1
|
Mori-Bazzano L, Nguyen NHA, Sevcu A, Riha J, Fu T, Slaveykova VI, Ibelings BW. Plastic degradation in Lake Geneva: Influence of depth, seasonal shifts, and bacterial community dynamics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 983:179615. [PMID: 40398166 DOI: 10.1016/j.scitotenv.2025.179615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 04/24/2025] [Accepted: 05/05/2025] [Indexed: 05/23/2025]
Abstract
Aquatic ecosystems suffer disproportionately from plastic pollution given that they integrate material from terrestrial watersheds. Most studies on microbial colonisation and degradation of plastics have focused on marine environments, leaving a knowledge gap for freshwaters. Our study explores the possible degradation and the role of bacterial community composition of plastics in Lake Geneva. We exposed polyethylene terephthalate (PET) and low-density polyethylene (LDPE) for 45 weeks to environmental lake gradients that change with depth and season. The substrates were suspended at 2 and 30 m depth, resulting in strikingly different environmental conditions for biofilm development, including light (PAR), temperature, and nutrient availability. We monitored the bacterial colonisation using 16S rRNA sequencing and assessed the abundance of the alkane hydrolase gene (alkB) to evaluate the potential ability of the biofilm to degrade PET and LDPE. Additionally, we analysed plastic surface modifications through spectroscopy, contact angle measurements and microscopy. We found that the PET surface showed no degradation after 45 weeks in the lake, at either depth. The LDPE surface at 2 m exhibited a decrease in hydrophobicity, but no evidence of oxidation or degradation was found. In contrast, the LDPE surface at 30 m displayed oxidation, a decrease in hydrophobicity, and porous cavities. In addition, we observed an increase in the alkane alkB gene abundance in the biofilm, with the development of plastic-degrading taxa in the community. Our results underline the complexity of plastic degradation in aquatic ecosystems; not only does the type of plastic have an effect, so do the spatio-temporal variable environmental lake conditions and the biofilm community. The multifactorial nature of these processes complicates predictions on the fate of plastics in the environment.
Collapse
Affiliation(s)
- Laureen Mori-Bazzano
- Department F.-A. Forel for Environmental and Aquatic Sciences, Faculty of Science, University of Geneva, Geneva, Switzerland
| | - Nhung H A Nguyen
- Department of Applied Biology, Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Liberec, Czech Republic
| | - Alena Sevcu
- Department of Applied Biology, Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Liberec, Czech Republic
| | - Jakub Riha
- Department of Applied Biology, Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Liberec, Czech Republic
| | - Tingting Fu
- Department of Quantum Matter Physics, Laboratory of Advanced Technology, University of Geneva, Geneva, Switzerland
| | - Vera I Slaveykova
- Department F.-A. Forel for Environmental and Aquatic Sciences, Faculty of Science, University of Geneva, Geneva, Switzerland
| | - Bastiaan W Ibelings
- Department F.-A. Forel for Environmental and Aquatic Sciences, Faculty of Science, University of Geneva, Geneva, Switzerland
| |
Collapse
|
2
|
Peczyk K, Siupka P, Magurno F, Malicka M, Piotrowska-Seget Z. Genome characterisation of three mycorrhizal helper bacterial strains isolated from a polycyclic aromatic hydrocarbon polluted site. Mol Genet Genomics 2025; 300:24. [PMID: 39985673 DOI: 10.1007/s00438-025-02232-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 02/07/2025] [Indexed: 02/24/2025]
Abstract
The study aimed to explore the genetic and functional potential of mycorrhizal helper bacteria (MHB) strains isolated from polluted soil, focusing on their ability to enhance plant growth and ameliorate the adverse effects of polycyclic aromatic hydrocarbons (PAHs). We sequenced the genomes of three MHB strains isolated from soil contaminated with PAHs and phenol. Moreover, experiments were carried out to check if these bacteria have ability to stimulate the growth of arbuscular mycorrhizal fungi (AMF) and promote plant development. Phylogenomic analysis identified the strains as belonging to the Streptomyces, Pantoea, and Bacillus genera, all exhibiting high tolerance to hydrocarbons. Genome mining revealed genes encoding enzymes for the degradation of aromatic compounds, alongside biosynthetic gene clusters for secondary metabolites such as siderophores and antibiotics. Laboratory experiments confirmed that the studied MHB strains enhance AMF development and spore production while exhibiting plant growth-promoting mechanisms such as siderophore and ammonia production, phosphate solubilization, and cellulolytic enzyme synthesis. These findings highlight the potential application of MHB in microbial-assisted remediation of hydrocarbon-contaminated soils through the tripartite plant-MHB-AMF system.
Collapse
Affiliation(s)
- Klaudia Peczyk
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Jagiellońska 28, Katowice, 40-032, Poland
| | - Piotr Siupka
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Jagiellońska 28, Katowice, 40-032, Poland
| | - Franco Magurno
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Jagiellońska 28, Katowice, 40-032, Poland
| | - Monika Malicka
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Jagiellońska 28, Katowice, 40-032, Poland
| | - Zofia Piotrowska-Seget
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Jagiellońska 28, Katowice, 40-032, Poland.
| |
Collapse
|
3
|
Nieto EE, Festa S, Colman D, Macchi M, Morelli IS, Coppotelli BM. Challenging the impact of consortium diversity on bioaugmentation efficiency and native bacterial community structure in an acutely PAH-contaminated soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:5589-5604. [PMID: 39939570 DOI: 10.1007/s11356-025-35987-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 01/19/2025] [Indexed: 02/14/2025]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are priority pollutants. We studied the effect of bioaugmentation using three allochthonous bacterial consortia with increasing diversity: SC AMBk, SC1, and SC4, on the structure and functionality of an artificially and acutely PAH-contaminated soil microbiome. The PAH supplementation increased substrate availability, allowing the inocula to efficiently degrade the supplemented PAHs after 15 days of incubation, become temporarily established, and modify the number of total interactions with soil residents. Sphingobium and Burkholderia, both members of the inoculants, were the major contributors to functional KOs (KEGG orthologs) linked to degradation and were differentially abundant genera in inoculated microcosms, indicating their competitiveness in the soil. Hence, bioaugmentation efficiency relied on them, while further degradation could be carried out by native microorganisms. This is one of the first studies to apply three inocula, designed from naturally occurring bacteria, and to study their effect on the soil's native community through ANCOM-BC. We revealed that when a resource that can be used by the inoculant is added to the soil, a high-diversity inoculant is not necessary to interact with the native community and establish itself. This finding is crucial for the design of microbiome engineering in bioremediation processes.
Collapse
Affiliation(s)
- Esteban Emanuel Nieto
- Centro de Investigación y Desarrollo en Fermentaciones Industriales, CINDEFI (UNLP; CCT-La Plata, CONICET), Street 50 No. 227, 1900, La Plata, Argentina
| | - Sabrina Festa
- Centro de Investigación y Desarrollo en Fermentaciones Industriales, CINDEFI (UNLP; CCT-La Plata, CONICET), Street 50 No. 227, 1900, La Plata, Argentina
| | - Deborah Colman
- Centro de Investigación y Desarrollo en Fermentaciones Industriales, CINDEFI (UNLP; CCT-La Plata, CONICET), Street 50 No. 227, 1900, La Plata, Argentina
| | - Marianela Macchi
- Centro de Investigación y Desarrollo en Fermentaciones Industriales, CINDEFI (UNLP; CCT-La Plata, CONICET), Street 50 No. 227, 1900, La Plata, Argentina
- Comisión de Investigaciones Científicas de La Provincia de Buenos Aires, La Plata, Argentina
| | - Irma Susana Morelli
- Centro de Investigación y Desarrollo en Fermentaciones Industriales, CINDEFI (UNLP; CCT-La Plata, CONICET), Street 50 No. 227, 1900, La Plata, Argentina
- Comisión de Investigaciones Científicas de La Provincia de Buenos Aires, La Plata, Argentina
| | - Bibiana Marina Coppotelli
- Centro de Investigación y Desarrollo en Fermentaciones Industriales, CINDEFI (UNLP; CCT-La Plata, CONICET), Street 50 No. 227, 1900, La Plata, Argentina.
| |
Collapse
|
4
|
González-Cortés JJ, Lamprea-Pineda PA, Ramírez M, Van Langenhove H, Demeestere K, Walgraeve C. Enhancing the biodegradation of hydrophobic volatile organic compounds: A study on microbial consortia adaptation and the role of surfactants. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122874. [PMID: 39405867 DOI: 10.1016/j.jenvman.2024.122874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/07/2024] [Accepted: 10/07/2024] [Indexed: 11/17/2024]
Abstract
The emission of hydrophobic Volatile Organic Compounds (VOCs) is a serious environmental issue. Typically, biofilters (BFs) are employed for their treatment, with the potential enhancement of mass transfer through the addition of surfactants. However, disparate results in previous studies have been observed, attributed to uncontrolled conditions during the introduction of surfactants to BFs. Additionally, there has been limited exploration of microbial consortium adaptation to surfactants. To address these gaps, this study followed two approaches. First, the long-term (247 days) removal of cyclohexane was studied in a stirred tank bioreactor (STBR) inoculated with Rhodococcus erythropolys E1 and using Tween 80 at three times the critical micelle concentration (CMC). Second, the short-term (9 days) impact of two (bio)surfactants [Tween 80 (1 × CMC) and Quillaja Saponin (QS, 1 × CMC)] on the removal of cyclohexane, hexane and toluene was investigated in batch tests using three types of inocula: a pure culture of Rhodococcus erythropolys E1 (X0), a microbial consortium adapted to cyclohexane (X1), and a microbial consortium adapted to cyclohexane with Tween 80 (X2). For long-term operation, the addition of Tween 80 at 3 × CMC improved cyclohexane removal efficiency (RE) to 87 ± 1% (elimination capacity, EC = 145 ± 25 mg m-3 h-1, gas residence time, GRT = 20 min, inlet concentration, Cin = 14.9 ± 2.5 ppmv), compared to a RE of 32 ± 9% (EC = 44 ± 8 mg m-3 h-1, GRT = 20 min, Cin = 15.1 ± 0.7 ppmv) under similar conditions without surfactants. For short-term operation, the addition of QS at 1 × CMC significantly increased biomass growth, resulting in lower maximum specific consumption rates for X1 and X2 compared to scenarios without surfactants or 1 × CMC Tween 80. The most abundant genera in X1 and X2 were Paludisphaera (26-23%), 67-14 genus (17-23%), and Rhodococcus (9-18%), respectively.
Collapse
Affiliation(s)
- J J González-Cortés
- Department of Chemical Engineering and Food Technologies, Wine and Agrifood Research Institute (IVAGRO), Faculty of Sciences, University of Cadiz, Cádiz, Spain; Research Group EnVOC, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.
| | - P A Lamprea-Pineda
- Research Group EnVOC, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - M Ramírez
- Department of Chemical Engineering and Food Technologies, Wine and Agrifood Research Institute (IVAGRO), Faculty of Sciences, University of Cadiz, Cádiz, Spain
| | - H Van Langenhove
- Research Group EnVOC, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - K Demeestere
- Research Group EnVOC, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - C Walgraeve
- Research Group EnVOC, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
5
|
Alidoosti F, Giyahchi M, Moien S, Moghimi H. Unlocking the potential of soil microbial communities for bioremediation of emerging organic contaminants: omics-based approaches. Microb Cell Fact 2024; 23:210. [PMID: 39054471 PMCID: PMC11271216 DOI: 10.1186/s12934-024-02485-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024] Open
Abstract
The remediation of emerging contaminants presents a pressing environmental challenge, necessitating innovative approaches for effective mitigation. This review article delves into the untapped potential of soil microbial communities in the bioremediation of emerging contaminants. Bioremediation, while a promising method, often proves time-consuming and requires a deep comprehension of microbial intricacies for enhancement. Given the challenges presented by the inability to culture many of these microorganisms, conventional methods are inadequate for achieving this goal. While omics-based methods provide an innovative approach to understanding the fundamental aspects, processes, and connections among microorganisms that are essential for improving bioremediation strategies. By exploring the latest advancements in omics technologies, this review aims to shed light on how these approaches can unlock the hidden capabilities of soil microbial communities, paving the way for more efficient and sustainable remediation solutions.
Collapse
Affiliation(s)
- Fatemeh Alidoosti
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Minoo Giyahchi
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Shabnam Moien
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Hamid Moghimi
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran.
| |
Collapse
|
6
|
Kharey GS, Palace V, Whyte L, Greer CW. Native freshwater lake microbial community response to an in situ experimental dilbit spill. FEMS Microbiol Ecol 2024; 100:fiae055. [PMID: 38650064 PMCID: PMC11068069 DOI: 10.1093/femsec/fiae055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 02/29/2024] [Accepted: 04/18/2024] [Indexed: 04/25/2024] Open
Abstract
With the increase in crude oil transport throughout Canada, the potential for spills into freshwater ecosystems has increased and additional research is needed in these sensitive environments. Large enclosures erected in a lake were used as mesocosms for this controlled experimental dilbit (diluted bitumen) spill under ambient environmental conditions. The microbial response to dilbit, the efficacy of standard remediation protocols on different shoreline types commonly found in Canadian freshwater lakes, including a testing of a shoreline washing agent were all evaluated. We found that the native microbial community did not undergo any significant shifts in composition after exposure to dilbit or the ensuing remediation treatments. Regardless of the treatment, sample type (soil, sediment, or water), or type of associated shoreline, the community remained relatively consistent over a 3-month monitoring period. Following this, metagenomic analysis of polycyclic aromatic and alkane hydrocarbon degradation mechanisms also showed that while many key genes identified in PAH and alkane biodegradation were present, their abundance did not change significantly over the course of the experiment. These results showed that the native microbial community present in a pristine freshwater lake has the prerequisite mechanisms for hydrocarbon degradation in place, and combined with standard remediation practices in use in Canada, has the genetic potential and resilience to potentially undertake bioremediation.
