1
|
Malinovskaya EM, Shmarina GV, Ershova ES, Kameneva LV, Veiko NN, Veiko VP, Konkova MS, Bobrovsky PA, Kozhina EA, Umriukhin PE, Lazarev VN, Asanov AY, Rozhnova TM, Nikolenko VN, Sinelnikov MY, Kostyuk SV. GC-Reach DNA Fragments Reduce the Expression of Survival Genes in MCF7 Breast Carcinoma Cells: TLR9/MyD88/NF-κB Signaling Pathway as a Potential Target for Cancer Therapy. Bull Exp Biol Med 2025; 178:467-472. [PMID: 40138110 DOI: 10.1007/s10517-025-06357-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Indexed: 03/29/2025]
Abstract
Cell-free DNA (cfDNA) attracts increasing attention not only as a diagnostic tool for tumor resistance to cytostatic therapy, but also as an active participant of the tumor process. GC-rich DNA accumulates in the cfDNA pool and stimulates TLR9/MyD88/NF-κB signaling, thereby increasing the expression of genes responsible for viability of cancer cells. We studied the effect of GC-DNA on the transcriptional activity of survival genes in wild-type MCF7 cells (wt MCF7) and TLR9 gene knockout MCF7 cells (TLR9-/- MCF7). It was shown that, in contrast to wt MCF7 cell cultures, TLR9-/- MCF7 cells responded to stimulation with GC-DNA fragments by a decrease in the activity of TLR9/MyD88/NF-κB signaling cascade and a decline in survival gene expression. Our data indicate that TLR9/MyD88/NF-κB signaling cascade components may be considered as potential targets for cancer therapy.
Collapse
Affiliation(s)
| | - G V Shmarina
- Research Centre for Medical Genetics, Moscow, Russia
| | - E S Ershova
- Research Centre for Medical Genetics, Moscow, Russia
| | - L V Kameneva
- Research Centre for Medical Genetics, Moscow, Russia
| | - N N Veiko
- Research Centre for Medical Genetics, Moscow, Russia
| | - V P Veiko
- Research Centre for Medical Genetics, Moscow, Russia
| | - M S Konkova
- Research Centre for Medical Genetics, Moscow, Russia
| | - P A Bobrovsky
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical-Biological Agency of Russia, Moscow, Russia
| | - E A Kozhina
- Research Centre for Medical Genetics, Moscow, Russia
| | - P E Umriukhin
- Research Centre for Medical Genetics, Moscow, Russia.
- I. M. Se-chenov First Moscow State Medical University, Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia.
| | - V N Lazarev
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical-Biological Agency of Russia, Moscow, Russia
| | - A Y Asanov
- I. M. Se-chenov First Moscow State Medical University, Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - T M Rozhnova
- I. M. Se-chenov First Moscow State Medical University, Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - V N Nikolenko
- I. M. Se-chenov First Moscow State Medical University, Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - M Y Sinelnikov
- I. M. Se-chenov First Moscow State Medical University, Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - S V Kostyuk
- Research Centre for Medical Genetics, Moscow, Russia
| |
Collapse
|
2
|
Ebrahim T, Ebrahim AS, Kandouz M. Diversity of Intercellular Communication Modes: A Cancer Biology Perspective. Cells 2024; 13:495. [PMID: 38534339 PMCID: PMC10969453 DOI: 10.3390/cells13060495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/27/2024] [Accepted: 03/10/2024] [Indexed: 03/28/2024] Open
Abstract
From the moment a cell is on the path to malignant transformation, its interaction with other cells from the microenvironment becomes altered. The flow of molecular information is at the heart of the cellular and systemic fate in tumors, and various processes participate in conveying key molecular information from or to certain cancer cells. For instance, the loss of tight junction molecules is part of the signal sent to cancer cells so that they are no longer bound to the primary tumors and are thus free to travel and metastasize. Upon the targeting of a single cell by a therapeutic drug, gap junctions are able to communicate death information to by-standing cells. The discovery of the importance of novel modes of cell-cell communication such as different types of extracellular vesicles or tunneling nanotubes is changing the way scientists look at these processes. However, are they all actively involved in different contexts at the same time or are they recruited to fulfill specific tasks? What does the multiplicity of modes mean for the overall progression of the disease? Here, we extend an open invitation to think about the overall significance of these questions, rather than engage in an elusive attempt at a systematic repertory of the mechanisms at play.
Collapse
Affiliation(s)
- Thanzeela Ebrahim
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48202, USA
| | - Abdul Shukkur Ebrahim
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48202, USA
| | - Mustapha Kandouz
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48202, USA
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48202, USA
| |
Collapse
|
3
|
He W, Xiao Y, Yan S, Zhu Y, Ren S. Cell-free DNA in the management of prostate cancer: Current status and future prospective. Asian J Urol 2022. [PMID: 37538150 PMCID: PMC10394290 DOI: 10.1016/j.ajur.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Objective With the escalating prevalence of prostate cancer (PCa) in China, there is an urgent demand for novel diagnostic and therapeutic approaches. Extensive investigations have been conducted on the clinical implementation of circulating free DNA (cfDNA) in PCa. This review aims to provide a comprehensive overview of the present state of cfDNA as a biomarker for PCa and to examine its merits and obstacles for future clinical utilization. Methods Relevant peer-reviewed manuscripts on cfDNA as a PCa marker were evaluated by PubMed search (2010-2022) to evaluate the roles of cfDNA in PCa diagnosis, prognosis, and prediction, respectively. Results cfDNA is primarily released from cells undergoing necrosis and apoptosis, allowing for non-invasive insight into the genomic, transcriptomic, and epigenomic alterations within various PCa disease states. Next-generation sequencing, among other detection methods, enables the assessment of cfDNA abundance, mutation status, fragment characteristics, and epigenetic modifications. Multidimensional analysis based on cfDNA can facilitate early detection of PCa, risk stratification, and treatment monitoring. However, standardization of cfDNA detection methods is still required to expedite its clinical application. Conclusion cfDNA provides a non-invasive, rapid, and repeatable means of acquiring multidimensional information from PCa patients, which can aid in guiding clinical decisions and enhancing patient management. Overcoming the application barriers of cfDNA necessitates increased data sharing and international collaboration.
Collapse
|
4
|
Wang H, Luo Y, Chen H, Hou H, Hu Q, Ji M. Non-Targeted Serum Lipidomics Analysis and Potential Biomarkers of Laryngeal Cancer Based on UHPLC-QTOF-MS. Metabolites 2022; 12:1087. [PMID: 36355170 PMCID: PMC9695307 DOI: 10.3390/metabo12111087] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 08/31/2023] Open
Abstract
Laryngeal cancer is a common head and neck malignant cancer type. However, effective biomarkers for diagnosis are lacking and pathogenesis is unclear. Lipidomics is a powerful tool for identifying biomarkers and explaining disease mechanisms. Hence, in this study, non-targeted lipidomics based on ultra-performance liquid chromatography-quadrupole time of flight-mass spectrometry (UHPLC-QTOF-MS) were applied to screen the differential lipid metabolites in serum and allowed for exploration of the remodeled lipid metabolism of laryngeal cancer, laryngeal benign tumor patients, and healthy crowds. Multivariate analysis and univariate analysis were combined to screen for differential lipid metabolites among the three groups. The results showed that, across a total of 57 lipid metabolic markers that were screened, the regulation of the lipid metabolism network occurred mainly in phosphatidylcholine (PC), lysophosphatidylcholine (LPC), and sphingomyelin (SM) metabolism. Of note, the concentration levels of sphingolipids 42:2 (SM 42:2) and sphingolipids 42:3 (SM 42:3) correlated with laryngeal cancer progression and were both significantly different among the three groups. Both of them could be considered as potential biomarkers for diagnosis and indicators for monitoring the progression of laryngeal cancer. From the perspective of lipidomics, this study not only revealed the regulatory changes in the lipid metabolism network, but also provided a new possibility for screening biomarkers in laryngeal cancer.
