arakawa
- Department of Health and Social Services, Health and Social Services, Graduate School of Saitama Prefectural University, Saitama, Japan.
| | - K Takahata
- Department of Health and Social Services, Health and Social Services, Graduate School of Saitama Prefectural University, Saitama, Japan.
| | - S Enomoto
- Department of Physical Therapy, Health and Social Services, Saitama Prefectural University, Saitama, Japan.
| | - Y Oka
- Department of Health and Social Services, Health and Social Services, Graduate School of Saitama Prefectural University, Saitama, Japan.
| | - K Ozone
- Department of Health and Social Services, Health and Social Services, Graduate School of Saitama Prefectural University, Saitama, Japan; Japan Society for the Promotion of Science, Tokyo, Japan.
| | - S Nakagaki
- Department of Health and Social Services, Health and Social Services, Graduate School of Saitama Prefectural University, Saitama, Japan.
| | - K Murata
- Department of Health and Social Services, Health and Social Services, Graduate School of Saitama Prefectural University, Saitama, Japan; Department of Physical Therapy, Health and Social Services, Saitama Prefectural University, Saitama, Japan.
| | - N Kanemura
- Department of Health and Social Services, Health and Social Services, Graduate School of Saitama Prefectural University, Saitama, Japan; Department of Physical Therapy, Health and Social Services, Saitama Prefectural University, Saitama, Japan.
| | - T Kokubun
- Department of Health and Social Services, Health and Social Services, Graduate School of Saitama Prefectural University, Saitama, Japan; Department of Physical Therapy, Health and Social Services, Saitama Prefectural University, Saitama, Japan.
| |
Collapse
|
17
|
Jamal R, LaCombe J, Patel R, Blackwell M, Thomas JR, Sloan K, Wallace JM, Roper RJ. Increased dosage and treatment time of Epigallocatechin-3-gallate (EGCG) negatively affects skeletal parameters in normal mice and Down syndrome mouse models. PLoS One 2022; 17:e0264254. [PMID: 35196359 PMCID: PMC8865638 DOI: 10.1371/journal.pone.0264254] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 02/07/2022] [Indexed: 12/15/2022] Open
Abstract
Bone abnormalities affect all individuals with Down syndrome (DS) and are linked to abnormal expression of DYRK1A, a gene found in three copies in people with DS and Ts65Dn DS model mice. Previous work in Ts65Dn male mice demonstrated that both genetic normalization of Dyrk1a and treatment with ~9 mg/kg/day Epigallocatechin-3-gallate (EGCG), the main polyphenol found in green tea and putative DYRK1A inhibitor, improved some skeletal deficits. Because EGCG treatment improved mostly trabecular skeletal deficits, we hypothesized that increasing EGCG treatment dosage and length of administration would positively affect both trabecular and cortical bone in Ts65Dn mice. Treatment of individuals with DS with green tea extract (GTE) containing EGCG also showed some weight loss in individuals with DS, and we hypothesized that weights would be affected in Ts65Dn mice after EGCG treatment. Treatment with ~20 mg/kg/day EGCG for seven weeks showed no improvements in male Ts65Dn trabecular bone and only limited improvements in cortical measures. Comparing skeletal analyses after ~20mg/kg/day EGCG treatment with previously published treatments with ~9, 50, and 200 mg/kg/day EGCG showed that increased dosage and treatment time increased cortical structural deficits leading to weaker appendicular bones in male mice. Weight was not affected by treatment in mice, except for those given a high dose of EGCG by oral gavage. These data indicate that high doses of EGCG, similar to those reported in some treatment studies of DS and other disorders, may impair long bone structure and strength. Skeletal phenotypes should be monitored when high doses of EGCG are administered therapeutically.
Collapse
Affiliation(s)
- Raza Jamal
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, United States of America
| | - Jonathan LaCombe
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, United States of America
| | - Roshni Patel
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, United States of America
| | - Matthew Blackwell
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, United States of America
| | - Jared R. Thomas
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, United States of America
| | - Kourtney Sloan
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, United States of America
| | - Joseph M. Wallace
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, United States of America
| | - Randall J. Roper
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, United States of America
| |
Collapse
|
18
|
Pickering E, Trichilo S, Delisser P, Pivonka P. Beam theory for rapid strain estimation in the mouse tibia compression model. Biomech Model Mechanobiol 2022; 21:513-525. [PMID: 34982274 DOI: 10.1007/s10237-021-01546-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 12/06/2021] [Indexed: 11/27/2022]
Abstract
The mouse tibia compression model is a leading model for studying bone's mechanoadaptive response to load. In studying this mechanoadaptive response, (FE) modelling is often used to determine the stress/strain within the tibia. The development of such models can be challenging and computationally expensive. An alternate approach is to use continuum mechanics based analytical theories, such as beam theory (BT). However, applying BT to the mouse tibia requires the fibula be neglected, introducing error in the stress/strain distribution. While several studies have applied BT to the mouse tibia, no study has explored the accuracy of this approach. To address these questions, this work investigates the use of BT in determining stress/strain within the mouse tibia. By comparing BT against FE modelling, it was found that BT can accurately predict tibial stress/strain if correction factors are applied to account for the effect of the fibula. The 25, 37, 50 and 75% cross sections are studied. Focusing on the 37% cross section, without correction, BT can have errors of approximately 21.6%. With correction, this is reduced to 6.6%. Such correction factors are presented. The developed BT model is applicable in the diaphysis and distal metaphysis, where the assumptions of BT are valid. This work verifies BT for determining localised strains in a mouse tibia compression model. This is anticipated to provide efficiency dividends, allowing for high throughput modelling of the mouse tibia, advancing study of bone's mechanoadaptive response.
Collapse
Affiliation(s)
- Edmund Pickering
- School of Mechanical, Medical and Process Engineering, Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD, Australia.
- Centre for Biomedical Technologies , Queensland University of Technology (QUT), QLD, Brisbane , Australia.
| | - Silvia Trichilo
- Vincent's Department of Surgery, University of Melbourne, Melbourne, VIC, Australia
| | - Peter Delisser
- Veterinary Specialist Services, Brisbane, QLD, Australia
| | - Peter Pivonka
- School of Mechanical, Medical and Process Engineering, Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- Centre for Biomedical Technologies , Queensland University of Technology (QUT), QLD, Brisbane , Australia
| |
Collapse
|
19
|
Berman AG, Damrath JG, Hatch J, Pulliam AN, Powell KM, Hinton M, Wallace JM. Effects of Raloxifene and tibial loading on bone mass and mechanics in male and female mice. Connect Tissue Res 2022; 63:3-15. [PMID: 33427519 PMCID: PMC8272732 DOI: 10.1080/03008207.2020.1865938] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Purpose: Raloxifene (RAL) is a selective estrogen receptor modulator (SERM) that has previously been shown to cause acellular benefits to bone tissue. Due to these improvements, RAL was combined with targeted tibial loading to assess if RAL treatment during periods of active bone formation would allow for further mechanical enhancements.Methods: Structural, mechanical, and microstructural effects were assessed in bone from C57BL/6 mice that were treated with RAL (0.5 mg/kg), tibial loading, or both for 6 weeks, beginning at 10 weeks of age.Results:Ex vivo microcomputed tomography (CT) images indicated RAL and loading work together to improve bone mass and architecture, especially within the cancellous region of males. Increases in cancellous bone volume fraction were heavily driven by increases in trabecular thickness, though there were some effects on trabecular spacing and number. In the cortical regions, RAL and loading both increased cross-sectional area, cortical area, and cortical thickness. Whole-bone mechanical testing primarily indicated the effects of loading. Further characterization through Raman spectroscopy and nanoindentation showed load-based changes in mineralization and micromechanics, while both loading and RAL caused changes in the secondary collagen structure. In contrast to males, in females, there were large load-based effects in the cancellous and cortical regions, resulting in increased whole-bone mechanical properties. RAL had less of an effect on cancellous and cortical architecture, though some effects were still present.Conclusion: RAL and loading work together to impact bone architecture and mechanical integrity, leading to greater improvements than either treatment individually.