Collapse
Affiliation(s)
- Gurpreet S Kharey
- Department of Natural Resource Sciences, McGill University, 21111 Lakeshore Rd Ste-Anne-de-Bellevue, Quebec, H9X 3V9, Canada
| | - Vince Palace
- International Institute for Sustainable Development – Experimental Lakes Area, Pine Rd, Kenora, Unorganized Ontario, P0V 2V0, Canada
| | - Lyle Whyte
- Department of Natural Resource Sciences, McGill University, 21111 Lakeshore Rd Ste-Anne-de-Bellevue, Quebec, H9X 3V9, Canada
| | - Charles W Greer
- Department of Natural Resource Sciences, McGill University, 21111 Lakeshore Rd Ste-Anne-de-Bellevue, Quebec, H9X 3V9, Canada
- National Research Council Canada, Energy, Mining and Environment Research Centre, 6100 Royalmount Ave., Montreal, Quebec, H4P 2R2, Canada
| |
Collapse
|
7
|
Kaur R, Gupta S, Tripathi V, Chauhan A, Parashar D, Shankar P, Kashyap V. Microbiome based approaches for the degradation of polycyclic aromatic hydrocarbons (PAHs): A current perception. CHEMOSPHERE 2023; 341:139951. [PMID: 37652248 DOI: 10.1016/j.chemosphere.2023.139951] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/02/2023] [Accepted: 08/22/2023] [Indexed: 09/02/2023]
Abstract
Globally, polycyclic aromatic hydrocarbons (PAHs) pollution is primarily driven by their release into the air through various combustion processes, including burning fossil fuels such as coal, oil, and gas in motor vehicles, power plants, and industries, as well as burning organic matter like wood, tobacco, and food in fireplaces, cigarettes, and grills. Apart from anthropogenic pollution sources, PAHs also occur naturally in crude oil, and their potential release during oil extraction, refining processes, and combustion further contributes to contamination and pollution concerns. PAHs are resistant and persistent in the environment because of their inherent features, viz., heterocyclic aromatic ring configurations, hydrophobicity, and thermostability. A wide range of microorganisms have been found to be effective degraders of these recalcitrant contaminants. The presence of hydrocarbons as a result of numerous anthropogenic activities is one of the primary environmental concerns. PAHs are found in soil, water, and the air, making them ubiquitous in nature. The presence of PAHs in the environment creates a problem, as their presence has a detrimental effect on humans and animals. For a variety of life forms, PAH pollutants are reported to be toxic, carcinogenic, mutation-inducing, teratogenic, and immune toxicogenics. Degradation of PAHs via biological activity is an extensively used approach in which diverse microorganisms (fungal, algal, clitellate, and protozoan) and plant species and their derived composites are utilized as biocatalysts and biosurfactants. Some microbes have the ability to transform and degrade these PAHs, allowing them to be removed from the environment. The goal of this review is to provide a critical overview of the existing understanding of PAH biodegradation. It also examines current advances in diverse methodologies for PAH degradation in order to shed light on fundamental challenges and future potential.
Collapse
Affiliation(s)
- Rasanpreet Kaur
- Department of Biotechnology, GLA University, Mathura, 281406, Uttar Pradesh, India
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura, 281406, Uttar Pradesh, India.
| | - Vishal Tripathi
- Department of Biotechnology, Graphic Era (Deemed to Be University), Dehradun 248002, Uttarakhand, India
| | - Arjun Chauhan
- Department of Biotechnology, GLA University, Mathura, 281406, Uttar Pradesh, India
| | - Deepak Parashar
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Prem Shankar
- Department of Neurobiology, The University of Texas Medical Branch, 301 University Blvd, Galveston, TX-77555, USA
| | - Vivek Kashyap
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas, 78504, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA.
| |
Collapse
|
8
|
Lin W, Fan F, Xu G, Gong K, Cheng X, Yuan X, Zhang C, Gao Y, Wang S, Ng HY, Dong Y. Microbial community assembly responses to polycyclic aromatic hydrocarbon contamination across water and sediment habitats in the Pearl River Estuary. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131762. [PMID: 37285790 DOI: 10.1016/j.jhazmat.2023.131762] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/26/2023] [Accepted: 06/01/2023] [Indexed: 06/09/2023]
Abstract
Along with rapid urbanization and intensive human activities, polycyclic aromatic hydrocarbon (PAH) pollution in the Pearl River Estuary (PRE) and its effects on the microbial community have attracted extensive attention. However, the potential and mechanism of microbial degradation of PAHs across water and sediment habitats remain obscure. Herein, the estuarine microbial community structure, function, assembly process and co-occurrence patterns impacted by PAHs were comprehensively analyzed using environmental DNA-based approaches. The contamination and distribution of PAHs were jointly affected by anthropogenic and natural factors. Some of the keystone taxa were identified as PAH-degrading bacteria (i.e., genera Defluviimonas, Mycobacterium, families 67-14, Rhodobacteraceae, Microbacteriaceae and order Gaiellales in water) or biomarkers (i.e., Gaiellales in sediment) that were significantly correlated with PAH levels. The proportion of deterministic process in the high PAH-polluted water (76%) was much higher than that in the low pollution area (7%), confirming the significant effect of PAHs on the microbial community assembly. In sediment, the communities with high phylogenetic diversity demonstrated a great extent of niche differentiation, exhibited a stronger response to environmental variables and were strongly influenced by deterministic processes (40%). Overall, deterministic and stochastic processes are closely related to the distribution and mass transfer of pollutants, and substantially affect the biological aggregation and interspecies interaction within communities in the habitats.
Collapse
Affiliation(s)
- Wei Lin
- Guangdong-Hong Kong Joint Laboratory for Water Security, Beijing Normal University, Zhuhai 519087, China; Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China
| | - Fuqiang Fan
- Guangdong-Hong Kong Joint Laboratory for Water Security, Beijing Normal University, Zhuhai 519087, China; Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China
| | - Guangming Xu
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Kaiyuan Gong
- Guangdong-Hong Kong Joint Laboratory for Water Security, Beijing Normal University, Zhuhai 519087, China; Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China
| | - Xiang Cheng
- Guangdong-Hong Kong Joint Laboratory for Water Security, Beijing Normal University, Zhuhai 519087, China; Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China
| | - Xingyu Yuan
- Guangdong-Hong Kong Joint Laboratory for Water Security, Beijing Normal University, Zhuhai 519087, China; Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China
| | - Cheng Zhang
- Instrumentation and Service Center for Science and Technology, Beijing Normal University, Zhuhai 519087, China; School of Engineering Technology, Beijing Normal University, Zhuhai 519087, China
| | - Yuan Gao
- Instrumentation and Service Center for Science and Technology, Beijing Normal University, Zhuhai 519087, China
| | - Shengrui Wang
- Guangdong-Hong Kong Joint Laboratory for Water Security, Beijing Normal University, Zhuhai 519087, China; Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China
| | - How Yong Ng
- Guangdong-Hong Kong Joint Laboratory for Water Security, Beijing Normal University, Zhuhai 519087, China; Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China
| | - Yue Dong
- Guangdong-Hong Kong Joint Laboratory for Water Security, Beijing Normal University, Zhuhai 519087, China; Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China.
| |
Collapse
|
9
|
Zhu X, Deng Y, Hernández M, Fang J, Xing P, Liu Y. Distinct responses of soil methanotrophy in hummocks and hollows to simulated glacier meltwater and temperature rise in Tibetan glacier foreland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160888. [PMID: 36521618 DOI: 10.1016/j.scitotenv.2022.160888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Glacier foreland soils are known to be essential methane (CH4) consumers. However, global warming and increased glacier meltwater have turned some foreland meadows into swamp meadows. The potential impact of this change on the function of foreland soils in methane consumption remains unclear. Therefore, we collected Tibetan glacier foreland soils in the non-melting season from typical microtopography in swamp meadows (hummock and hollow). Three soil moisture conditions (moist, saturated, and submerged) were set by adding glacier runoff water. Soil samples were then incubated in the laboratory for two weeks at 10 °C and 20 °C. About 5 % of 13CH4/12CH4 was added to the incubation bottles, and daily methane concentrations were measured. DNA stable isotope probing (DNA-SIP) and high-throughput sequencing were combined to target the active methanotroph populations. The results showed that type Ia methanotrophs, including Crenothrix, Methylobacter, and an unclassified Methylomonadaceae cluster, actively oxidized methane at 10 °C and 20 °C. There were distinct responses of methanotrophs to soil moisture rises in hummock and hollow soils, resulting in different methane oxidation potentials. In both hummock and hollow soils, the methane oxidation potential was positively correlated with temperature. Furthermore, saturated hummock soils exhibited the highest methane oxidation potential and methanotroph populations, while submerged hollow soils had the lowest. This suggests that the in-situ hummock soils, generally saturated with water, are more essential than in-situ hollows, typically submerged in water, for alleviating the global warming potential of swamp meadows in the Tibetan glacier foreland during the growing season.
Collapse
Affiliation(s)
- Xinshu Zhu
- School of Geography, Nanjing Normal University, Nanjing 210023, China
| | - Yongcui Deng
- School of Geography, Nanjing Normal University, Nanjing 210023, China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China.
| | - Marcela Hernández
- School of Biological Sciences, University of East Anglia, Norwich, Norfolk NR4 7TJ, United Kingdom
| | - Jie Fang
- School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing 210023, China
| | - Peng Xing
- Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yongqin Liu
- Center for the Pan-third Pole Environment, Lanzhou University, Lanzhou 730000, China; State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
10
|
Correa-Garcia S, Constant P, Yergeau E. The forecasting power of the microbiome. Trends Microbiol 2022; 31:444-452. [PMID: 36549949 DOI: 10.1016/j.tim.2022.11.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 11/25/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022]
Abstract
Microorganisms are informative biological integrators of past and present environmental abiotic and biotic conditions. At the same time, they are directly involved in ecosystem processes. Unfortunately, the complexity of microbial communities has so far resulted in most studies being descriptive. Here, we suggest that signals in the microbiome data can be used to forecast future ecosystem processes. The combination of omics with various statistical learning approaches, selected based on accuracy-interpretability and bias-variance trade-offs, will be key to attain this goal, as exemplified by recent studies. The time is ripe for microbial ecologists to fully exploit the forecasting power of microbiomes.
Collapse
Affiliation(s)
- Sara Correa-Garcia
- Institut national de la recherche scientifique, Centre Armand-Frappier Santé Biotechnologie, 531 boulevard des Prairies, Laval, Québec H7V 1B7, Canada
| | - Philippe Constant
- Institut national de la recherche scientifique, Centre Armand-Frappier Santé Biotechnologie, 531 boulevard des Prairies, Laval, Québec H7V 1B7, Canada
| | - Etienne Yergeau
- Institut national de la recherche scientifique, Centre Armand-Frappier Santé Biotechnologie, 531 boulevard des Prairies, Laval, Québec H7V 1B7, Canada.
| |
Collapse
|
11
|
Liu Y, Sun Y, Yu J, Xia X, Ding A, Zhang D. Impacts of groundwater level fluctuation on soil microbial community, alkane degradation efficiency and alkane-degrading gene diversity in the critical zone: Evidence from an accelerated water table fluctuation simulation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:83060-83070. [PMID: 35759097 DOI: 10.1007/s11356-022-21246-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Petroleum hydrocarbons are hazardous to ecosystems and human health, commonly containing n-alkanes and polycyclic aromatic hydrocarbons. Previous researches have studied alkane degraders and degrading genes under aerobic or anaerobic conditions, but seldom discussed them in the intermittent saturation zone which is a connective area between the vadose zone and the groundwater aquifer with periodic alteration of oxygen and moisture. The present study investigated the difference in alkane degradation efficiency, bacterial community, and alkane degrading gene diversity in aerobic, anaerobic, and aerobic-anaerobic fluctuated treatments. All biotic treatments achieved over 90% of n-alkane removal after 120 days of incubation. The removal efficiencies of n-alkanes with a carbon chain length from 16 to 25 were much higher in anaerobic scenarios than those in aerobic scenarios, explained by different dominant microbes between aerobic and anaerobic conditions. The highest removal efficiency was found in fluctuation treatments, indicating an accelerated n-alkane biodegradation under aerobic-anaerobic alternation. In addition, the copy numbers of the 16S rRNA gene and two alkB genes (alkB-P and alkB-R) declined dramatically when switched from aerobic to anaerobic scenarios and oppositely from anaerobic to aerobic conditions. This suggested that water level fluctuation could notably change the presence of aerobic alkane degrading genes. Our results suggested that alkane degradation efficiency, soil microbial community, and alkane-degrading genes were all driven by water level fluctuation in the intermittent saturation zone, helping better understand the effects of seasonal water table fluctuation on the biodegradation of petroleum hydrocarbons in the subsurface environment.
Collapse
Affiliation(s)
- Yueqiao Liu
- Experiment and Practice Innovation Education Center, Beijing Normal University at Zhuhai, Zhuhai, 519087, China
| | - Yujiao Sun
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Jingshan Yu
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Xuefeng Xia
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Aizhong Ding
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Dayi Zhang
- College of New Energy and Environment, Jilin University, Changchun, 130021, China.
- Key Laboratory of Groundwater Resources and Environment Ministry of Education, Jilin University, Changchun, 130021, China.
| |
Collapse
|
12
|
Haque S, Srivastava N, Pal DB, Alkhanani MF, Almalki AH, Areeshi MY, Naidu R, Gupta VK. Functional microbiome strategies for the bioremediation of petroleum-hydrocarbon and heavy metal contaminated soils: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 833:155222. [PMID: 35421499 DOI: 10.1016/j.scitotenv.2022.155222] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/31/2022] [Accepted: 04/08/2022] [Indexed: 05/21/2023]
Abstract
Petroleum hydrocarbons and heavy metals are the two major soil contaminants that are released into the environment in the forms of industrial effluents. These contaminants exert serious impacts on human health and the sustainability of the environment. In this context, remediation of these pollutants via a biological approach can be effective, low-cost, and eco-friendly approach. The implementation of microorganisms and metagenomics are regarded as the advanced solution for remediating such pollutants. Further, microbiomes can overcome this issue via adopting specific structural, functional and metabolic pathways involved in the microbial community to degrade these pollutants. Genomic sequencing and library can effectively channelize the degradation of these pollutants via microbiomes. Nevertheless, more advanced technology and reliable strategies are required to develop. The present review provides insights into the role of microbiomes to effectively remediate/degrade petroleum hydrocarbons and heavy metals in contaminated soil. The possible degradation mechanisms of these pollutants have also been discussed in detail along with their existing limitations. Finally, prospects of the bioremediation strategies using microbiomes are discussed.
