1
|
Zhong M, Jiao Y, Zhao A, Niu M, Ran J, Liu J, Li Y. Gene Polymorphisms of Parkinson's Disease Risk Locus and Idiopathic REM Sleep Behavior Disorder. Biomedicines 2025; 13:788. [PMID: 40299330 PMCID: PMC12024845 DOI: 10.3390/biomedicines13040788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/06/2025] [Accepted: 03/18/2025] [Indexed: 04/30/2025] Open
Abstract
Background/Objectives: Genetic factors play an important role in idiopathic rapid eye movement sleep behavior disorder (iRBD) but have not been fully studied. This study aimed to analyze the Parkinson's disease (PD)-related genetic loci in iRBD in the southern Chinese population. Methods: In this study, we recruited 292 individuals with PD, 62 with iRBD, and 189 healthy controls (HC). Candidate genes were identified primarily from the Parkinson's Progression Markers Initiative (PPMI) database. Genotypic and allele frequency analyses were conducted to compare the distribution across HC, iRBD, and PD groups. The effects of significant single-nucleotide polymorphisms (SNPs) on gene expression were examined. Clinical manifestations associated with different genotypes were also analyzed. The receiver operating characteristic (ROC) curve and Kaplan-Meier plots were utilized to further verify the diagnostic and predictive value of these SNPs. Results: We identified two significant SNPs associated with iRBD: rs13294100 of SH3GL2 and rs165599 of COMT. Clinical scale and polysomnography data analysis indicated that iRBD patients with the GA or AA genotype at the COMT rs165599 locus have lower RBDSQ scores and higher sleep efficiency. Moreover, we identified that COMT rs165599 and MCCC1 rs12637471 may play an important role in both PD and iRBD, while SNCA rs356181 was different between iRBD and PD. Conclusions: Our research revealed that in the southern Chinese demographic, genetic loci in SH3GL2 and COMT were linked to iRBD and may act as potential biomarkers for iRBD risk. Additionally, there is evidence suggesting a partial genetic overlap between iRBD and PD, indicating a shared genetic predisposition.
Collapse
Affiliation(s)
- Min Zhong
- Department of Neurology and Institute of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (M.Z.); (Y.J.); (A.Z.)
| | - Yang Jiao
- Department of Neurology and Institute of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (M.Z.); (Y.J.); (A.Z.)
| | - Aonan Zhao
- Department of Neurology and Institute of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (M.Z.); (Y.J.); (A.Z.)
| | - Mengyue Niu
- Department of Neurology and Institute of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (M.Z.); (Y.J.); (A.Z.)
| | - Jinjun Ran
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China;
| | - Jun Liu
- Department of Neurology and Institute of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (M.Z.); (Y.J.); (A.Z.)
| | - Yuanyuan Li
- Department of Neurology and Institute of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (M.Z.); (Y.J.); (A.Z.)
| |
Collapse
|
2
|
Carricarte Naranjo C, Marras C, Visanji NP, Cornforth DJ, Sanchez-Rodriguez L, Schüle B, Goldman SM, Estévez M, Stein PK, Jelinek HF, Lang AE, Machado A. Heartbeat signature for predicting motor and non-motor involvement among nonparkinsonian LRRK2 G2019S mutation carriers. Clin Auton Res 2025:10.1007/s10286-024-01104-6. [PMID: 39969690 DOI: 10.1007/s10286-024-01104-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 12/23/2024] [Indexed: 02/20/2025]
Abstract
PURPOSE Increased beat-to-beat heart rate variability (HRV) is a feature of patients with Parkinson's disease (PD) who carry the G2019S mutation in the LRRK2 gene (LRRK2-PD). Since LRRK2 mutations have incomplete penetrance, HRV changes preceding PD conversion would likely be observed only in a subset of LRRK2 non-manifesting carriers (NMC). We aimed to assess HRV in a subgroup of NMC with distinctive characteristics of LRRK2-PD, identified through clustering analysis. METHODS HRV measures derived from 300 normal heartbeat intervals extracted from the electrocardiograms of 25 NMC, 32 related non-carriers (RNC), 27 unrelated healthy controls, and 14 patients with LRRK2-PD were analyzed. Clinical symptoms were evaluated using questionnaires and scales, and three NMC subgroups were identified using a k-means cluster analysis on the basis of the deceleration capacity of heart rate (DC) and Rényi entropy. Standard and advanced HRV measures were compared using multiple regression analysis, controlling for age, sex, and mean heart rate. RESULTS Beat-to-beat HRV markers were significantly increased in a subgroup of seven NMC (NMC2, 28%) compared with RNC and controls. Increased irregularity and DC were also verified in the NMC2 compared with controls, and were typical traits in both the NMC2 and RNC. Overall, the HRV profile of NMC2 was comparable to that of patients with LRRK2-PD. NMC2 further exhibited greater motor and non-motor traits than the other NMC, RNC, and controls. CONCLUSIONS Our results confirmed that HRV characteristics of LRRK2-PD are also found in a subset of NMC displaying clinical traits of LRRK2-PD. Further research is needed to clarify whether higher HRV represents a LRRK2-PD prodromal manifestation.
Collapse
Affiliation(s)
| | - Connie Marras
- Edmond J Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, ON, Canada
| | - Naomi P Visanji
- Edmond J Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, ON, Canada
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada
| | - David J Cornforth
- Member of the National Coalition of Independent Scholars (NCIS), Brattleboro, VT, USA
| | | | - Birgitt Schüle
- Department of Pathology, Stanford School of Medicine, Stanford, CA, USA
| | - Samuel M Goldman
- Department of Neurology, University of California, San Francisco, CA, USA
| | - Mario Estévez
- Departamento de Neurofisiología Clínica, Instituto de Neurología y Neurocirugía, La Habana, Cuba
| | - Phyllis K Stein
- School of Medicine, Washington University, St. Louis, MO, USA
| | - Herbert F Jelinek
- Department of Medical Sciences and Biotechnology Center, Khalifa University, Abu Dhabi, UAE
| | - Anthony E Lang
- Edmond J Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, ON, Canada
| | - Andrés Machado
- Facultad de Biología, Universidad de La Habana, La Habana, Cuba
| |
Collapse
|
3
|
Nyamugenda E, Rosensweig C, Allada R. Circadian Clocks, Daily Stress, and Neurodegenerative Disease. ANNUAL REVIEW OF PATHOLOGY 2025; 20:355-374. [PMID: 39423424 DOI: 10.1146/annurev-pathmechdis-031521-033828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Disrupted circadian or 24-h rhythms are among the most common early findings in a wide range of neurodegenerative disorders. Once thought to be a mere consequence of the disease process, increasing evidence points toward a causal or contributory role of the circadian clock in neurodegenerative disease. Circadian clocks control many aspects of cellular biochemistry, including stress pathways implicated in neuronal survival and death. Given the dearth of disease-modifying therapies for these increasingly prevalent disorders, this understanding may lead to breakthroughs in the development of new treatments. In this review, we provide a background on circadian clocks and focus on some potential mechanisms that may be pivotal in neurodegeneration.
Collapse
Affiliation(s)
- Eugene Nyamugenda
- Department of Neurobiology, Northwestern University, Evanston, Illinois, USA;
| | - Clark Rosensweig
- Department of Neurobiology, Northwestern University, Evanston, Illinois, USA;
| | - Ravi Allada
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, Michigan, USA
- Department of Neurobiology, Northwestern University, Evanston, Illinois, USA;
| |
Collapse
|
4
|
Iranzo A, Cochen De Cock V, Fantini ML, Pérez-Carbonell L, Trotti LM. Sleep and sleep disorders in people with Parkinson's disease. Lancet Neurol 2024; 23:925-937. [PMID: 38942041 DOI: 10.1016/s1474-4422(24)00170-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/02/2024] [Accepted: 04/16/2024] [Indexed: 06/30/2024]
Abstract
Sleep disorders are common in people with Parkinson's disease. These disorders, which increase in frequency throughout the course of the neurodegenerative disease and impair quality of life, include insomnia, excessive daytime sleepiness, circadian disorders, obstructive sleep apnoea, restless legs syndrome, and rapid eye movement (REM) sleep behaviour disorder. The causes of these sleep disorders are complex and multifactorial, including the degeneration of the neural structures that modulate sleep, the detrimental effect of some medications on sleep, the parkinsonian symptoms that interfere with mobility and comfort in bed, and comorbidities that disrupt sleep quality and quantity. The clinical evaluation of sleep disorders include both subjective (eg, questionnaires or diaries) and objective (eg, actigraphy or video polysomnography) assessments. The management of patients with Parkinson's disease and a sleep disorder is challenging and should be individualised. Treatment can include education aiming at changes in behaviour (ie, sleep hygiene), cognitive behavioural therapy, continuous dopaminergic stimulation at night, and specific medications. REM sleep behaviour disorder can occur several years before the onset of parkinsonism, suggesting that the implementation of trials of neuroprotective therapies should focus on people with this sleep disorder.
Collapse
Affiliation(s)
- Alex Iranzo
- Sleep Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Universitat de Barcelona, Barcelona, Spain; IDIBAPS, Universitat de Barcelona, Barcelona, Spain; CIBERNED, Universitat de Barcelona, Barcelona, Spain.
| | - Valerie Cochen De Cock
- Sleep and Neurology Department, Beau Soleil Clinic, Montpellier, France; EuroMov Digital Health in Motion, University of Montpellier, IMT Mines Ales, Montpellier, France
| | - María Livia Fantini
- Neurophysiology Unit, Neurology Department, Université Clermont Auvergne, CNRS, Institut Pascal, Clermont-Ferrand University Hospital, Clermont-Ferrand, France
| | - Laura Pérez-Carbonell
- Sleep Disorders Centre, Guy's and St Thomas' NHS Foundation Trust, King's College London, London, UK
| | - Lynn Marie Trotti
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA; Emory Sleep Center, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
5
|
Kmiecik MJ, Micheletti S, Coker D, Heilbron K, Shi J, Stagaman K, Filshtein Sonmez T, Fontanillas P, Shringarpure S, Wetzel M, Rowbotham HM, Cannon P, Shelton JF, Hinds DA, Tung JY, Holmes MV, Aslibekyan S, Norcliffe-Kaufmann L. Genetic analysis and natural history of Parkinson's disease due to the LRRK2 G2019S variant. Brain 2024; 147:1996-2008. [PMID: 38804604 PMCID: PMC11146432 DOI: 10.1093/brain/awae073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/26/2024] [Accepted: 02/06/2024] [Indexed: 05/29/2024] Open
Abstract
The LRRK2 G2019S variant is the most common cause of monogenic Parkinson's disease (PD); however, questions remain regarding the penetrance, clinical phenotype and natural history of carriers. We performed a 3.5-year prospective longitudinal online study in a large number of 1286 genotyped LRRK2 G2019S carriers and 109 154 controls, with and without PD, recruited from the 23andMe Research Cohort. We collected self-reported motor and non-motor symptoms every 6 months, as well as demographics, family histories and environmental risk factors. Incident cases of PD (phenoconverters) were identified at follow-up. We determined lifetime risk of PD using accelerated failure time modelling and explored the impact of polygenic risk on penetrance. We also computed the genetic ancestry of all LRRK2 G2019S carriers in the 23andMe database and identified regions of the world where carrier frequencies are highest. We observed that despite a 1 year longer disease duration (P = 0.016), LRRK2 G2019S carriers with PD had similar burden of motor symptoms, yet significantly fewer non-motor symptoms including cognitive difficulties, REM sleep behaviour disorder (RBD) and hyposmia (all P-values ≤ 0.0002). The cumulative incidence of PD in G2019S carriers by age 80 was 49%. G2019S carriers had a 10-fold risk of developing PD versus non-carriers. This rose to a 27-fold risk in G2019S carriers with a PD polygenic risk score in the top 25% versus non-carriers in the bottom 25%. In addition to identifying ancient founding events in people of North African and Ashkenazi descent, our genetic ancestry analyses infer that the G2019S variant was later introduced to Spanish colonial territories in the Americas. Our results suggest LRRK2 G2019S PD appears to be a slowly progressive predominantly motor subtype of PD with a lower prevalence of hyposmia, RBD and cognitive impairment. This suggests that the current prodromal criteria, which are based on idiopathic PD, may lack sensitivity to detect the early phases of LRRK2 PD in G2019S carriers. We show that polygenic burden may contribute to the development of PD in the LRRK2 G2019S carrier population. Collectively, the results should help support screening programmes and candidate enrichment strategies for upcoming trials of LRRK2 inhibitors in early-stage disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Paul Cannon
- 23andMe, Inc., Research, Sunnyvale, CA 94086, USA
| | | | | | - Joyce Y Tung
- 23andMe, Inc., Research, Sunnyvale, CA 94086, USA
| | | | | | | |
Collapse
|
6
|
Khani M, Cerquera-Cleves C, Kekenadze M, Crea PAW, Singleton AB, Bandres-Ciga S. Towards a Global View of Parkinson's Disease Genetics. Ann Neurol 2024; 95:831-842. [PMID: 38557965 PMCID: PMC11060911 DOI: 10.1002/ana.26905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/22/2024] [Accepted: 02/25/2024] [Indexed: 04/04/2024]
Abstract
Parkinson's disease (PD) is a global health challenge, yet historically studies of PD have taken place predominantly in European populations. Recent genetics research conducted in non-European populations has revealed novel population-specific genetic loci linked to PD risk, highlighting the importance of studying PD globally. These insights have broadened our understanding of PD etiology, which is crucial for developing disease-modifying interventions. This review comprehensively explores the global genetic landscape of PD, emphasizing the scientific rationale for studying underrepresented populations. It underscores challenges, such as genotype-phenotype heterogeneity and inclusion difficulties for non-European participants, emphasizing the ongoing need for diverse and inclusive research in PD. ANN NEUROL 2024;95:831-842.
Collapse
Affiliation(s)
- Marzieh Khani
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Catalina Cerquera-Cleves
- Pontificia Universidad Javeriana, San Ignacio Hospital, Neurology Unit, Bogotá, Colombia
- CHU de Québec Research Center, Axe Neurosciences, Laval University. Quebec City, Canada
| | - Mariam Kekenadze
- Tbilisi State Medical University, Tbilisi, 0141, Georgia
- University College London, Queen Square Institute of Neurology , WC1N 3BG, London, UK
| | - Peter A. Wild Crea
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Andrew B. Singleton
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Sara Bandres-Ciga
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
7
|
Trevisan L, Gaudio A, Monfrini E, Avanzino L, Di Fonzo A, Mandich P. Genetics in Parkinson's disease, state-of-the-art and future perspectives. Br Med Bull 2024; 149:60-71. [PMID: 38282031 PMCID: PMC10938543 DOI: 10.1093/bmb/ldad035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/30/2023] [Accepted: 12/12/2023] [Indexed: 01/30/2024]
Abstract
BACKGROUND Parkinson's disease (PD) is the second most common neurodegenerative disorder and is clinically characterized by the presence of motor (bradykinesia, rigidity, rest tremor and postural instability) and non-motor symptoms (cognitive impairment, autonomic dysfunction, sleep disorders, depression and hyposmia). The aetiology of PD is unknown except for a small but significant contribution of monogenic forms. SOURCES OF DATA No new data were generated or analyzed in support of this review. AREAS OF AGREEMENT Up to 15% of PD patients carry pathogenic variants in PD-associated genes. Some of these genes are associated with mendelian inheritance, while others act as risk factors. Genetic background influences age of onset, disease course, prognosis and therapeutic response. AREAS OF CONTROVERSY Genetic testing is not routinely offered in the clinical setting, but it may have relevant implications, especially in terms of prognosis, response to therapies and inclusion in clinical trials. Widely adopted clinical guidelines on genetic testing are still lacking and open to debate. Some new genetic associations are still awaiting confirmation, and selecting the appropriate genes to be included in diagnostic panels represents a difficult task. Finally, it is still under study whether (and to which degree) specific genetic forms may influence the outcome of PD therapies. GROWING POINTS Polygenic Risk Scores (PRS) may represent a useful tool to genetically stratify the population in terms of disease risk, prognosis and therapeutic outcomes. AREAS TIMELY FOR DEVELOPING RESEARCH The application of PRS and integrated multi-omics in PD promises to improve the personalized care of patients.
