1
|
Cedars MA, Root KM, Akhaphong B, Beetch M, Miles AE, Regal RR, Alejandro EU, Regal JF. Improved glucose handling in female rat offspring of a hypertensive pregnancy with intrauterine growth restriction. Physiol Rep 2025; 13:e70222. [PMID: 39903552 PMCID: PMC11792987 DOI: 10.14814/phy2.70222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/15/2025] [Accepted: 01/17/2025] [Indexed: 02/06/2025] Open
Abstract
Hypertensive disorders of pregnancy, intrauterine growth restriction (IUGR), and reduced pancreatic β-cell area increases risk of offspring developing type 2 diabetes (T2D). Our previous studies using rat reduced uteroplacental perfusion pressure (RUPP) model of gestational hypertension and IUGR demonstrated reduced pancreatic β-cell area in offspring at embryonic day 19 and postnatal day 13 (PD13). We hypothesized reduced β-cell area early in life would manifest as hyperglycemia and glucose intolerance as animals aged. However, glucose intolerance did not differ in RUPP versus control offspring to 1 year of life, whether intraperitoneal or oral glucose challenge. At PD28, female RUPP offspring show normalized β-cell area compared to controls and improved ability to clear glucose following oral challenge. Oral glucose challenge results in significant increase in incretin GLP-1 in RUPP female offspring compared to control. Insulin tolerance did not differ amongst control and RUPP offspring, except at PD28 where insulin reduced blood glucose more effectively in RUPP female offspring versus control. Insulin-induced vasodilation in isolated aorta and insulin signaling in fat are more pronounced in RUPP PD28 female offspring versus control. Thus, our studies demonstrate compensatory mechanisms protect IUGR offspring of a hypertensive pregnancy from long-term metabolic effects and development of T2D.
Collapse
Affiliation(s)
- Melissa A. Cedars
- Department of Biomedical SciencesUniversity of Minnesota Medical SchoolDuluthMinnesotaUSA
| | - Kate M. Root
- Department of Biomedical SciencesUniversity of Minnesota Medical SchoolDuluthMinnesotaUSA
| | - Brian Akhaphong
- Department of Integrative Biology and PhysiologyUniversity of Minnesota Medical SchoolMinneapolisMinnesotaUSA
| | - Megan Beetch
- Department of Integrative Biology and PhysiologyUniversity of Minnesota Medical SchoolMinneapolisMinnesotaUSA
| | - Abigail E. Miles
- Department of Biomedical SciencesUniversity of Minnesota Medical SchoolDuluthMinnesotaUSA
| | - Ronald R. Regal
- Department of Mathematics and StatisticsUniversity of MinnesotaDuluthMinnesotaUSA
| | - Emilyn U. Alejandro
- Department of Integrative Biology and PhysiologyUniversity of Minnesota Medical SchoolMinneapolisMinnesotaUSA
| | - Jean F. Regal
- Department of Biomedical SciencesUniversity of Minnesota Medical SchoolDuluthMinnesotaUSA
| |
Collapse
|
2
|
Namin SS, Zhu YP, Croker BA, Tan Z. Turning Neutrophil Cell Death Deadly in the Context of Hypertensive Vascular Disease. Can J Cardiol 2024; 40:2356-2367. [PMID: 39326672 DOI: 10.1016/j.cjca.2024.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/24/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024] Open
Abstract
Hypertensive vascular disease (HVD) is a major health burden globally and is a comorbidity commonly associated with other metabolic diseases. Many factors are associated with HVD including obesity, diabetes, smoking, chronic kidney disease, and sterile inflammation. Increasing evidence points to neutrophils as an important component of the chronic inflammatory response in HVD. Neutrophils are abundant in the circulation and can respond rapidly upon stimulation to deploy an armament of antimicrobial effector functions. One of the outcomes of neutrophil activation is the generation of neutrophil extracellular traps (NETs), a regulated extrusion of chromatin and proteases. Although neutrophils and NETs are well described as components of the innate immune response to infection, recent evidence implicates them in HVD. Endothelial cell activation can trigger neutrophil adhesion, activation, and production of NETs promoting vascular dysfunction, vessel remodelling, and loss of resistance. The regulated release of NETs can be controlled by the pore-forming activities of distinct cell death pathways. The best characterized pathways in this context are apoptosis, pyroptosis, and necroptosis. In this review, we discuss how inflammatory cell death signalling and NET formation contribute to hypertensive disease. We also examine novel therapeutic approaches to limit NET production and their future potential as therapeutic drugs for cardiovascular disorders.
Collapse
Affiliation(s)
- Sahand Salari Namin
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Yanfang Peipei Zhu
- Department of Biochemistry and Molecular Biology, Immunology Center of Georgia, Augusta University, Augusta, Georgia, USA
| | - Ben A Croker
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Zhehao Tan
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA.
| |
Collapse
|
3
|
Cheng T, Yu D, Tang Q, Qiu X, Li G, Zhou L, Yang Y, Wen Z. Gender differences in the relationship between the systemic immune-inflammation index and all-cause and cardiovascular mortality among adults with hypertension: evidence from NHANES 1999-2018. Front Endocrinol (Lausanne) 2024; 15:1436999. [PMID: 39439560 PMCID: PMC11493643 DOI: 10.3389/fendo.2024.1436999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024] Open
Abstract
Background There are gender differences in hypertension and the effect of gender on the relationship between systemic immune-inflammation index (SII) and mortality in hypertensive patients is unclear. Methods Hypertensive patients (n=7444) from ten cycles of the National Health and Nutrition Examination Survey (NHANES) spanning 1999 to 2018 were enrolled in this study. The maximally selected rank statistics method was employed to identify the optimal cut-off value for the SII. Survey-weighted Cox regression analysis was utilized to explore the links between SII and all-cause and cardiovascular mortality. Kaplan-Meier method and time-dependent receiver operating characteristic curve analysis was conducted to assess the predictive accuracy of SII for mortality. Results Whether SII was considered as a numerical variable or as a binary variable (higher- and lower-SII groups), higher SII levels were associated with a higher risk of all-cause and cardiovascular mortality in female hypertensive patients (all P < 0.001), but no such association was observed in the males. The area under the curve of the SII was 0.602, 0.595, and 0.569 for 3-, 5-, and 10-year all-cause mortality, respectively, in females, but was 0.572, 0.548, and 0.554 in males. High SII levels interacted with the poverty income ratio and physical activity to affect mortality in the male population (P for interaction < 0.05), and there was an interaction between race and SII in the female cardiovascular mortality rate (P for interaction < 0.05). Conclusion Higher levels of SII may be closely related to the high risk of all-cause and cardiovascular mortality in hypertensive patients, and the results showed that this relationship is more significant and stable in the female group. High SII interacts with PIR, physical activity, and race to affect the mortality rate in different gender populations.
Collapse
Affiliation(s)
- Ting Cheng
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Dongdong Yu
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Cardiovascular, First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Qi Tang
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xingying Qiu
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Geng Li
- Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Li Zhou
- Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Yue Yang
- Department of Cardiovascular, First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Zehuai Wen
- Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
4
|
Fitriana F, Soetrisno S, Sulistyowati S, Indarto D. Evaluation of placental bed uterine in L-NAME-induced early-onset preeclampsia (EO-PE) like the rat model. Turk J Obstet Gynecol 2024; 21:180-189. [PMID: 39228220 PMCID: PMC11589322 DOI: 10.4274/tjod.galenos.2024.99132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/03/2024] [Indexed: 09/05/2024] Open
Abstract
Objective Preeclampsia (PE) is the leading cause of maternal death worldwide and is associated with long-term morbidity in both mothers and newborns. Animal modeling is considered a functional source for understanding PE pathogenesis, diagnostic standards, and therapeutic approaches. Materials and Methods This study aimed to demonstrate and evaluate the use of N-nitro-L-arginine methyl ester (L-NAME) in a Wistar rat model under conditions similar to PE. A total of 12 rats were divided into 4 groups, each consisting of 3 members, including the pregnant control group and treatment groups administered low-dose (PE 25 mg/kg L-NAME/day), medium-dose (PE 50 mg/kg L-NAME/day), and high-dose L-NAME (PE 75 mg/kg L-NAME/day) L-NAME from gestational day 4 to 19. Measurements included blood pressure, creatinine, and proteinuria levels, placental histological changes, and placental tissue hypoxia-inducible factor 1-alpha, and plasma endothelial nitric oxide synthase levels. Results The results showed that intervention with L-NAME at 75 mg/kg body weight/day (PE3) induced PE earlier than that with 50 mg/kg body weight/day L-NAME. Conclusion The model conditions also support further research into PE pathogenesis.
Collapse
Affiliation(s)
- Fitriana Fitriana
- Sebelas Maret University Faculty of Medicine, Doctoral Program of Medical Sciences, Surakarta, Indonesia
| | - Soetrisno Soetrisno
- Sebelas Maret University Faculty of Medicine, Doctoral Program of Medical Sciences, Surakarta, Indonesia
- Sebelas Maret University Faculty of Medicine, Department of Obstetrics and Gynecology, Surakarta, Indonesia
| | - Sri Sulistyowati
- Sebelas Maret University Faculty of Medicine, Doctoral Program of Medical Sciences, Surakarta, Indonesia
- Sebelas Maret University General Hospital UNS/Faculty of Medicine, Department of Obstetrics and Gynecology, Surakarta, Indonesia
| | - Dono Indarto
- Sebelas Maret University Faculty of Medicine, Doctoral Program of Medical Sciences, Surakarta, Indonesia
- Sebelas Maret University Faculty of Medicine, Biomedical Laboratory and Department of Obstetrics and Gynecology, Surakarta, Indonesia
| |
Collapse
|
5
|
Jiang Y, Geng Y, Gao R, Chen Z, Chen J, Mu X, Zhang Y, Yin X, Chen X, Li F, He J. Maternal exposure to ZIF-8 derails placental function by inducing trophoblast pyroptosis through neutrophils activation in mice. Food Chem Toxicol 2024; 187:114604. [PMID: 38508570 DOI: 10.1016/j.fct.2024.114604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/09/2024] [Accepted: 03/15/2024] [Indexed: 03/22/2024]
Abstract
Adverse environmental factors during maternal gestation pose a threat to pregnancy. Environmental factors, particularly nanoparticles, can impact pregnancy by causing damage to the placenta. Compared to early gestation, foetuses in late gestation are more robustly developed and at lower risk of adverse effects from environmental factors. Delivery systems for targeted therapy during pregnancy is predominantly focused on their application in late gestation. Zeolitic imidazolate framework-8 (ZIF-8) holds great potential for targeted drug therapy. To evaluate the value of ZIF-8 in targeted treatment of disorders associated with late gestation, it is crucial to investigate the biological effects of ZIF-8 exposure during late gestation. Here, a mouse model exposed to ZIF-8 particles at different doses (5, 10, and 15 mg/kg) during late gestation was constructed. We found that ZIF-8 particles were deposited in the uterus of pregnant mice. ZIF-8 could trigger placental neutrophil aggregation and induce inflammation, which led to trophoblast pyroptosis and impair placental function, adversely affecting the foetus. Neutrophil depletion alleviated placental and foetal damage induced by ZIF-8. This study provides a novel mechanistic view of the reproductive toxicity induced by ZIF-8 and may offer clues to reduce the latent harm of adverse environmental factors to pregnancy.