Collapse
Affiliation(s)
- Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan-45142, Saudi Arabia
| | - Neha Srivastava
- Department of Chemical Engineering & Technology, IIT (BHU), Varanasi 221005, India
| | - Dan Bahadur Pal
- Department of Chemical Engineering, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| | - Mustfa F Alkhanani
- Emergency Service Department, College of Applied Sciences, AlMaarefa University, Riyadh 11597, Saudi Arabia
| | - Atiah H Almalki
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; Addiction and Neuroscience Research Unit, College of Pharmacy, Taif University, Al-Hawiah, Taif 21944, Saudi Arabia
| | - Mohammed Y Areeshi
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan-45142, Saudi Arabia; Medical Laboratory Technology Department, College of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW 2308, Australia.
| | - Vijai Kumar Gupta
- Biorefining and Advanced Materials Research Center, SRUC, Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK; Center for Safe and Improved Food, SRUC, Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK.
| |
Collapse
|
13
|
Zhang M, Riaz M, Xia H, Li Y, Wang X, Jiang C. Four-year biochar study: Positive response of acidic soil microenvironment and citrus growth to biochar under potassium deficiency conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 813:152515. [PMID: 34968584 DOI: 10.1016/j.scitotenv.2021.152515] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/03/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Biochar has direct or indirect effects on soil microorganisms, but the changes in soil metabolism are rarely monitored and analyzed. In addition, the potassium (K) effect of biochar has not attracted much attention. This study set up a four-year experiment with acid soil and citrus as the test soil and plants, respectively. The long-term effects of biochar on the acid soil microenvironment and citrus growth were explored from soil properties (nutrient contents, microbial communities, and metabolites) and citrus growth (nutrient contents, reactive oxygen species (ROS), and root endophytes). The results showed that the four-year amendment of biochar in acid soil was very significant, in which the soil pH was increased by 1 unit, organic matter and cation exchange capacity (CEC) increased by 120.77% and 16.21%, respectively. Biochar improved the K availability of soil by increasing the number and metabolic activity of Azotobacter and Pseudomonas, and finally effectively alleviated the K deficiency of citrus. From the perspective of available K content, 2% biochar reduced the 20% conventional K application rate. The pH, organic matter, and cation exchange capacity (CEC) were the most important factors affecting the bacterial community structure, while the fungal community was more sensitive to the change in the nutrient environment. Biochar mainly stimulated the progress of soil metabolism by affecting the metabolic activity of bacterial communities. Biochar application increased some of the beneficial bacteria in the soil, i.e., the relative abundance of Pseudarthrobacter increased by 700 times. However, biochar and exogenous K did not significantly affect arbuscular mycorrhizal fungi (AMF) and endophytic bacteria in citrus roots. In general, biochar has a long-term and positive response to the acidic soil microenvironment and citrus growth, as well as promotion value in the agricultural field.
Collapse
Affiliation(s)
- Mengyang Zhang
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei Province 430070, PR China
| | - Muhammad Riaz
- Root Biology Center, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, PR China
| | - Hao Xia
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei Province 430070, PR China
| | - Yuxuan Li
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei Province 430070, PR China
| | - Xiangling Wang
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei Province 430070, PR China
| | - Cuncang Jiang
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei Province 430070, PR China; The Key Laboratory of Oasis Ecoagriculture, Xinjiang Production and Construction Corps, Shihezi University, Shihezi, Xinjiang 832000, PR China.
| |
Collapse
|
14
|
Response of Rhizosphere Microbial Community in High-PAH-Contaminated Soil Using Echinacea purpurea (L.) Moench. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12062973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Under polycyclic aromatic hydrocarbon (PAH) pollution conditions (149.17–187.54 mg/kg), we had found the dominant flora of PAHs by observing the response of the soil microbial community after planting purple coneflower (Echinacea purpurea (L.) Moench). In this study, pot experiments were conducted in a growth chamber to explore the changes in the rhizosphere microbial community structure during remediation of heavily PAH-contaminated soil using purple coneflower (Echinacea purpurea (L.) Moench). The phospholipid fatty acid (PLFA) content in the soil was measured during four periods before and after planting, and the results showed that: (i) at 120 days, E. purpurea can regulate the microbial community structure but had no significant effect on soil microbial diversity, (ii) at 120 days, the number of PLFAs characterizing actinomycetes, bacteria, and fungi increased, and both Gram-negative bacteria and Arbuscular mycorrhizal fungi (AMF) were significant with the observed PLFA level (p < 0.05), and (iii) the results indicated that AMF and Gram-negative bacteria represent some of the main factors that can promote the degradation of PAHs. The results obtained in this work are important to future research on PAH-degradation-functional genes and degradation mechanisms of the selection of flora.
Collapse
|
15
|
Wang JL, Liu KL, Zhao XQ, Gao GF, Wu YH, Shen RF. Microbial keystone taxa drive crop productivity through shifting aboveground-belowground mineral element flows. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 811:152342. [PMID: 34919922 DOI: 10.1016/j.scitotenv.2021.152342] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/05/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
Unbalanced fertilization of nutritional elements is a potential threat to environmental quality and agricultural productivity in acid soil. Harnessing keystone taxa in soil microbiome represents a promising strategy to enhance crop productivity as well as reducing the adverse environmental effects of fertilizers, with the goal of agricultural sustainability. However, there is a lack of information on which and how soil microbial keystone taxa contribute to sustainable crop productivity in acid soil. Here, we examined soil microbial communities (including bacteria, fungi, and archaea) and soil nutrients, and the mineral nutrition and yield of maize subjected to different inorganic and organic fertilization treatments over 35 years in acid soil. The application of organic fertilizer alone or in combination with inorganic fertilizers sustained high maize yield when compared with the other fertilization treatments. Microbial abundances and community structures rather than their alpha diversities explained the main variation in maize yield among different treatments. Sixteen soil keystone taxa (a fungal operational taxonomic unit and 15 bacterial operational taxonomic units) were identified from the microbial co-occurrence network. Among them, five keystone taxa (in Hypocreales, Bryobacter, Solirubrobacterales, Thermomicrobiales, and Roseiflexaceae) contributed to high maize yield through increasing phosphorus flow and inhibiting toxic aluminum and manganese flow from soils to plants. However, the remaining eleven keystone taxa (in Conexibacter, Acidothermus, Ktedonobacteraceae, Deltaproteobacteria, Actinobacteria, Elsterales, Ktedonobacterales, and WPS-2) exerted the opposite effects. As a result, maize productivity varied among different fertilization treatments because of the altered maize mineral element flows by microbial keystone taxa. We conclude that microbial keystone taxa drive crop productivity through shifting aboveground-belowground mineral element flows in acid soil. This study highlights the importance of microbial keystone taxa for sustainable crop productivity in acid soil and provides deep insights into the relationships between soil microbial keystone taxa, crop mineral nutrition, and productivity.
Collapse
Affiliation(s)
- Jia Lin Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Kai Lou Liu
- National Engineering and Technology Research Center for Red Soil Improvement, Jiangxi Institute of Red Soil, Nanchang 331717, China.
| | - Xue Qiang Zhao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Gui-Feng Gao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yong Hong Wu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Ren Fang Shen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
16
|
Molina L, Segura A. Biochemical and Metabolic Plant Responses toward Polycyclic Aromatic Hydrocarbons and Heavy Metals Present in Atmospheric Pollution. PLANTS (BASEL, SWITZERLAND) 2021; 10:2305. [PMID: 34834668 PMCID: PMC8622723 DOI: 10.3390/plants10112305] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/18/2021] [Accepted: 10/23/2021] [Indexed: 05/17/2023]
Abstract
Heavy metals (HMs) and polycyclic aromatic hydrocarbons (PAHs) are toxic components of atmospheric particles. These pollutants induce a wide variety of responses in plants, leading to tolerance or toxicity. Their effects on plants depend on many different environmental conditions, not only the type and concentration of contaminant, temperature or soil pH, but also on the physiological or genetic status of the plant. The main detoxification process in plants is the accumulation of the contaminant in vacuoles or cell walls. PAHs are normally transformed by enzymatic plant machinery prior to conjugation and immobilization; heavy metals are frequently chelated by some molecules, with glutathione, phytochelatins and metallothioneins being the main players in heavy metal detoxification. Besides these detoxification mechanisms, the presence of contaminants leads to the production of the reactive oxygen species (ROS) and the dynamic of ROS production and detoxification renders different outcomes in different scenarios, from cellular death to the induction of stress resistances. ROS responses have been extensively studied; the complexity of the ROS response and the subsequent cascade of effects on phytohormones and metabolic changes, which depend on local concentrations in different organelles and on the lifetime of each ROS species, allow the plant to modulate its responses to different environmental clues. Basic knowledge of plant responses toward pollutants is key to improving phytoremediation technologies.
Collapse
Affiliation(s)
- Lázaro Molina
- Department of Environmental Protection, Estación Experimental del Zaidín, C.S.I.C., Calle Profesor Albareda 1, 18008 Granada, Spain;
| | | |
Collapse
|
17
|
Wróblewska K, Jeong BR. Effectiveness of plants and green infrastructure utilization in ambient particulate matter removal. ENVIRONMENTAL SCIENCES EUROPE 2021; 33:110. [PMID: 34603905 PMCID: PMC8475335 DOI: 10.1186/s12302-021-00547-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/22/2021] [Indexed: 05/10/2023]
Abstract
Air pollution is regarded as an increasingly threatening, major environmental risk for human health. Seven million deaths are attributed to air pollution each year, 91% of which is due to particulate matter. Vegetation is a xenobiotic means of removing particulate matter. This review presents the mechanisms of PM capture by plants and factors that influence PM reduction in the atmosphere. Vegetation is ubiquitously approved as a PM removal solution in cities, taking various forms of green infrastructure. This review also refers to the effectiveness of plant exploitation in GI: trees, grasslands, green roofs, living walls, water reservoirs, and urban farming. Finally, methods of increasing the PM removal by plants, such as species selection, biodiversity increase, PAH-degrading phyllospheric endophytes, transgenic plants and microorganisms, are presented.
Collapse
Affiliation(s)
- Katarzyna Wróblewska
- Department of Horticulture, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
- Department of Horticulture, College of Agriculture and Life Science, Gyeongsang National University, Jinju, 52828 South Korea
| | - Byoung Ryong Jeong
- Department of Horticulture, College of Agriculture and Life Science, Gyeongsang National University, Jinju, 52828 South Korea
- Division of Applied Life Science (BK21 Four), Graduate School, Gyeongsang National University, Jinju, 52828 South Korea
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, South Korea
| |
Collapse
|
18
|
Mishra B, Varjani S, Kumar G, Awasthi MK, Awasthi SK, Sindhu R, Binod P, Rene ER, Zhang Z. Microbial approaches for remediation of pollutants: Innovations, future outlook, and challenges. ENERGY & ENVIRONMENT 2021; 32:1029-1058. [DOI: 10.1177/0958305x19896781] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2023]
Abstract
Environmental contamination with persistent organic pollutants has emerged as a serious threat of pollution. Bioremediation is a key to eliminate these harmful pollutants from the environment and has gained the interest of researchers during the past few decades. Scientific knowledge upon microbial interactions with individual pollutants over the past decades has helped to abate environmental pollution. Traditional bioremediation approaches have limitations for their applications; hence, it is essential to discover new bioremediation approaches with biotechnological interventions for best results. The developments in various methodologies are expected to increase the efficiency of bioremediation techniques and provide environmentally sound strategies. This paper deals with the profiling of microorganisms present in polluted sites using various techniques such as culture-based approaches and omics-based approaches. Besides this, it also provides up-to-date scientific literature on the microbial electrochemical technologies which are nowadays considered as the best approach for remediation of pollutants. Detailed information about future outlook and challenges to evaluate the effect of various treatment technologies for remediation of pollutants has been discussed.
Collapse
Affiliation(s)
- Bishwambhar Mishra
- Department of Biotechnology, Chaitanya Bharathi Institute of Technology, Hyderabad, India
| | - Sunita Varjani
- Paryavaran Bhavan, Gujarat Pollution Control Board, Gandhinagar, India
| | - Gopalakrishnan Kumar
- Institute of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A& F University, Shaanxi Province, PR China
| | - Sanjeev Kumar Awasthi
- College of Natural Resources and Environment, Northwest A& F University, Shaanxi Province, PR China
| | - Raveendran Sindhu
- CSIR–National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum, India
| | - Parameswaran Binod
- CSIR–National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum, India
| | - Eldon R Rene
- Department of Environmental Engineering and Water Technology, IHE Delft Institute of Water Education, Delft, The Netherlands
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A& F University, Shaanxi Province, PR China
| |
Collapse
|
19
|
Clover Root Exudates Favor Novosphingobium sp. HR1a Establishment in the Rhizosphere and Promote Phenanthrene Rhizoremediation. mSphere 2021; 6:e0041221. [PMID: 34378981 PMCID: PMC8386446 DOI: 10.1128/msphere.00412-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rhizoremediation is based on the ability of microorganisms to metabolize nutrients from plant root exudates and, thereby, to cometabolize or even mineralize toxic environmental contaminants. Novosphingobium sp. HR1a is a bacterial strain able to degrade a wide variety of polycyclic aromatic hydrocarbons (PAHs). Here, we have demonstrated that the number of CFU in microcosms vegetated with clover was almost 2 orders of magnitude higher than that in nonvegetated microcosms or microcosms vegetated with rye-grass or grass. Strain HR1a was able to eliminate 92% of the phenanthrene in the microcosms with clover after 9 days. We have studied the molecular basis of the interaction between strain HR1a and clover by phenomic, metabolomic, and transcriptomic analyses. By measuring the relative concentrations of several metabolites exudated by clover both in the presence and in the absence of the bacteria, we identified some compounds that were probably consumed in the rhizosphere; the transcriptomic analyses confirmed the expression of genes involved in the catabolism of these compounds. By using a transcriptional fusion of the green fluorescent protein (GFP) to the promoter of the gene encoding the dioxygenase involved in the degradation of PAHs, we have demonstrated that this gene is induced at higher levels in clover microcosms than in nonvegetated microcosms. Therefore, the positive interaction between clover and Novosphingobium sp. HR1a during rhizoremediation is a result of the bacterial utilization of different carbon and nitrogen sources released during seedling development and the capacity of clover exudates to induce the PAH degradation pathway. IMPORTANCE The success of an eco-friendly and cost-effective strategy for soil decontamination is conditioned by the understanding of the ecology of plant-microorganism interactions. Although many studies have been published about the bacterial metabolic capacities in the rhizosphere and about rhizoremediation of contaminants, there are fewer studies dealing with the integration of bacterial metabolic capacities in the rhizosphere during PAH bioremediation, and some aspects still remain controversial. Some authors have postulated that the presence of easily metabolizable carbon sources in root exudates might repress the expression of genes required for contaminant degradation, while others found that specific rhizosphere compounds can induce such genes. Novosphingobium sp. HR1a, which is our model organism, has two characteristics desirable in bacteria for use in remediation: its ubiquity and the capacity to degrade a wide variety of contaminants. We have demonstrated that this bacterium consumes several rhizospheric compounds without repression of the genes required for the mineralization of PAHs. In fact, some compounds even induced their expression.