Collapse
Affiliation(s)
- L Trevisan
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health, University of Genoa, Largo P. Daneo 3, Genova, 16132, Italy
- IRCCS Ospedale Policlinico San Martino – SS Centro Tumori Ereditari, Largo R. Benzi 10, Genova, 16132, Italy
| | - A Gaudio
- IRCCS Ospedale Policlinico San Martino- UOC Genetica Medica, Largo R. Benzi 10, Genova, 16132, Italy
| | - E Monfrini
- Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza 35, Milan, 20122, Italy
- Neurology Unit, Foundation IRCCS Ca’Granda Ospedale Maggiore Policlinico, Via Festa del Perdono 7, Milan, 20122, Italy
| | - L Avanzino
- Department of Experimental Medicine, Section of Human Physiology, University of Genoa, Viale Benedetto XV/3, Genova, 16132, Italy
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 3, Genova, 16132, Italy
| | - A Di Fonzo
- Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza 35, Milan, 20122, Italy
- Neurology Unit, Foundation IRCCS Ca’Granda Ospedale Maggiore Policlinico, Via Festa del Perdono 7, Milan, 20122, Italy
| | - P Mandich
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health, University of Genoa, Largo P. Daneo 3, Genova, 16132, Italy
- IRCCS Ospedale Policlinico San Martino- UOC Genetica Medica, Largo R. Benzi 10, Genova, 16132, Italy
| |
Collapse
|
8
|
Kalinderi K, Papaliagkas V, Fidani L. The Genetic Landscape of Sleep Disorders in Parkinson's Disease. Diagnostics (Basel) 2024; 14:106. [PMID: 38201415 PMCID: PMC10795795 DOI: 10.3390/diagnostics14010106] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/30/2023] [Accepted: 12/31/2023] [Indexed: 01/12/2024] Open
Abstract
Parknson's disease (PD) is the second most common neurodegenerative disease, affecting 1% of people aged over 60. PD is characterized by a wide range of motor symptoms, however the clinical spectrum of PD covers a wide range of non-motor symptoms, as well. Sleep disorders are among the most common non-motor symptoms of PD, can occur at any stage of the disease and significantly affect quality of life. These include rapid eye movement sleep behavior disorder (RBD), restless legs syndrome (RLS), excessive daytime sleepiness (EDS), insomnia, obstructive sleep apnea (OSA) and circadian rhythm disturbances. One of the main challenges in PD research is identifying individuals during the prodromal phase of the disease. Combining genetic and prodromal data may aid the early identification of individuals susceptible to PD. This review highlights current data regarding the genetic component of sleep disorders in PD patients, focusing on genes that have currently been associated with this PD co-morbidity.
Collapse
Affiliation(s)
- Kallirhoe Kalinderi
- Laboratory of Medical Biology-Genetics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Vasileios Papaliagkas
- Department of Biomedical Sciences, School of Health Sciences, International Hellenic University, 57400 Thessaloniki, Greece;
| | - Liana Fidani
- Laboratory of Medical Biology-Genetics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| |
Collapse
|
9
|
Sun X, Dou K, Xue L, Xie Y, Yang Y, Xie A. Comprehensive analysis of clinical and biological features in Parkinson's disease associated with the LRRK2 G2019S mutation: Data from the PPMI study. Clin Transl Sci 2024; 17:e13720. [PMID: 38266062 PMCID: PMC10804919 DOI: 10.1111/cts.13720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 01/03/2024] [Accepted: 01/03/2024] [Indexed: 01/26/2024] Open
Abstract
The Parkinson's Progression Marker Initiative (PPMI) aims to identify biomarkers for Parkinson's disease (PD) risk, onset, and progression. This study focuses on the G2019S missense mutation in the LRRK2 gene, which is associated with hereditary and sporadic PD. Utilizing data from the PPMI database, we conducted an analysis of baseline clinical characteristics, as well as serum and cerebrospinal fluid levels in two groups: patients with PD with the G2019S mutation (PD + G2019S) and patients with PD without the mutation (PD-G2019S). Multiple linear regression and longitudinal analysis were performed, controlling for confounding factors. Compared to the PD-G2019S group, the PD + G2019S group showed more obvious initial motor dysfunction-higher baseline Movement Disorder Society-Sponsored Revision of the Unified Parkinson Disease Rating Scale (MDS-UPDRS) scores (false discovery rate [FDR]-adjusted p < 0.001), but progressed more slowly. Mechanism of Coordinated Access and activities of daily living (ADL) scores were lower at baseline (FDR-adjusted p < 0.001), whereas Scales for Outcomes of Parkinson's Disease (SCOPA)-Thermoregulatory (FDR-adjusted p = 0.015) scores were higher, emphasizing the increase of non-motor symptoms associated with LRRK2-G2019S mutation. During the follow-up period, the motor and non-motor symptoms changed dynamically with time, and there were longitudinal differences in the scores of MDS-UPDRS (FDR-adjusted PI = 0.013, PII = 0.008, PIV < 0.001), Questionnaire for Impulsive-Compulsive Disorders in Parkinson's Disease (FDR-adjusted p = 0.027), SCOPA-Thermoregulatory (FDR-adjusted p = 0.021), and ADL (FDR-adjusted p = 0.027) scale scores. PD associated with the LRRK2 G2019S mutation demonstrated more severe symptoms at baseline but slower progression. Motor complications and thermoregulatory disorders were more pronounced.
Collapse
Affiliation(s)
- Xiaohui Sun
- Department of NeurologyAffiliated Hospital of Qingdao UniversityQingdaoChina
| | - Kaixin Dou
- Department of NeurologyAffiliated Hospital of Qingdao UniversityQingdaoChina
| | - Li Xue
- Recording RoomThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Yijie Xie
- Clinical Laboratory, Central LaboratoryQingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital)QingdaoChina
| | - Yong Yang
- Department of NeurologyAffiliated Hospital of Qingdao UniversityQingdaoChina
| | - Anmu Xie
- Department of NeurologyAffiliated Hospital of Qingdao UniversityQingdaoChina
- Cerebral Vascular Disease Institute, Affiliated Hospital of Qingdao UniversityQingdaoChina
| |
Collapse
|
10
|
Tall P, Qamar MA, Rosenzweig I, Raeder V, Sauerbier A, Heidemarie Z, Falup-Pecurariu C, Chaudhuri KR. The Park Sleep subtype in Parkinson's disease: from concept to clinic. Expert Opin Pharmacother 2023; 24:1725-1736. [PMID: 37561080 DOI: 10.1080/14656566.2023.2242786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/27/2023] [Indexed: 08/11/2023]
Abstract
INTRODUCTION The heterogeneity of Parkinson's disease (PD) is evident from descriptions of non-motor (NMS) subtypes and Park Sleep, originally identified by Sauerbier et al. 2016, is one such clinical subtype associated with the predominant clinical presentation of sleep dysfunctions including excessive daytime sleepiness (EDS), along with insomnia. AREAS COVERED A literature search was conducted using the PubMed, Medline, Embase, and Web of Science databases, accessed between 1 February 2023 and 28 March 2023. In this review, we describe the clinical subtype of Park Sleep and related 'tests' ranging from polysomnography to investigational neuromelanin MRI brain scans and some tissue-based biological markers. EXPERT OPINION Cholinergic, noradrenergic, and serotonergic systems are dominantly affected in PD. Park Sleep subtype is hypothesized to be associated primarily with serotonergic deficit, clinically manifesting as somnolence and narcoleptic events (sleep attacks), with or without rapid eye movement behavior disorder (RBD). In clinic, Park Sleep recognition may drive lifestyle changes (e.g. driving) along with therapy adjustments as Park Sleep patients may be sensitive to dopamine D3 active agonists, such as ropinirole and pramipexole. Specific dashboard scores based personalized management options need to be implemented and include pharmacological, non-pharmacological, and lifestyle linked advice.
Collapse
Affiliation(s)
- Phoebe Tall
- Department of Neuroscience, Institute of Psychiatry, Psychology, and Neuroscience (IoPpn), King's College London, London, UK
- Parkinson's Foundation Centre of Excellence, King's College Hospital NHS Foundation Trust, London, UK
| | - Mubasher A Qamar
- Department of Neuroscience, Institute of Psychiatry, Psychology, and Neuroscience (IoPpn), King's College London, London, UK
- Parkinson's Foundation Centre of Excellence, King's College Hospital NHS Foundation Trust, London, UK
| | - Ivana Rosenzweig
- Sleep and Brain Plasticity Centre, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience (IoPpn), King's College London, London, UK
- Sleep Disorder Centre, Nuffield House, Guy's Hospital, London, UK
| | - Vanessa Raeder
- Parkinson's Foundation Centre of Excellence, King's College Hospital NHS Foundation Trust, London, UK
- Department of Neurology and Experimental Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität, Berlin, Germany
| | - Anna Sauerbier
- Department of Neuroscience, Institute of Psychiatry, Psychology, and Neuroscience (IoPpn), King's College London, London, UK
- Department of Neurology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Zach Heidemarie
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Cristian Falup-Pecurariu
- Faculty of Medicine, Transilvania University of Braşov, Brașov, Romania
- Department of Neurology, County Clinic Hospital, Braşov, Romania
| | - Kallol Ray Chaudhuri
- Department of Neuroscience, Institute of Psychiatry, Psychology, and Neuroscience (IoPpn), King's College London, London, UK
- Parkinson's Foundation Centre of Excellence, King's College Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
11
|
Du L, He X, Fan X, Wei X, Xu L, Liang T, Wang C, Ke Y, Yung WH. Pharmacological interventions targeting α-synuclein aggregation triggered REM sleep behavior disorder and early development of Parkinson's disease. Pharmacol Ther 2023; 249:108498. [PMID: 37499913 DOI: 10.1016/j.pharmthera.2023.108498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/24/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023]
Abstract
Rapid eye movement (REM) sleep behavior disorder (RBD) is a parasomnia characterized by elevated motor behaviors and dream enactments in REM sleep, often preceding the diagnosis of Parkinson's disease (PD). As RBD could serve as a biomarker for early PD developments, pharmacological interventions targeting α-synuclein aggregation triggered RBD could be applied toward early PD progression. However, robust therapeutic guidelines toward PD-induced RBD are lacking, owing in part to a historical paucity of effective treatments and trials. We reviewed the bidirectional links between α-synuclein neurodegeneration, progressive sleep disorders, and RBD. We highlighted the correlation between RBD development, α-synuclein aggregation, and neuronal apoptosis in key brainstem regions involved in REM sleep atonia maintenance. The current pharmacological intervention strategies targeting RBD and their effects on progressive PD are discussed, as well as current treatments for progressive neurodegeneration and their effects on RBD. We also evaluated emerging and potential pharmacological solutions to sleep disorders and developing synucleinopathies. This review provides insights into the mechanisms and therapeutic targets underlying RBD and PD, and explores bidirectional treatment effects for both diseases, underscoring the need for further research in this area.
Collapse
Affiliation(s)
- Lida Du
- Institute of Molecular Medicine & Innovative Pharmaceutics, Qingdao University, Qingdao, China; School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China.
| | - Xiaoli He
- Institute of Medical Plant Development, Peking Union Medical College, Beijing, China
| | - Xiaonuo Fan
- Department of Biology, Boston University, Boston, USA
| | - Xiaoya Wei
- Harvard T.H. Chan School of Public Health, Boston, USA
| | - Linhao Xu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China; Department of Cardiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tuo Liang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China; Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen, China
| | - Chunbo Wang
- Institute of Molecular Medicine & Innovative Pharmaceutics, Qingdao University, Qingdao, China
| | - Ya Ke
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Wing-Ho Yung
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China; Department of Neuroscience, City University of Hong Kong, Hong Kong, China.
| |
Collapse
|
12
|
Buongiorno M, Marzal C, Fernandez M, Cullell N, de Mena L, Sánchez-Benavides G, de la Sierra A, Krupinski J, Compta Y. Altered sleep and neurovascular dysfunction in alpha-synucleinopathies: the perfect storm for glymphatic failure. Front Aging Neurosci 2023; 15:1251755. [PMID: 37693650 PMCID: PMC10484002 DOI: 10.3389/fnagi.2023.1251755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 08/04/2023] [Indexed: 09/12/2023] Open
Abstract
Clinical and cognitive progression in alpha-synucleinopathies is highly heterogeneous. While some patients remain stable over long periods of time, other suffer early dementia or fast motor deterioration. Sleep disturbances and nocturnal blood pressure abnormalities have been identified as independent risk factors for clinical progression but a mechanistic explanation linking both aspects is lacking. We hypothesize that impaired glymphatic system might play a key role on clinical progression. Glymphatic system clears brain waste during specific sleep stages, being blood pressure the motive force that propels the interstitial fluid through brain tissue to remove protein waste. Thus, the combination of severe sleep alterations, such as REM sleep behavioral disorder, and lack of the physiological nocturnal decrease of blood pressure due to severe dysautonomia may constitute the perfect storm for glymphatic failure, causing increased abnormal protein aggregation and spreading. In Lewy body disorders (Parkinson's disease and dementia with Lewy bodies) the increment of intraneuronal alpha-synuclein and extracellular amyloid-β would lead to cognitive deterioration, while in multisystemic atrophy, increased pathology in oligodendroglia would relate to the faster and malignant motor progression. We present a research model that may help in developing studies aiming to elucidate the role of glymphatic function and associated factors mainly in alpha-synucleinopathies, but that could be relevant also for other protein accumulation-related neurodegenerative diseases. If the model is proven to be useful could open new lines for treatments targeting glymphatic function (for example through control of nocturnal blood pressure) with the objective to ameliorate cognitive and motor progression in alpha-synucleinopathies.