Collapse
Affiliation(s)
- Alycia G. Berman
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - John G. Damrath
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Jennifer Hatch
- Department of Biomedical Engineering, Indiana University-Purdue University at Indianapolis, Indianapolis, IN, USA
| | - Alexis N. Pulliam
- Department of Biomedical Engineering, Indiana University-Purdue University at Indianapolis, Indianapolis, IN, USA
| | - Katherine M. Powell
- Department of Biomedical Engineering, Indiana University-Purdue University at Indianapolis, Indianapolis, IN, USA
| | - Madicyn Hinton
- Department of Biomedical Engineering, Indiana University-Purdue University at Indianapolis, Indianapolis, IN, USA
| | - Joseph M. Wallace
- Department of Biomedical Engineering, Indiana University-Purdue University at Indianapolis, Indianapolis, IN, USA,Corresponding Author Joseph M. Wallace, Ph.D., Department of Biomedical Engineering, Indiana University-Purdue University at Indianapolis, Indianapolis, IN, USA, , +1-317-274-2448
| |
Collapse
|
20
|
Thomas JR, Sloan K, Cave K, Wallace JM, Roper RJ. Skeletal Deficits in Male and Female down Syndrome Model Mice Arise Independent of Normalized Dyrk1a Expression in Osteoblasts. Genes (Basel) 2021; 12:1729. [PMID: 34828335 PMCID: PMC8624983 DOI: 10.3390/genes12111729] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 01/11/2023] Open
Abstract
Trisomy 21 (Ts21) causes alterations in skeletal development resulting in decreased bone mass, shortened stature and weaker bones in individuals with Down syndrome (DS). There is a sexual dimorphism in bone mineral density (BMD) deficits associated with DS with males displaying earlier deficits than females. The relationships between causative trisomic genes, cellular mechanisms, and influence of sex in DS skeletal abnormalities remain unknown. One hypothesis is that the low bone turnover phenotype observed in DS results from attenuated osteoblast function, contributing to impaired trabecular architecture, altered cortical geometry, and decreased mineralization. DYRK1A, found in three copies in humans with DS, Ts65Dn, and Dp1Tyb DS model mice, has been implicated in the development of postnatal skeletal phenotypes associated with DS. Reduced copy number of Dyrk1a to euploid levels from conception in an otherwise trisomic Ts65Dn mice resulted in a rescue of appendicular bone deficits, suggesting DYRK1A contributes to skeletal development and homeostasis. We hypothesized that reduction of Dyrk1a copy number in trisomic osteoblasts would improve cellular function and resultant skeletal structural anomalies in trisomic mice. Female mice with a floxed Dyrk1a gene (Ts65Dn,Dyrk1afl/wt) were mated with male Osx-Cre+ (expressed in osteoblasts beginning around E13.5) mice, resulting in reduced Dyrk1a copy number in mature osteoblasts in Ts65Dn,Dyrk1a+/+/Osx-Cre P42 male and female trisomic and euploid mice, compared with littermate controls. Male and female Ts65Dn,Dyrk1a+/+/+ (3 copies of DYRK1A in osteoblasts) and Ts65Dn,Dyrk1a+/+/Osx-Cre (2 copies of Dyrk1a in osteoblasts) displayed similar defects in both trabecular architecture and cortical geometry, with no improvements with reduced Dyrk1a in osteoblasts. This suggests that trisomic DYRK1A does not affect osteoblast function in a cell-autonomous manner at or before P42. Although male Dp1Tyb and Ts65Dn mice exhibit similar skeletal deficits at P42 in both trabecular and cortical bone compartments between euploid and trisomic mice, female Ts65Dn mice exhibit significant cortical and trabecular deficits at P42, in contrast to an absence of genotype effect in female Dp1Tyb mice in trabecular bone. Taken together, these data suggest skeletal deficits in DS mouse models and are sex and age dependent, and influenced by strain effects, but are not solely caused by the overexpression of Dyrk1a in osteoblasts. Identifying molecular and cellular mechanisms, disrupted by gene dosage imbalance, that are involved in the development of skeletal phenotypes associated with DS could help to design therapies to rescue skeletal deficiencies seen in DS.
Collapse
Affiliation(s)
- Jared R. Thomas
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA; (J.R.T.); (K.S.); (K.C.)
| | - Kourtney Sloan
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA; (J.R.T.); (K.S.); (K.C.)
| | - Kelsey Cave
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA; (J.R.T.); (K.S.); (K.C.)
| | - Joseph M. Wallace
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA;
| | - Randall J. Roper
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA; (J.R.T.); (K.S.); (K.C.)
| |
Collapse
|
21
|
Kohler R, Tastad CA, Creecy A, Wallace JM. Morphological and mechanical characterization of bone phenotypes in the Amish G610C murine model of osteogenesis imperfecta. PLoS One 2021; 16:e0255315. [PMID: 34449800 PMCID: PMC8396767 DOI: 10.1371/journal.pone.0255315] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/13/2021] [Indexed: 11/27/2022] Open
Abstract
Osteogenesis imperfecta (OI) is a hereditary bone disease where gene mutations affect Type I collagen formation resulting in osteopenia and increased fracture risk. There are several established mouse models of OI, but some are severe and result in spontaneous fractures or early animal death. The Amish Col1a2G610C/+ (G610C) mouse model is a newer, moderate OI model that is currently being used in a variety of intervention studies, with differing background strains, sexes, ages, and bone endpoints. This study is a comprehensive mechanical and architectural characterization of bone in G610C mice bred on a C57BL/6 inbred strain and will provide a baseline for future treatment studies. Male and female wild-type (WT) and G610C mice were euthanized at 10 and 16 weeks (n = 13-16). Harvested tibiae, femora, and L4 vertebrae were scanned via micro-computed tomography and analyzed for cortical and trabecular architectural properties. Femora and tibiae were then mechanically tested to failure. G610C mice had less bone but more highly mineralized cortical and trabecular tissue than their sex- and age-matched WT counterparts, with cortical cross-sectional area, thickness, and mineral density, and trabecular bone volume, mineral density, spacing, and number all differing significantly as a function of genotype (2 Way ANOVA with main effects of sex and genotype at each age). In addition, mechanical yield force, ultimate force, displacement, strain, and toughness were all significantly lower in G610C vs. WT, highlighting a brittle phenotype. This characterization demonstrates that despite being a moderate OI model, the Amish G610C mouse model maintains a distinctly brittle phenotype and is well-suited for use in future intervention studies.
Collapse
Affiliation(s)
- Rachel Kohler
- Department of Biomedical Engineering, Indiana University Purdue University of Indianapolis, Indianapolis, IN, United States of America
| | - Carli A. Tastad
- Department of Biomedical Engineering, Indiana University Purdue University of Indianapolis, Indianapolis, IN, United States of America
| | - Amy Creecy
- Department of Biomedical Engineering, Indiana University Purdue University of Indianapolis, Indianapolis, IN, United States of America
| | - Joseph M. Wallace
- Department of Biomedical Engineering, Indiana University Purdue University of Indianapolis, Indianapolis, IN, United States of America
| |
Collapse
|
22
|
Morrell AE, Robinson ST, Ke HZ, Holdsworth G, Guo XE. Osteocyte mechanosensing following short-term and long-term treatment with sclerostin antibody. Bone 2021; 149:115967. [PMID: 33892178 PMCID: PMC8217200 DOI: 10.1016/j.bone.2021.115967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 12/15/2022]
Abstract
Sclerostin antibody romosozumab (EVENITY™, romosozumab-aqqg) has a dual mechanism of action on bone, increasing bone formation and decreasing bone resorption, leading to increases in bone mass and strength, and a decreased risk of fracture, and has been approved for osteoporosis treatment in patients with high risk of fragility fractures. The bone formation aspect of the response to sclerostin antibody treatment has thus far been best described as having two phases: an immediate and robust phase of anabolic bone formation, followed by a long-term response characterized by attenuated bone accrual. We herein test the hypothesis that following the immediate pharmacologic anabolic response, the changes in bone morphology result in altered (lesser) mechanical stimulation of the resident osteocytes, initiating a negative feedback signal quantifiable by a reduced osteocyte signaling response to load. This potential desensitization of the osteocytic network is probed via a novel ex vivo assessment of intracellular calcium (Ca2+) oscillations in osteocytes below the anteromedial surface of murine tibiae subjected to load after short-term (2 weeks) or long-term (8 weeks) treatment with sclerostin antibody or vehicle control. We found that for both equivalent load levels and equivalent strain levels, osteocyte Ca2+ dynamics are maintained between tibiae from the control mice and the mice that received long-term sclerostin antibody treatment. Furthermore, under matched strain environments, we found that short-term sclerostin antibody treatment results in a reduction of both the number of responsive cells and the speed of their responses, which we attribute largely to the probability that the observed cells in the short-term group are relatively immature osteocytes embedded during initial pharmacologic anabolism. Within this study, we demonstrate that osteocytes embedded following long-term sclerostin antibody treatment exhibit localized Ca2+ signaling akin to those of mature osteocytes from the vehicle group, and thus, systemic attenuation of responses such as circulating P1NP and bone formation rates likely occur as a result of processes downstream of osteocyte Ca2+ signaling.
Collapse
Affiliation(s)
- Andrea E Morrell
- Bone Bioengineering Lab, Department of Biomedical Engineering, 365 Engineering Terrace, 1210 Amsterdam Avenue, Columbia University, New York, NY 10027, United States of America.
| | - Samuel T Robinson
- Bone Bioengineering Lab, Department of Biomedical Engineering, 365 Engineering Terrace, 1210 Amsterdam Avenue, Columbia University, New York, NY 10027, United States of America.
| | - Hua Zhu Ke
- UCB Pharma, 208 Bath Road, Slough SL1 3WE, UK; Angitia Biopharmaceuticals, Guangzhou, Guangdong, China.
| | | | - X Edward Guo
- Bone Bioengineering Lab, Department of Biomedical Engineering, 365 Engineering Terrace, 1210 Amsterdam Avenue, Columbia University, New York, NY 10027, United States of America.