Collapse
Affiliation(s)
- Yu Jiang
- School of Public Health, Chongqing Medical University, Chongqing, China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Yanqing Geng
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Rufei Gao
- School of Public Health, Chongqing Medical University, Chongqing, China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Zhuxiu Chen
- School of Public Health, Chongqing Medical University, Chongqing, China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Jun Chen
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Xinyi Mu
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Yan Zhang
- School of Public Health, Chongqing Medical University, Chongqing, China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Xin Yin
- School of Public Health, Chongqing Medical University, Chongqing, China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Xuemei Chen
- School of Public Health, Chongqing Medical University, Chongqing, China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Fangfang Li
- School of Public Health, Chongqing Medical University, Chongqing, China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Junlin He
- School of Public Health, Chongqing Medical University, Chongqing, China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
6
|
Møller HI, Persson G, Klok FB, Vojdeman FJ, Lebech M, Hviid TVF. Investigations of leukocyte and inflammatory markers in pregnancies complicated by preeclampsia. J Reprod Immunol 2023; 160:104163. [PMID: 37857159 DOI: 10.1016/j.jri.2023.104163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/14/2023] [Accepted: 10/07/2023] [Indexed: 10/21/2023]
Abstract
OBJECTIVES Preeclampsia is a frequent and potentially fatal pregnancy complication. It can be challenging to make a timely diagnosis. Identifying clinically useful biochemical markers would be a remedying tool to support the diagnosis of preeclampsia. The aim was to investigate differential cell counts and acute phase reactants as diagnostic markers of preeclamptic third-trimester pregnancies and in relation to pregnancy term, gravidity and the severity of hypertension. METHODS Based on a cohort of 421 pregnant women, we included 174 participants (case n = 84, control n = 90) during the third trimester. Peripheral blood was sampled to measure differential white blood cell counts and acute phase reactants on the day of inclusion. RESULTS The neutrophil-to-lymphocyte ratio and plasma haptoglobin levels were significantly increased in healthy pregnancies compared with preeclamptic pregnancies. Plasma ferritin levels and albumin levels were respectively increased and decreased in cases of preeclampsia compared with controls. Albumin was specific among multigravida. Plasma transferrin and high-sensitivity C-reactive protein (hs-CRP) levels were significantly decreased and increased, respectively, in cases with preterm preeclampsia compared with term preeclampsia. CONCLUSION Plasma ferritin and albumin levels reflected higher inflammation in cases with preeclampsia compared with healthy pregnancies; the same did plasma transferrin and hs-CRP levels in preterm versus term preeclampsia. When considering the normal ranges plasma albumin and hs-CRP levels identified preeclamptic from healthy third-trimester pregnancies and preterm from term preeclampsia cases, respectively, with near-acceptable diagnostic performances. Further validation of the diagnostic value will require larger sample-sized studies with paired plasma and serum samples.
Collapse
Affiliation(s)
- Hiba Iraqi Møller
- Centre for Immune Regulation and Reproductive Immunology (CIRRI) and the ReproHealth Research Consortium ZUH, Department of Clinical Biochemistry, Zealand University Hospital, Roskilde, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Gry Persson
- Centre for Immune Regulation and Reproductive Immunology (CIRRI) and the ReproHealth Research Consortium ZUH, Department of Clinical Biochemistry, Zealand University Hospital, Roskilde, Denmark
| | - Freja Bluhme Klok
- Centre for Immune Regulation and Reproductive Immunology (CIRRI) and the ReproHealth Research Consortium ZUH, Department of Clinical Biochemistry, Zealand University Hospital, Roskilde, Denmark
| | | | - Morten Lebech
- Department of Obstetrics and Gynecology, The ReproHealth Research Consortium ZUH, Zealand University Hospital, Denmark
| | - Thomas Vauvert F Hviid
- Centre for Immune Regulation and Reproductive Immunology (CIRRI) and the ReproHealth Research Consortium ZUH, Department of Clinical Biochemistry, Zealand University Hospital, Roskilde, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| |
Collapse
|
7
|
Weng J, Couture C, Girard S. Innate and Adaptive Immune Systems in Physiological and Pathological Pregnancy. BIOLOGY 2023; 12:402. [PMID: 36979094 PMCID: PMC10045867 DOI: 10.3390/biology12030402] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023]
Abstract
The dynamic immunological changes occurring throughout pregnancy are well-orchestrated and important for the success of the pregnancy. One of the key immune adaptations is the maternal immune tolerance towards the semi-allogeneic fetus. In this review, we provide a comprehensive overview of what is known about the innate and adaptive immunological changes in pregnancy and the role(s) of specific immune cells during physiological and pathological pregnancy. Alongside this, we provided details of remaining questions and challenges, as well as future perspectives for this growing field of research. Understanding the immunological changes that occur can inform potential strategies on treatments for the optimal health of the neonate and pregnant individual both during and after pregnancy.
Collapse
Affiliation(s)
- Jessica Weng
- Mayo Clinic Medical Scientist Training Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic Alix School of Medicine, Rochester, MN 55905, USA
| | - Camille Couture
- Department of Microbiology, Infectiology and Immunology, Universite de Montreal, Ste-Justine Hospital Research Center, Montreal, QC H3T 1C5, Canada
| | - Sylvie Girard
- Department of Obstetrics & Gynecology, Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
8
|
Cao Y, Li P, Zhang Y, Qiu M, Li J, Ma S, Yan Y, Li Y, Han Y. Association of systemic immune inflammatory index with all-cause and cause-specific mortality in hypertensive individuals: Results from NHANES. Front Immunol 2023; 14:1087345. [PMID: 36817427 PMCID: PMC9932782 DOI: 10.3389/fimmu.2023.1087345] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/24/2023] [Indexed: 02/05/2023] Open
Abstract
Background The relationship between the systemic immune inflammatory index (SII) and the prognosis of hypertensive patients is unclear. This study aims to explore the association of SII with all-cause and cause-specific mortality in patients with hypertension. Methods This study included 8524 adults with hypertension from the National Health and Nutritional Examination Surveys (NHANES) 2011-2018, and followed for survival through December 31, 2019. Cox proportional hazards models were used to investigate the associations between SII and mortality from all causes, cardiovascular disease (CVD), and cancer. Restricted cubic spline, piecewise linear regression, subgroup and sensitivity analyses were also used. Results During a median follow-up of 4.58 years, 872 all-cause deaths occurred. After adjusting for covariates, higher SII was significantly associated with an elevated risk of CVD mortality. There was a 102% increased risk of CVD mortality per one-unit increment in natural log-transformed SII (lnSII) (P < 0.001). Consistent results were also observed when SII was examined as categorical variable (quartiles). The associations of SII with all-cause and cancer mortality were detected as U-shaped with threshold values of 5.97 and 6.18 for lnSII respectively. Below thresholds, higher SII was significantly associated with lower all-cause mortality (HR=0.79, 95%CI=0.64-0.97) and cancer mortality (HR=0.73, 95%CI=0.53-1.00). Above thresholds, SII was significantly positive associated with all-cause mortality (HR=1.93, 95%CI=1.55-2.40) and cancer mortality (HR=1.93, 95%CI=1.22-3.05). The results were robust in subgroup and sensitivity analyses. Conclusion Higher SII (either as a continuous or categorical variable) were significantly associated with a higher risk of CVD mortality. The U-shaped associations were observed between SII and all-cause and cancer mortality.
Collapse
Affiliation(s)
- Yang Cao
- The Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, Liaoning, China.,The Department of Cardiology, Xijing Hospital, Air Force Medical University, Xi'an, Shanxi, China
| | - Pengxiao Li
- The Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, Liaoning, China.,The Department of Cardiology, Xijing Hospital, Air Force Medical University, Xi'an, Shanxi, China
| | - Yan Zhang
- The Department of Cardiology, Xijing Hospital, Air Force Medical University, Xi'an, Shanxi, China
| | - Miaohan Qiu
- The Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| | - Jing Li
- The Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| | - Sicong Ma
- The Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| | - Yudong Yan
- The Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, Liaoning, China.,The Department of Cardiology, Xijing Hospital, Air Force Medical University, Xi'an, Shanxi, China
| | - Yi Li
- The Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| | - Yaling Han
- The Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| |
Collapse
|
9
|
Root KM, Akhaphong B, Cedars MA, Molin AM, Huchthausen ME, Laule CF, Regal RR, Alejandro EU, Regal JF. Critical Role for Macrophages in the Developmental Programming of Pancreatic β-Cell Area in Offspring of Hypertensive Pregnancies. Diabetes 2022; 71:2597-2611. [PMID: 36125850 PMCID: PMC9750952 DOI: 10.2337/db22-0404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/06/2022] [Indexed: 01/11/2023]
Abstract
Preeclampsia is a pregnancy-specific complication with long-term negative outcomes for offspring, including increased susceptibility to type 2 diabetes (T2D) in adulthood. In a rat reduced uteroplacental perfusion pressure (RUPP) model of chronic placental ischemia, maternal hypertension in conjunction with intrauterine growth restriction mimicked aspects of preeclampsia and resulted in female embryonic day 19 (e19) offspring with reduced β-cell area and increased β-cell apoptosis compared with offspring of sham pregnancies. Decreased pancreatic β-cell area persisted to postnatal day 13 (PD13) in females and could influence whether T2D developed in adulthood. Macrophage changes also occurred in islets in T2D. Therefore, we hypothesized that macrophages are crucial to reduction in pancreatic β-cell area in female offspring after chronic placental ischemia. Macrophage marker CD68 mRNA expression was significantly elevated in e19 and PD13 islets isolated from female RUPP offspring compared with sham. Postnatal injections of clodronate liposomes into female RUPP and sham offspring on PD2 and PD9 significantly depleted macrophages compared with injections of control liposomes. Depletion of macrophages rescued reduced β-cell area and increased β-cell proliferation and size in RUPP offspring. Our studies suggest that the presence of macrophages is important for reduced β-cell area in female RUPP offspring and changes in macrophages could contribute to development of T2D in adulthood.
Collapse
Affiliation(s)
- Kate M. Root
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN
| | - Brian Akhaphong
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN
| | - Melissa A. Cedars
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN
| | - Alexa M. Molin
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN
| | | | - Connor F. Laule
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA
| | - Ronald R. Regal
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN
| | - Emilyn U. Alejandro
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN
| | - Jean F. Regal
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN
| |
Collapse
|
10
|
Zhou X, Zhang C, Wu X, Hu X, Zhang Y, Wang X, Zheng L, Gao P, Du J, Zheng W, Shang H, Hu K, Jiang Z, Nie Y, Hu S, Xiao RP, Zhu X, Xiong JW. Dusp6 deficiency attenuates neutrophil-mediated cardiac damage in the acute inflammatory phase of myocardial infarction. Nat Commun 2022; 13:6672. [PMID: 36335128 PMCID: PMC9637103 DOI: 10.1038/s41467-022-33631-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 09/27/2022] [Indexed: 11/07/2022] Open
Abstract
Dual-specificity phosphatase 6 (DUSP6) serves a specific and conserved function on the dephosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2). We previously identified Dusp6 as a regenerative repressor during zebrafish heart regeneration, therefore we propose to investigate the role of this repressor in mammalian cardiac repair. Utilizing a rat strain harboring Dusp6 nonsense mutation, rat neutrophil-cardiomyocyte co-culture, bone marrow transplanted rats and neutrophil-specific Dusp6 knockout mice, we find that Dusp6 deficiency improves cardiac outcomes by predominantly attenuating neutrophil-mediated myocardial damage in acute inflammatory phase after myocardial infarction. Mechanistically, Dusp6 is transcriptionally activated by p38-C/EBPβ signaling and acts as an effector for maintaining p-p38 activity by down-regulating pERK and p38-targeting phosphatases DUSP1/DUSP16. Our findings provide robust animal models and novel insights for neutrophil-mediated cardiac damage and demonstrate the potential of DUSP6 as a therapeutic target for post-MI cardiac remodeling and other relevant inflammatory diseases.