Collapse
Affiliation(s)
- Mariateresa Buongiorno
- Hospital Universitari MútuaTerrassa/Fundacio Docència i Recerca MútuaTerrassa, Terrassa, Spain
| | - Clara Marzal
- Hospital Universitari MútuaTerrassa/Fundacio Docència i Recerca MútuaTerrassa, Terrassa, Spain
| | - Manel Fernandez
- Lab of Parkinson Disease and Other Neurodegenerative Movement Disorders, Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Hospital Clínic de Barcelona, Institut de Neurociències (UBNeuro), Universitat de Barcelona, Barcelona, Spain
| | - Natalia Cullell
- Hospital Universitari MútuaTerrassa/Fundacio Docència i Recerca MútuaTerrassa, Terrassa, Spain
| | - Lorena de Mena
- Lab of Parkinson Disease and Other Neurodegenerative Movement Disorders, Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Hospital Clínic de Barcelona, Institut de Neurociències (UBNeuro), Universitat de Barcelona, Barcelona, Spain
| | - Gonzalo Sánchez-Benavides
- Barcelonaβeta Brain Research Center, Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Alejandro de la Sierra
- Hospital Universitari MútuaTerrassa/Fundacio Docència i Recerca MútuaTerrassa, Terrassa, Spain
| | - Jerzy Krupinski
- Hospital Universitari MútuaTerrassa/Fundacio Docència i Recerca MútuaTerrassa, Terrassa, Spain
- Department of Life Sciences John Dalton Building, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom
| | - Yaroslau Compta
- Parkinson’s Disease and Movement Disorders Unit, Neurology Service, Hospital Clínic i Universitari de Barcelona, CIBERNED (CB06/05/0018-ISCIII), ERN-RND, UBNeuro Institut Clínic de Neurociències (Maria de Maeztu Excellence Centre), Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
13
|
Thangaleela S, Sivamaruthi BS, Kesika P, Mariappan S, Rashmi S, Choeisoongnern T, Sittiprapaporn P, Chaiyasut C. Neurological Insights into Sleep Disorders in Parkinson's Disease. Brain Sci 2023; 13:1202. [PMID: 37626558 PMCID: PMC10452387 DOI: 10.3390/brainsci13081202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/07/2023] [Accepted: 08/12/2023] [Indexed: 08/27/2023] Open
Abstract
Parkinson's disease (PD) is a common multidimensional neurological disorder characterized by motor and non-motor features and is more prevalent in the elderly. Sleep disorders and cognitive disturbances are also significant characteristics of PD. Sleep is an important physiological process for normal human cognition and physical functioning. Sleep deprivation negatively impacts human physical, mental, and behavioral functions. Sleep disturbances include problems falling asleep, disturbances occurring during sleep, abnormal movements during sleep, insufficient sleep, and excessive sleep. The most recognizable and known sleep disorders, such as rapid-eye-movement behavior disorder (RBD), insomnia, excessive daytime sleepiness (EDS), restless legs syndrome (RLS), sleep-related breathing disorders (SRBDs), and circadian-rhythm-related sleep-wake disorders (CRSWDs), have been associated with PD. RBD and associated emotional disorders are common non-motor symptoms of PD. In individuals, sleep disorders and cognitive impairment are important prognostic factors for predicting progressing neurodegeneration and developing dementia conditions in PD. Studies have focused on RBD and its associated neurological changes and functional deficits in PD patients. Other risks, such as cognitive decline, anxiety, and depression, are related to RBD. Sleep-disorder diagnosis is challenging, especially in identifying the essential factors that disturb the sleep-wake cycle and the co-existence of other concomitant sleep issues, motor symptoms, and breathing disorders. Focusing on sleep patterns and their disturbances, including genetic and other neurochemical changes, helps us to better understand the central causes of sleep alterations and cognitive functions in PD patients. Relations between α-synuclein aggregation in the brain and gender differences in sleep disorders have been reported. The existing correlation between sleep disorders and levels of α-synuclein in the cerebrospinal fluid indicates the risk of progression of synucleinopathies. Multidirectional approaches are required to correlate sleep disorders and neuropsychiatric symptoms and diagnose sensitive biomarkers for neurodegeneration. The evaluation of sleep pattern disturbances and cognitive impairment may aid in the development of novel and effective treatments for PD.
Collapse
Affiliation(s)
- Subramanian Thangaleela
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (S.T.); (B.S.S.); (P.K.)
| | - Bhagavathi Sundaram Sivamaruthi
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (S.T.); (B.S.S.); (P.K.)
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Periyanaina Kesika
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (S.T.); (B.S.S.); (P.K.)
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | | | - Subramanian Rashmi
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (S.T.); (B.S.S.); (P.K.)
| | - Thiwanya Choeisoongnern
- Neuropsychological Research Laboratory, Neuroscience Research Center, School of Anti-Aging and Regenerative Medicine, Mae Fah Luang University, Bangkok 10110, Thailand
| | - Phakkharawat Sittiprapaporn
- Neuropsychological Research Laboratory, Neuroscience Research Center, School of Anti-Aging and Regenerative Medicine, Mae Fah Luang University, Bangkok 10110, Thailand
| | - Chaiyavat Chaiyasut
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (S.T.); (B.S.S.); (P.K.)
| |
Collapse
|
14
|
Taymans JM, Fell M, Greenamyre T, Hirst WD, Mamais A, Padmanabhan S, Peter I, Rideout H, Thaler A. Perspective on the current state of the LRRK2 field. NPJ Parkinsons Dis 2023; 9:104. [PMID: 37393318 PMCID: PMC10314919 DOI: 10.1038/s41531-023-00544-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 06/05/2023] [Indexed: 07/03/2023] Open
Abstract
Almost 2 decades after linking LRRK2 to Parkinson's disease, a vibrant research field has developed around the study of this gene and its protein product. Recent studies have begun to elucidate molecular structures of LRRK2 and its complexes, and our understanding of LRRK2 has continued to grow, affirming decisions made years ago to therapeutically target this enzyme for PD. Markers of LRRK2 activity, with potential to monitor disease progression or treatment efficacy, are also under development. Interestingly, there is a growing understanding of the role of LRRK2 outside of the central nervous system in peripheral tissues such as gut and immune cells that may also contribute to LRRK2 mediated pathology. In this perspective, our goal is to take stock of LRRK2 research by discussing the current state of knowledge and critical open questions in the field.
Collapse
Affiliation(s)
- Jean-Marc Taymans
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172-LilNCog-Lille Neuroscience & Cognition, F-59000, Lille, France.
| | - Matt Fell
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, MA, 02115, USA
| | - Tim Greenamyre
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, 3501 Fifth Avenue, Suite 7039, Pittsburgh, PA, 15260, USA
| | - Warren D Hirst
- Neurodegenerative Diseases Research Unit, Biogen, 115 Broadway, Cambridge, MA, 02142, USA
| | - Adamantios Mamais
- Center for Translational Research in Neurodegenerative Disease, Department of Neurology, University of Florida, Gainesville, FL, USA
| | - Shalini Padmanabhan
- The Michael J. Fox Foundation for Parkinson's Research, Grand Central Station, P.O. Box 4777, New York, NY, 10120, USA
| | - Inga Peter
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, New York, NY, 10029, USA
| | - Hardy Rideout
- Centre for Clinical, Experimental Surgery, and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Avner Thaler
- Movement Disorders Unit and Laboratory of Early Markers of Neurodegeneration, Neurological Institute, Tel-Aviv Medical Center, Faculty of medicine, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
15
|
Samizadeh MA, Fallah H, Toomarisahzabi M, Rezaei F, Rahimi-Danesh M, Akhondzadeh S, Vaseghi S. Parkinson's Disease: A Narrative Review on Potential Molecular Mechanisms of Sleep Disturbances, REM Behavior Disorder, and Melatonin. Brain Sci 2023; 13:914. [PMID: 37371392 DOI: 10.3390/brainsci13060914] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/01/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
Parkinson's disease (PD) is one of the most common neurodegenerative diseases. There is a wide range of sleep disturbances in patients with PD, such as insomnia and rapid eye movement (REM) sleep behavior disorder (or REM behavior disorder (RBD)). RBD is a sleep disorder in which a patient acts out his/her dreams and includes abnormal behaviors during the REM phase of sleep. On the other hand, melatonin is the principal hormone that is secreted by the pineal gland and significantly modulates the circadian clock and mood state. Furthermore, melatonin has a wide range of regulatory effects and is a safe treatment for sleep disturbances such as RBD in PD. However, the molecular mechanisms of melatonin involved in the treatment or control of RBD are unknown. In this study, we reviewed the pathophysiology of PD and sleep disturbances, including RBD. We also discussed the potential molecular mechanisms of melatonin involved in its therapeutic effect. It was concluded that disruption of crucial neurotransmitter systems that mediate sleep, including norepinephrine, serotonin, dopamine, and GABA, and important neurotransmitter systems that mediate the REM phase, including acetylcholine, serotonin, and norepinephrine, are significantly involved in the induction of sleep disturbances, including RBD in PD. It was also concluded that accumulation of α-synuclein in sleep-related brain regions can disrupt sleep processes and the circadian rhythm. We suggested that new treatment strategies for sleep disturbances in PD may focus on the modulation of α-synuclein aggregation or expression.
Collapse
Affiliation(s)
- Mohammad-Ali Samizadeh
- Cognitive Neuroscience Lab, Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj 3365166571, Iran
| | - Hamed Fallah
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran 1417935840, Iran
| | - Mohadeseh Toomarisahzabi
- Cognitive Neuroscience Lab, Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj 3365166571, Iran
| | - Fereshteh Rezaei
- Cognitive Neuroscience Lab, Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj 3365166571, Iran
| | - Mehrsa Rahimi-Danesh
- Cognitive Neuroscience Lab, Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj 3365166571, Iran
| | - Shahin Akhondzadeh
- Psychiatric Research Center, Roozbeh Psychiatric Hospital, Tehran University of Medical Sciences, Tehran 13337159140, Iran
| | - Salar Vaseghi
- Cognitive Neuroscience Lab, Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj 3365166571, Iran
| |
Collapse
|
16
|
DeBroff J, Omer N, Cohen B, Giladi N, Kestenbaum M, Shirvan JC, Cedarbaum JM, Gana‐Weisz M, Goldstein O, Orr‐Urtreger A, Mirelman A, Thaler A. The Influence of GBA and LRRK2 on Mood Disorders in Parkinson's Disease. Mov Disord Clin Pract 2023; 10:606-616. [PMID: 37070047 PMCID: PMC10105114 DOI: 10.1002/mdc3.13722] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 02/14/2023] [Accepted: 03/03/2023] [Indexed: 03/14/2023] Open
Abstract
Background Mood disorders have emerged as major non-motor comorbidities in Parkinson's disease (PD) even at the prodromal stage of the disease. Mutations in the LRRK2 and GBA genes are common among Ashkenazi Jews, with more severe phenotype reported for GBA-PD. Objective To explore the association between genetic status and mood related disorders before and after diagnosis of PD and the association between mood-related medications, phenotype, and genetic status. Methods Participants were genotyped for mutations in the LRRK2 and GBA genes. State of depression, anxiety and non-motor features were evaluated using validated questionnaires. History of mood disorders prior to diagnosis of PD and use of mood-related medications were assessed. Results The study included 105 idiopathic PD (iPD), 55 LRRK2-PD and 94 GBA-PD. Scores on mood related questionnaires and frequency of depression and anxiety before diagnosis were similar between the groups (p>0.05). However, more GBA-PD patients used mood related medications before PD diagnosis than LRRK2-PD and iPD (16.5% vs 7.1% and 8.2%, p=0.044). LRRK2-PD and GBA-PD receiving mood-related medications at time of assessment had worse motor and non-motor phenotype compared to those that did not (p<0.05). LRRK2-PD receiving mood related-medications at time of assessment, scored higher on mood-related questionnaires compared to LRRK2-PD not receiving such medications (p<0.04). Conclusions Prodromal GBA-PD are more frequently treated with mood related-medications despite equal rates of reported mood-related disorders, while LRRK2-PD with mood-related disorders experience high rates of anxiety and depression despite treatment, attesting to the need of more precise assessment and treatment of these genetic subgroups.
Collapse
Affiliation(s)
| | - Nurit Omer
- Sackler School of MedicineTel‐Aviv University
- Movement Disorders UnitNeurological Institute, Tel‐Aviv Medical Center
- Laboratory of Early Markers of NeurodegenerationNeurological Institute, Tel‐Aviv Medical Center
| | - Batsheva Cohen
- Laboratory of Early Markers of NeurodegenerationNeurological Institute, Tel‐Aviv Medical Center
| | - Nir Giladi
- Sackler School of MedicineTel‐Aviv University
- Movement Disorders UnitNeurological Institute, Tel‐Aviv Medical Center
- Sagol School of NeuroscienceTel‐Aviv University
| | - Meir Kestenbaum
- Sackler School of MedicineTel‐Aviv University
- Neurology departmentMeir HospitalKfar‐SabaIsrael
| | | | | | - Mali Gana‐Weisz
- Genomic Research Laboratory for NeurodegenerationTel‐Aviv Medical CenterTel‐AvivIsrael
| | - Orly Goldstein
- Genomic Research Laboratory for NeurodegenerationTel‐Aviv Medical CenterTel‐AvivIsrael
| | - Avi Orr‐Urtreger
- Sackler School of MedicineTel‐Aviv University
- Sagol School of NeuroscienceTel‐Aviv University
- Genomic Research Laboratory for NeurodegenerationTel‐Aviv Medical CenterTel‐AvivIsrael
| | - Anat Mirelman
- Sackler School of MedicineTel‐Aviv University
- Laboratory of Early Markers of NeurodegenerationNeurological Institute, Tel‐Aviv Medical Center
- Sagol School of NeuroscienceTel‐Aviv University
| | - Avner Thaler
- Sackler School of MedicineTel‐Aviv University
- Movement Disorders UnitNeurological Institute, Tel‐Aviv Medical Center
- Laboratory of Early Markers of NeurodegenerationNeurological Institute, Tel‐Aviv Medical Center
- Sagol School of NeuroscienceTel‐Aviv University
| |
Collapse
|
17
|
Mata I, Salles P, Cornejo-Olivas M, Saffie P, Ross OA, Reed X, Bandres-Ciga S. LRRK2: Genetic mechanisms vs genetic subtypes. HANDBOOK OF CLINICAL NEUROLOGY 2023; 193:133-154. [PMID: 36803807 DOI: 10.1016/b978-0-323-85555-6.00018-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
In 2004, the identification of pathogenic variants in the LRRK2 gene across several families with autosomal dominant late-onset Parkinson's disease (PD) revolutionized our understanding of the role of genetics in PD. Previous beliefs that genetics in PD was limited to rare early-onset or familial forms of the disease were quickly dispelled. Currently, we recognize LRRK2 p.G2019S as the most common genetic cause of both sporadic and familial PD, with more than 100,000 affected carriers across the globe. The frequency of LRRK2 p.G2019S is also highly variable across populations, with some regions of Asian or Latin America reporting close to 0%, contrasting to Ashkenazi Jews or North African Berbers reporting up to 13% and 40%, respectively. Patients with LRRK2 pathogenic variants are clinically and pathologically heterogeneous, highlighting the age-related variable penetrance that also characterizes LRRK2-related disease. Indeed, the majority of patients with LRRK2-related disease are characterized by a relatively mild Parkinsonism with less motor symptoms with variable presence of α-synuclein and/or tau aggregates, with pathologic pleomorphism widely described. At a functional cellular level, it is likely that pathogenic variants mediate a toxic gain-of-function of the LRRK2 protein resulting in increased kinase activity perhaps in a cell-specific manner; by contrast, some LRRK2 variants appear to be protective reducing PD risk by decreasing the kinase activity. Therefore, employing this information to define appropriate patient populations for clinical trials of targeted kinase LRRK2 inhibition strategies is very promising and demonstrates a potential future application for PD using precision medicine.