| |
Collapse
|
23
|
Yang H, Bullock WA, Myhal A, DeShield P, Duffy D, Main RP. Cancellous Bone May Have a Greater Adaptive Strain Threshold Than Cortical Bone. JBMR Plus 2021; 5:e10489. [PMID: 33977205 PMCID: PMC8101616 DOI: 10.1002/jbm4.10489] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/24/2021] [Accepted: 03/09/2021] [Indexed: 01/12/2023] Open
Abstract
Strain magnitude has a controlling influence on bone adaptive response. However, questions remain as to how and if cancellous and cortical bone tissues respond differently to varied strain magnitudes, particularly at a molecular level. The goal of this study was to characterize the time‐dependent gene expression, bone formation, and structural response of the cancellous and cortical bone of female C57Bl/6 mice to mechanical loading by applying varying load levels (low: −3.5 N; medium: −5.2 N; high: −7 N) to the skeleton using a mouse tibia loading model. The loading experiment showed that cortical bone mass at the tibial midshaft was significantly enhanced following all load levels examined and bone formation activities were particularly elevated at the medium and high loads applied. In contrast, for the proximal metaphyseal cancellous bone, only the high load led to significant increases in bone mass and bone formation indices. Similarly, expression of genes associated with inhibition of bone formation (e.g., Sost) was altered in the diaphyseal cortical bone at all load levels, but in the metaphyseal cortico‐cancellous bone only by the high load. Finite element analysis determined that the peak tensile or compressive strains that were osteogenic for the proximal cancellous bone under the high load were significantly greater than those that were osteogenic for the midshaft cortical tissues under the low load. These results suggest that the magnitude of the strain stimulus regulating structural, cellular, and molecular responses of bone to loading may be greater for the cancellous tissues than for the cortical tissues. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Haisheng Yang
- Department of Biomedical Engineering, Faculty of Environment and Life Beijing University of Technology Beijing China
| | | | - Alexandra Myhal
- Musculoskeletal Biology and Mechanics Lab, Department of Basic Medical Sciences Purdue University West Lafayette IN USA
| | - Philip DeShield
- Musculoskeletal Biology and Mechanics Lab, Department of Basic Medical Sciences Purdue University West Lafayette IN USA
| | - Daniel Duffy
- Weldon School of Biomedical Engineering Purdue University West Lafayette IN USA
| | - Russell P Main
- Musculoskeletal Biology and Mechanics Lab, Department of Basic Medical Sciences Purdue University West Lafayette IN USA.,Weldon School of Biomedical Engineering Purdue University West Lafayette IN USA
| |
Collapse
|
24
|
Tastad CA, Kohler R, Wallace JM. Limited impacts of thermoneutral housing on bone morphology and mechanical properties in growing female mice exposed to external loading and raloxifene treatment. Bone 2021; 146:115889. [PMID: 33618075 PMCID: PMC8009860 DOI: 10.1016/j.bone.2021.115889] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 12/29/2022]
Abstract
Thermoregulation is an important factor that could have physiological consequences on pre-clinical research outcomes. Simply housing mice at thermoneutral temperature has been shown to prevent the well-established loss of cancellous bone that is typical in growing mice. In this study, active tissue formation was induced by non-invasive tibial loading in female mice and combined with raloxifene treatment to assess whether temperature could enhance their combined effects on bone morphology and mechanical properties. It was hypothesized that by removing the cold stress under which normal lab mice are housed, a metabolic boost would allow for further architectural and mechanical improvements in mice exposed to a combination of tibial loading and raloxifene. Ten-week old female C57BL/6J mice were treated with raloxifene, underwent tibial loading to a maximum tensile stress of 2050 με, and were housed in thermoneutral conditions (32 °C) for 6 weeks. We investigated bone morphology through microcomputed tomography (μCT), mechanical properties via four-point bending, and fracture toughness testing. Results confirmed previous work showing a combined effect of external loading and raloxifene which led to greater improvements in most properties than either individual treatment. Counter to the hypothesis, temperature had modest effects on body weight, overall bone size, and trabecular architecture, and most effects were detrimental. Thermoneutrality had no impact on mechanical integrity or fracture toughness. In most cases, the magnitude of temperature-based effects were less robust than either RAL treatment or loading.
Collapse
Affiliation(s)
- Carli A Tastad
- Department of Biomedical Engineering, Indiana University-Purdue University at Indianapolis, Indianapolis, IN, USA
| | - Rachel Kohler
- Department of Biomedical Engineering, Indiana University-Purdue University at Indianapolis, Indianapolis, IN, USA
| | - Joseph M Wallace
- Department of Biomedical Engineering, Indiana University-Purdue University at Indianapolis, Indianapolis, IN, USA.
| |
Collapse
|
25
|
Kohler R, Tastad CA, Stacy AJ, Swallow EA, Metzger CE, Allen MR, Wallace JM. The Effect of Single Versus Group μCT on the Detection of Trabecular and Cortical Disease Phenotypes in Mouse Bones. JBMR Plus 2021; 5:e10473. [PMID: 33869991 PMCID: PMC8046121 DOI: 10.1002/jbm4.10473] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/15/2021] [Accepted: 02/02/2021] [Indexed: 11/24/2022] Open
Abstract
Micro‐computed tomography is a critical assessment tool for bone‐related preclinical research, especially in murine models. To expedite the scanning process, researchers often image multiple bones simultaneously; however, it is unknown if this impacts scan quality and alters the ability to detect differences between experimental groups. The purpose of this study was to assess the effect of multibone scanning on detecting disease‐induced changes in bone microarchitecture and mineral density by group scanning two murine models with known skeletal defects: the Col1a2G610C/+ model of osteogenesis imperfecta and an adenine‐induced model of chronic kidney disease. Adult male femurs were scanned individually and in random groups of three and eight in a Bruker Skyscan 1172 and 1176, respectively, then assessed for standard trabecular and cortical bone measures. Although scanning methodology altered raw values, with trabecular microarchitecture values more affected than cortical properties, a disease phenotype was still detectable in both group and solo scans. However, tissue mineral density in both trabecular and cortical bone was significantly impacted by group versus solo scanning. Researchers may be able to use small groupings in a single μCT scan to expedite preclinical analyses when the overall bone phenotype is large to decrease costs and increase speed of discoveries; however the details of scanning (single or group) should always be reported. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Rachel Kohler
- Weldon School of Biomedical Engineering department of Purdue University West Lafayette IN USA
| | - Carli A Tastad
- Department of Biomedical Engineering Indiana University Purdue University of Indianapolis Indianapolis IN USA
| | - Alexander J Stacy
- Department of Biomedical Engineering Indiana University Purdue University of Indianapolis Indianapolis IN USA
| | - Elizabeth A Swallow
- Department of Anatomy and Cell Biology Indiana University School of Medicine Indianapolis IN USA
| | - Corinne E Metzger
- Department of Anatomy and Cell Biology Indiana University School of Medicine Indianapolis IN USA
| | - Matthew R Allen
- Department of Biomedical Engineering Indiana University Purdue University of Indianapolis Indianapolis IN USA.,Department of Anatomy and Cell Biology Indiana University School of Medicine Indianapolis IN USA.,Division of Nephrology, Department of Medicine Indiana University School of Medicine Indianapolis IN USA.,Roudebush Veterans Administration Medical Center Indianapolis IN USA
| | - Joseph M Wallace
- Department of Biomedical Engineering Indiana University Purdue University of Indianapolis Indianapolis IN USA
| |
Collapse
|
26
|
Sclerostin expression in trabecular bone is downregulated by osteoclasts. Sci Rep 2020; 10:13751. [PMID: 32792620 PMCID: PMC7426814 DOI: 10.1038/s41598-020-70817-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/30/2020] [Indexed: 12/18/2022] Open
Abstract
Bone tissues have trabecular bone with a high bone turnover and cortical bone with a low turnover. The mechanisms by which the turnover rate of these bone tissues is determined remain unclear. Osteocytes secrete sclerostin, a Wnt/β-catenin signaling antagonist, and inhibit bone formation. We found that sclerostin expression in cortical bone is more marked than in trabecular bone in Sost reporter mice. Leukemia inhibitory factor (LIF) secreted from osteoclasts reportedly suppressed sclerostin expression and promoted bone formation. Here, we report that osteoclasts downregulate sclerostin expression in trabecular bone and promote bone turnover. Treatment of C57BL/6 mice with an anti-RANKL antibody eliminated the number of osteoclasts and LIF-positive cells in trabecular bone. The number of sclerostin-positive cells was increased in trabecular bone, while the number of β-catenin-positive cells and bone formation were decreased in trabecular bone. Besides, Tnfsf11 heterozygous (Rankl+/−) mice exhibited a decreased number of LIF-positive cells and increased number of sclerostin-positive cells in trabecular bone. Rankl+/− mice exhibited a decreased number of β-catenin-positive cells and reduced bone formation in trabecular bone. Furthermore, in cultured osteoclasts, RANKL stimulation increased Lif mRNA expression, suggesting that RANKL signal increased LIF expression. In conclusion, osteoclasts downregulate sclerostin expression and promote trabecular bone turnover.
Collapse
|
27
|
Thomas JR, LaCombe J, Long R, Lana-Elola E, Watson-Scales S, Wallace JM, Fisher EMC, Tybulewicz VLJ, Roper RJ. Interaction of sexual dimorphism and gene dosage imbalance in skeletal deficits associated with Down syndrome. Bone 2020; 136:115367. [PMID: 32305495 PMCID: PMC7262595 DOI: 10.1016/j.bone.2020.115367] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 04/01/2020] [Accepted: 04/14/2020] [Indexed: 12/17/2022]
Abstract
All individuals with Down syndrome (DS), which results from trisomy of human chromosome 21 (Ts21), present with skeletal abnormalities typified by craniofacial features, short stature and low bone mineral density (BMD). Differences in skeletal deficits between males and females with DS suggest a sexual dimorphism in how trisomy affects bone. Dp1Tyb mice contain three copies of all of the genes on mouse chromosome 16 that are homologous to human chromosome 21, males and females are fertile, and therefore are an excellent model to test the hypothesis that gene dosage influences the sexual dimorphism of bone abnormalities in DS. Dp1Tyb as compared to control littermate mice at time points associated with bone accrual (6 weeks) and skeletal maturity (16 weeks) showed deficits in BMD and trabecular architecture that occur largely through interactions between sex and genotype and resulted in lower percent bone volume in all female and Dp1Tyb male mice. Cortical bone in Dp1Tyb as compared to control mice exhibited different changes over time influenced by sex × genotype interactions including reduced cortical area in both male and female Dp1Tyb mice. Mechanical testing analyses suggested deficits in whole bone properties such as bone mass and geometry, but improved material properties in female and Dp1Tyb mice. Sexual dimorphisms and the influence of trisomic gene dosage differentially altered cellular properties of male and female Dp1Tyb bone. These data establish sex, gene dosage, skeletal site and age as important factors in skeletal development of DS model mice, paving the way for identification of the causal dosage-sensitive genes. Skeletal differences in developing male and female Dp1Tyb DS model mice replicated differences in less-studied adolescents with DS and established a foundation to understand the etiology of trisomic bone deficits.