Collapse
|
20
|
Abstract
Soil contamination with petroleum hydrocarbons (PHCs) has become a global concern and has resulted from the intensification of industrial activities. This has created a serious environmental issue; therefore, there is a need to find solutions, including application of efficient remediation technologies or improvement of current techniques. Rhizoremediation is a green technology that has received global attention as a cost-effective and possibly efficient remediation technique for PHC-polluted soil. Rhizoremediation refers to the use of plants and their associated microbiota to clean up contaminated soils, where plant roots stimulate soil microbes to mineralize organic contaminants to H2O and CO2. However, this multipartite interaction is complicated because many biotic and abiotic factors can influence microbial processes in the soil, making the efficiency of rhizoremediation unpredictable. This review reports the current knowledge of rhizoremediation approaches that can accelerate the remediation of PHC-contaminated soil. Recent approaches discussed in this review include (1) selecting plants with desired characteristics suitable for rhizoremediation; (2) exploiting and manipulating the plant microbiome by using inoculants containing plant growth-promoting rhizobacteria (PGPR) or hydrocarbon-degrading microbes, or a combination of both types of organisms; (3) enhancing the understanding of how the host–plant assembles a beneficial microbiome, and how it functions, under pollutant stress. A better understanding of plant–microbiome interactions could lead to successful use of rhizoremediation for PHC-contaminated soil in the future.
Collapse
|
21
|
Soil Characteristics Constrain the Response of Microbial Communities and Associated Hydrocarbon Degradation Genes during Phytoremediation. Appl Environ Microbiol 2021; 87:AEM.02170-20. [PMID: 33097512 DOI: 10.1128/aem.02170-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 10/18/2020] [Indexed: 12/21/2022] Open
Abstract
Rhizodegradation is a promising cleanup technology where microorganisms degrade soil contaminants in the rhizosphere. A symbiotic relationship is expected to occur between plant roots and soil microorganisms in contaminated soils that enhances natural microbial degradation. However, little is known about how different initial microbiotas influence the rhizodegradation outcome. Recent studies have hinted that soil initial diversity has a determining effect on the outcome of contaminant degradation. To test this, we either planted (P) or not (NP) balsam poplars (Populus balsamifera) in two soils of contrasting diversity (agricultural and forest) that were contaminated or not with 50 mg kg-1 of phenanthrene (PHE). The DNA from the rhizosphere of the P and the bulk soil of the NP pots was extracted and the bacterial genes encoding the 16S rRNA, the PAH ring-hydroxylating dioxygenase alpha subunits (PAH-RHDα) of Gram-positive and Gram-negative bacteria, and the fungal ITS region were sequenced to characterize the microbial communities. The abundances of the PAH-RHDα genes were quantified by real-time quantitative PCR. Plant presence had a significant effect on PHE degradation only in the forest soil, whereas both NP and P agricultural soils degraded the same amount of PHE. Fungal communities were mainly affected by plant presence, whereas bacterial communities were principally affected by the soil type, and upon contamination the dominant PAH-degrading community was similarly constrained by soil type. Our results highlight the crucial importance of soil microbial and physicochemical characteristics in the outcome of rhizoremediation.IMPORTANCE Polycyclic aromatic hydrocarbons (PAH) are a group of organic contaminants that pose a risk to ecosystems' health. Phytoremediation is a promising biotechnology with the potential to restore PAH-contaminated soils. However, some limitations prevent it from becoming the remediation technology of reference, despite being environmentally friendlier than mainstream physicochemical alternatives. Recent reports suggest that the original soil microbial diversity is the key to harnessing the potential of phytoremediation. Therefore, this study focused on determining the effect of two different soil types in the fate of phenanthrene (a polycyclic aromatic hydrocarbon) under balsam poplar remediation. Poplar increased the degradation of phenanthrene in forest, but not in agricultural soil. The fungi were affected by poplars, whereas total bacteria and specific PAH-degrading bacteria were constrained by soil type, leading to different degradation patterns between soils. These results highlight the importance of performing preliminary microbiological studies of contaminated soils to determine whether plant presence could improve remediation rates or not.
Collapse
|
22
|
Zhang L, Fang W, Li X, Lu W, Li J. Strong linkages between dissolved organic matter and the aquatic bacterial community in an urban river. WATER RESEARCH 2020; 184:116089. [PMID: 32693265 DOI: 10.1016/j.watres.2020.116089] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 06/16/2020] [Accepted: 06/19/2020] [Indexed: 06/11/2023]
Abstract
Aquatic bacterial communities play an important role in biogeochemical cycling in river ecosystems; however, knowledge of the linkages between bacterial communities and dissolved organic matter (DOM) in urban rivers is limited. Here, 16S rRNA amplicon sequencing and parallel factor (PARAFAC) modeling of excitation-emission fluorescence spectroscopy were used to analyze the compositions, co-occurrence patterns, and interactions with chromophoric DOM (CDOM) of bacterial communities in urban river water samples influenced by different human activities. The results revealed that two protein-like components accounted for 65.2 ± 9.56% of the total variability in all three fluorescence components, which suggests that CDOM in urban rivers is mainly a microbial source. In addition to pH and DO, CDOM is also an important factor affecting bacterial community structure, and the main classes (Gammaproteobacteria and Clostridia) and genera (Limnohabitans and Alpinimonas) showed strong positive correlations with terrestrial humic-like C1 and tryptophan-like C2, respectively. When autotrophic and heterotrophic bacteria coexist in urban rivers, the production and degradation of CDOM will occur simultaneously. Furthermore, the riverine bacterial co-occurrence network had a nonrandom modular structure, which was mainly driven by classification correlation and bacterial function. The high abundance of genes related to xenobiotic metabolism, carbon metabolism and nitrogen metabolism in the urban river indicated that anthropogenic activity may be the dominant selective force altering the bacterial communities. Overall, our results provide a novel view for the assembly of bacterial communities in urban river ecosystems under the influence of different human activities.
Collapse
Affiliation(s)
- Lei Zhang
- School of Civil Engineering and Architecture, Chuzhou University, Chuzhou, 239000, China.
| | - Wangkai Fang
- School of Civil Engineering and Architecture, Chuzhou University, Chuzhou, 239000, China
| | - Xingchen Li
- School of Civil Engineering and Architecture, Chuzhou University, Chuzhou, 239000, China
| | - Wenxuan Lu
- Fisheries Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230036, China
| | - Jing Li
- Fisheries Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230036, China
| |
Collapse
|
23
|
Košnář Z, Mercl F, Tlustoš P. Long-term willows phytoremediation treatment of soil contaminated by fly ash polycyclic aromatic hydrocarbons from straw combustion. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 264:114787. [PMID: 32559881 DOI: 10.1016/j.envpol.2020.114787] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/26/2020] [Accepted: 05/08/2020] [Indexed: 06/11/2023]
Abstract
A three-year experiment was conducted to investigate willows of Salix × smithiana Willd. (S. smithiana) phytoremediation of soil contaminated by polycyclic aromatic hydrocarbons (PAHs) derived by fly ash from biomass combustion. The total removal of ash PAHs in phytoremediation treatment was 50.9% after three consecutive years while the ash PAHs were decreased in natural attenuated soil by 9.9% in the end of the experiment. The ash and spiked PAHs with low and medium molecular weight were susceptible to be removed in higher rates than high molecular weight PAHs. Lower bioconcentration factors of individual PAHs were observed in willow shoots than in roots. The estimated relative direct removal of PAHs by S. smithiana in phytoremediation was significantly lower than 1% suggesting that the contribution of S. smithiana to take up PAHs from soil was negligible and the degradation of PAHs occurred mainly in soil. Phytoremediation using S. smithiana could be seen as a feasible and environmentally friendly approach of arable soils impacted by a PAH contaminated biomass fly ash.
Collapse
Affiliation(s)
- Zdeněk Košnář
- Department of Agroenvironmental Chemistry and Plant Nutrition, Czech University of Life Sciences, Kamýcká 129, 165 00, Prague, Czech Republic.
| | - Filip Mercl
- Department of Agroenvironmental Chemistry and Plant Nutrition, Czech University of Life Sciences, Kamýcká 129, 165 00, Prague, Czech Republic
| | - Pavel Tlustoš
- Department of Agroenvironmental Chemistry and Plant Nutrition, Czech University of Life Sciences, Kamýcká 129, 165 00, Prague, Czech Republic
| |
Collapse
|
24
|
Wang B, Zheng X, Zhang H, Xiao F, Gu H, Zhang K, He Z, Liu X, Yan Q. Bacterial community responses to tourism development in the Xixi National Wetland Park, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 720:137570. [PMID: 32135287 DOI: 10.1016/j.scitotenv.2020.137570] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 02/23/2020] [Accepted: 02/24/2020] [Indexed: 06/10/2023]
Abstract
A large number of urban wetland parks have been established, but knowledge about the effects of tourism development on the microbial diversity and ecosystem functioning remains limited. This study aimed to clarify the responses of bacterial communities to tourism development targeted the Xixi National Wetland Park, China. By analyzing the diversity, composition, assembly pattern, and environmental drivers of bacterial communities, we found that tourism development considerably affected the water quality, which further decreased the α-diversity but increased the β-diversity in open areas for landscaping and recreation. Specifically, there was higher Simpson dissimilarity across functional wetland areas, indicating that species replacement mainly explained β-diversity patterns of bacterial communities. RDA analysis and ecological processes quantification further suggested that TOC and TC were the major factors in the open areas driving bacterial communities in water and sediment, respectively. Also, typical anti-disturbance taxa (Gammaproteobacteria) and potential pathogens (Bacillus) were enriched in the wetlands under more anthropogenic disturbances. Findings of the present study highlighted the effects of tourism development on bacterial communities resulted in obvious spatial variation in the Xixi National Wetland Park. This study gives us useful information for ecological assessments of urban wetlands, and further can provide references in making appropriate strategies to manage wetland ecosystems.
Collapse
Affiliation(s)
- Binhao Wang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China
| | - Xiafei Zheng
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China
| | - Hangjun Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Fanshu Xiao
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China
| | - Hang Gu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China
| | - Keke Zhang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China
| | - Zhili He
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China; College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Xiang Liu
- Hangzhou Xixi National Wetland Park Research Center for Ecological Science, Hangzhou 310030, China
| | - Qingyun Yan
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
25
|
Zhang M, Riaz M, Liu B, Xia H, El-Desouki Z, Jiang C. Two-year study of biochar: Achieving excellent capability of potassium supply via alter clay mineral composition and potassium-dissolving bacteria activity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 717:137286. [PMID: 32092812 DOI: 10.1016/j.scitotenv.2020.137286] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 01/11/2020] [Accepted: 02/11/2020] [Indexed: 06/10/2023]
Abstract
At present, there has been renewed interest in biochar research, but most of them were focused on the short-term effects of biochar and the information of long-term application of biochar is still lacking. In addition, the nutrient mechanism of biochar has rarely been the subject of research. This research explored the effect of potassium (K) nutrient and the response of bacterial communities to biochar in yellow-brown soil based on two-year experiment. In this study, we used peanut shell biochar obtained by pyrolysis at 400 °C, and at the same time, 0%, 20%, 40%, 100% conventional potassium fertilizer were used. The results indicated that the effective improvement of biochar on acidic soil was long-term and 2% biochar replaced 40% conventional potassium fertilizer. Biochar accelerated the conversion of slowly-available K to available K by changing the composition of clay minerals and promoting the growth of K-dissolving bacteria. From the perspective of bacterial community, biochar significantly increased the relative abundance of Sphingomonas, Gaiella, and Elev-16S-1332, which improved the potential ability of soil to degrade pollutants and inhibit pathogens. The pH, organic matter, cation exchange capacity (CEC), and available phosphorus and potassium were important environmental factors that caused significant effects in the bacterial community of yellow-brown soil. Overall, the study demonstrates that biochar is not only an effective alternative to potash fertilizer but also improves soil bacterial communities.
Collapse
Affiliation(s)
- Mengyang Zhang
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei Province 430070, PR China
| | - Muhammad Riaz
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei Province 430070, PR China; Root Biology Center, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, PR China
| | - Bo Liu
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei Province 430070, PR China; Institute of Plant Protection and Soil Fertilizer, Hubei Academy of Agricultural Sciences, Wuhan, Hubei 430070, PR China
| | - Hao Xia
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei Province 430070, PR China
| | - Zeinab El-Desouki
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei Province 430070, PR China; Department of Soil Sciences, Faculty of Agriculture, Ain Shams University, Cairo 11241, Egypt
| | - Cuncang Jiang
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei Province 430070, PR China.
| |
Collapse
|
26
|
Redfern LK, Gardner CM, Hodzic E, Ferguson PL, Hsu-Kim H, Gunsch CK. A new framework for approaching precision bioremediation of PAH contaminated soils. JOURNAL OF HAZARDOUS MATERIALS 2019; 378:120859. [PMID: 31327574 PMCID: PMC6833951 DOI: 10.1016/j.jhazmat.2019.120859] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 04/05/2019] [Accepted: 07/01/2019] [Indexed: 05/19/2023]
Abstract
Bioremediation is a sustainable treatment strategy which remains challenging to implement especially in heterogeneous environments such as soil and sediment. Herein, we present a novel precision bioremediation framework that integrates amplicon based metagenomic analysis and chemical profiling. We applied this approach to samples obtained at a site contaminated with polycyclic aromatic hydrocarbons (PAHs). Geobacter spp. were identified as biostimulation targets because they were one of the most abundant genera and previously identified to carry relevant degradative genes. Mycobacterium and Sphingomonads spp. were identified as bioaugmentation and genetic bioaugmentation targets, respectively, due to their positive associations with PAHs and their high abundance and species diversity at all sampling locations. Overall, this case study suggests this framework can help identify bacterial targets for precision bioremediation. However, it is imperative that we continue to build our databases as the power of metagenomic based approaches remains limited to microorganisms currently in our databases.