Collapse
Affiliation(s)
- Ignacio Mata
- Genomic Medicine Institute (GMI), Cleveland Clinic, Cleveland, OH, United States.
| | - Philippe Salles
- Corporación Centro de Trastornos del Movimiento (CETRAM), Lo Espejo, Santiago, Chile
| | - Mario Cornejo-Olivas
- Neurogenetics Research Center, Instituto Nacional de Ciencias Neurológicas, Lima, Peru
| | - Paula Saffie
- Corporación Centro de Trastornos del Movimiento (CETRAM), Lo Espejo, Santiago, Chile
| | - Owen A Ross
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States
| | - Xylena Reed
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, United States
| | - Sara Bandres-Ciga
- Laboratory of Neurogenetics and Center for Alzheimer's and Related Dementias, National Institute on Aging, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
18
|
Jensen-Roberts S, Myers TL, Auinger P, Cannon P, Rowbotham HM, Coker D, Chanoff E, Soto J, Pawlik M, Amodeo K, Sharma S, Valdovinos B, Wilson R, Sarkar A, McDermott MP, Alcalay RN, Biglan K, Kinel D, Tanner C, Winter-Evans R, Augustine EF, Holloway RG, Dorsey ER, Schneider RB. A Remote Longitudinal Observational Study of Individuals at Genetic Risk for Parkinson Disease. Neurol Genet 2022; 8:e200008. [PMID: 35966918 PMCID: PMC9372873 DOI: 10.1212/nxg.0000000000200008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 05/09/2022] [Indexed: 11/15/2022]
Abstract
Background and Objectives To recruit and characterize a national cohort of individuals who have a genetic variant (LRRK2 G2019S) that increases risk of Parkinson disease (PD), assess participant satisfaction with a decentralized, remote research model, and evaluate interest in future clinical trials. Methods In partnership with 23andMe, Inc., a personal genetics company, LRRK2 G2019S carriers with and without PD were recruited to participate in an ongoing 36-month decentralized, remote natural history study. We examined concordance between self-reported and clinician-determined PD diagnosis. We applied the Movement Disorder Society Prodromal Parkinson's Disease Criteria and asked investigators to identify concern for parkinsonism to distinguish participants with probable prodromal PD. We compared baseline characteristics of LRRK2 G2019S carriers with PD, with prodromal PD, and without PD. Results Over 15 months, we enrolled 277 LRRK2 G2019S carriers from 34 states. At baseline, 60 had self-reported PD (mean [SD] age 67.8 years [8.4], 98% White, 52% female, 80% Ashkenazi Jewish, and 67% with a family history of PD), and 217 did not (mean [SD] age 53.7 years [15.1], 95% White, 59% female, 73% Ashkenazi Jewish, and 57% with a family history of PD). Agreement between self-reported and clinician-determined PD status was excellent (κ = 0.94, 95% confidence interval 0.89–0.99). Twenty-four participants had prodromal PD; 9 met criteria for probable prodromal PD and investigators identified concern for parkinsonism in 20 cases. Compared with those without prodromal PD, participants with prodromal PD were older (63.9 years [9.0] vs 51.9 years [15.1], p < 0.001), had higher modified Movement Disorders Society-Unified Parkinson's Disease Rating Scale motor scores (5.7 [4.3] vs 0.8 [2.1], p < 0.001), and had higher Scale for Outcomes in PD for Autonomic Symptoms scores (11.5 [6.2] vs 6.9 [5.7], p = 0.002). Two-thirds of participants enrolled were new to research, 97% were satisfied with the overall study, and 94% of those without PD would participate in future preventive clinical trials. Discussion An entirely remote national cohort of LRRK2 G2019S carriers was recruited from a single site. This study will prospectively characterize a large LRRK2 G2019S cohort, refine a new model of clinical research, and engage new research participants willing to participate in future therapeutic trials.
Collapse
|
19
|
LRRK2 Deficiency Aggravates Sleep Deprivation-Induced Cognitive Loss by Perturbing Synaptic Pruning in Mice. Brain Sci 2022; 12:brainsci12091200. [PMID: 36138936 PMCID: PMC9496729 DOI: 10.3390/brainsci12091200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 08/29/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022] Open
Abstract
Mutations of the leucine-rich repeat kinase 2 (LRRK2) gene are associated with pronounced sleep disorders or cognitive dysfunction in neurodegenerative diseases. However, the effects of LRRK2 deficiency on sleep rhythms and sleep deprivation-related cognitive changes, and the relevant underlying mechanism, remain unrevealed. In this study, Lrrk2-/- and Lrrk2+/+ mice were subjected to normal sleep (S) or sleep deprivation (SD). Sleep recording, behavioral testing, Golgi-cox staining, immunofluorescence, and real-time PCR were employed to evaluate the impacts of LRRK2 deficiency on sleep behaviors and to investigate the underlying mechanisms. The results showed that after SD, LRRK2-deficient mice displayed lengthened NREM and shortened REM, and reported decreased dendritic spines, increased microglial activation, and synaptic endocytosis in the prefrontal cortex. Meanwhile, after SD, LRRK2 deficiency aggravated cognitive impairments, especially in the recall memory cued by fear conditioning test. Our findings evidence that LRRK2 modulates REM/NREM sleep and its deficiency may exacerbate sleep deprivation-related cognitive disorders by perturbing synaptic plasticity and microglial synaptic pruning in mice.
Collapse
|
20
|
Moreira-Júnior RE, Souza RM, de Carvalho JG, Bergamini JP, Brunialti-Godard AL. Possible association between the lrrk2 gene and anxiety behavior: a systematic literature review. J Neurogenet 2022; 36:98-107. [PMID: 36415932 DOI: 10.1080/01677063.2022.2144293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Alterations to the LRRK2 gene have been associated with Parkinson's disease and alcohol consumption in animals and humans. Furthermore, these disorders are strongly related to anxiety disorders (ADs). Thus, we investigated how the LRRK2 gene might influence anxiety in humans and mice. We elaborated a systematic review based on the PRISMA Statement of studies that investigated levels of anxiety in animal or human models with alterations in the LRRK2 gene. The search was conducted in the PubMed, Scopus, and Web of Science databases, and in reference lists with descriptors related to ADs and the LRRK2. From the 62 articles assessed for eligibility, 16 were included: 11 conducted in humans and seven, in mice. Lrrk2 KO mice and the LRRK2 G2019S, LRRK2 R1441G, and LRRK2 R1441C variants were addressed. Five articles reported an increase in anxiety levels concerning the LRRK2 variants. Decreased anxiety levels were observed in two articles, one focusing on the LRRK2 G2019S and the other, on the Lrrk2 KO mice. Eight other articles reported no differences in anxiety levels in individuals with Lrrk2 alterations compared to their healthy controls. This study discusses a possible influence between the LRRK2 gene and anxiety, adding information to the existing knowledge respecting the influence of genetics on anxiety.
Collapse
Affiliation(s)
- R E Moreira-Júnior
- Department of Genetics, Ecology and Evolution, Laboratory of Animal and Human Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - R M Souza
- Department of Genetics, Ecology and Evolution, Laboratory of Animal and Human Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - J G de Carvalho
- Department of Genetics, Ecology and Evolution, Laboratory of Animal and Human Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - J P Bergamini
- Department of Genetics, Ecology and Evolution, Laboratory of Animal and Human Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - A L Brunialti-Godard
- Department of Genetics, Ecology and Evolution, Laboratory of Animal and Human Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
21
|
Chan GHF. The Role of Genetic Data in Selecting Device-Aided Therapies in Patients With Advanced Parkinson's Disease: A Mini-Review. Front Aging Neurosci 2022; 14:895430. [PMID: 35754954 PMCID: PMC9226397 DOI: 10.3389/fnagi.2022.895430] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Parkinson’s disease (PD) is a common neurodegenerative disease. At present, 5–10% of PD patients are found to have monogenic form of the disease. Each genetic mutation has its own unique clinical features and disease trajectory. It is unclear if the genetic background can affect the outcome of device-aided therapies in these patients. In general, monogenic PD patients have satisfactory motor outcome after receiving invasive therapies. However, their long-term outcome can vary with their genetic mutations. It appears that patients with leucine-rich repeat kinase-2 (LRRK2) and PRKN mutations tended to have good outcome following deep brain stimulation (DBS) surgery. However, those with Glucocerebrosidase (GBA) mutation were found to have poorer cognitive performance, especially after undergoing subthalamic nucleus DBS surgery. In this review, we will provide an overview of the outcomes of device-aided therapies in PD patients with different genetic mutations.
Collapse
|
22
|
Huang J, Cheng Y, Li C, Shang H. Genetic heterogeneity on sleep disorders in Parkinson's disease: a systematic review and meta-analysis. Transl Neurodegener 2022; 11:21. [PMID: 35395825 PMCID: PMC8991652 DOI: 10.1186/s40035-022-00294-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 03/09/2022] [Indexed: 02/08/2023] Open
Abstract
A growing amount of evidence has indicated contributions of variants in causative genes of Parkinson’s disease (PD) to the development of sleep disturbance in PD and prodromal PD stages. In this article, we aimed to investigate the role of genetics in sleep disorders in PD patients and asymptomatic carriers at prodromal stage of PD. A systematic review and meta-analysis of observational studies was conducted based on the MEDLINE, EMBASE and PsychINFO databases. A pooled effect size was calculated by odds ratio (OR) and standard mean difference (SMD). Forty studies were selected for quantitative analysis, including 17 studies on glucocerebrosidase (GBA), 25 studies on Leucine-rich repeat kinase 2 (LRRK2) and 7 on parkin (PRKN) genes, and 3 studies on alpha-synuclein gene (SNCA) were used for qualitative analysis. Patients with PD carrying GBA variants had a significantly higher risk for rapid-eye-movement behavior disorders (RBD) (OR, 1.82) and higher RBD Screening Questionnaire scores (SMD, 0.33). Asymptomatic carriers of GBA variants had higher severity of RBD during follow-up. Patients with PD carrying the LRRK2 G2019S variant had lower risk and severity of RBD compared with those without LRRK2 G2019S. Variants of GBA, LRRK2 and PRKN did not increase or decrease the risk and severity of excessive daytime sleepiness and restless legs syndrome in PD. Our findings suggest that the genetic heterogeneity plays a role in the development of sleep disorders, mainly RBD, in PD and the prodromal stage of PD.
Collapse
Affiliation(s)
- Jingxuan Huang
- Laboratory of Neurodegenerative Disorders, Department of Neurology, Rare Diseases Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yangfan Cheng
- Laboratory of Neurodegenerative Disorders, Department of Neurology, Rare Diseases Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chunyu Li
- Laboratory of Neurodegenerative Disorders, Department of Neurology, Rare Diseases Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Huifang Shang
- Laboratory of Neurodegenerative Disorders, Department of Neurology, Rare Diseases Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
23
|
Iranzo A. Parasomnias and Sleep-Related Movement Disorders in Older Adults. Sleep Med Clin 2022; 17:295-305. [DOI: 10.1016/j.jsmc.2022.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
24
|
Horsager J, Knudsen K, Sommerauer M. Clinical and imaging evidence of brain-first and body-first Parkinson's disease. Neurobiol Dis 2022; 164:105626. [PMID: 35031485 DOI: 10.1016/j.nbd.2022.105626] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/04/2022] [Accepted: 01/07/2022] [Indexed: 12/17/2022] Open
Abstract
Braak's hypothesis has been extremely influential over the last two decades. However, neuropathological and clinical evidence suggest that the model does not conform to all patients with Parkinson's disease (PD). To resolve this controversy, a new model was recently proposed; in brain-first PD, the initial α-synuclein pathology arise inside the central nervous system, likely rostral to the substantia nigra pars compacta, and spread via interconnected structures - eventually affecting the autonomic nervous system; in body-first PD, the initial pathological α-synuclein originates in the enteric nervous system with subsequent caudo-rostral propagation to the autonomic and central nervous system. By using REM-sleep behavior disorder (RBD) as a clinical identifier to distinguish between body-first PD (RBD-positive at motor symptom onset) and brain-first PD (RBD-negative at motor symptom onset), we explored the literature to evaluate clinical and imaging differences between these proposed subtypes. Body-first PD patients display: 1) a larger burden of autonomic symptoms - in particular orthostatic hypotension and constipation, 2) more frequent pathological α-synuclein in peripheral tissues, 3) more brainstem and autonomic nervous system involvement in imaging studies, 4) more symmetric striatal dopaminergic loss and motor symptoms, and 5) slightly more olfactory dysfunction. In contrast, only minor cortical metabolic alterations emerge before motor symptoms in body-first. Brain-first PD is characterized by the opposite clinical and imaging patterns. Patients with pathological LRRK2 genetic variants mostly resemble a brain-first PD profile whereas patients with GBA variants typically conform to a body-first profile. SNCA-variant carriers are equally distributed between both subtypes. Overall, the literature indicates that body-first and brain-first PD might be two distinguishable entities on some clinical and imaging markers.
Collapse
Affiliation(s)
- Jacob Horsager
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark.
| | - Karoline Knudsen
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark
| | - Michael Sommerauer
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark; Department of Neurology, University Hospital Cologne, Faculty of Medicine, University of Cologne, Köln, Germany; Institute of Neuroscience and Medicine (INM-3), Forschungszentrum Jülich, Jülich, Germany
| |
Collapse
|
25
|
Hunt J, Coulson EJ, Rajnarayanan R, Oster H, Videnovic A, Rawashdeh O. Sleep and circadian rhythms in Parkinson's disease and preclinical models. Mol Neurodegener 2022; 17:2. [PMID: 35000606 PMCID: PMC8744293 DOI: 10.1186/s13024-021-00504-w] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 11/30/2021] [Indexed: 12/21/2022] Open
Abstract
The use of animals as models of human physiology is, and has been for many years, an indispensable tool for understanding the mechanisms of human disease. In Parkinson's disease, various mouse models form the cornerstone of these investigations. Early models were developed to reflect the traditional histological features and motor symptoms of Parkinson's disease. However, it is important that models accurately encompass important facets of the disease to allow for comprehensive mechanistic understanding and translational significance. Circadian rhythm and sleep issues are tightly correlated to Parkinson's disease, and often arise prior to the presentation of typical motor deficits. It is essential that models used to understand Parkinson's disease reflect these dysfunctions in circadian rhythms and sleep, both to facilitate investigations into mechanistic interplay between sleep and disease, and to assist in the development of circadian rhythm-facing therapeutic treatments. This review describes the extent to which various genetically- and neurotoxically-induced murine models of Parkinson's reflect the sleep and circadian abnormalities of Parkinson's disease observed in the clinic.
Collapse
Affiliation(s)
- Jeremy Hunt
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, Australia
| | - Elizabeth J. Coulson
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, Australia
- Queensland Brain Institute, University of Queensland, Brisbane, Australia
| | | | - Henrik Oster
- Institute of Neurobiology, University of Lübeck, Lübeck, Germany
| | - Aleksandar Videnovic
- Movement Disorders Unit and Division of Sleep Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA USA
| | - Oliver Rawashdeh
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, Australia
| |
Collapse
|
26
|
Simitsi AM, Koros C, Stamelou M, Papadimitriou D, Leonardos A, Bougea A, Papagiannakis N, Pachi I, Angelopoulou E, Lourentzos K, Bonakis A, Stefanis L. REM sleep behavior disorder and other sleep abnormalities in p. A53T SNCA mutation carriers. Sleep 2021; 44:5999486. [PMID: 33231251 DOI: 10.1093/sleep/zsaa248] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 10/22/2020] [Indexed: 01/12/2023] Open
Abstract
STUDY OBJECTIVES Τo assess whether REM Sleep Behavior Disorder (RBD) and other sleep abnormalities occur in carriers of the p.A53T alpha-synuclein gene (SNCA) mutation, using both subjective and objective measures. METHODS We have assessed 15 p.A53T carriers (10 manifesting Parkinson's Disease [PD-A53T] and 5 asymptomatic carriers) with simultaneous Video-PSG (polysomnography) recording, the Epworth Sleepiness Scale (ESS) for daytime sleepiness, the Athens Insomnia Scale (AIS), the RBD Screening Questionnaire (RBDSQ) for clinical features of RBD, the Montreal Cognitive Assessment (MOCA) for cognition and the University of Pennsylvania Smell Identification Test (UPSIT) for olfaction. RESULTS In our cohort, 90% of PD carriers had at least one sleep disorder and 40% had two: 4 RBD, 1 Periodic Limb Movements (PLM), 1 RBD plus PLM, 2 RBD plus moderate Obstructive Sleep Apnea (OSA), and 1 moderate OSA plus Restless Leg Syndrome. No asymptomatic carrier manifested a confirmed sleep disorder. 6/7 PD carriers with RBD had abnormal olfactory testing and 4/7 MOCA below cut off. There was a correlation of both impaired olfaction and cognition with RBD. CONCLUSIONS RBD occurs in the majority of PD-A53T, in contrast to most other genetic forms of PD, in which RBD is uncommon. The paucity of a sleep disorder in the asymptomatic carriers suggests that such carriers have not yet reached the prodromal phase when such sleep disorders manifest. Hyposmia in almost all subjects with RBD and cognitive decline in most of them are indicative of the general pattern of disease progression, which however is not uniform.