Collapse
Affiliation(s)
- Xiaohai Zhou
- grid.11135.370000 0001 2256 9319Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100871 China
| | - Chenyang Zhang
- grid.11135.370000 0001 2256 9319Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100871 China ,grid.11135.370000 0001 2256 9319PKU-Nanjing Institute of Translational Medicine, Nanjing, 211800 China
| | - Xueying Wu
- grid.11135.370000 0001 2256 9319Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100871 China
| | - Xinli Hu
- grid.11135.370000 0001 2256 9319Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100871 China
| | - Yan Zhang
- grid.11135.370000 0001 2256 9319Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100871 China
| | - Xuelian Wang
- grid.11135.370000 0001 2256 9319Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100871 China
| | - Lixia Zheng
- grid.11135.370000 0001 2256 9319Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100871 China
| | - Peng Gao
- grid.11135.370000 0001 2256 9319Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100871 China
| | - Jianyong Du
- grid.11135.370000 0001 2256 9319Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100871 China
| | - Wen Zheng
- grid.11135.370000 0001 2256 9319Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100871 China
| | - Haibao Shang
- grid.11135.370000 0001 2256 9319Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100871 China
| | - Keping Hu
- grid.506261.60000 0001 0706 7839Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193 China
| | - Zhengfan Jiang
- grid.11135.370000 0001 2256 9319School of Life Sciences, Peking University, Beijing, 100871 China
| | - Yu Nie
- grid.506261.60000 0001 0706 7839State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037 China
| | - Shengshou Hu
- grid.506261.60000 0001 0706 7839State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037 China
| | - Rui-Ping Xiao
- grid.11135.370000 0001 2256 9319Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100871 China ,grid.11135.370000 0001 2256 9319PKU-Nanjing Institute of Translational Medicine, Nanjing, 211800 China
| | - Xiaojun Zhu
- grid.11135.370000 0001 2256 9319Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100871 China ,grid.11135.370000 0001 2256 9319PKU-Nanjing Institute of Translational Medicine, Nanjing, 211800 China
| | - Jing-Wei Xiong
- grid.11135.370000 0001 2256 9319Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100871 China ,grid.11135.370000 0001 2256 9319PKU-Nanjing Institute of Translational Medicine, Nanjing, 211800 China
| |
Collapse
|
11
|
Yamamoto Y, Kadoya K, Terkawi MA, Endo T, Konno K, Watanabe M, Ichihara S, Hara A, Kaneko K, Iwasaki N, Ishijima M. Neutrophils delay repair process in Wallerian degeneration by releasing NETs outside the parenchyma. Life Sci Alliance 2022; 5:e202201399. [PMID: 35961782 PMCID: PMC9375156 DOI: 10.26508/lsa.202201399] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 12/05/2022] Open
Abstract
Although inflammation is indispensable for the repair process in Wallerian degeneration (WD), the role of neutrophils in the WD repair process remains unclear. After peripheral nerve injury, neutrophils accumulate at the epineurium but not the parenchyma in the WD region because of the blood-nerve barrier. An increase or decrease in the number of neutrophils delayed or promoted macrophage infiltration from the epineurium into the parenchyma and the repair process in WD. Abundant neutrophil extracellular traps (NETs) were formed around neutrophils, and its inhibition dramatically increased macrophage infiltration into the parenchyma. Furthermore, inhibition of either MIF or its receptor, CXCR4, in neutrophils decreased NET formation, resulting in enhanced macrophage infiltration into the parenchyma. Moreover, inhibiting MIF for just 2 h after peripheral nerve injury promoted the repair process. These findings indicate that neutrophils delay the repair process in WD from outside the parenchyma by inhibiting macrophage infiltration via NET formation and that neutrophils, NETs, MIF, and CXCR4 are therapeutic targets for peripheral nerve regeneration.
Collapse
Affiliation(s)
- Yasuhiro Yamamoto
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
- Department of Medicine for Motor Organ, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Ken Kadoya
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Mohamad Alaa Terkawi
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Takeshi Endo
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Kohtarou Konno
- Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Masahiko Watanabe
- Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Satoshi Ichihara
- Department of Orthopaedic Surgery, Juntendo University Urayasu Hospital, Urayasu, Japan
| | - Akira Hara
- Department of Orthopaedic Surgery, Juntendo University Urayasu Hospital, Urayasu, Japan
| | - Kazuo Kaneko
- Department of Medicine for Motor Organ, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Norimasa Iwasaki
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Muneaki Ishijima
- Department of Medicine for Motor Organ, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
12
|
Hassanzadeh-Taheri M, Mohammadifard M, Erfanian Z, Hosseini M. The maternal reduced uteroplacental perfusion model of preeclampsia induces sexually dimorphic metabolic responses in rat offspring. Biol Sex Differ 2022; 13:48. [PMID: 36109770 PMCID: PMC9479437 DOI: 10.1186/s13293-022-00458-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 08/31/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Offspring born to preeclamptic mothers are prone to obesity, diabetes and hypertension in later life, but still, studies investigating the underlying mechanism are limited. Here, we aimed to investigate the impact of the reduced uteroplacental perfusion (RUPP) rat preeclampsia model on offspring metabolic outcomes. METHODS Timed pregnant Wistar rats underwent RUPP or sham surgeries on day 14 of gestation. Glucometabolic parameters were evaluated on postnatal days (PND), 14 (childhood), and 60 (young adult). In addition, intraperitoneal glucose tolerance test (IPGTT), homeostatic model assessment of insulin resistance (HOMA-IR), immunohistochemical staining for insulin in pancreatic islets, arterial blood pressure and 24-h urine protein (24hUP) excretion were performed at PND60. RESULTS Male, but not female, young adult rats (PND60) of RUPP dams exhibited an impaired IPGTT, decreased circulatory insulin and weakened pancreatic insulin immunoreactivity. Compared to the male offspring of the sham group, the body mass of male RUPP offspring significantly caught up after PND42, but it was not sex-specific. RUPP pups also exhibited upregulations in glucagon (only males) and ghrelin (both sexes with a more significant increase in males) during PND14-PND60. However, in sham offspring (both sexes), glucagon levels were downregulated and ghrelin levels unchanged during PND14-PND60. The blood pressure, HOMA-IR and 24hUP values did not alter in RUPP pups. CONCLUSIONS The overall results suggest that maternal RUPP has negative and sex-specific impacts on insulin, glucagon and ghrelin regulations in offspring and that, as young adults, male RUPP rats may be more prone to develop obesity and diabetes.
Collapse
Affiliation(s)
- Mohammadmehdi Hassanzadeh-Taheri
- Cellular and Molecular Research Center, Department of Anatomical Sciences, Birjand University of Medical Sciences, Birjand, Iran
| | - Mahtab Mohammadifard
- Department of Pathology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Zahra Erfanian
- Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mehran Hosseini
- Cellular and Molecular Research Center, Department of Anatomical Sciences, Birjand University of Medical Sciences, Birjand, Iran.
| |
Collapse
|
13
|
Higashisaka K. Health Effects and Safety Assurance of Nanoparticles in Vulnerable Generations. Biol Pharm Bull 2022; 45:806-812. [PMID: 35786586 DOI: 10.1248/bpb.b22-00277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nanoparticles have a variety of useful functions. They have already been put to practical use in products in many industrial arenas, such as the cosmetics and food fields. Therefore, we cannot avoid the unintentional nanoparticle exposure of vulnerable people such as pregnant women and infants, and the importance of evaluating the safety of such vulnerable generations, who are highly sensitive to chemical substances, has been pointed out worldwide. However, it is still difficult to determine the hazards posed by nanoparticle exposure in everyday life. From this perspective, to analyze the risk from nanoparticles to vulnerable generations, nano-safety science research has been conducted through the collection of toxicity information on nanoparticles based on their physicochemical properties and kinetics via the association analysis of physicochemical properties, kinetics, and toxicity. The results of this nano-safety science research have been used in nano-safety design research to develop safer forms of nanoparticles. The findings of these studies will not only provide insights that will help us to formulate new policies for the risk management of nanoparticles; they will also lead directly to the development of sustainable nanotechnology (nanotechnology that can be safely, usefully, and sustainably used). These developments will contribute not only to the development of the nano-industry and the promotion of its social acceptance, but also to future developments in the field of health science.
Collapse
Affiliation(s)
- Kazuma Higashisaka
- Institute for Advanced Co-Creation Studies, Osaka University.,Graduate School of Pharmaceutical Sciences, Osaka University
| |
Collapse
|
14
|
Porembskaya O, Zinserling V, Tomson V, Toropova Y, Starikova EA, Maslei VV, Bulavinova NI, Kirik OV, Syrtsova MA, Laberko L, Galchenko MI, Kravchuk V, Saiganov S, Brill A. Neutrophils Mediate Pulmonary Artery Thrombosis In Situ. Int J Mol Sci 2022; 23:ijms23105829. [PMID: 35628637 PMCID: PMC9144243 DOI: 10.3390/ijms23105829] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/20/2022] [Accepted: 05/21/2022] [Indexed: 01/27/2023] Open
Abstract
Pulmonary embolism is a life-threatening condition, which can result in respiratory insufficiency and death. Blood clots occluding branches of the pulmonary artery (PA) are traditionally considered to originate from thrombi in deep veins (usually in legs). However, growing evidence suggests that occlusion of the vessels in the lungs can develop without preceding deep vein thrombosis (DVT). In this work, we used an inferior vena cava (IVC) complete ligation model of DVT in Wistar rats to explore the possibility and mechanisms of PA thrombosis under the conditions where all routes of thrombotic mass migration from peripheral veins are blocked. We demonstrate that rats both with normal and reduced neutrophil counts developed thrombi in the IVC, although, neutropenia caused a substantial decrease in thrombus size and a shift from fresh fibrin toward mature fibrin and connective tissue inside the thrombus. Massive fibrin deposition was found in the PA branches in the majority of DVT rats with normal neutrophil counts, but in none of the neutropenic animals. Neutrophil ablation also abolished macroscopic signs of lung damage. Altogether, the results demonstrate that thrombi in the lung vasculature can form in situ by mechanisms that require local neutrophil recruitment taking place in the DVT setting.
Collapse
Affiliation(s)
- Olga Porembskaya
- Cardio-Vascular Department, Mechnikov North-Western State Medical University, 191015 Saint Petersburg, Russia; (O.P.); (V.K.); (S.S.)
| | - Vsevolod Zinserling
- Institute of Experimental Medicine, Almazov National Medical Research Center, 197341 Saint Petersburg, Russia; (V.Z.); (Y.T.); (V.V.M.); (N.I.B.)
| | - Vladimir Tomson
- Scientific and Research Center, Pavlov University, 197022 Saint Petersburg, Russia;
| | - Yana Toropova
- Institute of Experimental Medicine, Almazov National Medical Research Center, 197341 Saint Petersburg, Russia; (V.Z.); (Y.T.); (V.V.M.); (N.I.B.)
| | - Eleonora A. Starikova
- Department of Immunology, Institute of Experimental Medicine, 197376 Saint Petersburg, Russia; (E.A.S.); (O.V.K.)
| | - Vitaliy V. Maslei
- Institute of Experimental Medicine, Almazov National Medical Research Center, 197341 Saint Petersburg, Russia; (V.Z.); (Y.T.); (V.V.M.); (N.I.B.)
| | - Nika I. Bulavinova
- Institute of Experimental Medicine, Almazov National Medical Research Center, 197341 Saint Petersburg, Russia; (V.Z.); (Y.T.); (V.V.M.); (N.I.B.)
| | - Olga V. Kirik
- Department of Immunology, Institute of Experimental Medicine, 197376 Saint Petersburg, Russia; (E.A.S.); (O.V.K.)
| | | | - Leonid Laberko
- Department of General Surgery and Radiology, Pirogov Russian National Research Medical University, 117997 Moscow, Russia;
| | - Maxim I. Galchenko
- Department of Electrical Engineering and Electrical Equipment, State Agrarian University, 196601 Saint Petersburg, Russia;
| | - Vyacheslav Kravchuk
- Cardio-Vascular Department, Mechnikov North-Western State Medical University, 191015 Saint Petersburg, Russia; (O.P.); (V.K.); (S.S.)
| | - Sergey Saiganov
- Cardio-Vascular Department, Mechnikov North-Western State Medical University, 191015 Saint Petersburg, Russia; (O.P.); (V.K.); (S.S.)
| | - Alexander Brill
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
- Correspondence: ; Tel.: +44-12-1415-8679
| |
Collapse
|
15
|
Miller D, Motomura K, Galaz J, Gershater M, Lee ED, Romero R, Gomez-Lopez N. Cellular immune responses in the pathophysiology of preeclampsia. J Leukoc Biol 2022; 111:237-260. [PMID: 33847419 PMCID: PMC8511357 DOI: 10.1002/jlb.5ru1120-787rr] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Preeclampsia, defined as new-onset hypertension accompanied by proteinuria occurring at 20 weeks of gestation or later, is a leading cause of perinatal morbidity and mortality worldwide. The pathophysiology of this major multi-systemic syndrome includes defective deep placentation, oxidative stress, endothelial dysfunction, the presence of an anti-angiogenic state, and intravascular inflammation, among others. In this review, we provide a comprehensive overview of the cellular immune responses involved in the pathogenesis of preeclampsia. Specifically, we summarize the role of innate and adaptive immune cells in the maternal circulation, reproductive tissues, and at the maternal-fetal interface of women affected by this pregnancy complication. The major cellular subsets involved in the pathogenesis of preeclampsia are regulatory T cells, effector T cells, NK cells, monocytes, macrophages, and neutrophils. We also summarize the literature on those immune cells that have been less characterized in this clinical condition, such as γδ T cells, invariant natural killer T cells, dendritic cells, mast cells, and B cells. Moreover, we discuss in vivo studies utilizing a variety of animal models of preeclampsia to further support the role of immune cells in this disease. Finally, we highlight the existing gaps in knowledge of the immunobiology of preeclampsia that require further investigation. The goal of this review is to promote translational research leading to clinically relevant strategies that can improve adverse perinatal outcomes resulting from the obstetrical syndrome of preeclampsia.