Collapse
Affiliation(s)
- Jared R Thomas
- Department of Biology, Indiana University-Purdue University, Indianapolis, IN, USA
| | - Jonathan LaCombe
- Department of Biology, Indiana University-Purdue University, Indianapolis, IN, USA
| | - Rachel Long
- Department of Biology, Indiana University-Purdue University, Indianapolis, IN, USA
| | | | | | - Joseph M Wallace
- Department of Biomedical Engineering, Indiana University-Purdue University, Indianapolis, IN, USA
| | | | - Victor L J Tybulewicz
- The Francis Crick Institute, London, UK; Department of Immunology & Inflammation, Imperial College London, London W12 0NN, UK
| | - Randall J Roper
- Department of Biology, Indiana University-Purdue University, Indianapolis, IN, USA.
| |
Collapse
|
28
|
Goodlett CR, Stringer M, LaCombe J, Patel R, Wallace JM, Roper RJ. Evaluation of the therapeutic potential of Epigallocatechin-3-gallate (EGCG) via oral gavage in young adult Down syndrome mice. Sci Rep 2020; 10:10426. [PMID: 32591597 PMCID: PMC7319987 DOI: 10.1038/s41598-020-67133-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 05/29/2020] [Indexed: 01/09/2023] Open
Abstract
Epigallocatechin-3-gallate (EGCG) is a candidate therapeutic for Down syndrome (DS) phenotypes based on in vitro inhibition of DYRK1A, a triplicated gene product of Trisomy 21 (Ts21). Consumption of green tea extracts containing EGCG improved some cognitive and behavioral outcomes in DS mouse models and in humans with Ts21. In contrast, treatment with pure EGCG in DS mouse models did not improve neurobehavioral phenotypes. This study tested the hypothesis that 200 mg/kg/day of pure EGCG, given via oral gavage, would improve neurobehavioral and skeletal phenotypes in the Ts65Dn DS mouse model. Serum EGCG levels post-gavage were significantly higher in trisomic mice than in euploid mice. Daily EGCG gavage treatments over three weeks resulted in growth deficits in both euploid and trisomic mice. Compared to vehicle treatment, EGCG did not significantly improve behavioral performance of Ts65Dn mice in the multivariate concentric square field, balance beam, or Morris water maze tasks, but reduced swimming speed. Furthermore, EGCG resulted in reduced cortical bone structure and strength in Ts65Dn mice. These outcomes failed to support the therapeutic potential of EGCG, and the deleterious effects on growth and skeletal phenotypes underscore the need for caution in high-dose EGCG supplements as an intervention in DS.
Collapse
Affiliation(s)
- Charles R Goodlett
- IUPUI Department of Psychology, 402 North Blackford Street, LD 124, Indianapolis, IN, 46202-3275, USA
| | - Megan Stringer
- IUPUI Department of Psychology, 402 North Blackford Street, LD 124, Indianapolis, IN, 46202-3275, USA
| | - Jonathan LaCombe
- IUPUI Department of Biology, 723 West Michigan Street; SL 306, Indianapolis, IN, 46202-3275, USA
| | - Roshni Patel
- IUPUI Department of Biology, 723 West Michigan Street; SL 306, Indianapolis, IN, 46202-3275, USA
| | - Joseph M Wallace
- IUPUI Department of Biomedical Engineering, 723 West Michigan Street; SL 220B, Indianapolis, IN, 46202-3275, USA
| | - Randall J Roper
- IUPUI Department of Biology, 723 West Michigan Street; SL 306, Indianapolis, IN, 46202-3275, USA.
| |
Collapse
|
29
|
Gasier HG, Yu T, Swift JM, Metzger CE, McNerny EM, Swallow EA, Piantadosi CA, Allen MR. Carbon Monoxide and Exercise Prevents Diet-Induced Obesity and Metabolic Dysregulation Without Affecting Bone. Obesity (Silver Spring) 2020; 28:924-931. [PMID: 32237119 DOI: 10.1002/oby.22768] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 01/28/2020] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Carbon monoxide (CO) may counteract obesity and metabolic dysfunction in rodents consuming high-fat diets, but the skeletal effects are not understood. This study investigated whether low-dose inhaled CO (250 ppm) with or without moderate intensity aerobic exercise (3 h/wk) would limit diet-induced obesity and metabolic dysregulation and preserve bone health. METHODS Obesity-resistant (OR) rats served as controls, and obesity-prone (OP) rats were randomized to sedentary, sedentary plus CO, exercise, or CO plus exercise. For 10 weeks, OP rats consumed a high-fat, high-sucrose diet, whereas OR rats consumed a low-fat control diet. Measurements included indicators of obesity and metabolism, bone turnover markers, femoral geometry and microarchitecture, bone mechanical properties, and tibial morphometry. RESULTS A high-fat, high-sucrose diet led to obesity, hyperinsulinemia, and hyperleptinemia, without impacting bone. CO alone led only to a modest reduction in weight gain. Exercise attenuated weight gain and improved the metabolic profile; however, bone fragility increased. Combined CO and exercise led to body mass reduction and a metabolic state similar to control OR rats and prevented the exercise-induced increase in bone fragility. CONCLUSIONS CO and aerobic exercise training prevent obesity and metabolic sequelae of nutrient excess while stabilizing bone physiology.
Collapse
Affiliation(s)
- Heath G Gasier
- Department of Anesthesiology, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Military and Emergency Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Tianzheng Yu
- Department of Military and Emergency Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Joshua M Swift
- Warfighter Performance, Office of Naval Research, Arlington, Virginia, USA
| | - Corrine E Metzger
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Erin M McNerny
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Elizabeth A Swallow
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Claude A Piantadosi
- Department of Anesthesiology, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Pathology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Matthew R Allen
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana, USA
| |
Collapse
|
30
|
Main RP, Shefelbine SJ, Meakin LB, Silva MJ, van der Meulen MC, Willie BM. Murine Axial Compression Tibial Loading Model to Study Bone Mechanobiology: Implementing the Model and Reporting Results. J Orthop Res 2020; 38:233-252. [PMID: 31508836 PMCID: PMC9344861 DOI: 10.1002/jor.24466] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 08/23/2019] [Indexed: 02/04/2023]
Abstract
In vivo, tibial loading in mice is increasingly used to study bone adaptation and mechanotransduction. To achieve standardized and defined experimental conditions, loading parameters and animal-related factors must be considered when performing in vivo loading studies. In this review, we discuss these loading and animal-related experimental conditions, present methods to assess bone adaptation, and suggest reporting guidelines. This review originated from presentations by each of the authors at the workshop "Developing Best Practices for Mouse Models of In Vivo Loading" during the Preclinical Models Section at the Orthopaedic Research Society Annual Meeting, San Diego, CA, March 2017. Following the meeting, the authors engaged in detailed discussions with consideration of relevant literature. The guidelines and recommendations in this review are provided to help researchers perform in vivo loading experiments in mice, and thus further our knowledge of bone adaptation and the mechanisms involved in mechanotransduction. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 38:233-252, 2020.
Collapse
Affiliation(s)
- Russell P. Main
- Department of Basic Medical Sciences and Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA,Corresponding author: Russell Main ()
| | - Sandra J. Shefelbine
- Department of Bioengineering, Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA, USA
| | - Lee B. Meakin
- Bristol Veterinary School, University of Bristol, Langford, Bristol BS40 5DU, UK
| | - Matthew J. Silva
- Departments of Orthopaedic Surgery and Biomedical Engineering, Musculoskeletal Research Center, Washington University, Saint Louis, MO, USA
| | - Marjolein C.H van der Meulen
- Meinig School of Biomedical Engineering and Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
| | - Bettina M. Willie
- Research Centre, Shriners Hospital for Children-Canada, Department of Pediatric Surgery, McGill University, Montreal, Canada
| |
Collapse
|
31
|
6'-Methoxy Raloxifene-analog enhances mouse bone properties with reduced estrogen receptor binding. Bone Rep 2020; 12:100246. [PMID: 32016137 PMCID: PMC6992940 DOI: 10.1016/j.bonr.2020.100246] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 01/15/2020] [Indexed: 02/08/2023] Open
Abstract
Raloxifene (RAL) is an FDA-approved drug used to treat osteoporosis in postmenopausal women. RAL suppresses bone loss primarily through its role as a selective estrogen receptor modulator (SERM). This hormonal estrogen therapy promotes unintended side effects, such as hot flashes and increased thrombosis risk, and prevents the drug from being used in some patient populations at-risk for fracture, including children with bone disorders. It has recently been demonstrated that RAL can have significant positive effects on overall bone mechanical properties by binding to collagen and increasing bone tissue hydration in a cell-independent manner. A Raloxifene-Analog (RAL-A) was synthesized by replacing the 6-hydroxyl substituent with 6-methoxy in effort to reduce the compound's binding affinity for estrogen receptors (ER) while maintaining its collagen-binding ability. It was hypothesized that RAL-A would improve the mechanical integrity of bone in a manner similar to RAL, but with reduced estrogen receptor binding. Molecular assessment showed that while RAL-A did reduce ER binding, downstream ER signaling was not completely abolished. In-vitro, RAL-A performed similarly to RAL and had an identical concentration threshold on osteocyte cell proliferation, differentiation, and function. To assess treatment effect in-vivo, wildtype (WT) and heterozygous (OIM+/−) female mice from the Osteogenesis Imperfecta (OI) murine model were treated with either RAL or RAL-A from 8 weeks to 16 weeks of age. There was an untreated control group for each genotype as well. Bone microarchitecture was assessed using microCT, and mechanical behavior was assessed using 3-point bending. Results indicate that both compounds produced analogous gains in tibial trabecular and cortical microarchitecture. While WT mechanical properties were not drastically altered with either treatment, OIM+/− mechanical properties were significantly enhanced, most notably, in post-yield properties including bone toughness. This proof-of-concept study shows promising results and warrants the exploration of additional analog iterations to further reduce ER binding and improve fracture resistance.