Collapse
Affiliation(s)
- Haoyue Wang
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Science Island Branch, Graduate School of University of Science and Technology of China, Hefei 230026, China
- Key Laboratory of Tobacco Biological Effects, China National Tobacco Quality Supervision & Test Center, Zhengzhou 450001, China
| | - Yanbo Luo
- Key Laboratory of Tobacco Biological Effects, China National Tobacco Quality Supervision & Test Center, Zhengzhou 450001, China
| | - Huan Chen
- Key Laboratory of Tobacco Biological Effects, China National Tobacco Quality Supervision & Test Center, Zhengzhou 450001, China
| | - Hongwei Hou
- Key Laboratory of Tobacco Biological Effects, China National Tobacco Quality Supervision & Test Center, Zhengzhou 450001, China
| | - Qingyuan Hu
- Key Laboratory of Tobacco Biological Effects, China National Tobacco Quality Supervision & Test Center, Zhengzhou 450001, China
| | - Min Ji
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| |
Collapse
|
5
|
Bożyk A, Nicoś M. The Overview of Perspectives of Clinical Application of Liquid Biopsy in Non-Small-Cell Lung Cancer. Life (Basel) 2022; 12:1640. [PMID: 36295075 PMCID: PMC9604747 DOI: 10.3390/life12101640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/12/2022] [Accepted: 10/17/2022] [Indexed: 01/19/2023] Open
Abstract
The standard diagnostics procedure for non-small-cell lung cancer (NSCLC) requires a pathological evaluation of tissue samples obtained by surgery or biopsy, which are considered invasive sampling procedures. Due to this fact, re-sampling of the primary tumor at the moment of progression is limited and depends on the patient's condition, even if it could reveal a mechanism of resistance to applied therapy. Recently, many studies have indicated that liquid biopsy could be provided for the noninvasive management of NSCLC patients who receive molecularly targeted therapies or immunotherapy. The liquid biopsy of neoplastic patients harbors small fragments of circulating-free DNA (cfDNA) and cell-free RNA (cfRNA) secreted to the circulation from normal cells, as well as a subset of tumor-derived circulating tumor cells (CTCs) or circulating tumor DNA (ctDNA). In NSCLC patients, a longitudinal assessment of genetic alterations in "druggable" genes in liquid biopsy might improve the follow-up of treatment efficacy and allow for the detection of an early progression before it is detectable in computed tomography or a clinical image. However, a liquid biopsy may be used to determine a variety of relevant molecular or genetic information for understanding tumor biology and its evolutionary trajectories. Thus, liquid biopsy is currently associated with greater hope for common diagnostic and clinical applications. In this review, we would like to highlight diagnostic challenges in the application of liquid biopsy into the clinical routine and indicate its implications on the metastatic spread of NSCLC or monitoring of personalized treatment regimens.
Collapse
Affiliation(s)
| | - Marcin Nicoś
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, 20-059 Lublin, Poland
| |
Collapse
|
6
|
Bronkhorst AJ, Ungerer V, Oberhofer A, Gabriel S, Polatoglou E, Randeu H, Uhlig C, Pfister H, Mayer Z, Holdenrieder S. New Perspectives on the Importance of Cell-Free DNA Biology. Diagnostics (Basel) 2022; 12:2147. [PMID: 36140548 PMCID: PMC9497998 DOI: 10.3390/diagnostics12092147] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/24/2022] [Accepted: 08/31/2022] [Indexed: 11/28/2022] Open
Abstract
Body fluids are constantly replenished with a population of genetically diverse cell-free DNA (cfDNA) fragments, representing a vast reservoir of information reflecting real-time changes in the host and metagenome. As many body fluids can be collected non-invasively in a one-off and serial fashion, this reservoir can be tapped to develop assays for the diagnosis, prognosis, and monitoring of wide-ranging pathologies, such as solid tumors, fetal genetic abnormalities, rejected organ transplants, infections, and potentially many others. The translation of cfDNA research into useful clinical tests is gaining momentum, with recent progress being driven by rapidly evolving preanalytical and analytical procedures, integrated bioinformatics, and machine learning algorithms. Yet, despite these spectacular advances, cfDNA remains a very challenging analyte due to its immense heterogeneity and fluctuation in vivo. It is increasingly recognized that high-fidelity reconstruction of the information stored in cfDNA, and in turn the development of tests that are fit for clinical roll-out, requires a much deeper understanding of both the physico-chemical features of cfDNA and the biological, physiological, lifestyle, and environmental factors that modulate it. This is a daunting task, but with significant upsides. In this review we showed how expanded knowledge on cfDNA biology and faithful reverse-engineering of cfDNA samples promises to (i) augment the sensitivity and specificity of existing cfDNA assays; (ii) expand the repertoire of disease-specific cfDNA markers, thereby leading to the development of increasingly powerful assays; (iii) reshape personal molecular medicine; and (iv) have an unprecedented impact on genetics research.
Collapse
Affiliation(s)
- Abel J. Bronkhorst
- Munich Biomarker Research Center, Institute for Laboratory Medicine, German Heart Centre, Technical University Munich, Lazarettstraße 36, D-80636 Munich, Germany
| | | | | | | | | | | | | | | | | | - Stefan Holdenrieder
- Munich Biomarker Research Center, Institute for Laboratory Medicine, German Heart Centre, Technical University Munich, Lazarettstraße 36, D-80636 Munich, Germany
| |
Collapse
|
7
|
Mizuno Y, Shibata S, Miyagaki T, Ito Y, Taira H, Omori I, Hisamoto T, Oka K, Matsuda KM, Boki H, Takahashi-Shishido N, Sugaya M, Sato S. Serum cell-free DNA as a new biomarker in cutaneous T-cell lymphoma. J Dermatol 2022; 49:1124-1130. [PMID: 35821652 DOI: 10.1111/1346-8138.16520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 11/26/2022]
Abstract
In recent years, circulating cell-free DNA (cfDNA) has received a great attention as a biomarker for various cancers. Many reports have shown that serum cfDNA levels are elevated in cancer patients and their levels correlate with prognosis and disease activity. The aim of this study was to measure serum cfDNA levels in patients with cutaneous T-cell lymphoma (CTCL) and to evaluate their correlations with hematological and clinical findings. Serum cfDNA levels in CTCL patients were significantly higher than those in healthy controls, and their levels gradually increased with the progression of the disease stage. Positive correlations were detected between serum cfDNA levels and those of lactate dehydrogenase, thymus and activation-regulated chemokine and soluble IL-2 receptor as well as neutrophil and eosinophil count in peripheral blood and neutrophil-to-lymphocyte ratio. Furthermore, CTCL patients with higher serum cfDNA levels exhibited a significantly worse prognosis. Taken together, these results suggest the potential of cfDNA as a new biomarker reflecting prognosis and disease activity in CTCL. CfDNA levels may serve as an indicator for considering the intensity and timing of subsequent therapeutic intervention.