Collapse
Affiliation(s)
- Athina Maria Simitsi
- 1st Department of Neurology, Eginition University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Christos Koros
- 1st Department of Neurology, Eginition University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Stamelou
- 1st Department of Neurology, Eginition University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece.,Neurology Clinic, Philipps University, Marburg, Germany.,Parkinson's Disease and Movement Disorders Department, HYGEIA Hospital, Athens, Greece
| | | | - Athanasios Leonardos
- 1st Department of Neurology, Eginition University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Anastasia Bougea
- 1st Department of Neurology, Eginition University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos Papagiannakis
- 1st Department of Neurology, Eginition University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioanna Pachi
- 1st Department of Neurology, Eginition University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Efthalia Angelopoulou
- 1st Department of Neurology, Eginition University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos Lourentzos
- 2nd Department of Neurology, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Anastasios Bonakis
- 2nd Department of Neurology, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Leonidas Stefanis
- 1st Department of Neurology, Eginition University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece.,Biomedical Research Foundation, Academy of Athens (BRFAA), Athens, Greece
| |
Collapse
|
27
|
Salles PA, Mata IF, Fernandez HH. Should we start integrating genetic data in decision-making on device-aided therapies in Parkinson disease? A point of view. Parkinsonism Relat Disord 2021; 88:51-57. [PMID: 34119931 DOI: 10.1016/j.parkreldis.2021.05.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 04/26/2021] [Accepted: 05/12/2021] [Indexed: 12/14/2022]
Abstract
Parkinson disease (PD) is a complex heterogeneous neurodegenerative disorder. Association studies have revealed numerous genetic risk loci and variants, and about 5-10% suffer from a monogenic form. Because the presentation and course of PD is unique to each patient, personalized symptomatic treatment should ideally be offered to treat the most disabling motor and non-motor symptoms. Indeed, clinical milestones and treatment complications that appear during disease progression are influenced by the genetic imprint. With recent advances in PD, more patients live longer to become eligible for device-aided therapies, such as apomorphine continuous subcutaneous infusion, levodopa duodenal gel infusion, and deep brain stimulation surgery, each with its own inclusion and exclusion criteria, advantages and disadvantages. Because genetic variants influence the expression of particular clinical profiles, factors for better or worse outcomes for device-aided therapies may then be proactively identified. For example, mutations in PRKN, LRRK2 and GBA express phenotypes that favor suitability for different device therapies, although with marked differences in the therapeutic window; whereas multiplications of SNCA express phenotypes that make them less desirable for device therapies.
Collapse
Affiliation(s)
- Philippe A Salles
- Center for Neurological Restoration, Cleveland Clinic Neurological Institute, OH, USA; Movement Disorders Center, CETRAM, Santiago, Chile.
| | - Ignacio F Mata
- Lerner Research Institute, Genomic Medicine, Cleveland Clinic Foundation, Cleveland, OH, USA.
| | - Hubert H Fernandez
- Center for Neurological Restoration, Cleveland Clinic Neurological Institute, OH, USA.
| |
Collapse
|
28
|
Iranzo A, Ramos LA, Novo S. The Isolated Form of Rapid Eye Movement Sleep Behavior Disorder: The Upcoming Challenges. Sleep Med Clin 2021; 16:335-348. [PMID: 33985658 DOI: 10.1016/j.jsmc.2021.03.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The diagnosis of rapid eye movement (REM) sleep behavior disorder (SBD) requires videopolysomnography detection of excessive electromyographic activity during REM sleep, which is time consuming and difficult. An easier, faster, reliable, and reproducible methodology is needed for its diagnosis. The isolated form of RBD represents an early manifestation of the synucleinopathies Parkinson disease and dementia with Lewy bodies. There is a need to find neuroprotective drugs capable of preventing parkinsonism and dementia onset in isolated RBD. Clonazepam and melatonin ameliorate the RBD symptoms, but therapeutic alternatives are needed when these medications fail or show produce side effects.
Collapse
Affiliation(s)
- Alex Iranzo
- Neurology Service, Sleep Disorders Center, Hospital Clinic de Barcelona, CIBERNED, IDIBAPS, University of Barcelona, Spain.
| | - Lina Agudelo Ramos
- Neurology Service, Instituto Neurológico de Colombia (INDEC), Calle 55, 46-36, Medellín 050012, Colombia
| | - Sabela Novo
- Instituto de Investigaciones del Sueño, Calle Padre Damián, 44, Madrid 28036, Spain; Hospital Universitario Puerta de Hierro, Majadahonda, Spain
| |
Collapse
|
29
|
Vinagre-Aragón A, Campo-Caballero D, Mondragón-Rezola E, Pardina-Vilella L, Hernandez Eguiazu H, Gorostidi A, Croitoru I, Bergareche A, Ruiz-Martinez J. A More Homogeneous Phenotype in Parkinson's Disease Related to R1441G Mutation in the LRRK2 Gene. Front Neurol 2021; 12:635396. [PMID: 33763016 PMCID: PMC7982912 DOI: 10.3389/fneur.2021.635396] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/13/2021] [Indexed: 11/27/2022] Open
Abstract
Parkinson's disease (PD) is characterized by a great clinical heterogeneity. Nevertheless, the biological drivers of this heterogeneity have not been completely elucidated and are likely to be complex, arising from interactions between genetic, epigenetic, and environmental factors. Despite this heterogeneity, the clinical patterns of monogenic forms of PD have usually maintained a good clinical correlation with each mutation once a sufficient number of patients have been studied. Mutations in LRRK2 are the most commonly known genetic cause of autosomal dominant PD known to date. Furthermore, recent genome-wide association studies have revealed variations in LRRK2 as significant risk factors also for the development of sporadic PD. The LRRK2-R1441G mutation is especially frequent in the population of Basque ascent based on a possible founder effect, being responsible for almost 50% of cases of familial PD in our region, with a high penetrance. Curiously, Lewy bodies, considered the neuropathological hallmark of PD, are absent in a significant subset of LRRK2-PD cases. Indeed, these cases appear to be associated with a less aggressive primarily pure motor phenotype. The aim of our research is to examine the clinical phenotype of R1441G-PD patients, more homogeneous when we compare it with sporadic PD patients or with patients carrying other LRRK2 mutations, and reflect on the value of the observed correlation in the genetic forms of PD. The clinical heterogeneity of PD leads us to think that there may be as many different diseases as the number of people affected. Undoubtedly, genetics constitutes a relevant key player, as it may significantly influence the phenotype, with differences according to the mutation within the same gene, and not only in familial PD but also in sporadic forms. Thus, extending our knowledge regarding genetic forms of PD implies an expansion of knowledge regarding sporadic forms, and this may be relevant due to the future therapeutic implications of all forms of PD.
Collapse
Affiliation(s)
- Ana Vinagre-Aragón
- Department of Neurology, Hospital Universitario Donostia, San Sebastián, Spain.,Neuroscience Area, Biodonostia Health Research Institute, San Sebastián, Spain
| | - David Campo-Caballero
- Department of Neurology, Hospital Universitario Donostia, San Sebastián, Spain.,Neuroscience Area, Biodonostia Health Research Institute, San Sebastián, Spain
| | - Elisabet Mondragón-Rezola
- Department of Neurology, Hospital Universitario Donostia, San Sebastián, Spain.,Neuroscience Area, Biodonostia Health Research Institute, San Sebastián, Spain
| | - Lara Pardina-Vilella
- Department of Neurology, Hospital Universitario Donostia, San Sebastián, Spain.,Neuroscience Area, Biodonostia Health Research Institute, San Sebastián, Spain
| | | | - Ana Gorostidi
- Neuroscience Area, Biodonostia Health Research Institute, San Sebastián, Spain
| | - Ioana Croitoru
- Neuroscience Area, Biodonostia Health Research Institute, San Sebastián, Spain
| | - Alberto Bergareche
- Department of Neurology, Hospital Universitario Donostia, San Sebastián, Spain.,Neuroscience Area, Biodonostia Health Research Institute, San Sebastián, Spain.,Centro de Investigación Biomédica en Red para Enfermedades Neurodegenerativas (CIBERNED), Carlos III Health Institute, Madrid, Spain
| | - Javier Ruiz-Martinez
- Department of Neurology, Hospital Universitario Donostia, San Sebastián, Spain.,Neuroscience Area, Biodonostia Health Research Institute, San Sebastián, Spain.,Centro de Investigación Biomédica en Red para Enfermedades Neurodegenerativas (CIBERNED), Carlos III Health Institute, Madrid, Spain
| |
Collapse
|
30
|
Song B, Zhu J. A Novel Application of Ketamine for Improving Perioperative Sleep Disturbances. Nat Sci Sleep 2021; 13:2251-2266. [PMID: 34992482 PMCID: PMC8715868 DOI: 10.2147/nss.s341161] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/04/2021] [Indexed: 01/20/2023] Open
Abstract
Perioperative sleep disturbances are commonly observed before, during, and after surgery and can be caused by several factors, such as preoperative negative moods, general anesthetics, surgery trauma, and pain. Over the past decade, the fast-acting antidepressant effects of the N-methyl-D-aspartate (NMDA) receptor antagonist ketamine represent one of the most attractive discoveries in the field of psychiatry, such as antidepressant and anxiolytic effects. It is also widely used as a short-acting anesthetic and analgesic. Recent research has revealed new possible applications for ketamine, such as for perioperative sleep disorders and circadian rhythm disorders. Here, we summarize the risk factors for perioperative sleep disturbances, outcomes of perioperative sleep disturbances, and mechanism of action of ketamine in improving perioperative sleep quality.
Collapse
Affiliation(s)
- Bijia Song
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Junchao Zhu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| |
Collapse
|
31
|
Kikuoka R, Miyazaki I, Kubota N, Maeda M, Kagawa D, Moriyama M, Sato A, Murakami S, Kitamura Y, Sendo T, Asanuma M. Mirtazapine exerts astrocyte-mediated dopaminergic neuroprotection. Sci Rep 2020; 10:20698. [PMID: 33244123 PMCID: PMC7693322 DOI: 10.1038/s41598-020-77652-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 11/13/2020] [Indexed: 11/17/2022] Open
Abstract
Mirtazapine, a noradrenergic and specific serotonergic antidepressant (NaSSA), is known to activate serotonin (5-HT) 1A receptor. Our recent study demonstrated that stimulation of astrocytic 5-HT1A receptors promoted astrocyte proliferation and upregulated antioxidative property in astrocytes to protect dopaminergic neurons against oxidative stress. Here, we evaluated the neuroprotective effects of mirtazapine against dopaminergic neurodegeneration in models of Parkinson’s disease (PD). Mirtazapine administration attenuated the loss of dopaminergic neurons in the substantia nigra and increased the expression of the antioxidative molecule metallothionein (MT) in the striatal astrocytes of 6-hydroxydopamine (6-OHDA)-injected parkinsonian mice via 5-HT1A receptors. Mirtazapine protected dopaminergic neurons against 6-OHDA-induced neurotoxicity in mesencephalic neuron and striatal astrocyte cocultures, but not in enriched neuronal cultures. Mirtazapine-treated neuron-conditioned medium (Mir-NCM) induced astrocyte proliferation and upregulated MT expression via 5-HT1A receptors on astrocytes. Furthermore, treatment with medium from Mir-NCM-treated astrocytes protected dopaminergic neurons against 6-OHDA neurotoxicity, and these effects were attenuated by treatment with a MT-1/2-specific antibody or 5-HT1A antagonist. Our study suggests that mirtazapine could be an effective disease-modifying drug for PD and highlights that astrocytic 5-HT1A receptors may be a novel target for the treatment of PD.
Collapse
Affiliation(s)
- Ryo Kikuoka
- Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Ikuko Miyazaki
- Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Natsuki Kubota
- Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Megumi Maeda
- Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Daiki Kagawa
- Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Masaaki Moriyama
- Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Asuka Sato
- Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Shinki Murakami
- Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Yoshihisa Kitamura
- Department of Clinical Pharmacy, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Toshiaki Sendo
- Department of Clinical Pharmacy, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Masato Asanuma
- Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan.
| |
Collapse
|
32
|
Abstract
Early descriptions of subtypes of Parkinson's disease (PD) are dominated by the approach of predetermined groups. Experts defined, from clinical observation, groups based on clinical or demographic features that appeared to divide PD into clinically distinct subsets. Common bases on which to define subtypes have been motor phenotype (tremor dominant vs akinetic-rigid or postural instability gait disorder types), age, nonmotor dominant symptoms, and genetic forms. Recently, data-driven approaches have been used to define PD subtypes, taking an unbiased statistical approach to the identification of PD subgroups. The vast majority of data-driven subtyping has been done based on clinical features. Biomarker-based subtyping is an emerging but still quite undeveloped field. Not all of the subtyping methods have established therapeutic implications. This may not be surprising given that they were born largely from clinical observations of phenotype and not in observations regarding treatment response or biological hypotheses. The next frontier for subtypes research as it applies to personalized medicine in PD is the development of genotype-specific therapies. Therapies for GBA-PD and LRRK2-PD are already under development. This review discusses each of the major subtyping systems/methods in terms of its applicability to therapy in PD, and the opportunities and challenges designing clinical trials to develop the evidence base for personalized medicine based on subtypes.
Collapse
Affiliation(s)
- Connie Marras
- Edmond J Safra Program in Parkinson's Disease, Toronto Western Hospital, University of Toronto, Toronto, Canada.
| | - K Ray Chaudhuri
- Parkinson's Foundation International Centre of Excellence, King's College Hospital and King's College London, Department of Neurosciences, Institute of Psychiatry, Psychology & Neuroscience, Denmark Hill, London, UK
| | - Nataliya Titova
- Department of Neurology, Neurosurgery and Medical Genetics, Pirogov Russian National Research Medical University, Moscow, Russia
- Department of Neurodegenerative Diseases, Federal Center of Brain and Neurotechnologies, Moscow, Russia
| | - Tiago A Mestre
- The Ottawa Hospital Research Institute and University of Ottawa Brain and Mind Research Institute, Ottawa, Ontario, Canada
| |
Collapse
|
33
|
Crown LM, Bartlett MJ, Wiegand JPL, Eby AJ, Monroe EJ, Gies K, Wohlford L, Fell MJ, Falk T, Cowen SL. Sleep Spindles and Fragmented Sleep as Prodromal Markers in a Preclinical Model of LRRK2-G2019S Parkinson's Disease. Front Neurol 2020; 11:324. [PMID: 32477237 PMCID: PMC7232828 DOI: 10.3389/fneur.2020.00324] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 04/03/2020] [Indexed: 12/26/2022] Open
Abstract
Sleep disturbances co-occur with and precede the onset of motor symptoms in Parkinson's disease (PD). We evaluated sleep fragmentation and thalamocortical sleep spindles in mice expressing the p.G2019S mutation of the leucine-rich repeat kinase 2 (LRRK2) gene, one of the most common genetic forms of PD. Thalamocortical sleep spindles are oscillatory events that occur during slow-wave sleep that are involved in memory consolidation. We acquired data from electrocorticography, sleep behavioral measures, and a rotarod-based motor enrichment task in 28 LRRK2-G2019S knock-in mice and 27 wild-type controls (8–10 month-old males). Sleep was more fragmented in LRRK2-G2019S mice; sleep bouts were shorter and more numerous, even though total sleep time was similar to controls. LRRK2-G2019S animals expressed more sleep spindles, and individual spindles were longer in duration than in controls. We then chronically administered the LRRK2-inhibitor MLi-2 in-diet to n = 12 LRRK2-G2019S and n = 15 wild-type mice for a within-subject analysis of the effects of kinase inhibition on sleep behavior and physiology. Treatment with MLi-2 did not impact these measures. The data indicate that the LRRK2-G2019S mutation could lead to reduced sleep quality and altered sleep spindle physiology. This suggests that sleep spindles in LRRK2-G2019S animals could serve as biomarkers for underlying alterations in sleep networks resulting from the LRRK2-G2019S mutation, and further evaluation in human LRRK2-G2019S carriers is therefore warranted.