Collapse
|
32
|
Powell KM, Skaggs C, Pulliam A, Berman A, Allen MR, Wallace JM. Zoledronate and Raloxifene combination therapy enhances material and mechanical properties of diseased mouse bone. Bone 2019; 127:199-206. [PMID: 31233931 PMCID: PMC7036744 DOI: 10.1016/j.bone.2019.06.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/19/2019] [Accepted: 06/20/2019] [Indexed: 01/15/2023]
Abstract
Current interventions to reduce skeletal fragility are insufficient at enhancing both the quantity and quality of bone when attempting to improve overall mechanical integrity. Bisphosphonates, such as Zoledronate (ZOL), are used to treat a variety of bone disorders by increasing bone mass to decrease fracture risk, but long-term use has been shown in some settings to compromise bone quality. Alternatively, Raloxifene (RAL) has recently been demonstrated to improve tissue quality and overall mechanical properties in a cell-independent manner by binding to collagen and increasing tissue hydration. We hypothesized that a combination of RAL and ZOL would improve mechanical and material properties of bone more than either monotherapy alone by enhancing both quantity and quality. In this study, wildtype (WT) and heterozygous (OIM+/-) male mice from the Osteogenesis Imperfecta (OI) murine model were treated with either RAL, ZOL, or both from 8 weeks to 16 weeks of age. Using the OIM model allows for investigation of therapeutic effects on a quality-based bone disease. Combination treatment resulted in higher trabecular architecture, cortical mechanical properties, and cortical fracture toughness in diseased mouse bone. Two fracture toughness properties, which are direct measures of the tissue's ability to resist the initiation and propagation of a crack, were significantly improved with combination treatment in OIM+/- compared to control. There was no significant effect on fracture toughness with either monotherapy alone in either genotype. Following the mass-based effects of ZOL, trabecular bone volume fraction was significantly higher with combination treatment in both genotypes. Combination treatment resulted in higher ultimate stress in both genotypes. RAL and combination treatment in OIM+/- also increased resilience compared to the control. In conclusion, this study demonstrates the beneficial effects of using combination drug treatments to increase bone mass while simultaneously improving tissue quality, especially to enhance the mechanical integrity of diseased bone. Combination therapies could be a potential method to improve bone health and combat skeletal fragility on both the microscopic and macroscopic levels.
Collapse
Affiliation(s)
- Katherine M Powell
- Department of Biomedical Engineering, Indiana University-Purdue University at Indianapolis, Indianapolis, IN, USA
| | - Cayla Skaggs
- Department of Biomedical Engineering, Indiana University-Purdue University at Indianapolis, Indianapolis, IN, USA
| | - Alexis Pulliam
- Department of Biomedical Engineering, Indiana University-Purdue University at Indianapolis, Indianapolis, IN, USA
| | - Alycia Berman
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Matthew R Allen
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Joseph M Wallace
- Department of Biomedical Engineering, Indiana University-Purdue University at Indianapolis, Indianapolis, IN, USA.
| |
Collapse
|
33
|
High Impact Exercise Improves Bone Microstructure and Strength in Growing Rats. Sci Rep 2019; 9:13128. [PMID: 31511559 PMCID: PMC6739374 DOI: 10.1038/s41598-019-49432-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/20/2019] [Indexed: 01/22/2023] Open
Abstract
Physical activity is beneficial for skeletal development. However, impact sports during adolescence, leading to bone growth retardation and/or bone quality improvement, remains unexplained. This study investigated the effects of in vivo low (LI), medium (MI), and high (HI) impact loadings applied during puberty on bone growth, morphometry and biomechanics using a rat model. 4-week old rats (n = 30) were divided into control, sham, LI, MI, and HI groups. The impact was applied on the right tibiae, 5 days/week for 8 weeks mimicking walking (450 µε), uphill running (850 µε) and jumping (1250 µε) conditions. Trabecular and cortical parameters were determined by micro-CT, bone growth rate by calcein labeling and toluidine blue staining followed by histomorphometry. Bio-mechanical properties were evaluated from bending tests. HI group reduced rat body weight and food consumption compared to shams. Bone growth rate also decreased in MI and HI groups despite developing thicker hypertrophic and proliferative zone heights. HI group showed significant increment in bone mineral density, trabecular thickness, cortical and total surface area. Ultimate load and stiffness were also increased in MI and HI groups. We conclude that impact loading during adolescence reduces bone growth moderately but improves bone quality and biomechanics at the end of the growing period.
Collapse
|
34
|
Becker K, Schwarz F, Rauch NJ, Khalaph S, Mihatovic I, Drescher D. Can implants move in bone? A longitudinal in vivo micro-CT analysis of implants under constant forces in rat vertebrae. Clin Oral Implants Res 2019; 30:1179-1189. [PMID: 31494964 DOI: 10.1111/clr.13531] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/24/2019] [Accepted: 08/22/2019] [Indexed: 11/30/2022]
Abstract
OBJECTIVES Whereas stationary stability of implants has been postulated for decades, recent studies suggested a phenomenon termed implant migration. This describes a change in position of implants as a reaction to applied forces. The present study aims at employing image registration of in vivo micro-CT scans from different time points and to assess (a) if migration of continuously loaded implants is possible and (b) migration correlates with the force magnitude. MATERIAL AND METHODS Two customized machined implants were placed in the dorsal portion of caudal vertebrae in n = 61 rats and exposed to standardized forces (0.5 N, 1.0 N, and 1.5 N) applied through a flat nickel-titanium contraction spring, or no forces (control). Micro-CT scans were performed at 0, 1, 2, 4, 6, and 8 weeks after surgery. The baseline image was registered with the forthcoming scans. Implant migration was measured as the Euclidean distance between implant tips. Bone remodeling was assessed between the baseline and the forthcoming scans. RESULTS The findings confirmed a positional change of the implants at 2 and 8 weeks of healing, and a linear association between applied force and velocity of movement (anterior implant: χ2 = 12.12, df = 3, and p = .007 and posterior implant: χ2 = 20.35, df = 3, and p < .001). Bone apposition was observed around the implants and accompanied by formation of load-bearing trabeculae and a general cortical thickening close and also distant to the implants. CONCLUSION The present analysis confirmed that implants can migrate in bone. The applied forces seemed to stimulate bone thickening, which could explain why implants migrate without affecting stability.
Collapse
Affiliation(s)
- Kathrin Becker
- Department of Orthodontics, Universitätsklinikum Düsseldorf, Düsseldorf, Germany.,Department of Oral Surgery and Implantology, Carolinum, Goethe University, Frankfurt, Germany
| | - Frank Schwarz
- Department of Oral Surgery and Implantology, Carolinum, Goethe University, Frankfurt, Germany
| | - Nicole Jasmin Rauch
- Department of Orthodontics, Universitätsklinikum Düsseldorf, Düsseldorf, Germany
| | - Silava Khalaph
- Department of Orthodontics, Universitätsklinikum Düsseldorf, Düsseldorf, Germany
| | - Ilja Mihatovic
- Department of Oral Surgery, Universitätsklinikum Düsseldorf, Düsseldorf, Germany
| | - Dieter Drescher
- Department of Orthodontics, Universitätsklinikum Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
35
|
Naito K, Sugiyama Y, Obata H, Mogami A, Obayashi O, Kaneko K. Screw Fixation and Autogenous Bone Graft for an Irreducible Distal Ulna Fracture Associated with Distal Radius Fracture. J Hand Surg Asian Pac Vol 2019; 22:236-239. [PMID: 28506164 DOI: 10.1142/s0218810417720145] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Distal ulna fractures often occur with distal radius fractures, and their treatment method is still controversial. We considered reduction of the distal radio-ulnar joint (DRUJ) surface the most important factor when treating distal ulna fractures accompanied by residual dislocation. We herein presented a patient with a distal ulna fracture accompanied by dislocation of the DRUJ surface in whom an autogenous bone fragment collected from the radius was grafted onto the ulnar bone defect after open reduction and Herbert screw fixation. In this technique, the bone fragment was supported through the medullary cavity by inserting a Herbert screw, which was less likely to cause irritation between the screw and surrounding tissue, because the screw was almost entirely present in the bone. In addition, an autogenous bone graft from the same surgical field may be less invasive than that from another region.
Collapse
Affiliation(s)
- Kiyohito Naito
- * Department of Orthopaedics, Juntendo University School of Medicine, Tokyo, Japan
| | - Yoichi Sugiyama
- * Department of Orthopaedics, Juntendo University School of Medicine, Tokyo, Japan
| | - Hiroyuki Obata
- † Department of Orthopaedic Surgery, Juntendo University Shizuoka Hospital, Shizuoka, Japan
| | - Atsuhiko Mogami
- † Department of Orthopaedic Surgery, Juntendo University Shizuoka Hospital, Shizuoka, Japan
| | - Osamu Obayashi
- † Department of Orthopaedic Surgery, Juntendo University Shizuoka Hospital, Shizuoka, Japan
| | - Kazuo Kaneko
- * Department of Orthopaedics, Juntendo University School of Medicine, Tokyo, Japan
| |
Collapse
|
36
|
Canalicular fluid flow induced by loading waveforms: A comparative analysis. J Theor Biol 2019; 471:59-73. [DOI: 10.1016/j.jtbi.2019.03.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 03/25/2019] [Accepted: 03/28/2019] [Indexed: 12/17/2022]
|
37
|
Yang H, Xu X, Bullock W, Main RP. Adaptive changes in micromechanical environments of cancellous and cortical bone in response to in vivo loading and disuse. J Biomech 2019; 89:85-94. [PMID: 31047696 DOI: 10.1016/j.jbiomech.2019.04.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 04/12/2019] [Accepted: 04/12/2019] [Indexed: 10/27/2022]
Abstract
The skeleton accommodates changes in mechanical environments by increasing bone mass under increased loads and decreasing bone mass under disuse. However, little is known about the adaptive changes in micromechanical behavior of cancellous and cortical tissues resulting from loading or disuse. To address this issue, in vivo tibial loading and hindlimb unloading experiments were conducted on 16-week-old female C57BL/6J mice. Changes in bone mass and tissue-level strains in the metaphyseal cancellous and midshaft cortical bone of the tibiae, resulting from loading or unloading, were determined using microCT and finite element (FE) analysis, respectively. We found that loading- and unloading-induced changes in bone mass were more pronounced in the cancellous than cortical bone. Simulated FE-loading showed that a greater proportion of elements experienced relatively lower longitudinal strains following load-induced bone adaptation, while the opposite was true in the disuse model. While the magnitudes of maximum or minimum principal strains in the metaphyseal cancellous and midshaft cortical bone were not affected by loading, strains oriented with the long axis were reduced in the load-adapted tibia suggesting that loading-induced micromechanical benefits were aligned primarily in the loading direction. Regression analyses demonstrated that bone mass was a good predictor of bone tissue strains for the cortical bone but not for the cancellous bone, which has complex microarchitecture and spatially-variant strain environments. In summary, loading-induced micromechanical benefits for cancellous and cortical tissues are received primarily in the direction of force application and cancellous bone mass may not be related to the micromechanics of cancellous bone.