Collapse
Affiliation(s)
- Yuka Mizuno
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Sayaka Shibata
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Tomomitsu Miyagaki
- Department of Dermatology, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Yukiko Ito
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Haruka Taira
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Issei Omori
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Teruyoshi Hisamoto
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Kenta Oka
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Kazuki M Matsuda
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Hikari Boki
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | | | - Makoto Sugaya
- Department of Dermatology, International University of Health and Welfare, Chiba, Japan
| | - Shinichi Sato
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
8
|
Liu X, Quan J, Shen Z, Zhang Z, Chen Z, Li L, Li X, Hu G, Deng X. Metallothionein 2A (MT2A) controls cell proliferation and liver metastasis by controlling the MST1/LATS2/YAP1 signaling pathway in colorectal cancer. Cancer Cell Int 2022; 22:205. [PMID: 35642057 PMCID: PMC9158144 DOI: 10.1186/s12935-022-02623-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 05/25/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the three major cancers in the world and is the cancer with the most liver metastasis. The present study aimed to investigate the role of metallothionein 2A (MT2A) in the modulation of CRC cell proliferation and liver metastasis, as well as its molecular mechanisms. METHODS The expression profile of metallothionein 2A (MT2A) in colorectal cancer retrieved from TCGA, GEO and Oncomine database. The biological effect of MT2A overexpression was investigated mainly involving cell proliferation and migration in CRC cells as well as growth and metastasis in CRC animal models. To explore the specific mechanism of MT2A metastasis in CRC, transcriptome sequencing was used to compare the overall expression difference between the control group and the MT2A overexpression group. RESULTS Metallothionein 2A (MT2A) was downregulated in the tumor tissues of patients with CRC compared to adjacent normal tissues and was related to the tumor M stage of patients. MT2A overexpression inhibited CRC cell proliferation and migration in cells, as well as growth and metastasis in CRC animal models. While knockdown of MT2A had the opposite effect in cells. Western blotting confirmed that MT2A overexpression promoted the phosphorylation of MST1, LAST2 and YAP1, thereby inhibiting the Hippo signaling pathway. Additionally, specific inhibitors of MST1/2 inhibited MT2A overexpression-mediated phosphorylation and relieved the inhibition of the Hippo signaling pathway, thus promoting cell proliferation. Immunohistochemistry in subcutaneous grafts and liver metastases further confirmed this result. CONCLUSIONS Our results suggested that MT2A is involved in CRC growth and liver metastasis. Therefore, MT2A and MST1 may be potential therapeutic targets for patients with CRC, especially those with liver metastases.
Collapse
Affiliation(s)
- Xi Liu
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
| | - Jun Quan
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
| | - Zhaolong Shen
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
| | - Zequn Zhang
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China.
| | - Zhijian Chen
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
| | - Liang Li
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
| | - Xiaorong Li
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
| | - Gui Hu
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
| | - Xiaofeng Deng
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Renmin Road, Changsha, 410000, Hunan, People's Republic of China.
| |
Collapse
|
9
|
Cai SS, Li T, Akinade T, Zhu Y, Leong KW. Drug delivery carriers with therapeutic functions. Adv Drug Deliv Rev 2021; 176:113884. [PMID: 34302897 PMCID: PMC8440421 DOI: 10.1016/j.addr.2021.113884] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 01/07/2023]
Abstract
Design of micro- or nanocarriers for drug delivery has primarily been focused on properties such as hydrophobicity, biodegradability, size, shape, surface charge, and toxicity, so that they can achieve optimal delivery with respect to drug loading, release kinetics, biodistribution, cellular uptake, and biocompatibility. Incorporation of stimulus-sensitive moieties into the carriers would lead to "smart" delivery systems. A further evolution would be to endow the carrier with a therapeutic function such that it no longer serves as a mere passive entity to release the drug at the target tissue but can be viewed as a therapeutic agent in itself. In this review, we will discuss recent and ongoing efforts over the past decade to design therapeutic drug carriers that confer a biological benefit, including ROS scavenging or generating, pro- or anti-inflammatory, and immuno-evasive properties, to enhance the overall therapeutic efficacy of the delivery systems.
Collapse
Affiliation(s)
- Shuting S. Cai
- Department of Biomedical Engineering, Columbia University, New York 10027, New York, United States
| | - Tianyu Li
- Department of Biomedical Engineering, Columbia University, New York 10027, New York, United States
| | - Tolulope Akinade
- Graduate Program in Cellular, Molecular and Biomedical Studies, Vagelos College of Physicians and Surgeons, Columbia University, New York 10027, New York, United States
| | - Yuefei Zhu
- Department of Biomedical Engineering, Columbia University, New York 10027, New York, United States
| | - Kam W. Leong
- Department of Biomedical Engineering, Columbia University, New York 10027, New York, United States,Department of Systems Biology, Columbia University, New York 10027, New York, United States,Corresponding author , Mailing address: 351 Engineering Terrace, Mail Code 8904, 1210 Amsterdam Avenue, New York, NY 10027
| |
Collapse
|
10
|
Circulating Nucleic Acids in Maternal Plasma and Serum in Pregnancy Complications: Are They Really Useful in Clinical Practice? A Systematic Review. Mol Diagn Ther 2021; 24:409-431. [PMID: 32367458 DOI: 10.1007/s40291-020-00468-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE A systematic review was carried out to summarize the available evidence to assess whether circulating nucleic acids in maternal plasma and serum (CNAPS) have the potential to serve as extra and independent markers for the prediction and/or progression monitoring of the most common and severe complications of pregnancy, including preeclampsia, intrauterine growth restriction, preterm delivery, morbidly adherent placenta, gestational diabetes, antiphospholipid syndrome, threatened abortion, intrahepatic cholestasis of pregnancy, and hyperemesis gravidarum. METHOD A comprehensive literature search of the MEDLINE (PubMed), EMBASE, and ISI Web of Knowledge databases was conducted to identify relevant studies that included amounts of CNAPS in the abovementioned pregnancy complications. RESULTS Eighty-three studies met the eligibility criteria. The vast majority of studies were conducted on the quantity of total circulating cell free DNA (cfDNA) and cell free fetal DNA (cffDNA), and some were conducted on messenger RNA (mRNA) species. A few studies have instead evaluated the cell free DNA fetal fraction (cfDNAff), but only in a limited number of pregnancy complications. Despite the growing interest and the abundance of the papers available, little information is available for other new CNAPS, including microRNA (miRNA), long noncoding RNA (lncRNA), mitochondrial DNA (mtDNA), and circular RNA. CONCLUSION Due to the heterogeneity of the populations enrolled, the scarcity of the studies that adjusted the CNAPS values for possible confounding factors, and the difficulty in interpreting the published data, no conclusion regarding the statistical robustness and clinical relevance of the data can be made at present. If assayed at the third trimester, the CNAPS have, however, shown better performance, and could be used in populations already at risk of developing complications as suggested by the presence of other clinical features. Other CNAPS, including miRNA, are under investigation, especially for the screening of gestational diabetes mellitus, but no data about their clinical utility are available. Circulating DNA (cfDNA, cffDNA, and cfDNAff) and mRNA have not been properly evaluated yet, especially in patients asymptomatic early in pregnancy but who developed complications later, perhaps because of the high cost of these techniques and the availability of other predictors of pregnancy complications (biochemical, biophysical, and ultrasound markers). Therefore, from the analysis of the data, the positive predictive value is not available. As regards the new CNAPS, including miRNA, there are still no sufficient data to understand if they can be promising markers for pregnancy complications monitoring and screening, since CNAPS are statistically weak and expensive. It is reasonable to currently conclude that the use of the CNAPS in clinical practice is not recommended.
Collapse
|
11
|
Bhardwaj V, Tan YQ, Wu MM, Ma L, Zhu T, Lobie PE, Pandey V. Long non-coding RNAs in recurrent ovarian cancer: Theranostic perspectives. Cancer Lett 2021; 502:97-107. [PMID: 33429007 DOI: 10.1016/j.canlet.2020.12.042] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/17/2020] [Accepted: 12/29/2020] [Indexed: 02/09/2023]
Abstract
Nearly 70% of ovarian cancer (OC) patients experience recurrence within the first 2 years after initial treatment. Emerging evidence indicates that long non-coding RNAs (lncRNAs) play a pivotal role in the pathogenesis of OC progression, resistance to therapy and recurrent OC (ROC). Transcriptome profiling studies have reported differential expression patterns of lncRNAs in OC which are related to increased cell invasion, metastasis and drug resistance. In this review, we highlighted the roles of lncRNAs in OC progression and outlined the potential molecular mechanisms by which lncRNAs impact on ROC. Recent advances using lncRNAs as potential biomarkers for screening, detection, prediction, response to therapy and as therapeutic targets are discussed.