Collapse
Affiliation(s)
- Lauren K Redfern
- Pratt School of Engineering, Department of Civil and Environmental Engineering, Duke University, Durham, NC 27713, United States
| | - Courtney M Gardner
- Pratt School of Engineering, Department of Civil and Environmental Engineering, Duke University, Durham, NC 27713, United States
| | - Emina Hodzic
- Nicholas School of the Environment, Duke University, Durham, NC 27713, United States
| | - P Lee Ferguson
- Pratt School of Engineering, Department of Civil and Environmental Engineering, Duke University, Durham, NC 27713, United States; Nicholas School of the Environment, Duke University, Durham, NC 27713, United States
| | - Helen Hsu-Kim
- Pratt School of Engineering, Department of Civil and Environmental Engineering, Duke University, Durham, NC 27713, United States
| | - Claudia K Gunsch
- Pratt School of Engineering, Department of Civil and Environmental Engineering, Duke University, Durham, NC 27713, United States.
| |
Collapse
|
27
|
Rodríguez-Andrade O, Corral-Lugo A, Morales-García YE, Quintero-Hernández V, Rivera-Urbalejo AP, Molina-Romero D, Martínez-Contreras RD, Bernal P, Muñoz-Rojas J. Identification of Klebsiella Variicola T29A Genes Involved In Tolerance To Desiccation. Open Microbiol J 2019. [DOI: 10.2174/1874285801913010256] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Introduction:Several plant-beneficial bacteria have the capability to promote the growth of plants through different mechanisms. The survival of such bacteria could be affected by environmental abiotic factors compromising their capabilities of phytostimulation. One of the limiting abiotic factors is low water availability.Materials and Methods:In extreme cases, bacterial cells can suffer desiccation, which triggers harmful effects on cells. Bacteria tolerant to desiccation have developed different strategies to cope with these conditions; however, the genes involved in these processes have not been sufficiently explored.Klebsiella variicolaT29A is a beneficial bacterial strain that promotes the growth of corn plants and is highly tolerant to desiccation. In the present work, we investigated genes involved in desiccation tolerance.Results & Discussion:As a result, a library of 8974 mutants of this bacterial strain was generated by random mutagenesis with mini-Tn5 transposon, and mutants that lost the capability to tolerate desiccation were selected. We found 14 sensitive mutants; those with the lowest bacterial survival rate contained mini-Tn5 transposon inserted into genes encoding a protein domain related to BetR, putative secretion ATPase and dihydroorotase. The mutant in the betR gene had the lowest survival; therefore, the mutagenized gene was validated using specific amplification and sequencing.Conclusion:Trans complementation with the wild-type gene improved the survival of the mutant under desiccation conditions, showing that this gene is a determinant for the survival ofK. variicolaT29A under desiccation conditions.
Collapse
|
28
|
Dagher DJ, de la Providencia IE, Pitre FE, St-Arnaud M, Hijri M. Plant Identity Shaped Rhizospheric Microbial Communities More Strongly Than Bacterial Bioaugmentation in Petroleum Hydrocarbon-Polluted Sediments. Front Microbiol 2019; 10:2144. [PMID: 31572347 PMCID: PMC6753587 DOI: 10.3389/fmicb.2019.02144] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 08/30/2019] [Indexed: 01/21/2023] Open
Abstract
Manipulating the plant-root microbiota has the potential to reduce plant stress and promote their growth and production in harsh conditions. Community composition and activity of plant-roots microbiota can be either beneficial or deleterious to plant health. Shifting this equilibrium could then strongly affect plant productivity in anthropized areas. In this study, we tested whether repeated bioaugmentation with Proteobacteria influenced plant productivity and the microbial communities associated with the rhizosphere of four plant species growing in sediments contaminated with petroleum hydrocarbons (PHCs). A mesocosm experiment was performed in randomized block design with two factors: (1) presence or absence of four plants species collected from a sedimentation basin of a former petrochemical plant, and (2) bioaugmentation or not with a bacterial consortium composed of ten isolates of Proteobacteria. Plants were grown in a greenhouse over 4 months. MiSeq amplicon sequencing, targeting the bacterial 16S rRNA gene and the fungal ITS, was used to assess microbial community structures of sediments from planted or unplanted microcosms. Our results showed that while bioaugmentation caused a significant shift in microbial communities, presence of plant and their species identity had a stronger influence on the structure of the microbiome in PHCs contaminated sediments. The outcome of this study provides knowledge on the diversity and behavior of rhizosphere microbes associated with indigenous plants following repeated bioaugmentation, underlining the importance of plant selection in order to facilitate their efficient management, in order to accelerate processes of land reclamation.
Collapse
Affiliation(s)
- Dimitri J. Dagher
- Institut de Recherche en Biologie Végétale, Université de Montréal and Jardin Botanique de Montréal, Montreal, QC, Canada
| | | | - Frédéric E. Pitre
- Institut de Recherche en Biologie Végétale, Université de Montréal and Jardin Botanique de Montréal, Montreal, QC, Canada
| | - Marc St-Arnaud
- Institut de Recherche en Biologie Végétale, Université de Montréal and Jardin Botanique de Montréal, Montreal, QC, Canada
| | - Mohamed Hijri
- Institut de Recherche en Biologie Végétale, Université de Montréal and Jardin Botanique de Montréal, Montreal, QC, Canada
| |
Collapse
|
29
|
Jadeja NB, Purohit HJ, Kapley A. Decoding microbial community intelligence through metagenomics for efficient wastewater treatment. Funct Integr Genomics 2019; 19:839-851. [PMID: 31111267 DOI: 10.1007/s10142-019-00681-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 10/07/2018] [Accepted: 04/30/2019] [Indexed: 01/03/2023]
Abstract
Activated sludge, a microbial ecosystem at industrial wastewater treatment plants, is an active collection of diverse gene pool that creates the intelligence required for coexistence at the cost of pollutants. This study has analyzed one such ecosystem from a site treating wastewater pooled from over 200 different industries. The metagenomics approach used could predict the degradative pathways of more than 30 dominating molecules commonly found in wastewater. Results were extended to design a bioremediation strategy using 4-methylphenol, 2-chlorobenzoate, and 4-chlorobenzoate as target compounds. Catabolic potential required to degrade four aromatic families, namely benzoate family, PAH family, phenol family, and PCB family, was mapped. Results demonstrated a network of diverse genera, where a few phylotypes were seen to contain diverse catabolic capacities and were seen to be present in multiple networks. The study highlights the importance of looking more closely at the microbial community of activated sludge to harness its latent potential. Conventionally treated as a black box, the activated biomass does not perform at its full potential. Metagenomics allows a clearer insight into the complex pathways operating at the site and the detailed documentation of genes allows the activated biomass to be used as a bioresource.
Collapse
Affiliation(s)
- Niti B Jadeja
- Environmental Biotechnology and Genomics Division, National Environmental Engineering Research Institute, CSIR-NEERI, Nehru Marg, Nagpur, 440020, India
| | - Hemant J Purohit
- Environmental Biotechnology and Genomics Division, National Environmental Engineering Research Institute, CSIR-NEERI, Nehru Marg, Nagpur, 440020, India
| | - Atya Kapley
- Environmental Biotechnology and Genomics Division, National Environmental Engineering Research Institute, CSIR-NEERI, Nehru Marg, Nagpur, 440020, India.
| |
Collapse
|
30
|
Camacho-Montealegre CM, Rodrigues EM, Tótola MR. Microbial diversity and bioremediation of rhizospheric soils from Trindade Island - Brazil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 236:358-364. [PMID: 30739041 DOI: 10.1016/j.jenvman.2019.02.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 01/17/2019] [Accepted: 02/02/2019] [Indexed: 06/09/2023]
Abstract
Pristine environments may harbor complex microbial communities with metabolic potential for use in bioremediation of organic pollutants. This study aimed to evaluate crude oil biodegradation by microbial communities present in rhizospheric soils of Bulbostylis nesiotis and Cyperus atlanticus on Trindade Island and the compositional structure of these communities. After 60 days under aerobic conditions, Total Petroleum Hydrocarbon biodegradation ranged from 66 to 75%, depending on the plant species and the origin of the soil samples. There was no response of petroleum biodegradation to fertilization with N:P:K (80:160:80 mg dm-3). Soil contamination with crude oil did not necessarily reduce microbial diversity. The richness and diversity increased in contaminated soils in some specific situations. We conclude that microbial communities from pristine soils have the ability to remove hydrocarbons through biodegradation and that Bulbostylis nesiotis and Cyperus atlanticus inhabiting Trindade Island harbor rhizospheric microbial communities with potential for application in rhizoremediation.
Collapse
Affiliation(s)
- Celia Marcela Camacho-Montealegre
- Laboratório de Biotecnologia e Biodiversidade para o Meio Ambiente, Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Edmo Montes Rodrigues
- Laboratório de Biotecnologia e Biodiversidade para o Meio Ambiente, Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil.
| | - Marcos Rogério Tótola
- Laboratório de Biotecnologia e Biodiversidade para o Meio Ambiente, Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil.
| |
Collapse
|
31
|
Babu AG, Reja SI, Akhtar N, Sultana M, Deore PS, Ali FI. Bioremediation of Polycyclic Aromatic Hydrocarbons (PAHs): Current Practices and Outlook. MICROORGANISMS FOR SUSTAINABILITY 2019. [DOI: 10.1007/978-981-13-7462-3_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
32
|
Correa‐García S, Pande P, Séguin A, St‐Arnaud M, Yergeau E. Rhizoremediation of petroleum hydrocarbons: a model system for plant microbiome manipulation. Microb Biotechnol 2018; 11:819-832. [PMID: 30066464 PMCID: PMC6116750 DOI: 10.1111/1751-7915.13303] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 07/06/2018] [Accepted: 07/09/2018] [Indexed: 12/18/2022] Open
Abstract
Phytoremediation is a green and sustainable alternative to physico-chemical methods for contaminated soil remediation. One of the flavours of phytoremediation is rhizoremediation, where plant roots stimulate soil microbes to degrade organic contaminants. This approach is particularly interesting as it takes advantage of naturally evolved interaction mechanisms between plant and microorganisms and often results in a complete mineralization of the contaminants (i.e. transformation to water and CO2 ). However, many biotic and abiotic factors influence the outcome of this interaction, resulting in variable efficiency of the remediation process. The difficulty to predict precisely the timeframe associated with rhizoremediation leads to low adoption rates of this green technology. Here, we review recent literature related to rhizoremediation, with a particular focus on soil organisms. We then expand on the potential of rhizoremediation to be a model plant-microbe interaction system for microbiome manipulation studies.
Collapse
Affiliation(s)
- Sara Correa‐García
- Centre INRS‐Institut Armand‐FrappierInstitut national de la recherche scientifiqueUniversité du QuébecLavalQCCanada
- Laurentian Forest CenterNatural Ressources CanadaQuébec CityQCCanada
| | - Pranav Pande
- Centre INRS‐Institut Armand‐FrappierInstitut national de la recherche scientifiqueUniversité du QuébecLavalQCCanada
- Institut de recherche en biologie végétaleUniversité de Montréal and Jardin Botanique de MontréalMontréalQCCanada
| | - Armand Séguin
- Laurentian Forest CenterNatural Ressources CanadaQuébec CityQCCanada
| | - Marc St‐Arnaud
- Institut de recherche en biologie végétaleUniversité de Montréal and Jardin Botanique de MontréalMontréalQCCanada
| | - Etienne Yergeau
- Centre INRS‐Institut Armand‐FrappierInstitut national de la recherche scientifiqueUniversité du QuébecLavalQCCanada
| |
Collapse
|
33
|
Siebers M, Rohr T, Ventura M, Schütz V, Thies S, Kovacic F, Jaeger KE, Berg M, Dörmann P, Schulz M. Disruption of microbial community composition and identification of plant growth promoting microorganisms after exposure of soil to rapeseed-derived glucosinolates. PLoS One 2018; 13:e0200160. [PMID: 29969500 PMCID: PMC6029813 DOI: 10.1371/journal.pone.0200160] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 06/20/2018] [Indexed: 12/17/2022] Open
Abstract
Land plants are engaged in intricate communities with soil bacteria and fungi indispensable for plant survival and growth. The plant-microbial interactions are largely governed by specific metabolites. We employed a combination of lipid-fingerprinting, enzyme activity assays, high-throughput DNA sequencing and isolation of cultivable microorganisms to uncover the dynamics of the bacterial and fungal community structures in the soil after exposure to isothiocyanates (ITC) obtained from rapeseed glucosinolates. Rapeseed-derived ITCs, including the cyclic, stable goitrin, are secondary metabolites with strong allelopathic affects against other plants, fungi and nematodes, and in addition can represent a health risk for human and animals. However, the effects of ITC application on the different bacterial and fungal organisms in soil are not known in detail. ITCs diminished the diversity of bacteria and fungi. After exposure, only few bacterial taxa of the Gammaproteobacteria, Bacteriodetes and Acidobacteria proliferated while Trichosporon (Zygomycota) dominated the fungal soil community. Many surviving microorganisms in ITC-treated soil where previously shown to harbor plant growth promoting properties. Cultivable fungi and bacteria were isolated from treated soils. A large number of cultivable microbial strains was capable of mobilizing soluble phosphate from insoluble calcium phosphate, and their application to Arabidopsis plants resulted in increased biomass production, thus revealing growth promoting activities. Therefore, inclusion of rapeseed-derived glucosinolates during biofumigation causes losses of microbiota, but also results in enrichment with ITC-tolerant plant microorganisms, a number of which show growth promoting activities, suggesting that Brassicaceae plants can shape soil microbiota community structure favoring bacteria and fungi beneficial for Brassica plants.