Collapse
Affiliation(s)
- Derek Miller
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS); Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Kenichiro Motomura
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS); Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Jose Galaz
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS); Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Meyer Gershater
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS); Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Eun D. Lee
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia, USA
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS); Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, USA
- Detroit Medical Center, Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Florida International University, Miami, Florida, USA
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS); Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, Michigan, USA
| |
Collapse
|
16
|
Chen B, Yang Y, Yang C, Duan J, Chen L, Lu K, Yi B, Chen Y, Xu D, Huang H. M2 macrophage accumulation contributes to pulmonary fibrosis, vascular dilatation, and hypoxemia in rat hepatopulmonary syndrome. J Cell Physiol 2021; 236:7682-7697. [PMID: 34041750 DOI: 10.1002/jcp.30420] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 05/04/2021] [Accepted: 05/08/2021] [Indexed: 12/11/2022]
Abstract
Hepatopulmonary syndrome (HPS) markedly increases the mortality of patients. However, its pathogenesis remains incompletely understood. Rat HPS develops in common bile duct ligation (CBDL)-induced, but not thioacetamide (TAA)-induced cirrhosis. We investigated the mechanisms of HPS by comparing these two models. Pulmonary histology, blood gas exchange, and the related signals regulating macrophage accumulation were assessed in CBDL and TAA rats. Anti-polymorphonuclear leukocyte (antiPMN) and anti-granulocyte-macrophage colony stimulating factor (antiGM-CSF) antibodies, clodronate liposomes (CL), and monocyte chemoattractant protein 1 (MCP1) inhibitor (bindarit) were administrated in CBDL rats, GM-CSF, and MCP1 were administrated in bone marrow-derived macrophages (BMDMs). Pulmonary inflammatory cell recruitment, vascular dilatation, and hypoxemia were progressively developed by 1 week after CBDL, but only occurred at 4 week after TAA. Neutrophils were the primary inflammatory cells within 3 weeks after CBDL and at 4 week after TAA. M2 macrophages were the primary inflammatory cells, meantime, pulmonary fibrosis, GM-CSFR, and CCR2 were specifically increased from 4 week after CBDL. AntiPMN antibody treatment decreased neutrophil and macrophage accumulation, CL or the combination of antiGM-CSF antibody and bindarit treatment decreased macrophage recruitment, resulting in pulmonary fibrosis, vascular dilatation, and hypoxemia in CBDL rats alleviated. The combination treatment of GM-CSF and MCP1 promoted cell migration, M2 macrophage differentiation, and transforming growth factor-β1 (TGF-β1) production in BMDMs. Conclusively, our results highlight neutrophil recruitment mediates pulmonary vascular dilatation and hypoxemia in the early stage of rat HPS. Further, M2 macrophage accumulation induced by GM-CSF/GM-CSFR and MCP1/CCR2 leads to pulmonary fibrosis and promotes vascular dilatation and hypoxemia, as a result, HPS develops.
Collapse
Affiliation(s)
- Bing Chen
- Department of Anesthesia, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Anesthesia, Southwest Hospital, Army Medical University (The Third Military Medical University), Chongqing, China
| | - Yong Yang
- Department of Anesthesia, Southwest Hospital, Army Medical University (The Third Military Medical University), Chongqing, China
| | - Congwen Yang
- Department of Anesthesia, Southwest Hospital, Army Medical University (The Third Military Medical University), Chongqing, China
| | - Jiaxiang Duan
- Department of Anesthesia, Southwest Hospital, Army Medical University (The Third Military Medical University), Chongqing, China
| | - Lin Chen
- Department of Anesthesia, Southwest Hospital, Army Medical University (The Third Military Medical University), Chongqing, China
| | - Kaizhi Lu
- Department of Anesthesia, Southwest Hospital, Army Medical University (The Third Military Medical University), Chongqing, China
| | - Bin Yi
- Department of Anesthesia, Southwest Hospital, Army Medical University (The Third Military Medical University), Chongqing, China
| | - Yang Chen
- Department of Anesthesia, Southwest Hospital, Army Medical University (The Third Military Medical University), Chongqing, China
| | - Duo Xu
- Department of Anesthesia, Southwest Hospital, Army Medical University (The Third Military Medical University), Chongqing, China
| | - He Huang
- Department of Anesthesia, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
17
|
Taylor EB, George EM, Ryan MJ, Garrett MR, Sasser JM. Immunological comparison of pregnant Dahl salt-sensitive and Sprague-Dawley rats commonly used to model characteristics of preeclampsia. Am J Physiol Regul Integr Comp Physiol 2021; 321:R125-R138. [PMID: 34105357 PMCID: PMC8409910 DOI: 10.1152/ajpregu.00298.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 12/26/2022]
Abstract
The pregnant Dahl salt-sensitive (S) rat is an established preclinical model of superimposed spontaneous preeclampsia characterized by exacerbated hypertension, increased urinary protein excretion, and increased fetal demise. Because of the underlying immune system dysfunction present in preeclamptic pregnancies in humans, we hypothesized that the pregnant Dahl S rat would also have an altered immune status. Immune system activation was assessed during late pregnancy in the Dahl S model and compared with healthy pregnant Sprague-Dawley (SD) rats subjected to either a sham procedure or a procedure to reduce uterine perfusion pressure (RUPP). Circulating immunoglobulin and cytokine levels were measured by enzyme-linked immunosorbent assay (ELISA) and Milliplex bead assay, respectively, and percentages of circulating, splenic, and placental immune cells were determined using flow cytometry. The pregnant Dahl S rat exhibited an increase in CD4+ T cells, and specifically TNFα+CD4+ T cells, in the spleen compared with virgin Dahl S rats. The Dahl also had increased neutrophils and decreased B cells in the peripheral blood as compared with Dahl virgin rats. SD rats that received the RUPP procedure had increases in circulating monocytes and increased IFN-ɣ+CD4+ splenic T cells. Together these findings suggest that dysregulated T cell activity is an important factor in both the pregnant Dahl S rats and SD rats after the RUPP procedure.
Collapse
Affiliation(s)
- Erin B Taylor
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| | - Eric M George
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| | - Michael J Ryan
- University of South Carolina School of Medicine, Columbia, South Carolina
- Columbia Veterans Affairs Medical Center, Columbia, South Carolina
| | - Michael R Garrett
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
- Department of Medicine, University of Mississippi Medical Center, Jackson, Mississippi
| | - Jennifer M Sasser
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
18
|
Siragher E, Sferruzzi-Perri AN. Placental hypoxia: What have we learnt from small animal models? Placenta 2021; 113:29-47. [PMID: 34074553 DOI: 10.1016/j.placenta.2021.03.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 03/15/2021] [Accepted: 03/29/2021] [Indexed: 12/31/2022]
Abstract
Intrauterine hypoxia is a feature of pregnancy complications, both at high altitude and sea level. To understand the placental response to reduced oxygen availability, small animal models of maternal inhalation hypoxia (MIH) or reduced uterine perfusion pressure (RUPP) may be utilised. The aim of this review was to compare the findings of those studies to identify the role of oxygen availability in adapting placental structural and functional phenotypes in relation to fetal outcome. It also sought to explore the evidence for the involvement of particular genes and protein signalling pathways in the placenta in mediating hypoxia driven alterations. The data available demonstrate that both MIH and RUPP can induce placental hypoxia, which affects placental structure and vascularity, as well as glucose, amino acid, calcium and possibly lipid transport capacity. In addition, changes have been observed in HIF, VEGF, insulin/IGF2, AMPK, mTOR, PI3K and PPARγ signalling, which may be key in linking together observed phenotypes under conditions of placental hypoxia. Many different manipulations have been examined, with varied outcomes depending on the intensity, timing and duration of the insult. Some manipulations have detrimental effects on placental phenotype, viability and fetal growth, whereas in others, the placenta appears to adapt to uphold fetal growth despite the challenge of low oxygen. Together these data suggest a complex response of the placenta to reduced oxygen availability, which links to changes in fetal outcomes. However, further work is required to explore the role of fetal sex, altered maternal physiology and placental molecular mechanisms to fully understand placental responses to hypoxia and their relevance for pregnancy outcome.
Collapse
Affiliation(s)
- Emma Siragher
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, Downing Street, University of Cambridge, Cambridge, CB2 3EG, UK
| | - Amanda N Sferruzzi-Perri
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, Downing Street, University of Cambridge, Cambridge, CB2 3EG, UK.
| |
Collapse
|
19
|
Wu Y, Ding Y, Ramprasath T, Zou MH. Oxidative Stress, GTPCH1, and Endothelial Nitric Oxide Synthase Uncoupling in Hypertension. Antioxid Redox Signal 2021; 34:750-764. [PMID: 32363908 PMCID: PMC7910417 DOI: 10.1089/ars.2020.8112] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 04/24/2020] [Accepted: 04/24/2020] [Indexed: 02/07/2023]
Abstract
Significance: Hypertension has major health consequences, which is associated with endothelial dysfunction. Endothelial nitric oxide synthase (eNOS)-produced nitric oxide (NO) signaling in the vasculature plays an important role in maintaining vascular homeostasis. Considering the importance of NO system, this review aims to provide a brief overview of the biochemistry of members of NO signaling, including GTPCH1 [guanosine 5'-triphosphate (GTP) cyclohydrolase 1], tetrahydrobiopterin (BH4), and eNOS. Recent Advances: Being NO signaling activators and regulators of eNOS signaling, BH4 treatment is getting widespread attention either as potential therapeutic agents or as preventive agents. Recent clinical trials also support that BH4 treatment could be considered a promising therapeutic in hypertension. Critical Issues: Under conditions of BH4 depletion, eNOS-generated superoxides trigger pathological events. Abnormalities in NO availability and BH4 deficiency lead to disturbed redox regulation causing pathological events. This disturbed signaling influences the development of systemic hypertension as well as pulmonary hypertension. Future Directions: Considering the importance of BH4 and NO to improve the translational significance, it is essential to continue research on this field to manipulate BH4 to increase the efficacy for treating hypertension. Thus, this review also examines the current state of knowledge on the effects of eNOS activators on preclinical models and humans to utilize this information for potential therapy.
Collapse
Affiliation(s)
- Yin Wu
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, Georgia, USA
| | - Ye Ding
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, Georgia, USA
| | - Tharmarajan Ramprasath
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, Georgia, USA
| | - Ming-Hui Zou
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, Georgia, USA
| |
Collapse
|
20
|
McCarthy CG, Saha P, Golonka RM, Wenceslau CF, Joe B, Vijay-Kumar M. Innate Immune Cells and Hypertension: Neutrophils and Neutrophil Extracellular Traps (NETs). Compr Physiol 2021; 11:1575-1589. [PMID: 33577121 DOI: 10.1002/cphy.c200020] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Uncontrolled immune system activation amplifies end-organ injury in hypertension. Nonetheless, the exact mechanisms initiating this exacerbated inflammatory response, thereby contributing to further increases in blood pressure (BP), are still being revealed. While participation of lymphoid-derived immune cells has been well described in the hypertension literature, the mechanisms by which myeloid-derived innate immune cells contribute to T cell activation, and subsequent BP elevation, remains an active area of investigation. In this article, we critically analyze the literature to understand how monocytes, macrophages, dendritic cells, and polymorphonuclear leukocytes, including mast cells, eosinophils, basophils, and neutrophils, contribute to hypertension and hypertension-associated end-organ injury. The most abundant leukocytes, neutrophils, are indisputably increased in hypertension. However, it is unknown how (and why) they switch from critical first responders of the innate immune system, and homeostatic regulators of BP, to tissue-damaging, pro-hypertensive mediators. We propose that myeloperoxidase-derived pro-oxidants, neutrophil elastase, neutrophil extracellular traps (NETs), and interactions with other innate and adaptive immune cells are novel mechanisms that could contribute to the inflammatory cascade in hypertension. We further posit that the gut microbiota serves as a set point for neutropoiesis and their function. Finally, given that hypertension appears to be a key risk factor for morbidity and mortality in COVID-19 patients, we put forth evidence that neutrophils and NETs cause cardiovascular injury post-coronavirus infection, and thus may be proposed as an intriguing therapeutic target for high-risk individuals. © 2021 American Physiological Society. Compr Physiol 11:1575-1589, 2021.