Collapse
Affiliation(s)
- Vipul Bhardwaj
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China
| | - Yan Qin Tan
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China
| | - Ming Ming Wu
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, 230000, Anhui, PR China; The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230000, Anhui, PR China
| | - Lan Ma
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China; Shenzhen Bay Laboratory, Shenzhen, 518055, Guangdong, PR China
| | - Tao Zhu
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, 230000, Anhui, PR China; The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230000, Anhui, PR China
| | - Peter E Lobie
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China; Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China; Shenzhen Bay Laboratory, Shenzhen, 518055, Guangdong, PR China.
| | - Vijay Pandey
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China; Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China.
| |
Collapse
|
12
|
do Canto LM, Barros-Filho MC, Rainho CA, Marinho D, Kupper BEC, Begnami MDFDS, Scapulatempo-Neto C, Havelund BM, Lindebjerg J, Marchi FA, Baumbach J, Aguiar S, Rogatto SR. Comprehensive Analysis of DNA Methylation and Prediction of Response to NeoadjuvantTherapy in Locally Advanced Rectal Cancer. Cancers (Basel) 2020; 12:cancers12113079. [PMID: 33105711 PMCID: PMC7690383 DOI: 10.3390/cancers12113079] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/09/2020] [Accepted: 10/16/2020] [Indexed: 12/19/2022] Open
Abstract
The treatment for locally advanced rectal carcinomas (LARC) is based on neoadjuvant chemoradiotherapy (nCRT) and surgery, which results in pathological complete response (pCR) in up to 30% of patients. Since epigenetic changes may influence response to therapy, we aimed to identify DNA methylation markers predictive of pCR in LARC patients treated with nCRT. We used high-throughput DNA methylation analysis of 32 treatment-naïve LARC biopsies and five normal rectal tissues to explore the predictive value of differentially methylated (DM) CpGs. External validation was carried out with The Cancer Genome Atlas-Rectal Adenocarcinoma (TCGA-READ 99 cases). A classifier based on three-CpGs DM (linked to OBSL1, GPR1, and INSIG1 genes) was able to discriminate pCR from incomplete responders with high sensitivity and specificity. The methylation levels of the selected CpGs confirmed the predictive value of our classifier in 77 LARCs evaluated by bisulfite pyrosequencing. Evaluation of external datasets (TCGA-READ, GSE81006, GSE75546, and GSE39958) reproduced our results. As the three CpGs were mapped near to regulatory elements, we performed an integrative analysis in regions associated with predicted cis-regulatory elements. A positive and inverse correlation between DNA methylation and gene expression was found in two CpGs. We propose a novel predictive tool based on three CpGs potentially useful for pretreatment screening of LARC patients and guide the selection of treatment modality.
Collapse
Affiliation(s)
- Luisa Matos do Canto
- Department of Clinical Genetics, University Hospital of Southern Denmark, 7100 Vejle, Denmark;
- International Research Center–CIPE, A.C. Camargo Cancer Center, Sao Paulo 04002-010, Brazil; (M.C.B.-F.); (F.A.M.)
| | - Mateus Camargo Barros-Filho
- International Research Center–CIPE, A.C. Camargo Cancer Center, Sao Paulo 04002-010, Brazil; (M.C.B.-F.); (F.A.M.)
- Department of Head and Neck Surgery, Hospital das Clinicas HCFMUSP, Sao Paulo 01246-903, Brazil
| | - Cláudia Aparecida Rainho
- Department of Chemical and Biological Sciences, Institute of Biosciences, Sao Paulo State University (Unesp), Botucatu 18618-689, Brazil;
| | - Diogo Marinho
- Institute of Biological Psychiatry, Psykiatrisk Center Sct. Hans, 4000 Roskilde, Denmark;
| | - Bruna Elisa Catin Kupper
- Colorectal Cancer Service, A.C. Camargo Cancer Center, Sao Paulo 04002-010, Brazil; (B.E.C.K.); (S.A.J.)
| | | | - Cristovam Scapulatempo-Neto
- Molecular Oncology Research Center, Barretos – 14784-400, and Diagnósticos da América (DASA), Barueri 06455010, Brazil;
| | - Birgitte Mayland Havelund
- Department of Oncology, University Hospital of Southern Denmark, 7100 Vejle, Denmark;
- Danish Colorectal Cancer Center South, 7100 Vejle, Denmark;
| | - Jan Lindebjerg
- Danish Colorectal Cancer Center South, 7100 Vejle, Denmark;
- Department of Pathology, University Hospital of Southern Denmark, 7100 Vejle, Denmark
| | - Fabio Albuquerque Marchi
- International Research Center–CIPE, A.C. Camargo Cancer Center, Sao Paulo 04002-010, Brazil; (M.C.B.-F.); (F.A.M.)
| | - Jan Baumbach
- TUM School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany;
| | - Samuel Aguiar
- Colorectal Cancer Service, A.C. Camargo Cancer Center, Sao Paulo 04002-010, Brazil; (B.E.C.K.); (S.A.J.)
| | - Silvia Regina Rogatto
- Department of Clinical Genetics, University Hospital of Southern Denmark, 7100 Vejle, Denmark;
- Danish Colorectal Cancer Center South, 7100 Vejle, Denmark;
- Institute of Regional Health Research, Faculty of Health Sciences, University of Southern Denmark, 5000 Odense, Denmark
- Correspondence: ; Tel.: +45-7940-6669
| |
Collapse
|
13
|
Hasan S. An Overview of Promising Biomarkers in Cancer Screening and Detection. Curr Cancer Drug Targets 2020; 20:831-852. [PMID: 32838718 DOI: 10.2174/1568009620666200824102418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/03/2020] [Accepted: 07/13/2020] [Indexed: 11/22/2022]
Abstract
Applications of biomarkers have been proved in oncology screening, diagnosis, predicting response to treatment as well as monitoring the progress of the disease. Considering the crucial role played by them during different disease stages, it is extremely important to evaluate, validate, and assess them to incorporate them into routine clinical care. In this review, the role of few most promising and successfully used biomarkers in cancer detection, i.e. PD-L1, E-Cadherin, TP53, Exosomes, cfDNA, EGFR, mTOR with regard to their structure, mode of action, and reports signifying their pathological significance, are addressed. Also, an overview of some successfully used biomarkers for cancer medicine has been presented. The study also summarizes biomarker-driven personalized cancer therapy i.e., approved targets and indications, as per the US FDA. The review also highlights the increasingly prominent role of biomarkers in drug development at all stages, with particular reference to clinical trials. The increasing utility of biomarkers in clinical trials is clearly evident from the trend shown, wherein ~55 percent of all oncology clinical trials in 2019 were seen to involve biomarkers, as opposed to ~ 15 percent in 2001, which clearly proves the essence and applicability of biomarkers for synergizing clinical information with tumor progression. Still, there are significant challenges in the implementation of these possibilities with strong evidence in cost-- effective manner.
Collapse
Affiliation(s)
- Saba Hasan
- Amity Institute of Biotechnology, Amity University, Uttar Pradesh, Lucknow, India
| |
Collapse
|
14
|
Hong C, Deng R, Wang P, Lu X, Zhao X, Wang X, Cai R, Lin J. LIPG: an inflammation and cancer modulator. Cancer Gene Ther 2020; 28:27-32. [PMID: 32572177 DOI: 10.1038/s41417-020-0188-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 06/03/2020] [Accepted: 06/10/2020] [Indexed: 12/11/2022]
Abstract
Endothelial lipase (LIPG/EL) performs fundamental and vital roles in the human body, including cell composition, cytokine expression, and energy provision. Since LIPG predominantly functions as a phospholipase as well as presents low levels of triglyceride lipase activity, it plays an essential role in lipoprotein metabolism, and involves in the metabolic syndromes such as inflammatory response and atherosclerosis. Cytokines significantly affect LIPG expression in endothelial cells in many diseases. Recently, it is suggested that LIPG contributes to cancer initiation and progression, and LIPG attached increasing importance to its potential for future targeted therapy.