Collapse
Affiliation(s)
- Meike Siebers
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Bonn, Germany
| | - Thomas Rohr
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Bonn, Germany
| | - Marina Ventura
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Bonn, Germany
| | - Vadim Schütz
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Bonn, Germany
| | - Stephan Thies
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, Jülich, Germany
| | - Filip Kovacic
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, Jülich, Germany
| | - Karl-Erich Jaeger
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, Jülich, Germany
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| | - Martin Berg
- Institute for Organic Agriculture, University of Bonn, Bonn, Germany
- Experimental Farm Wiesengut of University of Bonn, Hennef, Germany
| | - Peter Dörmann
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Bonn, Germany
| | - Margot Schulz
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Bonn, Germany
| |
Collapse
|
34
|
Kotoky R, Rajkumari J, Pandey P. The rhizosphere microbiome: Significance in rhizoremediation of polyaromatic hydrocarbon contaminated soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 217:858-870. [PMID: 29660711 DOI: 10.1016/j.jenvman.2018.04.022] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 03/22/2018] [Accepted: 04/05/2018] [Indexed: 06/08/2023]
Abstract
Microbial communities are an essential part of plant rhizosphere and participate in the functioning of plants, including rhizoremediation of petroleum contaminants. Rhizoremediation is a promising technology for removal of polyaromatic hydrocarbons based on interactions between plants and microbiome in the rhizosphere. Root exudation in the rhizosphere provides better nutrient uptake for rhizosphere microbiome, and therefore it is considered to be one of the major factors of microbial community function in the rhizosphere that plays a key role in the enhanced PAH biodegradation. Although the importance of the rhizosphere microbiome for plant growth has been widely recognized, the interactions between microbiome and plant roots in the process of rhizosphere mediated remediation of PAH still needs attention. Most of the current researches target PAH degradation by plant or single microorganism, separately, whereas the interactions between plants and whole microbiome are overlooked and its role has been ignored. This review summarizes recent knowledge of PAH degradation in the rhizosphere in the process of plant-microbiome interactions based on emerging omics approaches such as metagenomics, metatranscriptomics, metabolomics and metaproteomics. These omics approaches with combinations to bioinformatics tools provide us a better understanding in integrated activity patterns between plants and rhizosphere microbes, and insight into the biochemical and molecular modification of the meta-organisms (plant-microbiome) to maximize rhizoremediation activity. Moreover, a better understanding of the interactions could lead to the development of techniques to engineer rhizosphere microbiome for better hydrocarbon degradation.
Collapse
Affiliation(s)
- Rhitu Kotoky
- Department of Microbiology, Assam University, Silchar, 788011, India
| | - Jina Rajkumari
- Department of Microbiology, Assam University, Silchar, 788011, India
| | - Piyush Pandey
- Department of Microbiology, Assam University, Silchar, 788011, India.
| |
Collapse
|
35
|
Wu L, Ali DC, Liu P, Peng C, Zhai J, Wang Y, Ye B. Degradation of phenol via ortho-pathway by Kocuria sp. strain TIBETAN4 isolated from the soils around Qinghai Lake in China. PLoS One 2018; 13:e0199572. [PMID: 29949643 PMCID: PMC6021097 DOI: 10.1371/journal.pone.0199572] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 06/09/2018] [Indexed: 01/17/2023] Open
Abstract
Based on the feature of high-altitude permafrost topography and the diverse microbial ecological communities of the Qinghai-Tibetan Plateau, soil samples from thirteen different collection points around Qinghai lake were collected to screen for extremophilic strains with the ability to degrade phenol, and one bacterial strain recorded as TIBETAN4 that showed effective biodegradation of phenol was isolated and identified. TIBETAN4 was closely related to Kocuria based on its observed morphological, molecular and biochemical characteristics. TIBETAN4 grew well in the LB medium at pH 7–9 and 0–4% NaCl showing alkalophilicity and halophilism. The isolate could also tolerate up to 12.5 mM phenol and could degrade 5 mM phenol within 3 days. It maintained a high phenol degradation rate at pH 7–9 and 0–3% NaCl in MSM with 5 mM phenol added as the sole carbon source. Moreover, TIBETAN4 could maintain efficient phenol degradation activity in MSM supplemented with both phenol and glucose and complex water environments, including co-culture Penicillium strains or selection of non-sterilized natural lake water as a culture. It was found that TIBETAN4 showed enzymatic activity of phenol hydroxylase and catechol 1,2-dioxygenase after induction by phenol and the corresponding genes of the two enzymes were detected in the genome of the isolate, while catechol 2,3-dioxygenase or its gene was not, which means there could be a degradation pathway of phenol through the ortho-pathway. The Q-PCR results showed that the transcripts of both the phenol hydroxylase gene and catechol 1,2-dioxygenase gene were up-regulated under the stimulation of phenol, demonstrating again that the strain degraded phenol via ortho-degradation pathway.
Collapse
Affiliation(s)
- Leyang Wu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Daniel C. Ali
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Peng Liu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Cheng Peng
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Jingxin Zhai
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Ying Wang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, People’s Republic of China
- * E-mail: (YW); (BY)
| | - Boping Ye
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, People’s Republic of China
- * E-mail: (YW); (BY)
| |
Collapse
|
36
|
Wang L, Zhang J, Li H, Yang H, Peng C, Peng Z, Lu L. Shift in the microbial community composition of surface water and sediment along an urban river. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 627:600-612. [PMID: 29426184 DOI: 10.1016/j.scitotenv.2018.01.203] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 01/04/2018] [Accepted: 01/20/2018] [Indexed: 06/08/2023]
Abstract
Urban rivers represent a unique ecosystem in which pollution occurs regularly, leading to significantly altered of chemical and biological characteristics of the surface water and sediments. However, the impact of urbanization on the diversity and structure of the river microbial community has not been well documented. As a major tributary of the Yangtze River, the Jialing River flows through many cities. Here, a comprehensive analysis of the spatial microbial distribution in the surface water and sediments in the Nanchong section of Jialing River and its two urban branches was conducted using 16S rRNA gene-based Illumina MiSeq sequencing. The results revealed distinct differences in surface water bacterial composition along the river with a differential distribution of Proteobacteria, Cyanobacteria, Actinobacteria, Bacteroidetes and Acidobacteria (P < 0.05). The bacterial diversity in sediments was significantly higher than their corresponding water samples. Additionally, archaeal communities showed obvious spatial variability in the surface water. The construction of the hydropower station resulted in increased Cyanobacteria abundance in the upstream (32.2%) compared to its downstream (10.3%). Several taxonomic groups of potential fecal indicator bacteria, like Flavobacteria and Bacteroidia, showed an increasing trend in the urban water. PICRUSt metabolic inference analysis revealed a growing number of genes associated with xenobiotic metabolism and nitrogen metabolism in the urban water, indicating that urban discharges might act as the dominant selective force to alter the microbial communities. Redundancy analysis suggested that the microbial community structure was influenced by several environmental factors. TP (P < 0.01) and NO3- (P < 0.05), and metals (Zn, Fe) (P < 0.05) were the most significant drivers determining the microbial community composition in the urban river. These results highlight that river microbial communities exhibit spatial variation in urban areas due to the joint influence of chemical variables associated with sewage discharging and construction of hydropower stations.
Collapse
Affiliation(s)
- Lan Wang
- Key Laboratory of Southwest China Wildlife Resources Conservation, College of Life Sciences, China West Normal University, Nanchong 637002, China
| | - Jing Zhang
- College of Environmental Science and Engineering, China West Normal University, Nanchong 637009, China
| | - Huilin Li
- Key Laboratory of Southwest China Wildlife Resources Conservation, College of Life Sciences, China West Normal University, Nanchong 637002, China
| | - Hong Yang
- Key Laboratory of Southwest China Wildlife Resources Conservation, College of Life Sciences, China West Normal University, Nanchong 637002, China
| | - Chao Peng
- College of Environmental Science and Engineering, China West Normal University, Nanchong 637009, China
| | - Zhengsong Peng
- Key Laboratory of Southwest China Wildlife Resources Conservation, College of Life Sciences, China West Normal University, Nanchong 637002, China; College of Agriculture Science, Xichang College, Xichang 615000, China
| | - Lu Lu
- College of Environmental Science and Engineering, China West Normal University, Nanchong 637009, China.
| |
Collapse
|
37
|
Curtis D, Elango V, Collins AW, Rodrigue M, Pardue JH. Transport of crude oil and associated microbial populations by washover events on coastal headland beaches. MARINE POLLUTION BULLETIN 2018; 130:229-239. [PMID: 29866552 DOI: 10.1016/j.marpolbul.2018.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 02/26/2018] [Accepted: 03/05/2018] [Indexed: 06/08/2023]
Abstract
Storm-driven transport of MC252 oil, sand and shell aggregates was studied on a low-relief coastal headland beach in Louisiana, USA including measurement of alkylated PAHs and Illumina sequencing of intra-aggregate microbial populations. Weathering ratios, constructed from alkylated PAH data, were used to assess loss of 3-ring phenanthrenes and dibenzothiophenes relative to 4-ring chrysenes. Specific aggregate types showed relatively little weathering of 3-ring PAHs referenced to oil sampled near the Macondo wellhead with the exception of certain SRBs sampled from the supratidal environment and samples from deposition areas north of beach. Aggregates mobilized by these storm-driven washover events contains diverse microbial populations dominated by the class Gammaproteobacteria including PAH-degrading genera such as Halomonas, Marinobacter and Idiomarina. Geochemical assessment of porewater in deposition areas, weathering observations, and microbial data suggest that storm remobilization can contribute to susceptibility of PAHs to biodegradation by moving oil to beach microenvironments with more favorable characteristics. (149).
Collapse
Affiliation(s)
- David Curtis
- Department of Civil & Environmental Engineering, Louisiana State University, Baton Rouge, LA 70803, United States
| | - Vijaikrishnah Elango
- Hazardous Substance Research Center, Louisiana State University, Baton Rouge, LA 70803, United States
| | - Autumn W Collins
- Department of Civil & Environmental Engineering, Louisiana State University, Baton Rouge, LA 70803, United States
| | - Matthew Rodrigue
- Department of Civil & Environmental Engineering, Louisiana State University, Baton Rouge, LA 70803, United States
| | - John H Pardue
- Department of Civil & Environmental Engineering, Louisiana State University, Baton Rouge, LA 70803, United States; Hazardous Substance Research Center, Louisiana State University, Baton Rouge, LA 70803, United States.
| |
Collapse
|
38
|
Yergeau E, Tremblay J, Joly S, Labrecque M, Maynard C, Pitre FE, St-Arnaud M, Greer CW. Soil contamination alters the willow root and rhizosphere metatranscriptome and the root-rhizosphere interactome. THE ISME JOURNAL 2018; 12:869-884. [PMID: 29330533 PMCID: PMC5864237 DOI: 10.1038/s41396-017-0018-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 10/10/2017] [Accepted: 11/03/2017] [Indexed: 11/09/2022]
Abstract
Phytoremediation using willows is thought to be a sustainable alternative to traditional remediation techniques involving excavation, transport, and landfilling. However, the complexity of the interaction between the willow and its associated highly diverse microbial communities makes the optimization of phytoremediation very difficult. Here, we have sequenced the rhizosphere metatranscriptome of four willow species and the plant root metatranscriptome for two willow species growing in petroleum hydrocarbon-contaminated and non-contaminated soils on a former petroleum refinery site. Significant differences in the abundance of transcripts related to different bacterial and fungal taxa were observed between willow species, mostly in contaminated soils. When comparing transcript abundance in contaminated vs. non-contaminated soil for each willow species individually, transcripts for many microbial taxa and functions were significantly more abundant in contaminated rhizosphere soil for Salix eriocephala, S. miyabeana and S. purpurea, in contrast to what was observed in the rhizosphere of S. caprea. This agrees with the previously reported sensitivity of S. caprea to contamination, and the superior tolerance of S. miyabeana and S. purpurea to soil contamination at that site. The root metatranscriptomes of two species were compared and revealed that plants transcripts are mainly influenced by willow species, while microbial transcripts mainly responded to contamination. A comparison of the rhizosphere and root metatranscriptomes in the S. purpurea species revealed a complete reorganization of the linkages between root and rhizosphere pathways when comparing willows growing in contaminated and non-contaminated soils, mainly because of large shifts in the rhizosphere metatranscriptome.
Collapse
Affiliation(s)
- Etienne Yergeau
- Centre INRS-Institut Armand-Frappier, Institut National de la Recherche Scientifique, Université du Québec, Laval, QC, Canada.
| | - Julien Tremblay
- National Research Council Canada, Energy, Mining and Environment, Montréal, QC, Canada
| | - Simon Joly
- Institut de recherche en biologie végétale, Jardin botanique de Montréal et Université de Montréal, Montréal, QC, Canada
| | - Michel Labrecque
- Institut de recherche en biologie végétale, Jardin botanique de Montréal et Université de Montréal, Montréal, QC, Canada
| | - Christine Maynard
- National Research Council Canada, Energy, Mining and Environment, Montréal, QC, Canada
| | - Frederic E Pitre
- Institut de recherche en biologie végétale, Jardin botanique de Montréal et Université de Montréal, Montréal, QC, Canada
| | - Marc St-Arnaud
- Institut de recherche en biologie végétale, Jardin botanique de Montréal et Université de Montréal, Montréal, QC, Canada
| | - Charles W Greer
- National Research Council Canada, Energy, Mining and Environment, Montréal, QC, Canada
| |
Collapse
|
39
|
Iffis B, St-Arnaud M, Hijri M. Petroleum Contamination and Plant Identity Influence Soil and Root Microbial Communities While AMF Spores Retrieved from the Same Plants Possess Markedly Different Communities. FRONTIERS IN PLANT SCIENCE 2017; 8:1381. [PMID: 28848583 PMCID: PMC5550799 DOI: 10.3389/fpls.2017.01381] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 07/25/2017] [Indexed: 05/30/2023]
Abstract
Phytoremediation is a promising in situ green technology based on the use of plants to cleanup soils from organic and inorganic pollutants. Microbes, particularly bacteria and fungi, that closely interact with plant roots play key roles in phytoremediation processes. In polluted soils, the root-associated microbes contribute to alleviation of plant stress, improve nutrient uptake and may either degrade or sequester a large range of soil pollutants. Therefore, improving the efficiency of phytoremediation requires a thorough knowledge of the microbial diversity living in the rhizosphere and in close association with plant roots in both the surface and the endosphere. This study aims to assess fungal ITS and bacterial 16S rRNA gene diversity using high-throughput sequencing in rhizospheric soils and roots of three plant species (Solidago canadensis, Populus balsamifera, and Lycopus europaeus) growing spontaneously in three petroleum hydrocarbon polluted sedimentation basins. Microbial community structures of rhizospheric soils and roots were compared with those of microbes associated with arbuscular mycorrhizal fungal (AMF) spores to determine the links between the root and rhizosphere communities and those associated with AMF. Our results showed a difference in OTU richness and community structure composition between soils and roots for both bacteria and fungi. We found that petroleum hydrocarbon pollutant (PHP) concentrations have a significant effect on fungal and bacterial community structures in both soils and roots, whereas plant species identity showed a significant effect only on the roots for bacteria and fungi. Our results also showed that the community composition of bacteria and fungi in soil and roots varied from those associated with AMF spores harvested from the same plants. This let us to speculate that in petroleum hydrocarbon contaminated soils, AMF may release chemical compounds by which they recruit beneficial microbes to tolerate or degrade the PHPs present in the soil.