Collapse
Affiliation(s)
- Cameron G McCarthy
- Program in Physiological Genomics, UT Microbiome Consortium, Center for Hypertension & Personalized Medicine, Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Piu Saha
- Program in Physiological Genomics, UT Microbiome Consortium, Center for Hypertension & Personalized Medicine, Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Rachel M Golonka
- Program in Physiological Genomics, UT Microbiome Consortium, Center for Hypertension & Personalized Medicine, Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Camilla F Wenceslau
- Program in Physiological Genomics, UT Microbiome Consortium, Center for Hypertension & Personalized Medicine, Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Bina Joe
- Program in Physiological Genomics, UT Microbiome Consortium, Center for Hypertension & Personalized Medicine, Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Matam Vijay-Kumar
- Program in Physiological Genomics, UT Microbiome Consortium, Center for Hypertension & Personalized Medicine, Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| |
Collapse
|
21
|
Oxidative Stress and Neurodevelopmental Outcomes in Rat Offspring with Intrauterine Growth Restriction Induced by Reduced Uterine Perfusion. Brain Sci 2021; 11:brainsci11010078. [PMID: 33435577 PMCID: PMC7826770 DOI: 10.3390/brainsci11010078] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/28/2020] [Accepted: 01/05/2021] [Indexed: 01/21/2023] Open
Abstract
Intrauterine growth restriction (IUGR) is a major cause of morbidity and mortality and is worldwide associated with delayed neurodevelopment. The exact mechanism involved in delayed neurodevelopment associated with IUGR is still unclear. Reduced uterine perfusion (RUP) is among the main causes of placental insufficiency leading to IUGR, which is associated with increases in oxidative stress. This study investigated whether oxidative stress is associated with delayed neurodevelopment in IUGR rat pups. Pregnant rats were exposed to RUP surgery on gestational day 14 to generate IUGR rat offspring. We evaluated offspring’s morphometric at birth, and neurodevelopment on postnatal day 21 (PD21) as well as markers of oxidative stress in plasma and brain. Offspring from dams exposed to RUP showed significant (p < 0.05) lower birth weight compared to controls, indicating IUGR. Motor and cognitive deficits, and levels of oxidative stress markers, were significantly (p < 0.05) elevated in IUGR offspring compared to controls. IUGR offspring showed significant (p < 0.05) negative correlations between brain lipid peroxidation and neurocognitive tests (open field and novel object recognition) in comparison with controls. Our findings suggest that neurodevelopmental delay observed in IUGR rat offspring is associated with increased levels of oxidative stress markers.
Collapse
|
22
|
Aneman I, Pienaar D, Suvakov S, Simic TP, Garovic VD, McClements L. Mechanisms of Key Innate Immune Cells in Early- and Late-Onset Preeclampsia. Front Immunol 2020; 11:1864. [PMID: 33013837 PMCID: PMC7462000 DOI: 10.3389/fimmu.2020.01864] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/10/2020] [Indexed: 12/23/2022] Open
Abstract
Preeclampsia is a complex cardiovascular disorder of pregnancy with underlying multifactorial pathogeneses; however, its etiology is not fully understood. It is characterized by the new onset of maternal hypertension after 20 weeks of gestation, accompanied by proteinuria, maternal organ damage, and/or uteroplacental dysfunction. Preeclampsia can be subdivided into early- and late-onset phenotypes (EOPE and LOPE), diagnosed before 34 weeks or from 34 weeks of gestation, respectively. Impaired placental development in early pregnancy and subsequent growth restriction is often associated with EOPE, while LOPE is associated with maternal endothelial dysfunction. The innate immune system plays an essential role in normal progression of physiological pregnancy and fetal development. However, inappropriate or excessive activation of this system can lead to placental dysfunction or poor maternal vascular adaptation and contribute to the development of preeclampsia. This review aims to comprehensively outline the mechanisms of key innate immune cells including macrophages, neutrophils, natural killer (NK) cells, and innate B1 cells, in normal physiological pregnancy, EOPE and LOPE. The roles of the complement system, syncytiotrophoblast extracellular vesicles and mesenchymal stem cells (MSCs) are also discussed in the context of innate immune system regulation and preeclampsia. The outlined molecular mechanisms, which represent potential therapeutic targets, and associated emerging treatments, are evaluated as treatments for preeclampsia. Therefore, by addressing the current understanding of innate immunity in the pathogenesis of EOPE and LOPE, this review will contribute to the body of research that could lead to the development of better diagnosis, prevention, and treatment strategies. Importantly, it will delineate the differences in the mechanisms of the innate immune system in two different types of preeclampsia, which is necessary for a more personalized approach to the monitoring and treatment of affected women.
Collapse
Affiliation(s)
- Ingrid Aneman
- Faculty of Science, School of Life Sciences, University of Technology Sydney, Sydney, NSW, Australia
| | - Dillan Pienaar
- Faculty of Science, School of Life Sciences, University of Technology Sydney, Sydney, NSW, Australia
| | - Sonja Suvakov
- Division of Nephrology and Hypertension, Department of Internal Medicine, Mayo Clinic, Rochester, MN, United States
| | - Tatjana P. Simic
- Faculty of Medicine, Institute of Medical and Clinical Biochemistry, University of Belgrade, Belgrade, Serbia
- Department of Medical Sciences, Serbian Academy of Sciences and Arts, Belgrade, Serbia
| | - Vesna D. Garovic
- Division of Nephrology and Hypertension, Department of Internal Medicine, Mayo Clinic, Rochester, MN, United States
| | - Lana McClements
- Faculty of Science, School of Life Sciences, University of Technology Sydney, Sydney, NSW, Australia
| |
Collapse
|
23
|
Qu H, Khalil RA. Vascular mechanisms and molecular targets in hypertensive pregnancy and preeclampsia. Am J Physiol Heart Circ Physiol 2020; 319:H661-H681. [PMID: 32762557 DOI: 10.1152/ajpheart.00202.2020] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Preeclampsia is a major complication of pregnancy manifested as hypertension and often intrauterine growth restriction, but the underlying pathophysiological mechanisms are unclear. Predisposing genetic and environmental factors cause placental maladaptations leading to defective placentation, apoptosis of invasive cytotrophoblasts, inadequate expansive remodeling of the spiral arteries, reduced uteroplacental perfusion pressure, and placental ischemia. Placental ischemia promotes the release of bioactive factors into the maternal circulation, causing an imbalance between antiangiogenic soluble fms-like tyrosine kinase-1 and soluble endoglin and proangiogenic vascular endothelial growth factor, placental growth factor, and transforming growth factor-β. Placental ischemia also stimulates the release of proinflammatory cytokines, hypoxia-inducible factor, reactive oxygen species, and angiotensin type 1 receptor agonistic autoantibodies. These circulating factors target the vascular endothelium, causing generalized endotheliosis in systemic, renal, cerebral, and hepatic vessels, leading to decreases in endothelium-derived vasodilators such as nitric oxide, prostacyclin, and hyperpolarization factor and increases in vasoconstrictors such as endothelin-1 and thromboxane A2. The bioactive factors also target vascular smooth muscle and enhance the mechanisms of vascular contraction, including cytosolic Ca2+, protein kinase C, and Rho-kinase. The bioactive factors could also target matrix metalloproteinases and the extracellular matrix, causing inadequate vascular remodeling, increased arterial stiffening, and further increases in vascular resistance and hypertension. As therapeutic options are limited, understanding the underlying vascular mechanisms and molecular targets should help design new tools for the detection and management of hypertension in pregnancy and preeclampsia.
Collapse
Affiliation(s)
- Hongmei Qu
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts
| | - Raouf A Khalil
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
24
|
Justina VD, Giachini FR, Priviero F, Webb RC. Double-stranded RNA and Toll-like receptor activation: a novel mechanism for blood pressure regulation. Clin Sci (Lond) 2020; 134:303-313. [PMID: 31998948 PMCID: PMC7703673 DOI: 10.1042/cs20190913] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 01/15/2020] [Accepted: 01/17/2020] [Indexed: 12/24/2022]
Abstract
Toll-like receptors (TLRs), such as TLR4 and 9, recognize pathogen-associated molecular pattern (PAMPs) and danger-associated molecular patterns (DAMPs) and are associated with increased blood pressure (BP). TLR3, residing in the endosomal compartment, is activated by viral double-stranded RNA (dsRNA) leading to activation of TIR receptor domain-containing adaptor inducing IFN-β (TRIF) dependent pathway. Besides foreign pathogens, the immune system responds to endogenous markers of cellular damage such as mitochondrial dsRNA (mtdsRNA). New evidence has shown a link between dsRNA and increased BP. Moreover, TLR3 activation during pregnancy was demonstrated to develop preeclampsia-like symptoms in both rats and mice. Hence, we hypothesize that the dsRNA derived from viral nucleic acids or cellular damage (mtdsRNA) will increase the inflammatory state through activation of TLR3, contributing to vascular dysfunction and increased BP. Therefore, inhibition of TLR3 could be a therapeutic target for the treatment of hypertension with potential improvement in vascular reactivity and consequently, a decrease in BP.
Collapse
Affiliation(s)
- Vanessa Dela Justina
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia, U.S.A
- Graduate Program in Biological Sciences, Federal University of Goias, Goiânia, Brazil
| | - Fernanda R. Giachini
- Graduate Program in Biological Sciences, Federal University of Goias, Goiânia, Brazil
- RIVATREM - Red Iberoamericana de Alteraciones Vasculares en Transtornos del Embarazo
| | - Fernanda Priviero
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia, U.S.A
| | - R. Clinton Webb
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia, U.S.A
| |
Collapse
|
25
|
Laule CF, Odean EJ, Wing CR, Root KM, Towner KJ, Hamm CM, Gilbert JS, Fleming SD, Regal JF. Role of B1 and B2 lymphocytes in placental ischemia-induced hypertension. Am J Physiol Heart Circ Physiol 2019; 317:H732-H742. [PMID: 31397167 DOI: 10.1152/ajpheart.00132.2019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Preeclampsia is a prevalent pregnancy complication characterized by new-onset maternal hypertension and inflammation, with placental ischemia as the initiating event. Studies of others have provided evidence for the importance of lymphocytes in placental ischemia-induced hypertension; however, the contributions of B1 versus B2 lymphocytes are unknown. We hypothesized that peritoneal B1 lymphocytes are important for placental ischemia-induced hypertension. As an initial test of this hypothesis, the effect of anti-CD20 depletion on both B-cell populations was determined in a reduced utero-placental perfusion pressure (RUPP) model of preeclampsia. Anti-murine CD20 monoclonal antibody (5 mg/kg, Clone 5D2) or corresponding mu IgG2a isotype control was administered intraperitoneally to timed pregnant Sprague-Dawley rats on gestation day (GD)10 and 13. RUPP or sham control surgeries were performed on GD14, and mean arterial pressure (MAP) was measured on GD19 from a carotid catheter. As anticipated, RUPP surgery increased MAP and heart rate and decreased mean fetal and placental weight. However, anti-CD20 treatment did not affect these responses. On GD19, B-cell populations were enumerated in the blood, peritoneal cavity, spleen, and placenta with flow cytometry. B1 and B2 cells were not significantly increased following RUPP. Anti-CD20 depleted B1 and B2 cells in peritoneum and circulation but depleted only B2 lymphocytes in spleen and placenta, with no effect on circulating or peritoneal IgM. Overall, these data do not exclude a role for antibodies produced by B cells before depletion but indicate the presence of B lymphocytes in the last trimester of pregnancy is not critical for placental ischemia-induced hypertension.NEW & NOTEWORTHY The adaptive and innate immune systems are implicated in hypertension, including the pregnancy-specific hypertensive condition preeclampsia. However, the mechanism of immune system dysfunction leading to pregnancy-induced hypertension is unresolved. In contrast to previous reports, this study reveals that the presence of classic B2 lymphocytes and peritoneal and circulating B1 lymphocytes is not required for development of hypertension following third trimester placental ischemia in a rat model of pregnancy-induced hypertension.