Collapse
Affiliation(s)
- Chang Hong
- The First Clinical Medical School (Nanfang Hospital), Southern Medical University, Guangzhou, 510515, PR China
| | - Ruxia Deng
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, PR China
| | - Ping Wang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, PR China
| | - Xiansheng Lu
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, PR China
| | - Xin Zhao
- The First Clinical Medical School (Nanfang Hospital), Southern Medical University, Guangzhou, 510515, PR China
| | - Xiaoyu Wang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, PR China
| | - Rui Cai
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, PR China
| | - Jie Lin
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, PR China.
| |
Collapse
|
15
|
Baghban R, Roshangar L, Jahanban-Esfahlan R, Seidi K, Ebrahimi-Kalan A, Jaymand M, Kolahian S, Javaheri T, Zare P. Tumor microenvironment complexity and therapeutic implications at a glance. Cell Commun Signal 2020; 18:59. [PMID: 32264958 PMCID: PMC7140346 DOI: 10.1186/s12964-020-0530-4] [Citation(s) in RCA: 1039] [Impact Index Per Article: 207.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 02/05/2020] [Indexed: 02/07/2023] Open
Abstract
The dynamic interactions of cancer cells with their microenvironment consisting of stromal cells (cellular part) and extracellular matrix (ECM) components (non-cellular) is essential to stimulate the heterogeneity of cancer cell, clonal evolution and to increase the multidrug resistance ending in cancer cell progression and metastasis. The reciprocal cell-cell/ECM interaction and tumor cell hijacking of non-malignant cells force stromal cells to lose their function and acquire new phenotypes that promote development and invasion of tumor cells. Understanding the underlying cellular and molecular mechanisms governing these interactions can be used as a novel strategy to indirectly disrupt cancer cell interplay and contribute to the development of efficient and safe therapeutic strategies to fight cancer. Furthermore, the tumor-derived circulating materials can also be used as cancer diagnostic tools to precisely predict and monitor the outcome of therapy. This review evaluates such potentials in various advanced cancer models, with a focus on 3D systems as well as lab-on-chip devices. Video abstract.
Collapse
Affiliation(s)
- Roghayyeh Baghban
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Biotechnology, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Roshangar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rana Jahanban-Esfahlan
- Department of Medical Biotechnology, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khaled Seidi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committees, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abbas Ebrahimi-Kalan
- Department of Neurosciences and Cognitive, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Jaymand
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Saeed Kolahian
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, University Hospital Tuebingen, Tuebingen, Germany
| | - Tahereh Javaheri
- Health Informatics Lab, Metropolitan College, Boston University, Boston, USA
| | - Peyman Zare
- Dioscuri Center of Chromatin Biology and Epigenomics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
- Faculty of Medicine, Cardinal Stefan Wyszyński University in Warsaw, 01-938 Warsaw, Poland
| |
Collapse
|
16
|
van Boeckel SR, Macpherson H, Norman JE, Davidson DJ, Stock SJ. Inflammation-mediated generation and inflammatory potential of human placental cell-free fetal DNA. Placenta 2020; 93:49-55. [PMID: 32250739 PMCID: PMC7146537 DOI: 10.1016/j.placenta.2020.02.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 02/21/2020] [Accepted: 02/22/2020] [Indexed: 11/16/2022]
Abstract
Introduction Circulating DNA can be pro-inflammatory when detected by leukocytes via toll-like receptor 9 (TLR9). Cell-free fetal DNA (cff-DNA) of placental origin, circulates in pregnancy, and increased concentrations are seen in conditions associated with placental and maternal inflammation such as pre-eclampsia. However, whether cff-DNA is directly pro-inflammatory in pregnant women and what regulates cff-DNA levels in pregnancy are unknown. Methods Using a human term placental explant model, we examined whether induction of placental inflammation can promote cff-DNA release, and the capacity of this cff-DNA to stimulate peripheral blood mononuclear cells (PBMCs) from pregnant women. Results We demonstrate lipopolysaccharide (LPS)-mediated inflammation in placental explants and induced apoptosis after 24 h. However, this did not increase levels of cff-DNA generation compared to controls. Furthermore, the methylation status of the cff-DNA, was not altered by LPS-induced inflammation. Cff-DNA did not elicit production of inflammatory cytokines from PBMCs, in contrast to exposure to LPS or the TLR9 agonist CpG-ODN. Finally, we demonstrate that cff-DNA acquired directly from pregnant women did not differ in methylation status from placental extracted DNA, or from placental explant generated cell-free DNA, and that, unlike Escherichia coli DNA, this cff-DNA has a low level of unmethylated CpG sequences. Discussion Our data suggest that placental inflammation does not increase release of cff-DNA and that placental cff-DNA is not pro-inflammatory to circulating PBMCs. It thus seems unlikely that high levels of cff-DNA are either a direct consequence or cause of inflammation observed in obstetric complications. Cell-free fetal DNA was generated using a human placental explant model. Lipopolysaccharide causes inflammation and cell death in placental explants. Inflammation does not increase cell-free fetal DNA release from placental explants. Generated DNA does not elicit inflammation from blood cells from pregnant women.
Collapse
Affiliation(s)
- Sara R van Boeckel
- Tommy's Centre for Maternal and Fetal Health at the MRC Centre for Reproductive Health, University of Edinburgh, QMRI, Edinburgh, United Kingdom.
| | - Heather Macpherson
- Tommy's Centre for Maternal and Fetal Health at the MRC Centre for Reproductive Health, University of Edinburgh, QMRI, Edinburgh, United Kingdom
| | - Jane E Norman
- Tommy's Centre for Maternal and Fetal Health at the MRC Centre for Reproductive Health, University of Edinburgh, QMRI, Edinburgh, United Kingdom
| | - Donald J Davidson
- University of Edinburgh Centre for Inflammation Research, QMRI, Edinburgh, United Kingdom
| | - Sarah J Stock
- Tommy's Centre for Maternal and Fetal Health at the MRC Centre for Reproductive Health, University of Edinburgh, QMRI, Edinburgh, United Kingdom; Usher Institute, University of Edinburgh NINE Edinburgh BioQuarter, 9 Little France Road, Edinburgh, EH16 4UX, United Kingdom
| |
Collapse
|
17
|
Sun Q, Li Q, Xie F. LncRNA-MALAT1 regulates proliferation and apoptosis of ovarian cancer cells by targeting miR-503-5p. Onco Targets Ther 2019; 12:6297-6307. [PMID: 31496733 PMCID: PMC6691960 DOI: 10.2147/ott.s214689] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 07/17/2019] [Indexed: 12/20/2022] Open
Abstract
Objective Ovarian cancer (OC) is a common female disease with a poor prognosis. But the possible mechanism of OC tumor progression remains an active area of research. This study is intended to explore the effect of metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) on proliferation and apoptosis of OC and its mechanism. Materials and methods MALAT1 and miR-503-5p expressions in human OC cell lines and normal human ovarian epithelial (HOSE) cell line were measured using qRT-PCR. OC cell line SKOV3 is divided into 4 groups: pcDNA3.1 group, pcDNA3.1-MALAT1 group, si-NC group, and si-MALAT1 group. MTT assay and 5-ethynyl-2'-deoxyuridine (EdU) assay were applied for the detection of cell proliferation. Relationship of MALAT1 with miR-503-5p was verified using luciferase assay and RNA pull-down. The luciferase activity in cells was normalized to RNA concentrations determined by Bradford assays. Results MALAT1 expression in OC cells was elevated compared with HOSE cells. MTT assay and EdU assay supported that si-MALAT1 could inhibit cell proliferation in OC cells. Treatment of si-MALAT1 results in increased cell apoptosis rate in both SKOV3 cells and OVCAR3 cells. The expression of lncRNA-MALAT1 was negatively associated with the expression of miR-503-5p in OC cells, while luciferase assay and RNA pull-down together supported the direct binding of MALAT1 with miR-503-5p. Knockdown of MALAT1 was able to inhibit the activation of JAK2/STAT3 signal pathway, and MALAT1 overexpression was accompanied by activation of these factors. Conclusion lncRNA-MALAT1 can negatively target miR-503-5p expression to further promote proliferation and depress apoptosis of OC cells through the JAK2-STAT3 pathway.