Collapse
|
40
|
Vergani L, Mapelli F, Marasco R, Crotti E, Fusi M, Di Guardo A, Armiraglio S, Daffonchio D, Borin S. Bacteria Associated to Plants Naturally Selected in a Historical PCB Polluted Soil Show Potential to Sustain Natural Attenuation. Front Microbiol 2017; 8:1385. [PMID: 28790991 PMCID: PMC5524726 DOI: 10.3389/fmicb.2017.01385] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 07/10/2017] [Indexed: 11/13/2022] Open
Abstract
The exploitation of the association between plants and microorganisms is a promising approach able to boost natural attenuation processes for soil clean-up in vast polluted areas characterized by mixed chemical contamination. We aimed to explore the selection of root-associated bacterial communities driven by different plant species spontaneously established in abandoned agricultural soils within a historical polluted site in north Italy. The site is highly contaminated by chlorinated persistent organic pollutants, mainly constituted by polychlorobiphenyls (PCBs), together with heavy metals and metalloids, in variable concentrations and uneven distribution. The overall structure of the non-vegetated and root-associated soil fractions bacterial communities was described by high-throughput sequencing of the 16S rRNA gene, and a collection of 165 rhizobacterial isolates able to use biphenyl as unique carbon source was assayed for plant growth promotion (PGP) traits and bioremediation potential. The results showed that the recruitment of specific bacterial communities in the root-associated soil fractions was driven by both soil fractions and plant species, explaining 21 and 18% of the total bacterial microbiome variation, respectively. PCR-based detection in the soil metagenome of bacterial bphA gene, encoding for the biphenyl dioxygenase α subunit, indicated that the soil in the site possesses metabolic traits linked to PCB degradation. Biphenyl-utilizing bacteria isolated from the rhizosphere of the three different plant species showed low phylogenetic diversity and well represented functional traits, in terms of PGP and bioremediation potential. On average, 72% of the strains harbored the bphA gene and/or displayed catechol 2,3-dioxygenase activity, involved in aromatic ring cleavage. PGP traits, including 1-aminocyclopropane-1-carboxylic acid deaminase activity potentially associated to plant stress tolerance induction, were widely distributed among the isolates according to in vitro assays. PGP tested in vivo on tomato plants using eleven selected bacterial isolates, confirmed the promotion and protection potential of the rhizosphere bacteria. Different spontaneous plant species naturally selected in a historical chronically polluted site showed to determine the enrichment of peculiar bacterial communities in the soil fractions associated to the roots. All the rhizosphere communities, nevertheless, hosted bacteria with degradation/detoxification and PGP potential, putatively sustaining the natural attenuation process.
Collapse
Affiliation(s)
- Lorenzo Vergani
- Department of Food, Environmental and Nutritional Sciences, University of MilanMilan, Italy
| | - Francesca Mapelli
- Department of Food, Environmental and Nutritional Sciences, University of MilanMilan, Italy
| | - Ramona Marasco
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and TechnologyThuwal, Saudi Arabia
| | - Elena Crotti
- Department of Food, Environmental and Nutritional Sciences, University of MilanMilan, Italy
| | - Marco Fusi
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and TechnologyThuwal, Saudi Arabia
| | - Antonio Di Guardo
- Department of Science and High Technology, University of InsubriaComo, Italy
| | | | - Daniele Daffonchio
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and TechnologyThuwal, Saudi Arabia
| | - Sara Borin
- Department of Food, Environmental and Nutritional Sciences, University of MilanMilan, Italy
| |
Collapse
|
41
|
Thijs S, Sillen W, Weyens N, Vangronsveld J. Phytoremediation: State-of-the-art and a key role for the plant microbiome in future trends and research prospects. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2017; 19:23-38. [PMID: 27484694 DOI: 10.1080/15226514.2016.1216076] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Phytoremediation is increasingly adopted as a more sustainable approach for soil remediation. However, significant advances in efficiency are still necessary to attain higher levels of environmental and economic sustainability. Current interventions do not always give the expected outcomes in field settings due to an incomplete understanding of the multicomponent biological interactions. New advances in -omics are gradually implemented for studying microbial communities of polluted land in situ. This opens new perspectives for the discovery of biodegradative strains and provides us new ways of interfering with microbial communities to enhance bioremediation rates. This review presents retrospectives and future perspectives for plant microbiome studies relevant to phytoremediation, as well as some knowledge gaps in this promising research field. The implementation of phytoremediation in soil clean-up management systems is discussed, and an overview of the promoting factors that determine the growth of the phytoremediation market is given. Continuous growth is expected since elimination of contaminants from the environment is demanded. The evolution of scientific thought from a reductionist view to a more holistic approach will boost phytoremediation as an efficient and reliable phytotechnology. It is anticipated that phytoremediation will prove the most promising for organic contaminant degradation and bioenergy crop production on marginal land.
Collapse
Affiliation(s)
- Sofie Thijs
- a Centre for Environmental Sciences, Hasselt University , Diepenbeek , Belgium
| | - Wouter Sillen
- a Centre for Environmental Sciences, Hasselt University , Diepenbeek , Belgium
| | - Nele Weyens
- a Centre for Environmental Sciences, Hasselt University , Diepenbeek , Belgium
| | - Jaco Vangronsveld
- a Centre for Environmental Sciences, Hasselt University , Diepenbeek , Belgium
| |
Collapse
|
42
|
Vergani L, Mapelli F, Zanardini E, Terzaghi E, Di Guardo A, Morosini C, Raspa G, Borin S. Phyto-rhizoremediation of polychlorinated biphenyl contaminated soils: An outlook on plant-microbe beneficial interactions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 575:1395-1406. [PMID: 27717569 DOI: 10.1016/j.scitotenv.2016.09.218] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 09/28/2016] [Accepted: 09/28/2016] [Indexed: 05/18/2023]
Abstract
Polychlorinated biphenyls (PCBs) are toxic chemicals, recalcitrant to degradation, bioaccumulative and persistent in the environment, causing adverse effects on ecosystems and human health. For this reason, the remediation of PCB-contaminated soils is a primary issue to be addressed. Phytoremediation represents a promising tool for in situ soil remediation, since the available physico-chemical technologies have strong environmental and economic impacts. Plants can extract and metabolize several xenobiotics present in the soil, but their ability to uptake and mineralize PCBs is limited due to the recalcitrance and low bioavailability of these molecules that in turn impedes an efficient remediation of PCB-contaminated soils. Besides plant degradation ability, rhizoremediation takes into account the capability of soil microbes to uptake, attack and degrade pollutants, so it can be seen as the most suitable strategy to clean-up PCB-contaminated soils. Microbes are in fact the key players of PCB degradation, performed under both aerobic and anaerobic conditions. In the rhizosphere, microbes and plants positively interact. Microorganisms can promote plant growth under stressed conditions typical of polluted soils. Moreover, in this specific niche, root exudates play a pivotal role by promoting the biphenyl catabolic pathway, responsible for microbial oxidative PCB metabolism, and by improving the overall PCB degradation performance. Besides rhizospheric microbial community, also the endophytic bacteria are involved in pollutant degradation and represent a reservoir of microbial resources to be exploited for bioremediation purposes. Here, focusing on plant-microbe beneficial interactions, we propose a review of the available results on PCB removal from soil obtained combining different plant and microbial species, mainly under simplified conditions like greenhouse experiments. Furthermore, we discuss the potentiality of "omics" approaches to identify PCB-degrading microbes, an aspect of paramount importance to design rhizoremediation strategies working efficiently under different environmental conditions, pointing out the urgency to expand research investigations to field scale.
Collapse
Affiliation(s)
- Lorenzo Vergani
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Celoria 2, 20133 Milan, Italy
| | - Francesca Mapelli
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Celoria 2, 20133 Milan, Italy
| | - Elisabetta Zanardini
- Department of Science and High Technology (DiSAT), University of Insubria, Via Valleggio 9, Como, Italy
| | - Elisa Terzaghi
- Department of Science and High Technology (DiSAT), University of Insubria, Via Valleggio 9, Como, Italy
| | - Antonio Di Guardo
- Department of Science and High Technology (DiSAT), University of Insubria, Via Valleggio 9, Como, Italy
| | - Cristiana Morosini
- Department of Science and High Technology (DiSAT), University of Insubria, Via G.B. Vico 46, Varese, Italy
| | - Giuseppe Raspa
- Department of Chemical Engineering Materials Environment (DICMA), Rome "La Sapienza" University, Via Eudossiana 18, Rome, Italy
| | - Sara Borin
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Celoria 2, 20133 Milan, Italy.
| |
Collapse
|
43
|
Yang S, Wen X, Shi Y, Liebner S, Jin H, Perfumo A. Hydrocarbon degraders establish at the costs of microbial richness, abundance and keystone taxa after crude oil contamination in permafrost environments. Sci Rep 2016; 6:37473. [PMID: 27886221 PMCID: PMC5122841 DOI: 10.1038/srep37473] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 10/11/2016] [Indexed: 01/07/2023] Open
Abstract
Oil spills from pipeline ruptures are a major source of terrestrial petroleum pollution in cold regions. However, our knowledge of the bacterial response to crude oil contamination in cold regions remains to be further expanded, especially in terms of community shifts and potential development of hydrocarbon degraders. In this study we investigated changes of microbial diversity, population size and keystone taxa in permafrost soils at four different sites along the China-Russia crude oil pipeline prior to and after perturbation with crude oil. We found that crude oil caused a decrease of cell numbers together with a reduction of the species richness and shifts in the dominant phylotypes, while bacterial community diversity was highly site-specific after exposure to crude oil, reflecting different environmental conditions. Keystone taxa that strongly co-occurred were found to form networks based on trophic interactions, that is co-metabolism regarding degradation of hydrocarbons (in contaminated samples) or syntrophic carbon cycling (in uncontaminated samples). With this study we demonstrate that after severe crude oil contamination a rapid establishment of endemic hydrocarbon degrading communities takes place under favorable temperature conditions. Therefore, both endemism and trophic correlations of bacterial degraders need to be considered in order to develop effective cleanup strategies.
Collapse
Affiliation(s)
- Sizhong Yang
- State Key Laboratory of Frozen Soils Engineering (SKLFSE), Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences (CAS), Lanzhou, 730000, China.,GFZ German Research Centre for Geosciences, Helmholtz Centre Potsdam, Section 5.3 Geomicrobiology, Telegrafenberg, 14473 Potsdam, Germany
| | - Xi Wen
- GFZ German Research Centre for Geosciences, Helmholtz Centre Potsdam, Section 5.3 Geomicrobiology, Telegrafenberg, 14473 Potsdam, Germany.,College of Electrical Engineering, Northwest University for Nationalities, Lanzhou, 730030, China
| | - Yulan Shi
- State Key Laboratory of Frozen Soils Engineering (SKLFSE), Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences (CAS), Lanzhou, 730000, China
| | - Susanne Liebner
- GFZ German Research Centre for Geosciences, Helmholtz Centre Potsdam, Section 5.3 Geomicrobiology, Telegrafenberg, 14473 Potsdam, Germany
| | - Huijun Jin
- State Key Laboratory of Frozen Soils Engineering (SKLFSE), Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences (CAS), Lanzhou, 730000, China
| | - Amedea Perfumo
- GFZ German Research Centre for Geosciences, Helmholtz Centre Potsdam, Section 5.3 Geomicrobiology, Telegrafenberg, 14473 Potsdam, Germany
| |
Collapse
|
44
|
Mikolasch A, Reinhard A, Alimbetova A, Omirbekova A, Pasler L, Schumann P, Kabisch J, Mukasheva T, Schauer F. From oil spills to barley growth - oil-degrading soil bacteria and their promoting effects. J Basic Microbiol 2016; 56:1252-1273. [PMID: 27624187 DOI: 10.1002/jobm.201600300] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 08/06/2016] [Indexed: 12/30/2022]
Abstract
Heavy contamination of soils by crude oil is omnipresent in areas of oil recovery and exploitation. Bioremediation by indigenous plants in cooperation with hydrocarbon degrading microorganisms is an economically and ecologically feasible means to reclaim contaminated soils. To study the effects of indigenous soil bacteria capable of utilizing oil hydrocarbons on biomass production of plants growing in oil-contaminated soils eight bacterial strains were isolated from contaminated soils in Kazakhstan and characterized for their abilities to degrade oil components. Four of them, identified as species of Gordonia and Rhodococcus turned out to be effective degraders. They produced a variety of organic acids from oil components, of which 59 were identified and 7 of them are hitherto unknown acidic oil metabolites. One of them, Rhodococcus erythropolis SBUG 2054, utilized more than 140 oil components. Inoculating barley seeds together with different combinations of these bacterial strains restored normal growth of the plants on contaminated soils, demonstrating the power of this approach for bioremediation. Furthermore, we suggest that the plant promoting effect of these bacteria is not only due to the elimination of toxic oil hydrocarbons but possibly also to the accumulation of a variety of organic acids which modulate the barley's rhizosphere environment.