Collapse
Affiliation(s)
- Haisheng Yang
- Department of Biomedical Engineering, School of Life Science and Bioengineering, Beijing University of Technology, Intelligent Physiological Measurement and Clinical Translation Beijing International Base for Scientific and Technological Cooperation, Beijing, China.
| | - Xiaoyu Xu
- Musculoskeletal Biology and Mechanics Lab, Department of Basic Medical Sciences, Purdue University, IN, USA; Weldon School of Biomedical Engineering, Purdue University, IN, USA.
| | | | - Russell P Main
- Musculoskeletal Biology and Mechanics Lab, Department of Basic Medical Sciences, Purdue University, IN, USA; Weldon School of Biomedical Engineering, Purdue University, IN, USA.
| |
Collapse
|
38
|
Effect of two (short-term) storage methods on load to failure testing of murine bone tissue. Sci Rep 2019; 9:5961. [PMID: 30976119 PMCID: PMC6459877 DOI: 10.1038/s41598-019-42476-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 03/27/2019] [Indexed: 11/08/2022] Open
Abstract
Since mechanical testing of bone quality is often delayed following euthanasia, the method of bone storage is of high importance in animal studies. Different storage methods may cause a change in the properties of bone tissue during mechanical testing. Therefore, the aim of this study was to investigate the biomechanical effects of two different fixation methods for bone tissue. We hypothesized that there is a difference between the load to failure values between the two groups. The tibias of fifteen 18-week-old female C57BL/6 mice were harvested and randomly allocated to three different groups with varying storage methods: (1) frozen at -80 °C, (2) paraformaldehyde working solution, and (3) native group. A storage time of two weeks prior to testing was chosen for groups 1 and 2. In group 3, referred to as the "native group", bones were immediately tested after the harvesting procedure. The comparison of the mean load to failure of all 3 groups (group 1: 28.7 N ± 6.1 N, group 2: 23.8 N ± 3.8 N and group 3: 23.7 N ± 5.7 N) did not reveal a significant difference. There was also no difference in strength or stiffness. The findings of the present study demonstrate that the two most common storage methods, do not have an influence on the biomechanical properties of murine bone over a two week period.
Collapse
|
39
|
Berman AG, Hinton MJ, Wallace JM. Treadmill running and targeted tibial loading differentially improve bone mass in mice. Bone Rep 2019; 10:100195. [PMID: 30701187 PMCID: PMC6348199 DOI: 10.1016/j.bonr.2019.100195] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 12/28/2018] [Accepted: 01/14/2019] [Indexed: 01/28/2023] Open
Abstract
Treadmill running and tibial loading are two common modalities used to assess the role of mechanical stimulation on the skeleton preclinically. The primary advantage of treadmill running is its physiological relevance. However, the applied load is complex and multiaxial, with observed results influenced by cardiovascular and musculoskeletal effects. In contrast, with tibial loading, a direct uniaxial load is applied to a single bone, providing the advantage of greater control but with less physiological relevance. Despite the importance and wide-spread use of both modalities, direct comparisons are lacking. In this study, we compared effects of targeted tibial loading, treadmill running, and their combination on cancellous and cortical architecture in a murine model. We show that tibial loading and treadmill running differentially improve bone mass, with tibial loading resulting in thicker trabeculae and increased cortical mass, and exercise resulting in greater number of trabeculae and no cortical mass-based effects. Combination of the modalities resulted in an additive response. These data suggest that tibial loading and exercise may improve mass differentially. Tibial loading increased trabecular thickness while exercise increased number. Combined effects of loading and exercise were additive in cancellous bone. In cortical bone, loading increased cross-sectional area. No mass-based effects were noted due to exercise.
Collapse
Affiliation(s)
- Alycia G Berman
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Madicyn J Hinton
- Department of Biomedical Engineering, Indiana University-Purdue University at Indianapolis, Indianapolis, IN, USA
| | - Joseph M Wallace
- Department of Biomedical Engineering, Indiana University-Purdue University at Indianapolis, Indianapolis, IN, USA
| |
Collapse
|
40
|
Lewton KL, Ritzman T, Copes LE, Garland T, Capellini TD. Exercise‐induced loading increases ilium cortical area in a selectively bred mouse model. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2019; 168:543-551. [DOI: 10.1002/ajpa.23770] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/10/2018] [Accepted: 12/13/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Kristi L. Lewton
- Department of Integrative Anatomical Sciences Keck School of Medicine, University of Southern California, Los Angeles, CA
- Department of Biological Sciences Human & Evolutionary Biology Section, University of Southern California, Los Angeles, CA
- Department of Human Evolutionary Biology Harvard University, Cambridge, MA
| | - Terrence Ritzman
- Department of Neuroscience Washington University School of Medicine, St. Louis, MO
- Department of Anthropology Washington University St. Louis, MO
- Human Evolution Research Institute University of Cape Town, Cape Town, South Africa
| | - Lynn E. Copes
- Department of Medical Sciences, Frank H. Netter MD School of Medicine Quinnipiac University, Hamden, CT
| | - Theodore Garland
- Department of Evolution, Ecology, and Organismal Biology University of California Riverside, Riverside, CA
| | | |
Collapse
|
41
|
Effects of daily restraint with and without injections on skeletal properties in C57BL/6NHsd mice. Lab Anim (NY) 2018. [PMID: 28644445 DOI: 10.1038/laban.1295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
42
|
Srinivasan S, Balsiger D, Huber P, Ausk BJ, Bain SD, Gardiner EM, Gross TS. Static Preload Inhibits Loading-Induced Bone Formation. JBMR Plus 2018; 3:e10087. [PMID: 31131340 DOI: 10.1002/jbm4.10087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 09/20/2018] [Indexed: 12/14/2022] Open
Abstract
Nearly all exogenous loading models of bone adaptation apply dynamic loading superimposed upon a time invariant static preload (SPL) in order to ensure stable, reproducible loading of bone. Given that SPL may alter aspects of bone mechanotransduction (eg, interstitial fluid flow), we hypothesized that SPL inhibits bone formation induced by dynamic loading. As a first test of this hypothesis, we utilized a newly developed device that enables stable dynamic loading of the murine tibia with SPLs ≥ -0.01 N. We subjected the right tibias of BALB/c mice (4-month-old females) to dynamic loading (-3.8 N, 1 Hz, 50 cycles/day, 10 s rest) superimposed upon one of three SPLs: -1.5 N, -0.5 N, or -0.03 N. Mice underwent exogenous loading 3 days/week for 3 weeks. Metaphyseal trabecular bone adaptation (μCT) and midshaft cortical bone formation (dynamic histomorphometry) were assessed following euthanasia (day 22). Ipsilateral tibias of mice loaded with a -1.5-N SPL demonstrated significantly less trabecular bone volume/total volume (BV/TV) than contralateral tibias (-12.9%). In contrast, the same dynamic loading superimposed on a -0.03-N SPL significantly elevated BV/TV versus contralateral tibias (12.3%) and versus the ipsilateral tibias of the other SPL groups (-0.5 N: 46.3%, -1.5 N: 37.2%). At the midshaft, the periosteal bone formation rate (p.BFR) induced when dynamic loading was superimposed on -1.5-N and -0.5-N SPLs was significantly amplified in the -0.03-N SPL group (>200%). These data demonstrate that bone anabolism induced by dynamic loading is markedly inhibited by SPL magnitudes commonly implemented in the literature (ie, -0.5 N, -1.5 N). The inhibitory impact of SPL has not been recognized in bone adaptation models and, as such, SPLs have been neither universally reported nor standardized. Our study therefore identifies a previously unrecognized, potent inhibitor of mechanoresponsiveness that has potentially confounded studies of bone adaptation and translation of insights from our field. © 2018 The Authors. JBMR Plus Published by Wiley Periodicals, Inc. on behalf of the American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Sundar Srinivasan
- Department of Orthopaedics and Sports Medicine University of Washington Seattle WA USA
| | - Danica Balsiger
- Department of Orthopaedics and Sports Medicine University of Washington Seattle WA USA
| | - Phillipe Huber
- Department of Orthopaedics and Sports Medicine University of Washington Seattle WA USA
| | - Brandon J Ausk
- Department of Orthopaedics and Sports Medicine University of Washington Seattle WA USA
| | - Steven D Bain
- Department of Orthopaedics and Sports Medicine University of Washington Seattle WA USA
| | - Edith M Gardiner
- Department of Orthopaedics and Sports Medicine University of Washington Seattle WA USA
| | - Ted S Gross
- Department of Orthopaedics and Sports Medicine University of Washington Seattle WA USA
| |
Collapse
|
43
|
Doube M, Felder AA, Chua MY, Lodhia K, Kłosowski MM, Hutchinson JR, Shefelbine SJ. Limb bone scaling in hopping macropods and quadrupedal artiodactyls. ROYAL SOCIETY OPEN SCIENCE 2018; 5:180152. [PMID: 30473802 PMCID: PMC6227981 DOI: 10.1098/rsos.180152] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 09/24/2018] [Indexed: 06/09/2023]
Abstract
Bone adaptation is modulated by the timing, direction, rate and magnitude of mechanical loads. To investigate whether frequent slow, or infrequent fast, gaits could dominate bone adaptation to load, we compared scaling of the limb bones from two mammalian herbivore clades that use radically different high-speed gaits, bipedal hopping (suborder Macropodiformes; kangaroos and kin) and quadrupedal galloping (order Artiodactyla; goats, deer and kin). Forelimb and hindlimb bones were collected from 20 artiodactyl and 15 macropod species (body mass M 1.05-1536 kg) and scanned in computed tomography or X-ray microtomography. Second moment of area (I max) and bone length (l) were measured. Scaling relations (y = axb ) were calculated for l versus M for each bone and for I max versus M and I max versus l for every 5% of length. I max versus M scaling relationships were broadly similar between clades despite the macropod forelimb being nearly unloaded, and the hindlimb highly loaded, during bipedal hopping. I max versus l and l versus M scaling were related to locomotor and behavioural specializations. Low-intensity loads may be sufficient to maintain bone mass across a wide range of species. Occasional high-intensity gaits might not break through the load sensitivity saturation engendered by frequent low-intensity gaits.