Collapse
Affiliation(s)
- Qian Sun
- Department of Obstetrics and Gynecology, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, Gansu 730050, People's Republic of China
| | - Qian Li
- Department of Obstetrics and Gynecology, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, Gansu 730050, People's Republic of China
| | - Fangfang Xie
- Department of Obstetrics and Gynecology, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, Gansu 730050, People's Republic of China
| |
Collapse
|
18
|
Kustanovich A, Schwartz R, Peretz T, Grinshpun A. Life and death of circulating cell-free DNA. Cancer Biol Ther 2019; 20:1057-1067. [PMID: 30990132 PMCID: PMC6606043 DOI: 10.1080/15384047.2019.1598759] [Citation(s) in RCA: 372] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/24/2019] [Accepted: 03/12/2019] [Indexed: 12/18/2022] Open
Abstract
Tumor-specific, circulating cell-free DNA in liquid biopsies is a promising source of biomarkers for minimally invasive serial monitoring of treatment responses in cancer management. We will review the current understanding of the origin of circulating cell-free DNA and different forms of DNA release (including various types of cell death and active secretion processes) and clearance routes. The dynamics of extracellular DNA in blood during therapy and the role of circulating DNA in pathophysiological processes (tumor-associated inflammation, NETosis, and pre-metastatic niche development) provide insights into the mechanisms that contribute to tumor development and metastases formation. Better knowledge of circulating tumor-specific cell-free DNA could facilitate the development of new therapeutic and diagnostic options for cancer management.
Collapse
Affiliation(s)
- Anatoli Kustanovich
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Ruth Schwartz
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Tamar Peretz
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Albert Grinshpun
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
19
|
Bronkhorst AJ, Ungerer V, Holdenrieder S. The emerging role of cell-free DNA as a molecular marker for cancer management. BIOMOLECULAR DETECTION AND QUANTIFICATION 2019; 17:100087. [PMID: 30923679 PMCID: PMC6425120 DOI: 10.1016/j.bdq.2019.100087] [Citation(s) in RCA: 367] [Impact Index Per Article: 61.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/26/2019] [Accepted: 03/11/2019] [Indexed: 02/07/2023]
Abstract
An increasing number of studies demonstrate the potential use of cell-free DNA (cfDNA) as a surrogate marker for multiple indications in cancer, including diagnosis, prognosis, and monitoring. However, harnessing the full potential of cfDNA requires (i) the optimization and standardization of preanalytical steps, (ii) refinement of current analysis strategies, and, perhaps most importantly, (iii) significant improvements in our understanding of its origin, physical properties, and dynamics in circulation. The latter knowledge is crucial for interpreting the associations between changes in the baseline characteristics of cfDNA and the clinical manifestations of cancer. In this review we explore recent advancements and highlight the current gaps in our knowledge concerning each point of contact between cfDNA analysis and the different stages of cancer management.
Collapse
Affiliation(s)
| | | | - Stefan Holdenrieder
- Institute for Laboratory Medicine, German Heart Centre, Technical University Munich, Lazarettstraße. 36, D-80636, Munich, Germany
| |
Collapse
|
20
|
Cui Y, Li G, Zhang X, Dai F, Zhang R. Increased MALAT1 expression contributes to cisplatin resistance in non-small cell lung cancer. Oncol Lett 2018; 16:4821-4828. [PMID: 30250547 PMCID: PMC6144744 DOI: 10.3892/ol.2018.9293] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 04/04/2018] [Indexed: 12/17/2022] Open
Abstract
Cisplatin-based chemotherapy is commonly used for the clinical treatment of patients with non-small cell lung cancer (NSCLC). However, the anti-tumor efficacy of cisplatin is limited by poor clinical response and the development of chemoresistance. At present, the underlying mechanism for cisplatin resistance remains unclear. In the present study, it was identified that metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), a long non-coding RNA that has been demonstrated to function as an oncogene, was increased in tumor tissues from patients with cisplatin-resistant NSCLC. In addition, the MALAT1 level was increased in A549rCDDP cells compared with the parental A549 cells. Silencing of MALAT1 sensitized A549rCDDP cells to cisplatin treatment, while overexpression of MALAT1 in A549 cells decreased their sensitivity towards cisplatin. Through analysis of the gene expression in patient samples, a decrease in miR-145 and an increase in Kruppel-like factor 4 (KLF4) in tumor tissues compared with adjacent normal tissues was observed. A negative association between MALAT1 and miR-145 was also identified in A549 cells and A549rCDDP cells. Furthermore, reverse transcription quantitative polymerase chain reaction and western blotting identified that KLF4 was positively and negatively regulated by MALAT1 and miR-145, respectively. The direct regulatory association between MALAT1 and miR-145 and the target gene KLF4 was additionally confirmed using a luciferase reporter assay. Knockdown of MALAT1 reversed cisplatin resistance in A549rCDDP cells. Taken together, these data indicated that MALAT1 decreased the sensitivity of NSCLC to cisplatin via the regulation of miR-145 and KLF4.
Collapse
Affiliation(s)
- Yong Cui
- The Third Department of Oncology, Shouguang People's Hospital, Shouguang, Shandong 262700, P.R. China
| | - Guanlong Li
- The Third Department of Oncology, Shouguang People's Hospital, Shouguang, Shandong 262700, P.R. China
| | - Xin Zhang
- The Third Department of Oncology, Shouguang People's Hospital, Shouguang, Shandong 262700, P.R. China
| | - Fangfang Dai
- The Third Department of Oncology, Shouguang People's Hospital, Shouguang, Shandong 262700, P.R. China
| | - Rongxiang Zhang
- The Third Department of Oncology, Shouguang People's Hospital, Shouguang, Shandong 262700, P.R. China
| |
Collapse
|
21
|
Shahriari S, Rezaeifard S, Moghimi HR, Khorramizadeh MR, Faghih Z. Cell membrane and intracellular expression of toll-like receptor 9 (TLR9) in colorectal cancer and breast cancer cell-lines. Cancer Biomark 2018; 18:375-380. [PMID: 28106541 DOI: 10.3233/cbm-160260] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Toll-like receptor 9 (TLR9) is a DNA receptor of innate immune system which plays a pivotal role in inflammatory response. Recent evidence reveals over-expression and functionality of TLR9 in a wide variety of cancer cells and its contribution to tumor cell proliferation and survival. OBJECTIVE In this study, we assessed the aberrant cell surface expression of TLR9 in cancer using cell-lines model. METHODS Three breast cancer cell-lines (MDA-MB-231, MCF7 and SKBR3) and five colorectal adenocarcinoma cell-lines (HT29, HT29/219, SW480, SW48 and SW1116) in addition to one primary foreskin isolated fibroblast cell were analyzed for cell surface and intracellular expression of TLR9 by flow cytometry method. RESULTS Maximum surface expression of TLR9 was observed in colorectal cell-line HT29/219 (38.35%), as compared with the bottom line fibroblast normal cells (0.12%). The most intracellular expression was observed in MCF-7 cells (35.63%), whereas MDA-MB-231 expressed the maximum surface/intra cellular expression (277 times). CONCLUSIONS Based on the results, we hypothesize that aberrant surface expression of TLR9 on tumor cells may promote tumor growth and invasion. It might also highlight a dual contradictory role for CpG-ODNs, as adjutant in cancer therapy.