Collapse
Affiliation(s)
- Annett Mikolasch
- Department of Applied Microbiology, Institute of Microbiology, University Greifswald, Greifswald, Germany
| | - Anne Reinhard
- Department of Applied Microbiology, Institute of Microbiology, University Greifswald, Greifswald, Germany
| | - Anna Alimbetova
- Department of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Anel Omirbekova
- Department of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Lisa Pasler
- Department of Applied Microbiology, Institute of Microbiology, University Greifswald, Greifswald, Germany
| | - Peter Schumann
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Johannes Kabisch
- Institute of Biochemistry, University Greifswald, 17487, Greifswald, Germany
| | - Togzhan Mukasheva
- Department of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Frieder Schauer
- Department of Applied Microbiology, Institute of Microbiology, University Greifswald, Greifswald, Germany
| |
Collapse
|
45
|
Tardif S, Yergeau É, Tremblay J, Legendre P, Whyte LG, Greer CW. The Willow Microbiome Is Influenced by Soil Petroleum-Hydrocarbon Concentration with Plant Compartment-Specific Effects. Front Microbiol 2016; 7:1363. [PMID: 27660624 PMCID: PMC5015464 DOI: 10.3389/fmicb.2016.01363] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 08/17/2016] [Indexed: 11/13/2022] Open
Abstract
The interaction between plants and microorganisms, which is the driving force behind the decontamination of petroleum hydrocarbon (PHC) contamination in phytoremediation technology, is poorly understood. Here, we aimed at characterizing the variations between plant compartments in the microbiome of two willow cultivars growing in contaminated soils. A field experiment was set-up at a former petrochemical plant in Canada and after two growing seasons, bulk soil, rhizosphere soil, roots, and stems samples of two willow cultivars (Salix purpurea cv. FishCreek, and Salix miyabeana cv. SX67) growing at three PHC contamination concentrations were taken. DNA was extracted and bacterial 16S rRNA gene and fungal internal transcribed spacer (ITS) regions were amplified and sequenced using an Ion Torrent Personal Genome Machine (PGM). Following multivariate statistical analyses, the level of PHC-contamination appeared as the primary factor influencing the willow microbiome with compartment-specific effects, with significant differences between the responses of bacterial, and fungal communities. Increasing PHC contamination levels resulted in shifts in the microbiome composition, favoring putative hydrocarbon degraders, and microorganisms previously reported as associated with plant health. These shifts were less drastic in the rhizosphere, root, and stem tissues as compared to bulk soil, probably because the willows provided a more controlled environment, and thus, protected microbial communities against increasing contamination levels. Insights from this study will help to devise optimal plant microbiomes for increasing the efficiency of phytoremediation technology.
Collapse
Affiliation(s)
- Stacie Tardif
- Department of Natural Resource Sciences, McGill UniversitySainte-Anne-de-Bellevue, QC, Canada; Section of Microbial Ecology and Biotechnology, Department of Plant and Environmental Sciences, University of CopenhagenCopenhagen, Denmark
| | - Étienne Yergeau
- Energy, Mining, and Environment, National Research Council CanadaMontréal, QC, Canada; Centre INRS-Institut Armand-Frappier, Institut national de la recherche scientifiqueLaval, QC, Canada
| | - Julien Tremblay
- Energy, Mining, and Environment, National Research Council Canada Montréal, QC, Canada
| | - Pierre Legendre
- Département de Sciences Biologiques, Université de Montréal Montréal, QC, Canada
| | - Lyle G Whyte
- Department of Natural Resource Sciences, McGill University Sainte-Anne-de-Bellevue, QC, Canada
| | - Charles W Greer
- Department of Natural Resource Sciences, McGill UniversitySainte-Anne-de-Bellevue, QC, Canada; Energy, Mining, and Environment, National Research Council CanadaMontréal, QC, Canada
| |
Collapse
|
46
|
Foulon J, Zappelini C, Durand A, Valot B, Blaudez D, Chalot M. Impact of poplar-based phytomanagement on soil properties and microbial communities in a metal-contaminated site. FEMS Microbiol Ecol 2016; 92:fiw163. [PMID: 27481257 DOI: 10.1093/femsec/fiw163] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2016] [Indexed: 11/14/2022] Open
Abstract
Despite a long history of use in phytomanagement strategies, the impacts of poplar trees on the structure and function of microbial communities that live in the soil remain largely unknown. The current study combined fungal and bacterial community analyses from different management regimes using Illumina-based sequencing with soil analysis. The poplar phytomanagement regimes led to a significant increase in soil fertility and a decreased bioavailability of Zn and Cd, in concert with changes in the microbial communities. The most notable changes in the relative abundance of taxa and operational taxonomic units unsurprisingly indicated that root and soil constitute distinct ecological microbial habitats, as exemplified by the dominance of Laccaria in root samples. The poplar cultivar was also an important driver, explaining 12% and 6% of the variance in the fungal and bacterial data sets, respectively. The overall dominance of saprophytic fungi, e.g. Penicillium canescens, might be related to the decomposition activities needed at the experimental site. Our data further highlighted that the mycorrhizal colonization of poplar cultivars varies greatly between the species and genotypes, which is exemplified by the dominance of Scleroderma under Vesten samples. Further interactions between fungal and bacterial functional groups stressed the potential of high-throughput sequencing technologies in uncovering the microbial ecology of disturbed environments.
Collapse
Affiliation(s)
- Julie Foulon
- Laboratoire Chrono-Environnement, UMR 6249, Université de Bourgogne Franche-Comté, Pôle Universitaire du Pays de Montbéliard, 4 place Tharradin, BP 71427, 25211 Montbéliard, France
| | - Cyril Zappelini
- Laboratoire Chrono-Environnement, UMR 6249, Université de Bourgogne Franche-Comté, Pôle Universitaire du Pays de Montbéliard, 4 place Tharradin, BP 71427, 25211 Montbéliard, France
| | - Alexis Durand
- Laboratoire Chrono-Environnement, UMR 6249, Université de Bourgogne Franche-Comté, Pôle Universitaire du Pays de Montbéliard, 4 place Tharradin, BP 71427, 25211 Montbéliard, France
| | - Benoit Valot
- Laboratoire Chrono-Environnement, UMR 6249, Université de Bourgogne Franche-Comté, Pôle Universitaire du Pays de Montbéliard, 4 place Tharradin, BP 71427, 25211 Montbéliard, France
| | - Damien Blaudez
- CNRS, LIEC UMR7360, Faculté des Sciences et Technologies, BP70239, 54506 Vandoeuvre-lès-Nancy, France Université de Lorraine, LIEC UMR7360, Faculté des Sciences et Technologies, BP 70239, 54506 Vandoeuvre-lès-Nancy, France
| | - Michel Chalot
- Laboratoire Chrono-Environnement, UMR 6249, Université de Bourgogne Franche-Comté, Pôle Universitaire du Pays de Montbéliard, 4 place Tharradin, BP 71427, 25211 Montbéliard, France Université de Lorraine, Faculté des Sciences et Technologies, BP 70239, 54506 Vandoeuvre-les-Nancy, France
| |
Collapse
|
47
|
Leewis MC, Uhlik O, Fraraccio S, McFarlin K, Kottara A, Glover C, Macek T, Leigh MB. Differential Impacts of Willow and Mineral Fertilizer on Bacterial Communities and Biodegradation in Diesel Fuel Oil-Contaminated Soil. Front Microbiol 2016; 7:837. [PMID: 27313574 PMCID: PMC4889597 DOI: 10.3389/fmicb.2016.00837] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 05/18/2016] [Indexed: 01/12/2023] Open
Abstract
Despite decades of research there is limited understanding of how vegetation impacts the ability of microbial communities to process organic contaminants in soil. Using a combination of traditional and molecular assays, we examined how phytoremediation with willow and/or fertilization affected the microbial community present and active in the transformation of diesel contaminants. In a pot study, willow had a significant role in structuring the total bacterial community and resulted in significant decreases in diesel range organics (DRO). However, stable isotope probing (SIP) indicated that fertilizer drove the differences seen in community structure and function. Finally, analysis of the total variance in both pot and SIP experiments indicated an interactive effect between willow and fertilizer on the bacterial communities. This study clearly demonstrates that a willow native to Alaska accelerates DRO degradation, and together with fertilizer, increases aromatic degradation by shifting microbial community structure and the identity of active naphthalene degraders.
Collapse
Affiliation(s)
| | - Ondrej Uhlik
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Czech Republic
| | - Serena Fraraccio
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Czech Republic
| | - Kelly McFarlin
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks AK, USA
| | - Anastasia Kottara
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Czech Republic
| | - Catherine Glover
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks AK, USA
| | - Tomas Macek
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Czech Republic
| | - Mary Beth Leigh
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks AK, USA
| |
Collapse
|
48
|
Jeon JR, Murugesan K, Baldrian P, Schmidt S, Chang YS. Aerobic bacterial catabolism of persistent organic pollutants - potential impact of biotic and abiotic interaction. Curr Opin Biotechnol 2016; 38:71-78. [PMID: 26851837 DOI: 10.1016/j.copbio.2015.12.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 12/29/2015] [Indexed: 11/29/2022]
Abstract
Several aerobic bacteria possess unique catabolic pathways enabling them to degrade persistent organic pollutants (POPs), including polychlorinated dibenzo-p-dioxins/furans (PCDD/Fs), polybrominated diphenylethers (PBDEs), and polychlorinated biphenyls (PCBs). The catabolic activity of aerobic bacteria employed for removal of POPs in the environment may be modulated by several biotic (i.e. fungi, plants, algae, earthworms, and other bacteria) and abiotic (i.e. zero-valent iron, advanced oxidation, and electricity) agents. This review describes the basic biochemistry of the aerobic bacterial catabolism of selected POPs and discusses how biotic and abiotic agents enhance or inhibit the process. Solutions allowing biotic and abiotic agents to exert physical and chemical assistance to aerobic bacterial catabolism of POPs are also discussed.
Collapse
Affiliation(s)
- Jong-Rok Jeon
- Institute of Agriculture & Life Science, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Kumarasamy Murugesan
- Department of Environmental Science, School of Life Sciences, Periyar University, Salem 636 011, Salem, India
| | - Petr Baldrian
- Laboratory of Environmental Microbiology, Institute of Microbiology of the CAS, Prague, 142 20, Czech Republic
| | - Stefan Schmidt
- Discipline of Microbiology, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, 3201, South Africa
| | - Yoon-Seok Chang
- School of Environmental Science and Engineering, POSTECH, Pohang 790-784, Republic of Korea.
| |
Collapse
|
49
|
Yergeau E, Bell TH, Champagne J, Maynard C, Tardif S, Tremblay J, Greer CW. Transplanting Soil Microbiomes Leads to Lasting Effects on Willow Growth, but not on the Rhizosphere Microbiome. Front Microbiol 2015; 6:1436. [PMID: 26733977 PMCID: PMC4685055 DOI: 10.3389/fmicb.2015.01436] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 12/01/2015] [Indexed: 02/01/2023] Open
Abstract
Plants interact closely with microbes, which are partly responsible for plant growth, health, and adaptation to stressful environments. Engineering the plant-associated microbiome could improve plant survival and performance in stressful environments such as contaminated soils. Here, willow cuttings were planted into highly petroleum-contaminated soils that had been gamma-irradiated and subjected to one of four treatments: inoculation with rhizosphere soil from a willow that grew well (LA) or sub-optimally (SM) in highly contaminated soils or with bulk soil in which the planted willow had died (DE) or no inoculation (CO). Samples were taken from the starting inoculum, at the beginning of the experiment (T0) and after 100 days of growth (TF). Short hypervariable regions of archaeal/bacterial 16S rRNA genes and the fungal ITS region were amplified from soil DNA extracts and sequenced on the Illumina MiSeq. Willow growth was monitored throughout the experiment, and plant biomass was measured at TF. CO willows were significantly smaller throughout the experiment, while DE willows were the largest at TF. Microbiomes of different treatments were divergent at T0, but for most samples, had converged on highly similar communities by TF. Willow biomass was more strongly linked to overall microbial community structure at T0 than to microbial community structure at TF, and the relative abundance of many genera at T0 was significantly correlated to final willow root and shoot biomass. Although microbial communities had mostly converged at TF, lasting differences in willow growth were observed, probably linked to differences in T0 microbial communities.
Collapse
Affiliation(s)
- Etienne Yergeau
- Energy Mining and Environment, National Research Council Canada Montreal, QC, Canada
| | - Terrence H Bell
- Biodiversity Centre, Institut de Recherche en Biologie Végétale, Université de Montréal and Jardin Botanique de Montréal Montréal, QC, Canada
| | - Julie Champagne
- Energy Mining and Environment, National Research Council Canada Montreal, QC, Canada
| | - Christine Maynard
- Energy Mining and Environment, National Research Council Canada Montreal, QC, Canada
| | - Stacie Tardif
- Energy Mining and Environment, National Research Council Canada Montreal, QC, Canada
| | - Julien Tremblay
- Energy Mining and Environment, National Research Council Canada Montreal, QC, Canada
| | - Charles W Greer
- Energy Mining and Environment, National Research Council Canada Montreal, QC, Canada
| |
Collapse
|
50
|
El Amrani A, Dumas AS, Wick LY, Yergeau E, Berthomé R. "Omics" Insights into PAH Degradation toward Improved Green Remediation Biotechnologies. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:11281-91. [PMID: 26352597 DOI: 10.1021/acs.est.5b01740] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
This review summarizes recent knowledge of polycyclic aromatic hydrocarbons (PAHs) biotransformation by microorganisms and plants. Whereas most research has focused on PAH degradation either by plants or microorganisms separately, this review specifically addresses the interactions of plants with their rhizosphere microbial communities. Indeed, plant roots release exudates that contain various nutritional and signaling molecules that influence bacterial and fungal populations. The complex interactions of these populations play a pivotal role in the biodegradation of high-molecular-weight PAHs and other complex molecules. Emerging integrative approaches, such as (meta-) genomics, (meta-) transcriptomics, (meta-) metabolomics, and (meta-) proteomics studies are discussed, emphasizing how "omics" approaches bring new insight into decipher molecular mechanisms of PAH degradation both at the single species and community levels. Such knowledge address new pictures on how organic molecules are cometabolically degraded in a complex ecosystem and should help in setting up novel decontamination strategies based on the rhizosphere interactions between plants and their microbial associates.
Collapse
Affiliation(s)
- Abdelhak El Amrani
- University of Rennes 1 , CNRS/UMR 6553/OSUR, Ecosystems - Biodiversity - Evolution, 35042 Rennes Cedex, France
| | - Anne-Sophie Dumas
- University of Rennes 1 , CNRS/UMR 6553/OSUR, Ecosystems - Biodiversity - Evolution, 35042 Rennes Cedex, France
| | - Lukas Y Wick
- UFZ, Department of Environmental Microbiology, Helmholtz Centre for Environmental Research , Permoserstraße 15, D-04318 Leipzig, Germany
| | - Etienne Yergeau
- National Research Council Canada, Energy, Mining and Environment, Montreal, Quebec Canada
| | - Richard Berthomé
- Plant Genomics Research Unit, UMR INRA 1165 - CNRS 8114 - UEVE , 2, Gaston Crémieux St., CP5708, 91057 Evry Cedex, France
| |
Collapse
|