Collapse
Affiliation(s)
- Michael Doube
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
- Skeletal Biology Group, The Royal Veterinary College, Royal College Street, London NW1 0TU, UK
- Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - Alessandro A. Felder
- Skeletal Biology Group, The Royal Veterinary College, Royal College Street, London NW1 0TU, UK
| | - Melissa Y. Chua
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| | - Kalyani Lodhia
- Skeletal Biology Group, The Royal Veterinary College, Royal College Street, London NW1 0TU, UK
| | | | - John R. Hutchinson
- Structure and Motion Laboratory, The Royal Veterinary College, North Mymms, Hatfield, Hertfordshire AL9 7TA, UK
| | - Sandra J. Shefelbine
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
- Department of Mechanical and Industrial Engineering, Northeastern University, 334 Snell Engineering Center, 360 Huntington Avenue, Boston, MA 02115, USA
| |
Collapse
|
44
|
Hsia AW, Tarke FD, Shelton TJ, Tjandra PM, Christiansen BA. Comparison of knee injury threshold during tibial compression based on limb orientation in mice. J Biomech 2018; 74:220-224. [PMID: 29678417 DOI: 10.1016/j.jbiomech.2018.04.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 04/02/2018] [Accepted: 04/04/2018] [Indexed: 01/27/2023]
Abstract
Our previous studies used tibial compression overload to induce anterior cruciate ligament (ACL) rupture in mice, while others have applied similar or greater compressive magnitudes without injury. The causes of these differences in injury threshold are not known. In this study, we compared knee injury thresholds using a "prone configuration" and a "supine configuration" that differed with respect to hip, knee, and ankle flexion, and utilized different fixtures to stabilize the knee. Right limbs of female and male C57BL/6 mice were loaded using the prone configuration, while left limbs were loaded using the supine configuration. Mice underwent progressive loading from 2 to 20 N, or cyclic loading at 9 N or 14 N (n = 9-11/sex/loading method). Progressive loading with the prone configuration resulted in ACL rupture at an average of 10.2 ± 0.9 N for females and 11.4 ± 0.7 N for males. In contrast, progressive loading with the supine configuration resulted in ACL rupture in only 36% of female mice and 50% of male mice. Cyclic loading with the prone configuration resulted in ACL rupture after 15 ± 8 cycles for females and 24 ± 27 cycles for males at 9 N, and always during the first cycle for both sexes at 14 N. In contrast, cyclic loading with the supine configuration was able to complete 1,200 cycles at 9 N without injury for both sexes, and an average of 45 ± 41 cycles for females and 49 ± 25 cycles for males at 14 N before ACL rupture. These results show that tibial compression configurations can strongly affect knee injury thresholds during loading.
Collapse
Affiliation(s)
- Allison W Hsia
- Biomedical Engineering Graduate Group, University of California, Davis, Davis, CA, United States.
| | - Franklin D Tarke
- Department of Orthopaedic Surgery, University of California Davis Medical Center, Sacramento, CA, United States.
| | - Trevor J Shelton
- Department of Orthopaedic Surgery, University of California Davis Medical Center, Sacramento, CA, United States.
| | - Priscilla M Tjandra
- Biomedical Engineering Graduate Group, University of California, Davis, Davis, CA, United States.
| | - Blaine A Christiansen
- Biomedical Engineering Graduate Group, University of California, Davis, Davis, CA, United States; Department of Orthopaedic Surgery, University of California Davis Medical Center, Sacramento, CA, United States.
| |
Collapse
|
45
|
Stringer M, Abeysekera I, Thomas J, LaCombe J, Stancombe K, Stewart RJ, Dria KJ, Wallace JM, Goodlett CR, Roper RJ. Epigallocatechin-3-gallate (EGCG) consumption in the Ts65Dn model of Down syndrome fails to improve behavioral deficits and is detrimental to skeletal phenotypes. Physiol Behav 2017; 177:230-241. [PMID: 28478033 PMCID: PMC5525541 DOI: 10.1016/j.physbeh.2017.05.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 04/15/2017] [Accepted: 05/01/2017] [Indexed: 12/17/2022]
Abstract
Down syndrome (DS) is caused by three copies of human chromosome 21 (Hsa21) and results in phenotypes including intellectual disability and skeletal deficits. Ts65Dn mice have three copies of ~50% of the genes homologous to Hsa21 and display phenotypes associated with DS, including cognitive deficits and skeletal abnormalities. DYRK1A is found in three copies in humans with Trisomy 21 and in Ts65Dn mice, and is involved in a number of critical pathways including neurological development and osteoclastogenesis. Epigallocatechin-3-gallate (EGCG), the main polyphenol in green tea, inhibits Dyrk1a activity. We have previously shown that EGCG treatment (~10mg/kg/day) improves skeletal abnormalities in Ts65Dn mice, yet the same dose, as well as ~20mg/kg/day did not rescue deficits in the Morris water maze spatial learning task (MWM), novel object recognition (NOR) or balance beam task (BB). In contrast, a recent study reported that an EGCG-containing supplement with a dose of 2-3mg per day (~40-60mg/kg/day) improved hippocampal-dependent task deficits in Ts65Dn mice. The current study investigated if an EGCG dosage similar to that study would yield similar improvements in either cognitive or skeletal deficits. Ts65Dn mice and euploid littermates were given EGCG [0.4mg/mL] or a water control, with treatments yielding average daily intakes of ~50mg/kg/day EGCG, and tested on the multivariate concentric square field (MCSF)-which assesses activity, exploratory behavior, risk assessment, risk taking, and shelter seeking-and NOR, BB, and MWM. EGCG treatment failed to improve cognitive deficits; EGCG also produced several detrimental effects on skeleton in both genotypes. In a refined HPLC-based assay, its first application in Ts65Dn mice, EGCG treatment significantly reduced kinase activity in femora but not in the cerebral cortex, cerebellum, or hippocampus. Counter to expectation, 9-week-old Ts65Dn mice exhibited a decrease in Dyrk1a protein levels in Western blot analysis in the cerebellum. The lack of beneficial therapeutic behavioral effects and potentially detrimental skeletal effects of EGCG found in Ts65Dn mice emphasize the importance of identifying dosages of EGCG that reliably improve DS phenotypes and linking those effects to actions of EGCG (or EGCG-containing supplements) in specific targets in brain and bone.
Collapse
Affiliation(s)
- Megan Stringer
- IUPUI, Department of Psychology, 402 North Blackford Street, LD 124, Indianapolis, IN 46202-3275, United States
| | - Irushi Abeysekera
- IUPUI, Department of Biology, 723 West Michigan Street, SL 306, Indianapolis, IN 46202-3275, United States
| | - Jared Thomas
- IUPUI, Department of Biology, 723 West Michigan Street, SL 306, Indianapolis, IN 46202-3275, United States
| | - Jonathan LaCombe
- IUPUI, Department of Biology, 723 West Michigan Street, SL 306, Indianapolis, IN 46202-3275, United States
| | - Kailey Stancombe
- IUPUI, Department of Psychology, 402 North Blackford Street, LD 124, Indianapolis, IN 46202-3275, United States
| | - Robert J Stewart
- IUPUI, Department of Psychology, 402 North Blackford Street, LD 124, Indianapolis, IN 46202-3275, United States
| | - Karl J Dria
- IUPUI, Department of Chemistry and Chemical Biology, 402 North Blackford Street, LD 326, Indianapolis, IN 46202-3275, United States
| | - Joseph M Wallace
- IUPUI, Department of Biomedical Engineering, 723 West Michigan Street, SL 220B, Indianapolis, IN 46202-3275, United States
| | - Charles R Goodlett
- IUPUI, Department of Psychology, 402 North Blackford Street, LD 124, Indianapolis, IN 46202-3275, United States
| | - Randall J Roper
- IUPUI, Department of Biology, 723 West Michigan Street, SL 306, Indianapolis, IN 46202-3275, United States.