Collapse
Affiliation(s)
- Connor F Laule
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth Campus, Duluth, Minnesota
| | - Evan J Odean
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth Campus, Duluth, Minnesota
| | - Cameron R Wing
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth Campus, Duluth, Minnesota
| | - Kate M Root
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth Campus, Duluth, Minnesota
| | - Kendra J Towner
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth Campus, Duluth, Minnesota
| | - Cassandra M Hamm
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth Campus, Duluth, Minnesota
| | - Jeffrey S Gilbert
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth Campus, Duluth, Minnesota
| | | | - Jean F Regal
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth Campus, Duluth, Minnesota
| |
Collapse
|
26
|
Regal JF, Lund JM, Wing CR, Root KM, McCutcheon L, Bemis LT, Gilbert JS, Fleming SD. Interactions between the complement and endothelin systems in normal pregnancy and following placental ischemia. Mol Immunol 2019; 114:10-18. [PMID: 31326653 DOI: 10.1016/j.molimm.2019.06.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/22/2019] [Accepted: 06/23/2019] [Indexed: 01/01/2023]
Abstract
Preeclampsia is characterized by new onset hypertension and fetal growth restriction and is associated with aberrant activation of the innate immune complement system and stressed or ischemic placenta. Previous studies have suggested a role for both endothelin and complement system activation products in new onset hypertension in pregnancy, but inter-relationships of the pathways are unclear. We hypothesized that complement activation following placental ischemia stimulates the endothelin pathway to cause hypertension and impair fetal growth. The Reduced Uterine Perfusion Pressure (RUPP) model results in hypertension and fetal growth restriction in a pregnant rat due to placental ischemia caused by mechanical obstruction of blood flow to uterus and placenta. The effect of inhibitor of complement activation soluble Complement Receptor 1 (sCR1) and endothelin A receptor (ETA) antagonist atrasentan on hypertension, fetal weight, complement activation (systemic circulating C3a and local C3 placental deposition) and endothelin [circulating endothelin and message for preproendothelin (PPE), ETA and endothelin B receptor (ETB) in placenta] in the RUPP rat model were determined. Following placental ischemia, sCR1 attenuated hypertension but increased message for PPE and ETA in placenta, suggesting complement activation causes hypertension via an endothelin independent pathway. With ETA antagonism the placental ischemia-induced increase in circulating C3a was unaffected despite inhibition of hypertension, indicating systemic C3a alone is not sufficient. In normal pregnancy, inhibiting complement activation increased plasma endothelin but not placental PPE message. Atrasentan treatment increased fetal weight, circulating endothelin and placental ETA message, and unexpectedly increased local complement activation in placenta (C3 deposition) but not C3a in circulation, suggesting endothelin controls local placental complement activation in normal pregnancy. Atrasentan also significantly decreased message for endogenous complement regulators Crry and CD55 in placenta and kidney in normal pregnancy. Results of our study indicate that complement/endothelin interactions differ in pregnancies complicated with placental ischemia vs normal pregnancy, as well as locally vs systemically. These data clearly illustrate the complex interplay between complement and endothelin indicating that perturbations of either pathway may affect pregnancy outcomes.
Collapse
Affiliation(s)
- Jean F Regal
- Department of Biomedical Sciences, 1035 University Dr., University of Minnesota Medical School, Duluth Campus, Duluth, Minnesota, 55812, USA.
| | - Jenna M Lund
- Department of Biomedical Sciences, 1035 University Dr., University of Minnesota Medical School, Duluth Campus, Duluth, Minnesota, 55812, USA.
| | - Cameron R Wing
- Department of Biomedical Sciences, 1035 University Dr., University of Minnesota Medical School, Duluth Campus, Duluth, Minnesota, 55812, USA.
| | - Kate M Root
- Department of Biomedical Sciences, 1035 University Dr., University of Minnesota Medical School, Duluth Campus, Duluth, Minnesota, 55812, USA.
| | - Luke McCutcheon
- Department of Biomedical Sciences, 1035 University Dr., University of Minnesota Medical School, Duluth Campus, Duluth, Minnesota, 55812, USA.
| | - Lynne T Bemis
- Department of Biomedical Sciences, 1035 University Dr., University of Minnesota Medical School, Duluth Campus, Duluth, Minnesota, 55812, USA.
| | - Jeffrey S Gilbert
- Department of Biomedical Sciences, 1035 University Dr., University of Minnesota Medical School, Duluth Campus, Duluth, Minnesota, 55812, USA.
| | - Sherry D Fleming
- Division of Biology, 18 Ackert, Kansas State University, 1717 Claflin Rd, Manhattan, Kansas, 66506, USA.
| |
Collapse
|
27
|
Morton JS, Levasseur J, Ganguly E, Quon A, Kirschenman R, Dyck JRB, Fraser GM, Davidge ST. Characterisation of the Selective Reduced Uteroplacental Perfusion (sRUPP) Model of Preeclampsia. Sci Rep 2019; 9:9565. [PMID: 31266978 PMCID: PMC6606748 DOI: 10.1038/s41598-019-45959-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 06/20/2019] [Indexed: 12/03/2022] Open
Abstract
Preeclampsia is a complication of pregnancy characterised by gestational hypertension, proteinuria and/or end organ disease. The reduced uteroplacental perfusion (RUPP) model, via partial occlusion of the lower abdominal aorta, mimics insufficient placental perfusion as a primary causal characteristic of preeclampsia. However, a major limitation of the RUPP model is that perfusion is reduced to the entire hindquarters of the rat resulting in hindlimb ischemia. We hypothesised that clipping the uterine and ovarian arteries in the selective (s)RUPP model would provoke signs of preeclampsia while avoiding systemic ischemia. Sham, RUPP or sRUPP procedures were performed in pregnant Sprague Dawley rats on gestational day (GD)14. On GD21 uterine blood flow was significantly reduced in both the RUPP and sRUPP models while aortic flow was reduced only in RUPP. Both models resulted in increased MAP, increased vascular oxidative stress (superoxide generation), increased pro-inflammatory (RANTES) and reduced pro-angiogenic (endoglin) mediators. Vascular compliance and constriction were unaltered in either RUPP or sRUPP groups. In summary, refinements to the RUPP model simultaneously maintain the characteristic phenotype of preeclampsia and avoid peripheral ischemia; providing a useful tool which may be used to increase our knowledge and bring us closer to a solution for women affected by preeclampsia.
Collapse
Affiliation(s)
- J S Morton
- Faculty of Medicine and Dentistry, Dept. of Ob/Gyn, University of Alberta, Edmonton, AB, T6G 2S2, Canada.,Women and Children's Health Research Institute, Edmonton, AB, T6G 2R3, Canada
| | - J Levasseur
- Faculty of Medicine and Dentistry, Dept. of Pediatrics, University of Alberta, Edmonton, AB, T6G 2S2, Canada
| | - E Ganguly
- Faculty of Medicine and Dentistry, Dept. of Ob/Gyn, University of Alberta, Edmonton, AB, T6G 2S2, Canada.,Faculty of Medicine and Dentistry, Dept. of Physiology, University of Alberta, Edmonton, AB, T6G 2H7, Canada.,Women and Children's Health Research Institute, Edmonton, AB, T6G 2R3, Canada
| | - A Quon
- Faculty of Medicine and Dentistry, Dept. of Ob/Gyn, University of Alberta, Edmonton, AB, T6G 2S2, Canada.,Women and Children's Health Research Institute, Edmonton, AB, T6G 2R3, Canada
| | - R Kirschenman
- Faculty of Medicine and Dentistry, Dept. of Ob/Gyn, University of Alberta, Edmonton, AB, T6G 2S2, Canada.,Women and Children's Health Research Institute, Edmonton, AB, T6G 2R3, Canada
| | - J R B Dyck
- Faculty of Medicine and Dentistry, Dept. of Pediatrics, University of Alberta, Edmonton, AB, T6G 2S2, Canada
| | - G M Fraser
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, A1B 3V6, Canada
| | - S T Davidge
- Faculty of Medicine and Dentistry, Dept. of Ob/Gyn, University of Alberta, Edmonton, AB, T6G 2S2, Canada. .,Faculty of Medicine and Dentistry, Dept. of Physiology, University of Alberta, Edmonton, AB, T6G 2H7, Canada. .,Women and Children's Health Research Institute, Edmonton, AB, T6G 2R3, Canada.
| |
Collapse
|
28
|
Yu W, Gao W, Rong D, Wu Z, Khalil RA. Molecular determinants of microvascular dysfunction in hypertensive pregnancy and preeclampsia. Microcirculation 2018; 26:e12508. [PMID: 30338879 PMCID: PMC6474836 DOI: 10.1111/micc.12508] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 10/05/2018] [Accepted: 10/15/2018] [Indexed: 12/16/2022]
Abstract
Preeclampsia is a pregnancy-related disorder characterized by hypertension and often fetal intrauterine growth restriction, but the underlying mechanisms are unclear. Defective placentation and apoptosis of invasive cytotrophoblasts cause inadequate remodeling of spiral arteries, placental ischemia, and reduced uterine perfusion pressure (RUPP). RUPP causes imbalance between the anti-angiogenic factors soluble fms-like tyrosine kinase-1 and soluble endoglin and the pro-angiogenic vascular endothelial growth factor and placental growth factor, and stimulates the release of proinflammatory cytokines, hypoxia-inducible factor, reactive oxygen species, and angiotensin AT1 receptor agonistic autoantibodies. These circulating factors target the vascular endothelium, smooth muscle and various components of the extracellular matrix. Generalized endotheliosis in systemic, renal, cerebral, and hepatic vessels causes decreases in endothelium-derived vasodilators such as nitric oxide, prostacyclin and hyperpolarization factor, and increases in vasoconstrictors such as endothelin-1 and thromboxane A2. Enhanced mechanisms of vascular smooth muscle contraction, such as intracellular Ca2+ , protein kinase C, and Rho-kinase cause further increases in vasoconstriction. Changes in matrix metalloproteinases and extracellular matrix cause inadequate vascular remodeling and increased arterial stiffening, leading to further increases in vascular resistance and hypertension. Therapeutic options are currently limited, but understanding the molecular determinants of microvascular dysfunction could help in the design of new approaches for the prediction and management of preeclampsia.
Collapse
Affiliation(s)
- Wentao Yu
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Wei Gao
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Dan Rong
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Zhixian Wu
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Raouf A Khalil
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
29
|
Higashisaka K, Nakashima A, Iwahara Y, Aoki A, Nakayama M, Yanagihara I, Lin Y, Nagano K, Tsunoda SI, Saito S, Yoshioka Y, Tsutsumi Y. Neutrophil Depletion Exacerbates Pregnancy Complications, Including Placental Damage, Induced by Silica Nanoparticles in Mice. Front Immunol 2018; 9:1850. [PMID: 30135689 PMCID: PMC6092495 DOI: 10.3389/fimmu.2018.01850] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 07/26/2018] [Indexed: 12/02/2022] Open
Abstract
Recent advances in nanotechnology have led to the development of nanoparticles with innovative functions in various fields. However, the biological effects of nanoparticles—particularly those on the fetus—need to be investigated in detail, because several previous studies have shown that various nanoparticles induce pregnancy complications in mice. In this regard, our previous findings in mice suggested that the increase in peripheral neutrophil count induced by treatment with silica nanoparticles with a diameter of 70 nm (nSP70) may play a role in the associated pregnancy complications. Therefore, here, we sought to define the role of neutrophils in nSP70-induced pregnancy complications. The peripheral neutrophil count in pregnant BALB/c mice at 24 h after treatment with nSP70 was significantly higher than in saline-treated mice. In addition, maternal body weight, uterine weight, and the number of fetuses in nSP70-treated mice pretreated with anti-antibodies, which deplete neutrophils, were significantly lower than those in nSP70-treated mice pretreated with phosphate-buffered saline or isotype-matched control antibodies. Histology revealed that neutrophil depletion increased nSP70-induced placental damage from the decidua through the spongiotrophoblast layer and narrowed spiral arteries in the placentae. In addition, depletion of neutrophils augmented nSP70-induced cytotoxicity to fetal vessels, which were covered with endothelium. The rate of apoptotic cell death was significantly higher in the placentae of anti-nSP70-treated mice than in those from mice pretreated with isotype-matched control antibodies. Therefore, impairment of placental vessels and apoptotic cell death due to nSP70 exposure is exacerbated in the placentae of nSP70-treated mice pretreated with anti-antibodies. Depletion of neutrophils worsens nSP70-induced pregnancy complications in mice; this exacerbation was due to enhanced impairment of placental vessels and increased apoptotic cell death in maternal placentae. Our results provide basic information regarding the mechanism underlying silica-nanoparticle-induced pregnancy complications.