Collapse
Affiliation(s)
- Lindsey M Crown
- Department of Psychology, University of Arizona, Tucson, AZ, United States
| | - Mitchell J Bartlett
- Department of Neurology, University of Arizona, Tucson, AZ, United States.,Department of Pharmacology, University of Arizona, Tucson, AZ, United States
| | - Jean-Paul L Wiegand
- Graduate Interdisciplinary Program in Neuroscience, University of Arizona, Tucson, AZ, United States
| | - Allison J Eby
- Department of Physiology, University of Arizona, Tucson, AZ, United States
| | - Emily J Monroe
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, United States
| | - Kathleen Gies
- Department of Psychology, University of Arizona, Tucson, AZ, United States
| | - Luke Wohlford
- College of Medicine, University of Arizona, Phoenix, AZ, United States
| | | | - Torsten Falk
- Department of Neurology, University of Arizona, Tucson, AZ, United States.,Department of Pharmacology, University of Arizona, Tucson, AZ, United States
| | - Stephen L Cowen
- Department of Psychology, University of Arizona, Tucson, AZ, United States.,Graduate Interdisciplinary Program in Neuroscience, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
34
|
Zhang Y, Ren R, Sanford LD, Yang L, Zhou J, Tan L, Li T, Zhang J, Wing YK, Shi J, Lu L, Tang X. Sleep in Parkinson's disease: A systematic review and meta-analysis of polysomnographic findings. Sleep Med Rev 2020; 51:101281. [PMID: 32135452 DOI: 10.1016/j.smrv.2020.101281] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 01/21/2020] [Accepted: 01/23/2020] [Indexed: 02/08/2023]
Abstract
Polysomnographic studies have been conducted to explore sleep changes in Parkinson's disease (PD), but the relationships between sleep disturbances and PD are imperfectly understood. We conducted a systematic review of the literature exploring polysomnographic differences between PD patients and controls in EMBASE, MEDLINE, All EBM databases, CINAHL, and PsycIFNO. 67 studies were identified for systematic review, 63 of which were used for meta-analysis. Meta-analyses revealed significant reductions in total sleep time, sleep efficiency, N2 percentage, slow wave sleep, rapid eye movement sleep (REM) percentage, and increases in wake time after sleep onset, N1 percentage, REM latency, apnea hypopnea index, and periodic limb movement index in PD patients compared with controls. There were no remarkable differences in sleep continuity or sleep architecture between PD patients with and without REM sleep behavior disorder (RBD). Our study suggests that PD patients have poor sleep quality and quantity. Sex, age, disease duration, presence of RBD, medication status, cognitive impairment, and adaptation night are factors that contributed to heterogeneity between studies.
Collapse
Affiliation(s)
- Ye Zhang
- Sleep Medicine Center, Department of Respiratory and Critical Care Medicine, Mental Health Center, Translational Neuroscience Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Rong Ren
- Sleep Medicine Center, Department of Respiratory and Critical Care Medicine, Mental Health Center, Translational Neuroscience Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Larry D Sanford
- Sleep Research Laboratory, Center for Integrative Neuroscience and Inflammatory Diseases, Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA, USA.
| | - Linghui Yang
- Sleep Medicine Center, Department of Respiratory and Critical Care Medicine, Mental Health Center, Translational Neuroscience Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Junying Zhou
- Sleep Medicine Center, Department of Respiratory and Critical Care Medicine, Mental Health Center, Translational Neuroscience Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Lu Tan
- Sleep Medicine Center, Department of Respiratory and Critical Care Medicine, Mental Health Center, Translational Neuroscience Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Taomei Li
- Sleep Medicine Center, Department of Respiratory and Critical Care Medicine, Mental Health Center, Translational Neuroscience Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Jihui Zhang
- Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Yun-Kwok Wing
- Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Jie Shi
- National Institute on Drug Dependence, Peking University Sixth Hospital, Peking University, Beijing 100191, China
| | - Lin Lu
- National Institute on Drug Dependence, Peking University Sixth Hospital, Peking University, Beijing 100191, China
| | - Xiangdong Tang
- Sleep Medicine Center, Department of Respiratory and Critical Care Medicine, Mental Health Center, Translational Neuroscience Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
35
|
Tolosa E, Vila M, Klein C, Rascol O. LRRK2 in Parkinson disease: challenges of clinical trials. Nat Rev Neurol 2020; 16:97-107. [PMID: 31980808 DOI: 10.1038/s41582-019-0301-2] [Citation(s) in RCA: 304] [Impact Index Per Article: 60.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2019] [Indexed: 12/27/2022]
Abstract
One of the most common monogenic forms of Parkinson disease (PD) is caused by mutations in the LRRK2 gene that encodes leucine-rich repeat kinase 2 (LRRK2). LRRK2 mutations, and particularly the most common mutation Gly2019Ser, are observed in patients with autosomal dominant PD and in those with apparent sporadic PD, who are clinically indistinguishable from those with idiopathic PD. The discoveries that pathogenic mutations in the LRRK2 gene increase LRRK2 kinase activity and that small-molecule LRRK2 kinase inhibitors can be neuroprotective in preclinical models of PD have placed LRRK2 at the centre of disease modification efforts in PD. Recent investigations also suggest that LRRK2 has a role in the pathogenesis of idiopathic PD and that LRRK2 therapies might, therefore, be beneficial in this common subtype of PD. In this Review, we describe the characteristics of LRRK2-associated PD that are most relevant to the development of LRRK2-targeted therapies and the design and implementation of clinical trials. We highlight strategies for correcting the effects of mutations in the LRRK2 gene, focusing on how to identify which patients are the optimal candidates and how to decide on the timing of such trials. In addition, we discuss challenges in implementing trials of disease-modifying treatment in people who carry LRRK2 mutations.
Collapse
Affiliation(s)
- Eduardo Tolosa
- Parkinson and Movement Disorders Unit, Neurology Service, Hospital Clinic of Barcelona, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), University of Barcelona, Barcelona, Spain. .,Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Barcelona, Spain.
| | - Miquel Vila
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Barcelona, Spain.,Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR), Autonomous University of Barcelona, Barcelona, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Olivier Rascol
- Clinical Investigation Center CIC1436, Departments of Clinical Pharmacology and Neurosciences, NS-Park/FCRIN network and NeuroToul Center of Excellence for Neurodegeneration, INSERM, University Hospital of Toulouse and University of Toulouse, Toulouse, France
| |
Collapse
|
36
|
Stefani A, Högl B. Sleep in Parkinson's disease. Neuropsychopharmacology 2020; 45:121-128. [PMID: 31234200 PMCID: PMC6879568 DOI: 10.1038/s41386-019-0448-y] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/26/2019] [Accepted: 06/13/2019] [Indexed: 11/09/2022]
Abstract
Sleep disturbances are common in Parkinson's disease and comprise the entire spectrum of sleep disorders. On the one hand regulation of sleep and wakefulness is affected in Parkinson's disease, leading to the development of disorders, such as insomnia and daytime sleepiness. While on the other hand control of motor activity during sleep is impaired, with subsequent manifestation of parasomnias (mainly REM sleep behavior disorders, but also, albeit more rarely, sleepwalking, and overlap parasomnia). Restless legs syndrome has been reported to be frequent in patients with Parkinson's disease, although there is no consensus on whether it is more frequent in Parkinson's disease than in the general population. The same is true for sleep-related breathing disorders. Regarding the diagnosis of sleep disorders in patients with Parkinson's disease, one of the main challenges is correctly identifying excessive daytime sleepiness as there are many potential confounding factors, for example it is necessary to distinguish sleep-related breathing disorders from medication effects, and to distinguish restless legs syndrome from the concomitant presence of potential mimics specific to Parkinson's disease, such as akathisia, nocturnal leg cramps, nocturnal hypokinesia, early morning dystonia, etc. The correct diagnosis of REM sleep behavior disorder is also not always easy, and video-polysomnography should be performed in order to exclude mimic-like movements at the end of sleep apneas or violent periodic leg movements of sleep. These aspects and specific considerations about diagnosis and treatment of sleep disorders in patients with Parkinson's disease will be reviewed.
Collapse
Affiliation(s)
- Ambra Stefani
- Department of Neurology, Medical University Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria.
| | - Birgit Högl
- Department of Neurology, Medical University Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| |
Collapse
|
37
|
Pal P, Mahale R, Yadav R. Does quality of sleep differ in familial and sporadic Parkinson’s disease? ANNALS OF MOVEMENT DISORDERS 2020. [DOI: 10.4103/aomd.aomd_7_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
38
|
Saunders-Pullman R, Mirelman A, Alcalay RN, Wang C, Ortega RA, Raymond D, Mejia-Santana H, Orbe-Reilly M, Johannes BA, Thaler A, Ozelius L, Orr-Urtreger A, Marder KS, Giladi N, Bressman SB. Progression in the LRRK2-Asssociated Parkinson Disease Population. JAMA Neurol 2019; 75:312-319. [PMID: 29309488 DOI: 10.1001/jamaneurol.2017.4019] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Importance Few prospective longitudinal studies have evaluated the progression of Parkinson disease (PD) in patients with the leucine-rich repeat kinase 2 (LRRK2 [OMIM 609007]) mutation. Knowledge about such progression will aid clinical trials. Objective To determine whether the longitudinal course of PD in patients with the LRRK2 mutation differs from the longitudinal course of PD in patients without the mutation. Design, Setting, and Participants A prospective comprehensive assessment of a large cohort of patients from 3 sites with LRRK2 PD or with nonmutation PD was conducted from July 21, 2009, to September 30, 2016. All patients of Ashkenazi Jewish ancestry with PD were approached at each site; approximately 80% agreed to an initial visit. A total of 545 patients of Ashkenazi Jewish descent with PD who had 1 to 4 study visits were evaluated. A total of 144 patients (26.4%) had the LRRK2 G2019S mutation. Patients with GBA (OMIM 606463) mutations were excluded from the analysis. Main Outcomes and Measures Linear mixed-effects models for longitudinal motor scores were used to examine the association of LRRK2 mutation status with the rate of change in Unified Parkinson's Disease Rating Scale III scores using disease duration as the time scale, adjusting for sex, site, age, disease duration, cognitive score, and levodopa-equivalent dose at baseline. Mixed-effects models were used to assess change in cognition, as measured by Montreal Cognitive Assessment scores. Results Among the 545 participants, 233 were women, 312 were men, and the mean (SD) age was 68.2 (9.1) years for participants with the LRRK2 mutation and 67.8 (10.7) years for those without it. Seventy-two of 144 participants with the LRRK2 mutation and 161 of 401 participants with no mutation were women. The estimate (SE) of the rate of change in the Unified Parkinson's Disease Rating Scale III motor score per year among those with the LRRK2 mutation (0.689 [0.192] points per year) was less than among those without the mutation (1.056 [0.187] points per year; difference, -0.367 [0.149] points per year; P = .02). The estimate (SE) of the difference in the rate of change of the Montreal Cognitive Assessment score between those with the LRRK2 mutation (-0.096 [0.090] points per year) and those without the mutation (-0.192 [0.102] points per year) did not reach statistical significance (difference, 0.097 [0.055] points per year; P = .08). Conclusions and Relevance Prospective longitudinal follow-up of patients with PD with or without the LRRK2 G2019S mutation supports data from a cross-sectional study and demonstrates a slower decline in motor Unified Parkinson's Disease Rating Scale scores among those with LRRK2 G2019S-associated PD.
Collapse
Affiliation(s)
- Rachel Saunders-Pullman
- Department of Neurology, Mount Sinai Beth Israel Medical Center, New York, New York.,Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Anat Mirelman
- Movement Disorders Unit, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel.,Sackler School of Medicine, Sagol School for Neuroscience, Tel Aviv University, Tel Aviv, Israel.,Department of Physical Therapy, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Roy N Alcalay
- Department of Neurology, College of Physicians and Surgeons, New York, New York
| | - Cuiling Wang
- Department of Neurology, College of Physicians and Surgeons, New York, New York.,Department of Epidemiology and Family Health, Albert Einstein College of Medicine, Yeshiva University, Bronx, New York.,Department of Neurology, Albert Einstein College of Medicine, Yeshiva University, Bronx, New York
| | - Roberto A Ortega
- Department of Neurology, Mount Sinai Beth Israel Medical Center, New York, New York.,Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Deborah Raymond
- Department of Neurology, Mount Sinai Beth Israel Medical Center, New York, New York.,Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York
| | | | | | - Brooke A Johannes
- Department of Neurology, Mount Sinai Beth Israel Medical Center, New York, New York.,Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Avner Thaler
- Movement Disorders Unit, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel.,Sackler School of Medicine, Sagol School for Neuroscience, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Laurie Ozelius
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston
| | - Avi Orr-Urtreger
- Movement Disorders Unit, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel.,Sackler School of Medicine, Sagol School for Neuroscience, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.,Genetic Institute, Tel Aviv Medical Center, Tel Aviv, Israel
| | - Karen S Marder
- Department of Neurology, College of Physicians and Surgeons, New York, New York.,Taub Institute for Alzheimer's Disease and the Aging Brain, Columbia University, New York, New York
| | - Nir Giladi
- Movement Disorders Unit, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel.,Sackler School of Medicine, Sagol School for Neuroscience, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Susan B Bressman
- Department of Neurology, Mount Sinai Beth Israel Medical Center, New York, New York.,Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York
| | | |
Collapse
|
39
|
Dauvilliers Y, Schenck CH, Postuma RB, Iranzo A, Luppi PH, Plazzi G, Montplaisir J, Boeve B. REM sleep behaviour disorder. Nat Rev Dis Primers 2018; 4:19. [PMID: 30166532 DOI: 10.1038/s41572-018-0016-5] [Citation(s) in RCA: 297] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Rapid eye movement (REM) sleep behaviour disorder (RBD) is a parasomnia that is characterized by loss of muscle atonia during REM sleep (known as REM sleep without atonia, or RSWA) and abnormal behaviours occurring during REM sleep, often as dream enactments that can cause injury. RBD is categorized as either idiopathic RBD or symptomatic (also known as secondary) RBD; the latter is associated with antidepressant use or with neurological diseases, especially α-synucleinopathies (such as Parkinson disease, dementia with Lewy bodies and multiple system atrophy) but also narcolepsy type 1. A clinical history of dream enactment or complex motor behaviours together with the presence of muscle activity during REM sleep confirmed by video polysomnography are mandatory for a definite RBD diagnosis. Management involves clonazepam and/or melatonin and counselling and aims to suppress unpleasant dreams and behaviours and improve bedpartner quality of life. RSWA and RBD are now recognized as manifestations of an α-synucleinopathy; most older adults with idiopathic RBD will eventually develop an overt neurodegenerative syndrome. In the future, studies will likely evaluate neuroprotective therapies in patients with idiopathic RBD to prevent or delay α-synucleinopathy-related motor and cognitive decline.