Collapse
Affiliation(s)
- Shadab Shahriari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Somayeh Rezaeifard
- Cancer Immunology Group, Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamid Reza Moghimi
- School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Khorramizadeh
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, EMRI, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Faghih
- Cancer Immunology Group, Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
22
|
Sayagués JM, Corchete LA, Gutiérrez ML, Sarasquete ME, Del Mar Abad M, Bengoechea O, Fermiñán E, Anduaga MF, Del Carmen S, Iglesias M, Esteban C, Angoso M, Alcazar JA, García J, Orfao A, Muñoz-Bellvis L. Genomic characterization of liver metastases from colorectal cancer patients. Oncotarget 2018; 7:72908-72922. [PMID: 27662660 PMCID: PMC5341953 DOI: 10.18632/oncotarget.12140] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 09/13/2016] [Indexed: 01/09/2023] Open
Abstract
Metastatic dissemination is the most frequent cause of death of sporadic colorectal cancer (sCRC) patients. Genomic abnormalities which are potentially characteristic of such advanced stages of the disease are complex and so far, they have been poorly described and only partially understood. We evaluated the molecular heterogeneity of sCRC tumors based on simultaneous assessment of the overall GEP of both coding mRNA and non-coding RNA genes in primary sCRC tumor samples from 23 consecutive patients and their paired liver metastases. Liver metastases from the sCRC patients analyzed, systematically showed deregulated transcripts of those genes identified as also deregulated in their paired primary colorectal carcinomas. However, some transcripts were found to be specifically deregulated in liver metastases (vs. non-tumoral colorectal tissues) while expressed at normal levels in their primary tumors, reflecting either an increased genomic instability of metastatic cells or theiradaption to the liver microenvironment. Newly deregulated metastatic transcripts included overexpression of APOA1, HRG, UGT2B4, RBP4 and ADH4 mRNAS and the miR-3180-3p, miR-3197, miR-3178, miR-4793 and miR-4440 miRNAs, together with decreased expression of the IGKV1-39, IGKC, IGKV1-27, FABP4 and MYLK mRNAS and the miR-363, miR-1, miR-143, miR-27b and miR-28-5p miRNAs. Canonical pathways found to be specifically deregulated in liver metastatic samples included multiple genes related with intercellular adhesion and the metastatic processes (e.g., IGF1R, PIK3CA, PTEN and EGFR), endocytosis (e.g., the PDGFRA, SMAD2, ERBB3, PML and FGFR2), and the cell cycle (e.g., SMAD2, CCND2, E2F5 and MYC). Our results also highlighted the activation of genes associated with the TGFβ signaling pathway, -e.g. RHOA, SMAD2, SMAD4, SMAD5, SMAD6, BMPR1A, SMAD7 and MYC-, which thereby emerge as candidate genes to play an important role in CRC tumor metastasis.
Collapse
Affiliation(s)
- José María Sayagués
- Cytometry Service-NUCLEUS, Department of Medicine, Cancer Research Center, IBMCC-CSIC/USAL and IBSAL, University of Salamanca, Salamanca, Spain
| | - Luís Antonio Corchete
- Cáncer Research Center and Service of Hematology, University Hospital of Salamanca, Salamanca, Spain
| | - María Laura Gutiérrez
- Cytometry Service-NUCLEUS, Department of Medicine, Cancer Research Center, IBMCC-CSIC/USAL and IBSAL, University of Salamanca, Salamanca, Spain
| | - Maria Eugenia Sarasquete
- Cáncer Research Center and Service of Hematology, University Hospital of Salamanca, Salamanca, Spain
| | - María Del Mar Abad
- Department of Pathology, University Hospital of Salamanca, Salamanca, Spain
| | - Oscar Bengoechea
- Department of Pathology, University Hospital of Salamanca, Salamanca, Spain
| | - Encarna Fermiñán
- Genomics Unit, Cancer Research Center, IBMCC-CSIC/USAL, Salamanca, Spain
| | - María Fernanda Anduaga
- Service of General and Gastrointestinal Surgery and IBSAL, University Hospital of Salamanca, Salamanca, Spain
| | - Sofia Del Carmen
- Department of Pathology, University Hospital of Salamanca, Salamanca, Spain
| | - Manuel Iglesias
- Service of General and Gastrointestinal Surgery and IBSAL, University Hospital of Salamanca, Salamanca, Spain
| | - Carmen Esteban
- Service of General and Gastrointestinal Surgery and IBSAL, University Hospital of Salamanca, Salamanca, Spain
| | - María Angoso
- Service of General and Gastrointestinal Surgery and IBSAL, University Hospital of Salamanca, Salamanca, Spain
| | - Jose Antonio Alcazar
- Service of General and Gastrointestinal Surgery and IBSAL, University Hospital of Salamanca, Salamanca, Spain
| | - Jacinto García
- Service of General and Gastrointestinal Surgery and IBSAL, University Hospital of Salamanca, Salamanca, Spain
| | - Alberto Orfao
- Cytometry Service-NUCLEUS, Department of Medicine, Cancer Research Center, IBMCC-CSIC/USAL and IBSAL, University of Salamanca, Salamanca, Spain
| | - Luís Muñoz-Bellvis
- Service of General and Gastrointestinal Surgery and IBSAL, University Hospital of Salamanca, Salamanca, Spain
| |
Collapse
|
23
|
van Boeckel SR, Davidson DJ, Norman JE, Stock SJ. Cell-free fetal DNA and spontaneous preterm birth. Reproduction 2017; 155:R137-R145. [PMID: 29269517 PMCID: PMC5812054 DOI: 10.1530/rep-17-0619] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 12/21/2017] [Indexed: 12/17/2022]
Abstract
Inflammation is known to play a key role in preterm and term parturition. Cell-free fetal DNA (cff-DNA) is present in the maternal circulation and increases with gestational age and some pregnancy complications (e.g. preterm birth, preeclampsia). Microbial DNA and adult cell-free DNA can be pro-inflammatory through DNA-sensing mechanisms such as Toll-like receptor 9 and the Stimulator of Interferon Genes (STING) pathway. However, the pro-inflammatory properties of cff-DNA, and the possible effects of this on pregnancy and parturition are unknown. Clinical studies have quantified cff-DNA levels in the maternal circulation in women who deliver preterm and women who deliver at term and show an association between preterm labor and higher cff-DNA levels in the 2nd, 3rd trimester and at onset of preterm birth symptoms. Together with potential pro-inflammatory properties of cff-DNA, this rise suggests a potential mechanistic role in the pathogenesis of spontaneous preterm birth. In this review, we discuss the evidence linking cff-DNA to adverse pregnancy outcomes, including preterm birth, obtained from preclinical and clinical studies.