Collapse
Affiliation(s)
- Kazuma Higashisaka
- Laboratory of Toxicology and Safety Science, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan.,Department of Legal Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Akitoshi Nakashima
- Department of Obstetrics and Gynecology, University of Toyama, Toyama, Japan
| | - Yuki Iwahara
- Laboratory of Toxicology and Safety Science, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Aiko Aoki
- Department of Obstetrics and Gynecology, University of Toyama, Toyama, Japan
| | - Masahiro Nakayama
- Department of Developmental Medicine, Research Institute, Osaka Women's and Children's Hospital, Izumi, Japan
| | - Itaru Yanagihara
- Department of Developmental Medicine, Research Institute, Osaka Women's and Children's Hospital, Izumi, Japan
| | - Ying Lin
- Laboratory of Toxicology and Safety Science, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Kazuya Nagano
- Laboratory of Toxicology and Safety Science, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Shin-Ichi Tsunoda
- The Faculty of Pharmaceutical Sciences, Kobe Gakuin University, Kobe, Japan.,Laboratory of Biopharmaceutical Research, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Japan.,The Center for Advanced Medical Engineering and Informatics, Osaka University, Suita, Japan
| | - Shigeru Saito
- Department of Obstetrics and Gynecology, University of Toyama, Toyama, Japan
| | - Yasuo Yoshioka
- Laboratory of Toxicology and Safety Science, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan.,Vaccine Creation Project, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, Suita, Japan.,BIKEN Center for Innovative Vaccine Research and Development, The Research Foundation for Microbial Diseases of Osaka University, Suita, Japan
| | - Yasuo Tsutsumi
- Laboratory of Toxicology and Safety Science, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan.,The Center for Advanced Medical Engineering and Informatics, Osaka University, Suita, Japan
| |
Collapse
|
30
|
Laule CF, Wing CR, Odean EJ, Wilcox JA, Gilbert JS, Regal JF. Effect of nicotine on placental ischemia-induced complement activation and hypertension in the rat. J Immunotoxicol 2018; 14:235-240. [PMID: 29185370 DOI: 10.1080/1547691x.2017.1394934] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Preeclampsia is a pregnancy-specific condition manifested by new-onset maternal hypertension with systemic inflammation, including increased innate immune system complement activation. While exact pathophysiology is unknown, evidence suggests that inadequate spiral artery invasion and resulting utero-placental insufficiency is the initiating event. Cigarette smoking during pregnancy decreases the risk of preeclampsia. Nicotine, a major component of cigarettes, stimulates the efferent cholinergic anti-inflammatory pathway through peripherally expressed nicotinic acetylcholine receptors (nAChR) and is known to attenuate ischemia-reperfusion injury in kidney and liver. Prior studies indicated that complement activation was critical for placental ischemia-induced hypertension in a rat model. Thus, it was hypothesized here that nicotine was responsible for the protective effect of cigarette smoking in preeclampsia and would attenuate placental ischemia-induced systemic complement activation and hypertension. The Reduced Utero-placental Perfusion Pressure (RUPP) model in the pregnant rat was employed to induce placental ischemia, resulting in complement activation, fetal resorptions, and hypertension. On gestation day (GD)14, nicotine (1 mg/kg) or saline was administered via subcutaneous injection prior to RUPP surgery and daily through GD18. On GD19, placental ischemia significantly increased mean arterial pressure (MAP) in saline injected animals. However, the placental ischemia-induced increase in blood pressure was not evident in nicotine-treated animals and nicotine treatment significantly increased MAP variability. Circulating C3a was measured as an indicator of complement activation and increased C3a in RUPP compared to Sham persisted with nicotine treatment, as did fetal resorptions. These data suggested to us that nicotine may contribute to the decreased risk of preeclampsia with cigarette smoking, but this protective effect was confounded by additional effects of nicotine on the cardiovascular system.
Collapse
Affiliation(s)
- Connor F Laule
- a Department of Biomedical Sciences , University of Minnesota, Medical School , Duluth , MN , USA
| | - Cameron R Wing
- a Department of Biomedical Sciences , University of Minnesota, Medical School , Duluth , MN , USA
| | - Evan J Odean
- a Department of Biomedical Sciences , University of Minnesota, Medical School , Duluth , MN , USA
| | - Jacob A Wilcox
- a Department of Biomedical Sciences , University of Minnesota, Medical School , Duluth , MN , USA
| | - Jeffrey S Gilbert
- a Department of Biomedical Sciences , University of Minnesota, Medical School , Duluth , MN , USA
| | - Jean F Regal
- a Department of Biomedical Sciences , University of Minnesota, Medical School , Duluth , MN , USA
| |
Collapse
|
31
|
Zhu ML, Zhao JP, Cui N, Gonçalves-Rizzi VH, Possomato-Vieira JS, Nascimento RA, Dias-Junior CA. Cardiac myeloperoxidase activity is elevated in hypertensive pregnant rats. Curr Med Sci 2017; 37:904-909. [PMID: 29270751 DOI: 10.1007/s11596-017-1825-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 06/24/2017] [Indexed: 01/21/2023]
Abstract
Myeloperoxidase (MPO) is released from activated neutrophils. The inflammation in preeclampsia was found to be associated with endothelial dysfunction. We hypothesized that cardiac and circulating MPO levels are elevated in hypertensive pregnancy. Systolic and diastolic blood pressure and heart rate were measured on pregnancy days 14, 16, 18 and 20 in normal pregnant and hypertensive pregnant rats. Left and right ventricle weights, the number of viable fetuses, litter size, fetal and placenta weights were recorded on gestational day 21. Circulating and cardiac MPO activities, soluble fms-like tyrosine kinase-1 (sFlt-1) and vascular endothelial growth factor (VEGF) and nitric oxide (NO) were detected. The results showed increases in cardiac (left, but not right ventricle) and circulating MPO activities, and concomitantly lower number of viable fetuses, litter size, and fetal and placenta weights, and decreases in NO in hypertensive pregnant rats. Also, the increases in circulating sFlt-1 and VEGF were found in hypertensive pregnant group. In conclusion, maternal and fetal detrimental changes along with increases in circulating sFlt-1 and VEGF in hypertensive pregnancy may be associated with increases in cardiac and circulating MPO activities, confirming the causative role of inflammatory response in preeclampsia.
Collapse
Affiliation(s)
- Ming-Lin Zhu
- Department of Thoracic and Cardiovascular Surgery, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - Jin-Ping Zhao
- Department of Thoracic and Cardiovascular Surgery, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China.
| | - Ning Cui
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Victor H Gonçalves-Rizzi
- Department of Pharmacology, Biosciences Institute of Botucatu, Sao Paulo State University (UNESP), Botucatu, 18618681, Brazil
| | - Jose S Possomato-Vieira
- Department of Pharmacology, Biosciences Institute of Botucatu, Sao Paulo State University (UNESP), Botucatu, 18618681, Brazil
| | - Regina A Nascimento
- Department of Pharmacology, Biosciences Institute of Botucatu, Sao Paulo State University (UNESP), Botucatu, 18618681, Brazil
| | - Carlos A Dias-Junior
- Department of Pharmacology, Biosciences Institute of Botucatu, Sao Paulo State University (UNESP), Botucatu, 18618681, Brazil.
| |
Collapse
|
32
|
Abstract
PURPOSE OF REVIEW Preeclampsia affects 3-4% of pregnancies with few treatment options to reduce maternal and fetal harm. Recent evidence that targeting the complement system may be an effective therapeutic strategy in prevention or treatment of preeclampsia will be reviewed. RECENT FINDINGS Studies in humans confirm the safety and efficacy of C5 blockade in complement-mediated disorders of pregnancy, including preeclampsia. Animal models mimic the placental abnormalities and/or the maternal symptoms which characterize preeclampsia. These models in mouse and rat have defined a role for complement and its regulators in placental dysfunction, hypertension, proteinuria, endothelial dysfunction, fetal growth restriction, and angiogenic imbalance, thus informing future human studies. Targeting excessive complement activation, particularly the terminal complement complex (C5b-9) and C5a may be an effective strategy to prolong pregnancy in women with preeclampsia. Continued research is needed to identify the initiator(s) of activation, the pathways involved, and the key component(s) in the pathophysiology to allow development of safe and effective therapeutics to target complement without compromising its role in homeostasis and host defense.
Collapse
Affiliation(s)
- Jean F Regal
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth Campus, 1035 University Dr., Duluth, MN, 55812, USA.
| | - Richard M Burwick
- Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Sherry D Fleming
- Division of Biology, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
33
|
Chen J, Khalil RA. Matrix Metalloproteinases in Normal Pregnancy and Preeclampsia. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 148:87-165. [PMID: 28662830 PMCID: PMC5548443 DOI: 10.1016/bs.pmbts.2017.04.001] [Citation(s) in RCA: 193] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Normal pregnancy is associated with marked hemodynamic and uterine changes that allow adequate uteroplacental blood flow and uterine expansion for the growing fetus. These pregnancy-associated changes involve significant uteroplacental and vascular remodeling. Matrix metalloproteinases (MMPs) are important regulators of vascular and uterine remodeling. Increases in MMP-2 and MMP-9 have been implicated in vasodilation, placentation, and uterine expansion during normal pregnancy. The increases in MMPs could be induced by the increased production of estrogen and progesterone during pregnancy. MMP expression/activity may be altered during complications of pregnancy. Decreased vascular MMP-2 and MMP-9 may lead to decreased vasodilation, increased vasoconstriction, hypertensive pregnancy, and preeclampsia. Abnormal expression of uteroplacental integrins, cytokines, and MMPs may lead to decreased maternal tolerance, apoptosis of invasive trophoblast cells, inadequate remodeling of spiral arteries, and reduced uterine perfusion pressure (RUPP). RUPP may cause imbalance between the antiangiogenic factors soluble fms-like tyrosine kinase-1 and soluble endoglin and the proangiogenic vascular endothelial growth factor and placental growth factor, or stimulate the release of inflammatory cytokines, hypoxia-inducible factor, reactive oxygen species, and angiotensin AT1 receptor agonistic autoantibodies. These circulating factors could target MMPs in the extracellular matrix as well as endothelial and vascular smooth muscle cells, causing generalized vascular dysfunction, increased vasoconstriction and hypertension in pregnancy. MMP activity can also be altered by endogenous tissue inhibitors of metalloproteinases (TIMPs) and changes in the MMP/TIMP ratio. In addition to their vascular effects, decreases in expression/activity of MMP-2 and MMP-9 in the uterus could impede uterine growth and expansion and lead to premature labor. Understanding the role of MMPs in uteroplacental and vascular remodeling and function could help design new approaches for prediction and management of preeclampsia and premature labor.
Collapse
Affiliation(s)
- Juanjuan Chen
- Vascular Surgery Research Laboratories, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States
| | - Raouf A Khalil
- Vascular Surgery Research Laboratories, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States.
| |
Collapse
|
34
|
Abstract
Preeclampsia (PE) is disorder of new onset hypertension and proteinuria during the second half of pregnancy. There is increasing evidence to implicate placental over-expression of tissue factor and PAR-1 in the pathophysiology of PE. Excessive activation of platelets, neutrophils and the complement system may also contribute to the placental pathology and maternal endothelial responsible for the symptoms of PE. Increased knowledge in this field may identify new therapeutic strategies for the treatment of PE.
Collapse
Affiliation(s)
- Chris Gardiner
- Haemostasis Research Unit, Department of Haematology, University College London, United Kingdom.
| | - Manu Vatish
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
35
|
From apelin to exercise: emerging therapies for management of hypertension in pregnancy. Hypertens Res 2017; 40:519-525. [PMID: 28381873 DOI: 10.1038/hr.2017.40] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 02/20/2017] [Accepted: 02/21/2017] [Indexed: 01/03/2023]
Abstract
Studies over the last couple of decades have provided exciting new insights into mechanisms underlying the pathogenesis of preeclampsia. In addition, several novel and innovative molecules and ideas for management of the syndrome have also come forth. While our basic understanding of the initiating events of preeclampsia continues to be placental ischemia/hypoxia stimulating the release of a variety of factors from the placenta that act on the cardiovascular and renal systems, the number of candidate pathways for intervention continues to increase. Recent studies have identified apelin and its receptor, APJ, as an important contributor to the regulation of cardiovascular and fluid balance that is found to be disrupted in preeclampsia. Likewise, continued studies have revealed a critical role for the complement arm of the innate immune system in placental ischemia induced hypertension and in preeclampsia. Finally, the recent increase in animal models for studying hypertensive disorders of pregnancy has provided opportunities to evaluate the potential role for physical activity and exercise in a more mechanistic fashion. While the exact quantitative importance of the various endothelial and humoral factors that mediate vasoconstriction and elevation of arterial pressure during preeclampsia remains unclear, significant progress has been made. Thus, the goal of this review is to discuss recent efforts towards identifying therapies for hypertension during pregnancy that derive from work exploring the apelinergic system, the complement system as well as the role that exercise and physical activity may play to that end.