Collapse
Affiliation(s)
- Yves Dauvilliers
- Centre National de Référence Narcolepsie Hypersomnies, Unité des Troubles du Sommeil, Service de Neurologie, Hôpital Gui-de-Chauliac Montpellier, Montpellier, France. .,INSERM, U1061, Montpellier, France, Université Montpellier, Montpellier, France.
| | - Carlos H Schenck
- Minnesota Regional Sleep Disorders Center, and Departments of Psychiatry, Hennepin County Medical Center and University of Minnesota Medical School, Minneapolis, MN, USA
| | - Ronald B Postuma
- Department of Neurology, Montreal General Hospital, Montreal, Quebec, Canada
| | - Alex Iranzo
- Neurology Service, Multidisciplinary Sleep Unit, Hospital Clinic de Barcelona, IDIBAPS, CIBERNED, Barcelona, Spain
| | - Pierre-Herve Luppi
- UMR 5292 CNRS/U1028 INSERM, Center of Research in Neuroscience of Lyon (CRNL), SLEEP Team, Université Claude Bernard Lyon I, Faculté de Médecine RTH Laennec, Lyon, France
| | - Giuseppe Plazzi
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy.,IRCCS, Istituto delle Scienze Neurologiche, Bologna, Italy
| | - Jacques Montplaisir
- Department of Psychiatry, Université de Montréal, Québec, Canada and Center for Advanced Research in Sleep Medicine (CARSM), Hôpital du Sacré-Coeur de Montréal, Quebec, Canada
| | - Bradley Boeve
- Department of Neurology and Center for Sleep Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
40
|
|
41
|
Li J, Ruskey JA, Arnulf I, Dauvilliers Y, Hu MTM, Högl B, Leblond CS, Zhou S, Ambalavanan A, Ross JP, Bourassa CV, Spiegelman D, Laurent SB, Stefani A, Charley Monaca C, Cochen De Cock V, Boivin M, Ferini-Strambi L, Plazzi G, Antelmi E, Young P, Heidbreder A, Labbe C, Ferman TJ, Dion PA, Fan D, Desautels A, Gagnon JF, Dupré N, Fon EA, Montplaisir JY, Boeve BF, Postuma RB, Rouleau GA, Ross OA, Gan-Or Z. Full sequencing and haplotype analysis of MAPT in Parkinson's disease and rapid eye movement sleep behavior disorder. Mov Disord 2018; 33:1016-1020. [PMID: 29756641 DOI: 10.1002/mds.27385] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 01/29/2018] [Accepted: 02/05/2018] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND MAPT haplotypes are associated with PD, but their association with rapid eye movement sleep behavior disorder is unclear. OBJECTIVE To study the role of MAPT variants in rapid eye movement sleep behavior disorder. METHODS Two cohorts were included: (A) PD (n = 600), rapid eye movement sleep behavior disorder (n = 613) patients, and controls (n = 981); (B) dementia with Lewy bodies patients with rapid eye movement sleep behavior disorder (n = 271) and controls (n = 950). MAPT-associated variants and the entire coding sequence of MAPT were analyzed. Age-, sex-, and ethnicity-adjusted analyses were performed to examine the association between MAPT, PD, and rapid eye movement sleep behavior disorder. RESULTS MAPT-H2 variants were associated with PD (odds ratios: 0.62-0.65; P = 0.010-0.019), but not with rapid eye movement sleep behavior disorder. In PD, the H1 haplotype odds ratio was 1.60 (95% confidence interval: 1.12-2.28; P = 0.009), and the H2 odds ratio was 0.68 (95% confidence interval: 0.48-0.96; P = 0.03). The H2/H1 haplotypes were not associated with rapid eye movement sleep behavior disorder. CONCLUSIONS Our results confirm the protective effect of the MAPT-H2 haplotype in PD, and define its components. Furthermore, our results suggest that MAPT does not play a major role in rapid eye movement sleep behavior disorder, emphasizing different genetic background than in PD in this locus. © 2018 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Jiao Li
- Department of Neurology, Peking University Third Hospital, Beijing, China.,Montreal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Jennifer A Ruskey
- Montreal Neurological Institute, McGill University, Montréal, QC, Canada.,Department of Neurology and neurosurgery, McGill University, Montréal, QC, Canada
| | - Isabelle Arnulf
- Sleep Disorders Unit, Pitié Salpêtrière Hospital, Centre de Recherche de l'Institut du Cerveau et de la Moelle Epinière and Sorbonne Universities, UPMC Paris 6 univ, Paris, France
| | - Yves Dauvilliers
- Sleep Unit, National Reference Network for Narcolepsy, Department of Neurology Hôpital-Gui-de Chauliac, CHU Montpellier, INSERM U1061, Montpellier, France
| | - Michele T M Hu
- Oxford Parkinson's Disease Centre (OPDC), University of Oxford, Oxford, United Kingdom.,Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Birgit Högl
- Sleep Disorders Clinic, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Claire S Leblond
- Montreal Neurological Institute, McGill University, Montréal, QC, Canada.,Department of Human Genetics, McGill University, H3A 0G4, Montréal, QC, Canada
| | - Sirui Zhou
- Montreal Neurological Institute, McGill University, Montréal, QC, Canada.,Department of Neurology and neurosurgery, McGill University, Montréal, QC, Canada
| | - Amirthagowri Ambalavanan
- Montreal Neurological Institute, McGill University, Montréal, QC, Canada.,Department of Neurology and neurosurgery, McGill University, Montréal, QC, Canada
| | - Jay P Ross
- Montreal Neurological Institute, McGill University, Montréal, QC, Canada.,Department of Human Genetics, McGill University, H3A 0G4, Montréal, QC, Canada
| | - Cynthia V Bourassa
- Montreal Neurological Institute, McGill University, Montréal, QC, Canada.,Department of Neurology and neurosurgery, McGill University, Montréal, QC, Canada
| | - Dan Spiegelman
- Montreal Neurological Institute, McGill University, Montréal, QC, Canada.,Department of Neurology and neurosurgery, McGill University, Montréal, QC, Canada
| | - Sandra B Laurent
- Montreal Neurological Institute, McGill University, Montréal, QC, Canada.,Department of Neurology and neurosurgery, McGill University, Montréal, QC, Canada
| | - Ambra Stefani
- Sleep Disorders Clinic, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Christelle Charley Monaca
- University Lille north of France, Department of clinical neurophysiology and sleep center, CHU Lille, Lille, France
| | - Valérie Cochen De Cock
- Sleep and neurology unit, Beau Soleil Clinic, Montpellier, France.,EuroMov, University of Montpellier, Montpellier, France
| | - Michel Boivin
- GRIP, École de psychologie, Université Laval, Québec city, QC, Canada.,Institute of Genetic, Neurobiological and Social Foundations of Child Development, Tomsk State University, Tomsk, Russia
| | - Luigi Ferini-Strambi
- Department of Neurological Sciences, Università Vita-Salute San Raffaele, Milan, Italy
| | - Giuseppe Plazzi
- Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum, University of Bologna, Bologna, Italy.,IRCCS, Institute of Neurological Sciences of Bologna, Bologna, Italy
| | - Elena Antelmi
- Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum, University of Bologna, Bologna, Italy.,IRCCS, Institute of Neurological Sciences of Bologna, Bologna, Italy
| | - Peter Young
- Department of Sleep Medicine and Neuromuscular Disorders, University of Muenster, Muenster, Germany
| | - Anna Heidbreder
- Department of Sleep Medicine and Neuromuscular Disorders, University of Muenster, Muenster, Germany
| | - Catherine Labbe
- Department of Psychiatry and Psychology, Mayo Clinic, Jacksonville, Florida, USA
| | - Tanis J Ferman
- Department of Psychiatry and Psychology, Mayo Clinic, Jacksonville, Florida, USA
| | - Patrick A Dion
- Montreal Neurological Institute, McGill University, Montréal, QC, Canada.,Department of Neurology and neurosurgery, McGill University, Montréal, QC, Canada
| | - Dongsheng Fan
- Department of Neurology, Peking University Third Hospital, Beijing, China
| | - Alex Desautels
- Centre d'Études Avancées en Médecine du Sommeil, Hôpital du Sacré-Cœur de Montréal, Montréal, QC, Canada.,Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
| | - Jean-François Gagnon
- Centre d'Études Avancées en Médecine du Sommeil, Hôpital du Sacré-Cœur de Montréal, Montréal, QC, Canada.,Département de psychologie, Université du Québec à Montréal, Montréal, QC, Canada
| | - Nicolas Dupré
- Division of Neurosciences, CHU de Québec, Université Laval, Quebec City, QC, Canada.,Department of Medicine, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Edward A Fon
- Montreal Neurological Institute, McGill University, Montréal, QC, Canada.,Department of Neurology and neurosurgery, McGill University, Montréal, QC, Canada
| | - Jacques Y Montplaisir
- Centre d'Études Avancées en Médecine du Sommeil, Hôpital du Sacré-Cœur de Montréal, Montréal, QC, Canada.,Department of Psychiatry, Université de Montréal, Montréal, QC, Canada
| | - Bradley F Boeve
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Ronald B Postuma
- Montreal Neurological Institute, McGill University, Montréal, QC, Canada.,Department of Neurology and neurosurgery, McGill University, Montréal, QC, Canada.,Department of Neurology, Montreal General Hospital, Montréal, QC, Canada
| | - Guy A Rouleau
- Montreal Neurological Institute, McGill University, Montréal, QC, Canada.,Department of Neurology and neurosurgery, McGill University, Montréal, QC, Canada.,Department of Human Genetics, McGill University, H3A 0G4, Montréal, QC, Canada
| | - Owen A Ross
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA.,Department of Clinical Genomics, Mayo Clinic, Jacksonville, Florida, USA
| | - Ziv Gan-Or
- Montreal Neurological Institute, McGill University, Montréal, QC, Canada.,Department of Neurology and neurosurgery, McGill University, Montréal, QC, Canada.,Department of Human Genetics, McGill University, H3A 0G4, Montréal, QC, Canada
| |
Collapse
|
42
|
|
43
|
Gan-Or Z, Alcalay RN, Rouleau GA, Postuma RB. Sleep disorders and Parkinson disease; lessons from genetics. Sleep Med Rev 2018; 41:101-112. [PMID: 29449121 DOI: 10.1016/j.smrv.2018.01.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 10/04/2017] [Accepted: 01/15/2018] [Indexed: 02/08/2023]
Abstract
Parkinson disease is a common, age-related neurodegenerative disorder, projected to afflict millions of individuals in the near future. Understanding its etiology and identifying clinical, genetic or biological markers for Parkinson disease onset and progression is therefore of major importance. Various sleep-related disorders are the most common group of non-motor symptoms in advanced Parkinson disease, but they can also occur during its prodromal phase. However, with the exception of REM sleep behavior disorder, it is unclear whether they are part of the early pathological process of Parkinson disease, or if they develop as Parkinson disease advances because of treatments and neurodegeneration progression. The advancements in genetic studies in the past two decades have generated a wealth of information, and recent genetic studies offer new insight on the association of sleep-related disorders with Parkinson disease. More specifically, comparing genetic data between Parkinson disease and sleep-related disorders can clarify their association, which may assist in determining whether they can serve as clinical markers for Parkinson disease risk or progression. In this review, we discuss the current knowledge on the genetics of sleep-related disorders in Parkinson disease context, and the potential implications on research, diagnosis, counseling and treatment.
Collapse
Affiliation(s)
- Ziv Gan-Or
- Montreal Neurological Institute, McGill University, Montréal, QC, Canada; Department of Human Genetics, McGill University, Montréal, QC, Canada; Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada.
| | - Roy N Alcalay
- Department of Neurology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Guy A Rouleau
- Montreal Neurological Institute, McGill University, Montréal, QC, Canada; Department of Human Genetics, McGill University, Montréal, QC, Canada; Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
| | - Ronald B Postuma
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
| |
Collapse
|
44
|
Abstract
PURPOSE OF REVIEW Review of recent literature pertaining to frequency, associations, mechanisms, and overall significance of sleep--wake disturbances (SWD) in the premotor and early phase of Parkinson's disease. RECENT FINDINGS SWD are frequent in Parkinson's disease and their prevalence increases with disease progression. Recent studies confirm previous findings that SWD can appear as initial manifestation of Parkinson's disease even decades before motor signs appear and highlight their clinical associations in these early stages. More intriguingly, new evidence underpins their role as risk factors, predictors, or even as driving force for the neurodegenerative process. As our understanding of sleep--wake neurobiology increases, new hypotheses emerge concerning the pathophysiology of SWD in early Parkinson's disease stages involving dopaminergic and nondopaminergic mechanisms. SUMMARY SWD are predictors for the development of parkinsonian syndromes including Parkinson's disease. This may offer the opportunity of developing new preventive strategies and interventions at an early stage of this neurodegenerative disease.
Collapse
|
45
|
Brockmann K, Schulte C, Schneiderhan-Marra N, Apel A, Pont-Sunyer C, Vilas D, Ruiz-Martinez J, Langkamp M, Corvol JC, Cormier F, Knorpp T, Joos TO, Bernard A, Gasser T, Marras C, Schüle B, Aasly JO, Foroud T, Marti-Masso JF, Brice A, Tolosa E, Berg D, Maetzler W. Inflammatory profile discriminates clinical subtypes in LRRK2-associated Parkinson's disease. Eur J Neurol 2018; 24:427-e6. [PMID: 28102045 DOI: 10.1111/ene.13223] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 11/07/2016] [Indexed: 01/08/2023]
Abstract
BACKGROUND AND PURPOSE The presentation of Parkinson's disease patients with mutations in the LRRK2 gene (PDLRRK2 ) is highly variable, suggesting a strong influence of modifying factors. In this context, inflammation is a potential candidate inducing clinical subtypes. METHODS An extensive battery of peripheral inflammatory markers was measured in human serum in a multicentre cohort of 142 PDLRRK2 patients from the MJFF LRRK2 Consortium, stratified by three different subtypes as recently proposed for idiopathic Parkinson's disease: diffuse/malignant, intermediate and mainly pure motor. RESULTS Patients classified as diffuse/malignant presented with the highest levels of the pro-inflammatory proteins interleukin 8 (IL-8), monocyte chemotactic protein 1 (MCP-1) and macrophage inflammatory protein 1-β (MIP-1-β) paralleled by high levels of the neurotrophic protein brain-derived neurotrophic factor (BDNF). It was also possible to distinguish the clinical subtypes based on their inflammatory profile by using discriminant and area under the receiver operating characteristic curve analysis. CONCLUSIONS Inflammation seems to be associated with the presence of a specific clinical subtype in PDLRRK2 that is characterized by a broad and more severely affected spectrum of motor and non-motor symptoms. The pro-inflammatory metabolites IL-8, MCP-1 and MIP-1-β as well as BDNF are interesting candidates to be included in biomarker panels that aim to differentiate subtypes in PDLRRK2 and predict progression.