Collapse
Affiliation(s)
- Sara R van Boeckel
- Tommy's Centre for Maternal and Fetal Health at the MRC Centre for Reproductive HealthUniversity of Edinburgh, QMRI, Edinburgh, UK
| | - Donald J Davidson
- MRC Centre for Inflammation ResearchUniversity of Edinburgh, QMRI, Edinburgh, UK
| | - Jane E Norman
- Tommy's Centre for Maternal and Fetal Health at the MRC Centre for Reproductive HealthUniversity of Edinburgh, QMRI, Edinburgh, UK
| | - Sarah J Stock
- Tommy's Centre for Maternal and Fetal Health at the MRC Centre for Reproductive HealthUniversity of Edinburgh, QMRI, Edinburgh, UK
| |
Collapse
|
24
|
Krizkova S, Kepinska M, Emri G, Eckschlager T, Stiborova M, Pokorna P, Heger Z, Adam V. An insight into the complex roles of metallothioneins in malignant diseases with emphasis on (sub)isoforms/isoforms and epigenetics phenomena. Pharmacol Ther 2017; 183:90-117. [PMID: 28987322 DOI: 10.1016/j.pharmthera.2017.10.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Metallothioneins (MTs) belong to a group of small cysteine-rich proteins that are ubiquitous throughout all kingdoms. The main function of MTs is scavenging of free radicals and detoxification and homeostating of heavy metals. In humans, 16 genes localized on chromosome 16 have been identified to encode four MT isoforms labelled by numbers (MT-1-MT-4). MT-2, MT-3 and MT-4 proteins are encoded by a single gene. MT-1 comprises many (sub)isoforms. The known active MT-1 genes are MT-1A, -1B, -1E, -1F, -1G, -1H, -1M and -1X. The rest of the MT-1 genes (MT-1C, -1D, -1I, -1J and -1L) are pseudogenes. The expression and localization of individual MT (sub)isoforms and pseudogenes vary at intra-cellular level and in individual tissues. Changes in MT expression are associated with the process of carcinogenesis of various types of human malignancies, or with a more aggressive phenotype and therapeutic resistance. Hence, MT (sub)isoform profiling status could be utilized for diagnostics and therapy of tumour diseases. This review aims on a comprehensive summary of methods for analysis of MTs at (sub)isoforms levels, their expression in single tumour diseases and strategies how this knowledge can be utilized in anticancer therapy.
Collapse
Affiliation(s)
- Sona Krizkova
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic; Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Marta Kepinska
- Department of Biomedical and Environmental Analysis, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland
| | - Gabriella Emri
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Nagyerdei krt 98, H-4032 Debrecen, Hungary
| | - Tomas Eckschlager
- Department of Paediatric Haematology and Oncology, 2nd Faculty of Medicine, Charles University, and University Hospital Motol, V Uvalu 84, CZ-150 06 Prague 5, Czech Republic
| | - Marie Stiborova
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, CZ-128 40 Prague 2, Czech Republic
| | - Petra Pokorna
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, CZ-128 40 Prague 2, Czech Republic; Department of Oncology, 2nd Faculty of Medicine, Charles University, and University Hospital Motol, V Uvalu 84, CZ-150 06 Prague 5, Czech Republic
| | - Zbynek Heger
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic; Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Vojtech Adam
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic; Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic.
| |
Collapse
|
25
|
Li H, Chen YX, Wen JG, Zhou HH. Metastasis-associated in colon cancer 1: A promising biomarker for the metastasis and prognosis of colorectal cancer. Oncol Lett 2017; 14:3899-3908. [PMID: 28943898 PMCID: PMC5605967 DOI: 10.3892/ol.2017.6670] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 01/10/2017] [Indexed: 12/26/2022] Open
Abstract
Colorectal cancer (CRC) is the fourth most frequent type of malignancy in the world. Metastasis accounts for >90% mortalities in patients with CRC. The metastasis-associated in colon cancer 1 (MACC1) gene has been identified as a novel biomarker for the prediction of metastasis and disease prognosis, particularly for patients with early-stage disease. Previous clinical studies demonstrated that MACC1 expression and polymorphisms in CRC tissues were indicators of metastasis, and that circulating transcripts in plasma were also significantly associated with the survival of patients. The present review describes the use of MACC1 beyond its utility in the clinic. By elucidating the upstream and downstream signal pathways of MACC1, the well-known mechanisms of MACC1-mediated cell proliferation, invasion, migration and epithelial-mesenchymal transition (EMT) are summarized, as well as the potential signaling pathways. Furthermore, the underlying mechanisms by which the overexpression of MACC1 causes cisplatin resistance are emphasized.
Collapse
Affiliation(s)
- He Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China.,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, Hunan 410078, P.R. China
| | - Yi-Xin Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China.,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, Hunan 410078, P.R. China
| | - Jia-Gen Wen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China.,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, Hunan 410078, P.R. China
| | - Hong-Hao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China.,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, Hunan 410078, P.R. China.,Hunan Province Cooperation Innovation Center for Molecular Target New Drug Study, Hengyang, Hunan 421001, P.R. China
| |
Collapse
|
26
|
Hosseini ES, Meryet-Figuiere M, Sabzalipoor H, Kashani HH, Nikzad H, Asemi Z. Dysregulated expression of long noncoding RNAs in gynecologic cancers. Mol Cancer 2017. [PMID: 28637507 PMCID: PMC5480155 DOI: 10.1186/s12943-017-0671-2] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Cancers of the female reproductive system include ovarian, uterine, vaginal, cervical and vulvar cancers, which are termed gynecologic cancer. The emergence of long noncoding RNAs (lncRNAs), which are believed to play a crucial role in several different biological processes, has made the regulation of gene expression more complex. Although the function of lncRNAs is still rather elusive, their broad involvement in the initiation and progression of various cancers is clear. They are also involved in the pathogenesis of cancers of the female reproductive system. LncRNAs play a critical physiological role in apoptosis, metastasis, invasion, migration and cell proliferation in these cancers. Different expression profiles of lncRNAs have been observed in various types of tumors compared with normal tissues and between malignant and benign tumors. These differential expression patterns may lead to the promotion or suppression of cancer development and tumorigenesis. In the current review, we present the lncRNAs that show a differential expression between cancerous and normal tissues in ovarian, cervical and endometrial cancers, and highlight the associations between lncRNAs and some of the molecular pathways involved in these cancers.
Collapse
Affiliation(s)
- Elahe Seyed Hosseini
- Gametogenesis Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Matthieu Meryet-Figuiere
- Normandie Univ, UNICAEN, INSERM, ANTICIPE U1086 (Interdisciplinary Research for Cancers prevention and treatment, axis BioTICLA (Biology and Innovative Therapeutics for Ovarian Cancer), Caen, France. .,UNICANCER, Comprehensive Cancer Centre François Baclesse, Caen, France.
| | - Hamed Sabzalipoor
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hamed Haddad Kashani
- Anatomical Sciences Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Hossein Nikzad
- Gametogenesis Research Center, Kashan University of Medical Sciences, Kashan, Iran.
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan, Iran
| |
Collapse
|
27
|
Yu JE, Han SY, Wolfson B, Zhou Q. The role of endothelial lipase in lipid metabolism, inflammation, and cancer. Histol Histopathol 2017; 33:1-10. [PMID: 28540715 DOI: 10.14670/hh-11-905] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Endothelial lipase (LIPG) plays a critical role in lipoprotein metabolism, cytokine expression, and the lipid composition of cells. Thus far, the extensive investigations of LIPG have focused on its mechanisms and involvement in metabolic syndromes such as atherosclerosis. However, recent developments have found that LIPG plays a role in cancer. This review summarizes the field of LIPG study. We focus on the role of LIPG in lipid metabolism and the inflammatory response, and highlight the recent insights in its involvement in tumor progression. Finally, we discuss potential therapeutic strategies for targeting LIPG in cancer, and the therapeutic potential of LIPG as a drug target.
Collapse
Affiliation(s)
- Justine E Yu
- Department of Biochemistry and Molecular Biology, Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, USA
| | - Shu-Yan Han
- Department of Biochemistry and Molecular Biology, Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, USA.,Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Integration of Chinese and Western Medicine, Peking University Cancer Hospital and Institute, Beijing, People's Republic of China
| | - Benjamin Wolfson
- Department of Biochemistry and Molecular Biology, Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, USA
| | - Qun Zhou
- Department of Biochemistry and Molecular Biology, Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, USA.
| |
Collapse
|