Collapse
|
36
|
Abais-Battad JM, Dasinger JH, Fehrenbach DJ, Mattson DL. Novel adaptive and innate immunity targets in hypertension. Pharmacol Res 2017; 120:109-115. [PMID: 28336371 DOI: 10.1016/j.phrs.2017.03.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 02/03/2017] [Accepted: 03/17/2017] [Indexed: 01/11/2023]
Abstract
Hypertension is a worldwide epidemic and global health concern as it is a major risk factor for the development of cardiovascular diseases. A relationship between the immune system and its contributing role to the pathogenesis of hypertension has been long established, but substantial advancements within the last few years have dissected specific causal molecular mechanisms. This review will briefly examine these recent studies exploring the involvement of either innate or adaptive immunity pathways. Such pathways to be discussed include innate immunity factors such as antigen presenting cells and pattern recognition receptors, adaptive immune elements including T and B lymphocytes, and more specifically, the emerging role of T regulatory cells, as well as the potential of cytokines and chemokines to serve as signaling messengers connecting innate and adaptive immunity. Together, we summarize these studies to provide new perspective for what will hopefully lead to more targeted approaches to manipulate the immune system as hypertensive therapy.
Collapse
Affiliation(s)
| | | | | | - David L Mattson
- Department of Physiology, Medical College of Wisconsin, United States
| |
Collapse
|
37
|
Bomfim GF, Rodrigues FL, Carneiro FS. Are the innate and adaptive immune systems setting hypertension on fire? Pharmacol Res 2017; 117:377-393. [PMID: 28093357 DOI: 10.1016/j.phrs.2017.01.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 12/06/2016] [Accepted: 01/09/2017] [Indexed: 02/08/2023]
Abstract
Hypertension is the most common chronic cardiovascular disease and is associated with several pathological states, being an important cause of morbidity and mortality around the world. Low-grade inflammation plays a key role in hypertension and the innate and adaptive immune systems seem to contribute to hypertension development and maintenance. Hypertension is associated with vascular inflammation, increased vascular cytokines levels and infiltration of immune cells in the vasculature, kidneys and heart. However, the mechanisms that trigger inflammation and immune system activation in hypertension are completely unknown. Cells from the innate immune system express pattern recognition receptors (PRR), which detect conserved pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs) that induce innate effector mechanisms to produce endogenous signals, such as inflammatory cytokines and chemokines, to alert the host about danger. Additionally, antigen-presenting cells (APC) act as sentinels that are activated by PAMPs and DAMPs to sense the presence of the antigen/neoantigen, which ensues the adaptive immune system activation. In this context, different lymphocyte types are activated and contribute to inflammation and end-organ damage in hypertension. This review will focus on experimental and clinical evidence demonstrating the contribution of the innate and adaptive immune systems to the development of hypertension.
Collapse
Affiliation(s)
- Gisele F Bomfim
- Institute of Health Sciences, Federal University of Mato Grosso, Sinop, MT, Brazil
| | - Fernanda Luciano Rodrigues
- Department of Physiology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Fernando S Carneiro
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Av Bandeirantes, 3900, 14049-900 Ribeirao Preto, SP, Brazil.
| |
Collapse
|
38
|
Ushida T, Kotani T, Tsuda H, Imai K, Nakano T, Hirako S, Ito Y, Li H, Mano Y, Wang J, Miki R, Yamamoto E, Iwase A, Bando YK, Hirayama M, Ohno K, Toyokuni S, Kikkawa F. Molecular hydrogen ameliorates several characteristics of preeclampsia in the Reduced Uterine Perfusion Pressure (RUPP) rat model. Free Radic Biol Med 2016; 101:524-533. [PMID: 27789293 DOI: 10.1016/j.freeradbiomed.2016.10.491] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 10/21/2016] [Accepted: 10/21/2016] [Indexed: 12/27/2022]
Abstract
Oxidative stress plays an important role in the pathogenesis of preeclampsia. Recently, molecular hydrogen (H2) has been shown to have therapeutic potential in various oxidative stress-related diseases. The aim of this study is to investigate the effect of H2 on preeclampsia. We used the reduced utero-placental perfusion pressure (RUPP) rat model, which has been widely used as a model of preeclampsia. H2 water (HW) was administered orally ad libitum in RUPP rats from gestational day (GD) 12-19, starting 2 days before RUPP procedure. On GD19, mean arterial pressure (MAP) was measured, and samples were collected. Maternal administration of HW significantly decreased MAP, and increased fetal and placental weight in RUPP rats. The increased levels of soluble fms-like tyrosine kinase-1 (sFlt-1) and diacron reactive oxygen metabolites as a biomarker of reactive oxygen species in maternal blood were decreased by HW administration. However, vascular endothelial growth factor level in maternal blood was increased by HW administration. Proteinuria, and histological findings in kidney were improved by HW administration. In addition, the effects of H2 on placental villi were examined by using a trophoblast cell line (BeWo) and villous explants from the placental tissue of women with or without preeclampsia. H2 significantly attenuated hydrogen peroxide-induced sFlt-1 expression, but could not reduce the expression induced by hypoxia in BeWo cells. H2 significantly attenuated sFlt-1 expression in villous explants from women with preeclampsia, but not affected them from normotensive pregnancy. The prophylactic administration of H2 attenuated placental ischemia-induced hypertension, angiogenic imbalance, and oxidative stress. These results support the theory that H2 has a potential benefit in the prevention of preeclampsia.
Collapse
Affiliation(s)
- Takafumi Ushida
- Department of Gynecology and Obstetrics, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Tomomi Kotani
- Department of Gynecology and Obstetrics, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan.
| | - Hiroyuki Tsuda
- Department of Gynecology and Obstetrics, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Kenji Imai
- Department of Gynecology and Obstetrics, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Tomoko Nakano
- Department of Gynecology and Obstetrics, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Shima Hirako
- Department of Gynecology and Obstetrics, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Yumiko Ito
- Department of Gynecology and Obstetrics, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Hua Li
- Department of Gynecology and Obstetrics, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Yukio Mano
- Mano Women's Clinic, 2-5 Matsushin-cho, Kasugai city, Aichi Prefecture 486-0931, Japan
| | - Jingwen Wang
- Laboratory of Bell Research Center-Department of Obstetrics and Gynaecology Collaborative Research, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Rika Miki
- Laboratory of Bell Research Center-Department of Obstetrics and Gynaecology Collaborative Research, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Eiko Yamamoto
- Department of Healthcare Administration, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Akira Iwase
- Department of Gynecology and Obstetrics, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Yasuko K Bando
- Department of Cardiology, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Masaaki Hirayama
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Kinji Ohno
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Shinya Toyokuni
- Department of Pathology and Biological Responses, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Fumitaka Kikkawa
- Department of Gynecology and Obstetrics, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| |
Collapse
|
39
|
Severe Hemorrhagic Shock Induces Acute Activation and Expansion of IL-8+/IL-10+ Neutrophils with Enhanced Oxidative Reactivity in Non-Human Primates. Shock 2016; 46:129-36. [DOI: 10.1097/shk.0000000000000643] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
40
|
Regal JF, Strehlke ME, Peterson JM, Wing CR, Parker JE, Nieto NF, Bemis LT, Gilbert JS, Fleming SD. Role of IgM and angiotensin II Type I receptor autoantibodies in local complement activation in placental ischemia-induced hypertension in the rat. Mol Immunol 2016; 78:38-47. [PMID: 27588825 DOI: 10.1016/j.molimm.2016.08.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 08/17/2016] [Accepted: 08/23/2016] [Indexed: 01/27/2023]
Abstract
Preeclampsia is characterized by development of hypertension during pregnancy and reduced placental perfusion. Previous studies in a rat model of placental ischemia-induced hypertension demonstrated that inhibiting complement activation attenuated increased maternal blood pressure with C3a and C5a identified as the important products of complement activation. Given that in other forms of ischemia both natural IgM and antigen antibody complexes initiate complement activation, we hypothesized that placental ischemia exposes neoepitopes recognized by IgM to cause local complement activation and hypertension. Alternatively, we postulated that autoantibody to angiotensin II Type 1 receptor (AT1-AA) interacts with AT1 receptors to cause complement activation. Since complement activation occurs in kidney and placenta in preeclampsia, we used immunohistochemistry to determine IgM deposition and local complement activation in each organ (C3 deposition), and quantitative real-time polymerase chain reaction (qRT-PCR) to quantitate mRNA for endogenous regulators of complement activation CD55, CD59 and Complement receptor 1-related gene/protein y (Crry). On gestation day (GD)14.5, timed pregnant Sprague Dawley rats underwent Sham surgery or placement of clips on inferior abdominal aorta and ovarian arteries to create placental ischemia using the reduced utero-placental perfusion pressure (RUPP) model. As previously reported, RUPP surgery increased mean arterial pressure and circulating C3a on GD19.5. In placenta, IgM and C3 deposition increased, whereas mRNA for complement regulators Crry and CD59 decreased along with Crry protein in RUPP compared to Sham treated animals. In kidney, IgM deposition increased in animals subjected to RUPP vs Sham surgery without a significant change in C3 deposition and coincident with an increase in mRNA for CD55 and CD59. The AT1 receptor antagonist losartan prevents placental ischemia-induced hypertension as well as AT1-AA interaction with AT1 receptors. However, losartan did not attenuate complement activation as measured by circulating C3a or placental C3 deposition. Importantly, our studies indicate that following placental ischemia, complement activation is not due to AT1-AA but is associated with IgM deposition. These studies suggest a role for natural antibodies interacting with placental ischemia-induced neoepitopes to activate complement and contribute to hypertension.
Collapse
Affiliation(s)
- Jean F Regal
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth campus, Duluth, MN, United States.
| | - Megan E Strehlke
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth campus, Duluth, MN, United States.
| | - Jenna M Peterson
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth campus, Duluth, MN, United States.
| | - Cameron R Wing
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth campus, Duluth, MN, United States.
| | - Jordan E Parker
- Division of Biology, Kansas State University, Manhattan, KS, United States.
| | | | - Lynne T Bemis
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth campus, Duluth, MN, United States.
| | - Jeffrey S Gilbert
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth campus, Duluth, MN, United States.
| | - Sherry D Fleming
- Division of Biology, Kansas State University, Manhattan, KS, United States.
| |
Collapse
|
41
|
Possomato-Vieira JS, Khalil RA. Mechanisms of Endothelial Dysfunction in Hypertensive Pregnancy and Preeclampsia. ADVANCES IN PHARMACOLOGY 2016; 77:361-431. [PMID: 27451103 DOI: 10.1016/bs.apha.2016.04.008] [Citation(s) in RCA: 152] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Preeclampsia is a pregnancy-related disorder characterized by hypertension and could lead to maternal and fetal morbidity and mortality. Although the causative factors and pathophysiological mechanisms are unclear, endothelial dysfunction is a major hallmark of preeclampsia. Clinical tests and experimental research have suggested that generalized endotheliosis in the systemic, renal, cerebral, and hepatic circulation could decrease endothelium-derived vasodilators such as nitric oxide, prostacyclin, and hyperpolarization factor and increase vasoconstrictors such as endothelin-1 and thromboxane A2, leading to increased vasoconstriction, hypertension, and other manifestation of preeclampsia. In search for the upstream mechanisms that could cause endothelial dysfunction, certain genetic, demographic, and environmental risk factors have been suggested to cause abnormal expression of uteroplacental integrins, cytokines, and matrix metalloproteinases, leading to decreased maternal tolerance, apoptosis of invasive trophoblast cells, inadequate spiral arteries remodeling, reduced uterine perfusion pressure (RUPP), and placental ischemia/hypoxia. RUPP may cause imbalance between the antiangiogenic factors soluble fms-like tyrosine kinase-1 and soluble endoglin and the proangiogenic factors vascular endothelial growth factor and placental growth factor, or stimulate the release of other circulating bioactive factors such as inflammatory cytokines, hypoxia-inducible factor-1, reactive oxygen species, and angiotensin AT1 receptor agonistic autoantibodies. These circulating factors could then target endothelial cells and cause generalized endothelial dysfunction. Therapeutic options are currently limited, but understanding the factors involved in endothelial dysfunction could help design new approaches for prediction and management of preeclampsia.
Collapse
Affiliation(s)
- J S Possomato-Vieira
- Vascular Surgery Research Laboratories, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - R A Khalil
- Vascular Surgery Research Laboratories, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|