Collapse
Affiliation(s)
- K Brockmann
- Department of Neurodegenerative Diseases and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - C Schulte
- Department of Neurodegenerative Diseases and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - N Schneiderhan-Marra
- Natural and Medical Sciences Institute at the University of Tübingen (NMI), Reutlingen, Germany
| | - A Apel
- Department of Neurodegenerative Diseases and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - C Pont-Sunyer
- Parkinson's Disease and Movement Disorders Unit, Neurology Service, Hospital Clinic de Barcelona, Universitat de Barcelona, Institut d'Investigacions Biomediques August Pi I Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - D Vilas
- Parkinson's Disease and Movement Disorders Unit, Neurology Service, Hospital Clinic de Barcelona, Universitat de Barcelona, Institut d'Investigacions Biomediques August Pi I Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - J Ruiz-Martinez
- Hospital Universitario Donostia, Biodonostia Institut, San Sebastián, Guipuzcoa, Spain
| | | | - J-C Corvol
- Département de Génétique et Cytogénétique, Hôpital de la Pitié Salpêtrière, Sorbonne Universités, INSERM, Paris, France
| | - F Cormier
- Département de Génétique et Cytogénétique, Hôpital de la Pitié Salpêtrière, Sorbonne Universités, INSERM, Paris, France
| | - T Knorpp
- Natural and Medical Sciences Institute at the University of Tübingen (NMI), Reutlingen, Germany
| | - T O Joos
- Natural and Medical Sciences Institute at the University of Tübingen (NMI), Reutlingen, Germany
| | - A Bernard
- Department of Neurodegenerative Diseases and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - T Gasser
- Department of Neurodegenerative Diseases and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - C Marras
- Morton and Gloria Shulman Movement Disorders Centre and the Edmond J Safra Program in Parkinson's Disease, Toronto Western Hospital, University of Toronto, Toronto, ON, Canada
| | - B Schüle
- Parkinson Institute and Clinical Center, Sunnyvale, CA, USA
| | - J O Aasly
- Department of Neurology, St Olavs Hospital, Trondheim, Norway
| | - T Foroud
- Department of Medical and Molecular Genetics, Indiana University, Bloomington, IN, USA
| | - J F Marti-Masso
- Hospital Universitario Donostia, Biodonostia Institut, San Sebastián, Guipuzcoa, Spain
| | - A Brice
- Département de Génétique et Cytogénétique, Hôpital de la Pitié Salpêtrière, Sorbonne Universités, INSERM, Paris, France
| | - E Tolosa
- Parkinson's Disease and Movement Disorders Unit, Neurology Service, Hospital Clinic de Barcelona, Universitat de Barcelona, Institut d'Investigacions Biomediques August Pi I Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - D Berg
- Department of Neurodegenerative Diseases and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - W Maetzler
- Department of Neurodegenerative Diseases and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| |
Collapse
|
46
|
Barber TR, Lawton M, Rolinski M, Evetts S, Baig F, Ruffmann C, Gornall A, Klein JC, Lo C, Dennis G, Bandmann O, Quinnell T, Zaiwalla Z, Ben-Shlomo Y, Hu MTM. Prodromal Parkinsonism and Neurodegenerative Risk Stratification in REM Sleep Behavior Disorder. Sleep 2017; 40:3796343. [PMID: 28472425 PMCID: PMC5806544 DOI: 10.1093/sleep/zsx071] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Objectives Rapid eye movement (REM) sleep behavior disorder (RBD) is the most specific marker of prodromal alpha-synucleinopathies. We sought to delineate the baseline clinical characteristics of RBD and evaluate risk stratification models. Methods Clinical assessments were performed in 171 RBD, 296 control, and 119 untreated Parkinson's (PD) participants. Putative risk measures were assessed as predictors of prodromal neurodegeneration, and Movement Disorders Society (MDS) criteria for prodromal PD were applied. Participants were screened for common leucine-rich repeat kinase 2 (LRRK2)/glucocerebrosidase gene (GBA) gene mutations. Results Compared to controls, participants with RBD had higher rates of solvent exposure, head injury, smoking, obesity, and antidepressant use. GBA mutations were more common in RBD, but no LRRK2 mutations were found. RBD participants performed significantly worse than controls on Unified Parkinson's Disease Rating Scale (UPDRS)-III, timed "get-up-and-go", Flamingo test, Sniffin Sticks, and cognitive tests and had worse measures of constipation, quality of life (QOL), and orthostatic hypotension. For all these measures except UPDRS-III, RBD and PD participants were equally impaired. Depression, anxiety, and apathy were worse in RBD compared to PD participants. Stratification of people with RBD according to antidepressant use, obesity, and age altered the odds ratio (OR) of hyposmia compared to controls from 3.4 to 45.5. 74% (95% confidence interval [CI] 66%, 80%) of RBD participants met the MDS criteria for probable prodromal Parkinson's compared to 0.3% (95% CI 0.009%, 2%) of controls. Conclusions RBD are impaired across a range of clinical measures consistent with prodromal PD and suggestive of a more severe nonmotor subtype. Clinical risk stratification has the potential to select higher risk patients for neuroprotective interventions.
Collapse
Affiliation(s)
- Thomas R Barber
- Oxford Parkinson's Disease Centre (OPDC), University of Oxford, UK.,Nuffield Department of Clinical Neurosciences, University of Oxford, UK
| | - Michael Lawton
- School of Social and Community Medicine, University of Bristol, UK
| | - Michal Rolinski
- Oxford Parkinson's Disease Centre (OPDC), University of Oxford, UK.,Nuffield Department of Clinical Neurosciences, University of Oxford, UK.,Institute of Clinical Neurosciences, University of Bristol, UK
| | - Samuel Evetts
- Oxford Parkinson's Disease Centre (OPDC), University of Oxford, UK.,Nuffield Department of Clinical Neurosciences, University of Oxford, UK
| | - Fahd Baig
- Oxford Parkinson's Disease Centre (OPDC), University of Oxford, UK.,Nuffield Department of Clinical Neurosciences, University of Oxford, UK
| | - Claudio Ruffmann
- Oxford Parkinson's Disease Centre (OPDC), University of Oxford, UK.,Nuffield Department of Clinical Neurosciences, University of Oxford, UK
| | - Aimie Gornall
- Oxford Parkinson's Disease Centre (OPDC), University of Oxford, UK.,Department of Psychiatry, University of Oxford, UK
| | - Johannes C Klein
- Oxford Parkinson's Disease Centre (OPDC), University of Oxford, UK.,Nuffield Department of Clinical Neurosciences, University of Oxford, UK
| | - Christine Lo
- Sheffield Institute of Translational Neuroscience, University of Sheffield, UK.,Department of Neurology, Sheffield Teaching Hospitals, Sheffield, UK
| | - Gary Dennis
- Department of Neurology, Sheffield Teaching Hospitals, Sheffield, UK
| | - Oliver Bandmann
- Sheffield Institute of Translational Neuroscience, University of Sheffield, UK.,Department of Neurology, Sheffield Teaching Hospitals, Sheffield, UK
| | - Timothy Quinnell
- Respiratory Support and Sleep Centre, Papworth Hospital, Cambridge, UK
| | - Zenobia Zaiwalla
- Department of Clinical Neurophysiology, John Radcliffe Hospital, Oxford, UK
| | - Yoav Ben-Shlomo
- School of Social and Community Medicine, University of Bristol, UK
| | - Michele T M Hu
- Oxford Parkinson's Disease Centre (OPDC), University of Oxford, UK.,Nuffield Department of Clinical Neurosciences, University of Oxford, UK
| |
Collapse
|
47
|
St Louis EK, Boeve BF. REM Sleep Behavior Disorder: Diagnosis, Clinical Implications, and Future Directions. Mayo Clin Proc 2017; 92:1723-1736. [PMID: 29101940 PMCID: PMC6095693 DOI: 10.1016/j.mayocp.2017.09.007] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 09/12/2017] [Accepted: 09/21/2017] [Indexed: 12/25/2022]
Abstract
Rapid eye movement sleep behavior disorder (RBD) is diagnosed by a clinical history of dream enactment accompanied by polysomnographic rapid eye movement sleep atonia loss (rapid eye movement sleep without atonia). Rapid eye movement sleep behavior disorder is strongly associated with neurodegenerative disease, especially synucleinopathies such as Parkinson disease, dementia with Lewy bodies, and multiple system atrophy. A history of RBD may begin several years to decades before onset of any clear daytime symptoms of motor, cognitive, or autonomic impairments, suggesting that RBD is the presenting manifestation of a neurodegenerative process. Evidence that RBD is a synlucleinopathy includes the frequent presence of subtle prodromal neurodegenerative abnormalities including hyposmia, constipation, and orthostatic hypotension, as well as abnormalities on various neuroimaging, neurophysiological, and autonomic tests. Up to 90.9% of patients with idiopathic RBD ultimately develop a defined neurodegenerative disease over longitudinal follow-up, although the prognosis for younger patients and antidepressant-associated RBD is less clear. Patients with RBD should be treated with either melatonin 3 to 12 mg or clonazepam 0.5 to 2.0 mg to reduce injury potential. Prospective outcome and treatment studies of RBD are necessary to enable accurate prognosis and better evidence for symptomatic therapy and future neuroprotective strategies.
Collapse
Affiliation(s)
- Erik K St Louis
- Center for Sleep Medicine and Department of Neurology, Mayo Clinic College of Medicine, Rochester, MN.
| | - Bradley F Boeve
- Center for Sleep Medicine and Department of Neurology, Mayo Clinic College of Medicine, Rochester, MN
| |
Collapse
|
48
|
Fengler S, Liepelt-Scarfone I, Brockmann K, Schäffer E, Berg D, Kalbe E. Cognitive changes in prodromal Parkinson's disease: A review. Mov Disord 2017; 32:1655-1666. [PMID: 28980730 DOI: 10.1002/mds.27135] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Revised: 06/22/2017] [Accepted: 06/26/2017] [Indexed: 12/31/2022] Open
Abstract
Although other nonmotor phenomena representing possible prodromal symptoms of Parkinson's disease have been described in some detail, the occurrence and characteristics of cognitive decline in this early phase of the disease are less well understood. The aim of this review is to summarize the current state of research on cognitive changes in prodromal PD. Only a small number of longitudinal studies have been conducted that examined cognitive function in individuals with a subsequent PD diagnosis. However, when we consider data from at-risk groups, the evidence suggests that cognitive decline may occur in a substantial number of individuals who have the potential for developing PD. In terms of specific cognitive domains, executive function in particular and, less frequently, memory scores are reduced. Prospective longitudinal studies are thus needed to clarify whether cognitive, and specifically executive, decline might be added to the prodromal nonmotor symptom complex that may precede motor manifestations of PD by years and may help to update the risk scores used for early identification of PD. © 2017 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Sophie Fengler
- Department of Medical Psychology ǀ Neuropsychology and Gender Studies & Center for Neuropsychological Diagnostics and Intervention (CeNDI), University Hospital Cologne, Cologne, Germany.,Psychological Gerontology, Institute of Gerontology, University of Vechta, Vechta, Germany
| | - Inga Liepelt-Scarfone
- Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,German Center of Neurodegenerative Diseases (DZNE), University of Tübingen, Tübingen, Germany
| | - Kathrin Brockmann
- Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,German Center of Neurodegenerative Diseases (DZNE), University of Tübingen, Tübingen, Germany
| | - Eva Schäffer
- Department of Neurology, Christian-Albrechts-University, Kiel, Kiel, Germany
| | - Daniela Berg
- Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,Department of Neurology, Christian-Albrechts-University, Kiel, Kiel, Germany
| | - Elke Kalbe
- Department of Medical Psychology ǀ Neuropsychology and Gender Studies & Center for Neuropsychological Diagnostics and Intervention (CeNDI), University Hospital Cologne, Cologne, Germany.,Psychological Gerontology, Institute of Gerontology, University of Vechta, Vechta, Germany
| |
Collapse
|
49
|
Giesert F, Glasl L, Zimprich A, Ernst L, Piccoli G, Stautner C, Zerle J, Hölter SM, Vogt Weisenhorn DM, Wurst W. The pathogenic LRRK2 R1441C mutation induces specific deficits modeling the prodromal phase of Parkinson's disease in the mouse. Neurobiol Dis 2017; 105:179-193. [PMID: 28576705 DOI: 10.1016/j.nbd.2017.05.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 05/13/2017] [Accepted: 05/29/2017] [Indexed: 12/11/2022] Open
Abstract
The aim of the present study was to further explore the in vivo function of the Leucine-rich repeat kinase 2 (LRRK2)-gene, which is mutated in certain familial forms of Parkinson's disease (PD). We generated a mouse model harboring the disease-associated point mutation R1441C in the GTPase domain of the endogenous murine LRRK2 gene (LRRK2 R1441C line) and performed a comprehensive analysis of these animals throughout lifespan in comparison with an existing knockdown line of LRRK2 (LRRK2 knockdown line). Animals of both lines do not exhibit severe motor dysfunction or pathological signs of neurodegeneration neither at young nor old age. However, at old age the homozygous LRRK2 R1441C animals exhibit clear phenotypes related to the prodromal phase of PD such as impairments in fine motor tasks, gait, and olfaction. These phenotypes are only marginally observable in the LRRK2 knockdown animals, possibly due to activation of compensatory mechanisms as suggested by in vitro studies of synaptic transmission. Thus, at the organismal level the LRRK2 R1441C mutation does not emerge as a loss of function of the protein, but induces mutation specific deficits. Furthermore, judged by the phenotypes presented, the LRRK2-R1441C knock-in line is a valid preclinical model for the prodromal phase of PD.
Collapse
Affiliation(s)
- F Giesert
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Developmental Genetics, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany; Technische Universität München-Weihenstephan, Lehrstuhl für Entwicklungsgenetik, c/o Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - L Glasl
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Developmental Genetics, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - A Zimprich
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Developmental Genetics, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - L Ernst
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Developmental Genetics, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - G Piccoli
- Center for Integrative Biology (CIBIO), University of Trento and Dulbecco Telethon Institute Trento, Italy
| | - C Stautner
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Developmental Genetics, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - J Zerle
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Developmental Genetics, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - S M Hölter
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Developmental Genetics, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - D M Vogt Weisenhorn
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Developmental Genetics, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany; Technische Universität München-Weihenstephan, Lehrstuhl für Entwicklungsgenetik, c/o Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - W Wurst
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Developmental Genetics, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany; Technische Universität München-Weihenstephan, Lehrstuhl für Entwicklungsgenetik, c/o Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany; Munich Cluster for Systems Neurology (SyNergy), Feodor-Lynen-Str. 17, 81377 Munich, Germany; Deutsches Zentrum für Neurodegenerative Erkrankungen e. V. (DZNE), Standort München, Feodor-Lynen-Str. 17, 81377 München, Germany.
| |
Collapse
|
50
|
Gambardella S, Ferese R, Biagioni F, Busceti CL, Campopiano R, Griguoli AMP, Limanaqi F, Novelli G, Storto M, Fornai F. The Monoamine Brainstem Reticular Formation as a Paradigm for Re-Defining Various Phenotypes of Parkinson's Disease Owing Genetic and Anatomical Specificity. Front Cell Neurosci 2017; 11:102. [PMID: 28458632 PMCID: PMC5394114 DOI: 10.3389/fncel.2017.00102] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 03/27/2017] [Indexed: 12/11/2022] Open
Abstract
The functional anatomy of the reticular formation (RF) encompasses a constellation of brain regions which are reciprocally connected to sub-serve a variety of functions. Recent evidence indicates that neuronal degeneration within one of these regions spreads synaptically along brainstem circuitries. This is exemplified by the recruitment of various brainstem reticular nuclei in specific Parkinson’s disease (PD) phenotypes, and by retrospective analysis of lethargic post-encephalitic parkinsonism. In fact, the spreading to various monoamine reticular nuclei can be associated with occurrence of specific motor and non-motor symptoms (NMS). This led to re-consider PD as a brainstem monoamine disorder (BMD). This definition surpasses the anatomy of meso-striatal motor control to include a variety of non-motor domains. This concept clearly emerges from the quite specific clinical-anatomical correlation which can be drawn in specific paradigms of PD genotypes. Therefore, this review article focuses on the genetics and neuroanatomy of three PD genotypes/phenotypes which can be selected as prototype paradigms for a differential recruitment of the RF leading to differential occurrence of NMS: (i) Parkin-PD, where NMS are rarely reported; (ii) LRRK2-PD and slight SNC point mutations, where the prevalence of NMS resembles idiopathic PD; (iii) Severe SNCA point mutations and multiplications, where NMS are highly represented.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Fiona Limanaqi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of PisaPisa, Italy
| | - Giuseppe Novelli
- IRCCS NeuromedPozzilli, Italy.,Department of Biomedicine and Prevention, School of Medicine, University of Rome Tor VergataRome, Italy
| | | | - Francesco Fornai
- IRCCS NeuromedPozzilli, Italy.,Department of Translational Research and New Technologies in Medicine and Surgery, University of PisaPisa, Italy
| |
Collapse
|