| |
Collapse
|
46
|
Vesper EO, Hammond MA, Allen MR, Wallace JM. Even with rehydration, preservation in ethanol influences the mechanical properties of bone and how bone responds to experimental manipulation. Bone 2017; 97:49-53. [PMID: 28057526 PMCID: PMC5367983 DOI: 10.1016/j.bone.2017.01.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 12/16/2016] [Accepted: 01/01/2017] [Indexed: 01/27/2023]
Abstract
Typically, bones are harvested at the time of animal euthanasia and stored until mechanical testing. However, storage methods are not standardized, and differential effects on mechanical properties are possible between methods. The goal of this study was to investigate the effects that two common preservation methods (freezing wrapped in saline-soaked gauze and refrigerating ethanol fixed samples) have on bone mechanical properties in the context of an in vitro ribosylation treatment designed to modify mechanical integrity. It was hypothesized that there would be an interactive effect between ribose treatment and preservation method. Tibiae from twenty five 11week old female C57BL/6 mice were separated into 2 preservation groups. Micro-CT scans of contralateral pairs assessed differences in geometry prior to storage. After 7weeks of storage, bones in each pair of tibiae were soaked in a solution containing either 0M or 0.6M ribose for 1week prior to 4 point bending tests. There were no differences in any cortical geometric parameters between contralateral tibiae. There was a significant main effect of ethanol fixation on displacement to yield (-16.3%), stiffness (+24.5%), strain to yield (-13.9%), and elastic modulus (+18.5%) relative to frozen specimens. There was a significant main effect of ribose treatment for yield force (+13.9%), ultimate force (+9.2%), work to yield (+22.2%), yield stress (+14.1%), and resilience (+21.9%) relative to control-soaked bones. Postyield displacement, total displacement, postyield work, total work, total strain, and toughness were analyzed separately within each preservation method due to significant interactions. For samples stored frozen, all six properties were lower in the ribose-soaked group (49%-68%) while no significant effects of ribose were observed in ethanol fixed bones. Storage in ethanol likely caused changes to the collagen matrix which prevented or masked the embrittling effects of ribosylation that were seen in samples stored frozen wrapped in saline-soaked gauze. These data illustrate the clear importance of maintaining hydration if the eventual goal is to use bones for mechanical assessments and further show that storage in ethanol can alter potential to detect effects of experimental manipulation (in this case ribosylation).
Collapse
Affiliation(s)
- Evan O Vesper
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, IN, United States
| | - Max A Hammond
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, IN, United States
| | - Matthew R Allen
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, IN, United States; Department of Anatomy and Cell Biology, Indiana University School of Medicine, IN, United States; Roudebush Veterans Administration Medical Center, Indianapolis, IN, United States; Department of Orthopaedic Surgery, Indiana University School of Medicine, IN, United States
| | - Joseph M Wallace
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, IN, United States; Department of Orthopaedic Surgery, Indiana University School of Medicine, IN, United States.
| |
Collapse
|
47
|
Yang H, Embry RE, Main RP. Effects of Loading Duration and Short Rest Insertion on Cancellous and Cortical Bone Adaptation in the Mouse Tibia. PLoS One 2017; 12:e0169519. [PMID: 28076363 PMCID: PMC5226737 DOI: 10.1371/journal.pone.0169519] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Accepted: 12/19/2016] [Indexed: 11/19/2022] Open
Abstract
The skeleton's osteogenic response to mechanical loading can be affected by loading duration and rest insertion during a series of loading events. Prior animal loading studies have shown that the cortical bone response saturates quickly and short rest insertions between load cycles can enhance cortical bone formation. However, it remains unknown how loading duration and short rest insertion affect load-induced osteogenesis in the mouse tibial compressive loading model, and particularly in cancellous bone. To address this issue, we applied cyclic loading (-9 N peak load; 4 Hz) to the tibiae of three groups of 16 week-old female C57BL/6 mice for two weeks, with a different number of continuous load cycles applied daily to each group (36, 216 and 1200). A fourth group was loaded under 216 daily load cycles with a 10 s rest insertion after every fourth cycle. We found that as few as 36 load cycles per day were able to induce osteogenic responses in both cancellous and cortical bone. Furthermore, while cortical bone area and thickness continued to increase through 1200 cycles, the incremental increase in the osteogenic response decreased as load number increased, indicating a reduced benefit of the increasing number of load cycles. In the proximal metaphyseal cancellous bone, trabecular thickness increased with load up to 216 cycles. We also found that insertion of a 10 s rest between load cycles did not improve the osteogenic response of the cortical or cancellous tissues compared to continuous loading in this model given the age and sex of the mice and the loading parameters used here. These results suggest that relatively few load cycles (e.g. 36) are sufficient to induce osteogenic responses in both cortical and cancellous bone in the mouse tibial loading model. Mechanistic studies using the mouse tibial loading model to examine bone formation and skeletal mechanobiology could be accomplished with relatively few load cycles.
Collapse
Affiliation(s)
- Haisheng Yang
- Musculoskeletal Biology and Mechanics Lab, Department of Basic Medical Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Rachel E. Embry
- Musculoskeletal Biology and Mechanics Lab, Department of Basic Medical Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Russell P. Main
- Musculoskeletal Biology and Mechanics Lab, Department of Basic Medical Sciences, Purdue University, West Lafayette, Indiana, United States of America
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, United States of America
- * E-mail:
| |
Collapse
|
48
|
Berman AG, Wallace JM. Bone Quality and Quantity are Mediated by Mechanical Stimuli. Clin Rev Bone Miner Metab 2016. [DOI: 10.1007/s12018-016-9221-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
49
|
Stadelmann VA, Brun J, Bonnet N. Preclinical mouse models for assessing axial compression of long bones during exercise. BONEKEY REPORTS 2015; 4:768. [PMID: 26788286 PMCID: PMC4704463 DOI: 10.1038/bonekey.2015.138] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Accepted: 10/22/2015] [Indexed: 11/09/2022]
Abstract
The aim of this laboratory method is to describe two approaches for the investigation of bone responses to mechanical loading in mice in vivo. The first is running exercise, because it is easily translatable clinically, and the second is axial compression of the tibia, because it is precisely controllable. The effects of running exercise, and in general physical activity, on bone tissue have been shown to be both direct through mechanical loading (ground impact and muscle tension) and indirect through metabolic changes. Therefore, running exercise has been considered the most convenient preclinical model for demonstrating the general idea that exercise is good for bone health, either early in age for increasing peak bone mass or later in age by slowing down bone loss. However, numerous combinations of protocols have been reported, which makes it difficult to formulate a simple take-home message. This laboratory method also provides a detailed description of in vivo direct mechanical axial compression of the mouse tibia. The effects of mechanical loading depend on the force (strain), frequency, waveform and duration of application, and they range from bone anabolism with low bone remodeling, inducing lamellar bone accumulation, to bone catabolism with high bone remodeling, leading to microdamage, woven bone formation and bone loss. Direct in vivo loading models are extensively used to study mechanotransduction pathways, and contribute by this way to the development of new bone anabolism treatments. Although it is particularly difficult to assemble an internationally adopted protocol description, which would give reproducible bone responses, here we have attempted to provide a comprehensive guide for best practice in performing running exercise and direct in vivo mechanical loading in the laboratory.
Collapse
Affiliation(s)
| | - Julia Brun
- Division of Bone Diseases, Department of Internal Medicine Specialties, Geneva University Hospitals & Faculty of Medicine, Geneva, Switzerland
| | - Nicolas Bonnet
- Division of Bone Diseases, Department of Internal Medicine Specialties, Geneva University Hospitals & Faculty of Medicine, Geneva, Switzerland
| |
Collapse
|
50
|
Berman AG, Wallace JM, Bart ZR, Allen MR. Raloxifene reduces skeletal fractures in an animal model of osteogenesis imperfecta. Matrix Biol 2015; 52-54:19-28. [PMID: 26707242 DOI: 10.1016/j.matbio.2015.12.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 12/11/2015] [Accepted: 12/15/2015] [Indexed: 12/11/2022]
Abstract
Osteogenesis imperfecta (OI) is a genetic disease of Type I collagen and collagen-associated pathways that results in brittle bone behavior characterized by fracture and reduced mechanical properties. Based on previous work in our laboratory showing that raloxifene (RAL) can significantly improve bone mechanical properties through non-cellular mechanisms, we hypothesized that raloxifene would improve the mechanical properties of OI bone. In experiment 1, tibiae from female wild type (WT) and homozygous oim mice were subjected to in vitro soaking in RAL followed by mechanical tests. RAL soaking resulted in significantly higher post-yield displacement (+75% in WT, +472% in oim; p<0.004), with no effect on ultimate load or stiffness, in both WT and oim animals. In experiment 2, eight-week old WT and oim male mice were treated for eight weeks with saline vehicle (VEH) or RAL. Endpoint measures included assessment of in vivo skeletal fractures, bone density/geometry and mechanical properties. In vivo skeletal fractures of the femora, assessed by micro CT imaging, were significantly lower in oim-RAL (20%) compared to oim-VEH (48%, p=0.047). RAL led to significantly higher DXA-based BMD (p<0.01) and CT-based trabecular BV/TV in both WT and oim animals compared to those treated with VEH. Fracture toughness of the femora was lower in oim mice compared to WT and improved with RAL in both genotypes. These results suggest that raloxifene reduces the incidence of fracture in this mouse model of oim. Furthermore, they suggest that raloxifene's effects may be the result of both cellular (increased bone mass) and non-cellular (presumably changes in hydration) mechanisms, raising the possibility of using raloxifene, or related compounds, as a new approach for treating bone fragility associated with OI.
Collapse
Affiliation(s)
- Alycia G Berman
- Department of Biomedical Engineering, Indiana University Purdue University of Indianapolis, Indianapolis, IN, United States
| | - Joseph M Wallace
- Department of Biomedical Engineering, Indiana University Purdue University of Indianapolis, Indianapolis, IN, United States; Department of Orthopedic Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Zachary R Bart
- Department of Biomedical Engineering, Indiana University Purdue University of Indianapolis, Indianapolis, IN, United States
| | - Matthew R Allen
- Department of Biomedical Engineering, Indiana University Purdue University of Indianapolis, Indianapolis, IN, United States; Department of Orthopedic Surgery, Indiana University School of Medicine, Indianapolis, IN, United States; Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, United States.
| |
Collapse
|