1
|
Mitsuhashi M, Yamaguchi R, Kawasaki T, Ueno S, Sun Y, Isa K, Takahashi J, Kobayashi K, Onoe H, Takahashi R, Isa T. Stage-dependent role of interhemispheric pathway for motor recovery in primates. Nat Commun 2024; 15:6762. [PMID: 39174504 PMCID: PMC11341697 DOI: 10.1038/s41467-024-51070-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 07/26/2024] [Indexed: 08/24/2024] Open
Abstract
Whether and how the non-lesional sensorimotor cortex is activated and contributes to post-injury motor recovery is controversial. Here, we investigated the role of interhemispheric pathway from the contralesional to ipsilesional premotor cortex in activating the ipsilesional sensorimotor cortex and promoting recovery after lesioning the lateral corticospinal tract at the cervical cord, by unidirectional chemogenetic blockade in macaques. The blockade impaired dexterous hand movements during the early recovery stage. Electrocorticographical recording showed that the low frequency band activity of the ipsilesional premotor cortex around movement onset was decreased by the blockade during the early recovery stage, while it was increased by blockade during the intact state and late recovery stage. These results demonstrate that action of the interhemispheric pathway changed from inhibition to facilitation, to involve the ipsilesional sensorimotor cortex in hand movements during the early recovery stage. The present study offers insights into the stage-dependent role of the interhemispheric pathway and a therapeutic target in the early recovery stage after lesioning of the corticospinal tract.
Collapse
Affiliation(s)
- Masahiro Mitsuhashi
- Department of Neuroscience, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Reona Yamaguchi
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, 606-8501, Japan
| | - Toshinari Kawasaki
- Department of Neuroscience, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
- Department of Neurosurgery, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Satoko Ueno
- Department of Neuroscience, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, 606-8501, Japan
| | - Yiping Sun
- Department of Neuroscience, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Kaoru Isa
- Department of Neuroscience, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Jun Takahashi
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, 606-8507, Japan
| | - Kenta Kobayashi
- Section of Viral Vector Development, National Institute for Physiological Sciences, Okazaki, 444-8585, Japan
- Graduate University of Advanced Studies (SOKENDAI), Hayama, 240-0193, Japan
| | - Hirotaka Onoe
- Human Brain Research Center, Graduate School of Medicine, Kyoto University, Kyoto, 606-8397, Japan
| | - Ryosuke Takahashi
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Tadashi Isa
- Department of Neuroscience, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan.
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, 606-8501, Japan.
- Human Brain Research Center, Graduate School of Medicine, Kyoto University, Kyoto, 606-8397, Japan.
| |
Collapse
|
2
|
Li L, Liu Z. Genetic Approaches for Neural Circuits Dissection in Non-human Primates. Neurosci Bull 2023; 39:1561-1576. [PMID: 37258795 PMCID: PMC10533465 DOI: 10.1007/s12264-023-01067-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/27/2023] [Indexed: 06/02/2023] Open
Abstract
Genetic tools, which can be used for the morphology study of specific neurons, pathway-selective connectome mapping, neuronal activity monitoring, and manipulation with a spatiotemporal resolution, have been widely applied to the understanding of complex neural circuit formation, interactions, and functions in rodents. Recently, similar genetic approaches have been tried in non-human primates (NHPs) in neuroscience studies for dissecting the neural circuits involved in sophisticated behaviors and clinical brain disorders, although they are still very preliminary. In this review, we introduce the progress made in the development and application of genetic tools for brain studies on NHPs. We also discuss the advantages and limitations of each approach and provide a perspective for using genetic tools to study the neural circuits of NHPs.
Collapse
Affiliation(s)
- Ling Li
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhen Liu
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031, China.
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, 200031, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
3
|
Oguchi M, Sakagami M. Dissecting the Prefrontal Network With Pathway-Selective Manipulation in the Macaque Brain-A Review. Front Neurosci 2022; 16:917407. [PMID: 35677354 PMCID: PMC9168219 DOI: 10.3389/fnins.2022.917407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/05/2022] [Indexed: 11/13/2022] Open
Abstract
Macaque monkeys are prime animal models for studying the neural mechanisms of decision-making because of their close kinship with humans. Manipulation of neural activity during decision-making tasks is essential for approaching the causal relationship between the brain and its functions. Conventional manipulation methods used in macaque studies are coarse-grained, and have worked indiscriminately on mutually intertwined neural pathways. To systematically dissect neural circuits responsible for a variety of functions, it is essential to analyze changes in behavior and neural activity through interventions in specific neural pathways. In recent years, an increasing number of studies have applied optogenetics and chemogenetics to achieve fine-grained pathway-selective manipulation in the macaque brain. Here, we review the developments in macaque studies involving pathway-selective operations, with a particular focus on applications to the prefrontal network. Pathway selectivity can be achieved using single viral vector transduction combined with local light stimulation or ligand administration directly into the brain or double-viral vector transduction combined with systemic drug administration. We discuss the advantages and disadvantages of these methods. We also highlight recent technological developments in viral vectors that can effectively infect the macaque brain, as well as the development of methods to deliver photostimulation or ligand drugs to a wide area to effectively manipulate behavior. The development and dissemination of such pathway-selective manipulations of macaque prefrontal networks will enable us to efficiently dissect the neural mechanisms of decision-making and innovate novel treatments for decision-related psychiatric disorders.
Collapse
Affiliation(s)
- Mineki Oguchi
- Brain Science Institute, Tamagawa University, Tokyo, Japan
| | | |
Collapse
|
4
|
Oguchi M, Tanaka S, Pan X, Kikusui T, Moriya-Ito K, Kato S, Kobayashi K, Sakagami M. Chemogenetic inactivation reveals the inhibitory control function of the prefronto-striatal pathway in the macaque brain. Commun Biol 2021; 4:1088. [PMID: 34531520 PMCID: PMC8446038 DOI: 10.1038/s42003-021-02623-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 09/01/2021] [Indexed: 02/08/2023] Open
Abstract
The lateral prefrontal cortex (LPFC) has a strong monosynaptic connection with the caudate nucleus (CdN) of the striatum. Previous human MRI studies have suggested that this LPFC-CdN pathway plays an important role in inhibitory control and working memory. We aimed to validate the function of this pathway at a causal level by pathway-selective manipulation of neural activity in non-human primates. To this end, we trained macaque monkeys on a delayed oculomotor response task with reward asymmetry and expressed an inhibitory type of chemogenetic receptors selectively to LPFC neurons that project to the CdN. Ligand administration reduced the inhibitory control of impulsive behavior, as well as the task-related neuronal responses observed in the local field potentials from the LPFC and CdN. These results show that we successfully suppressed pathway-selective neural activity in the macaque brain, and the resulting behavioral changes suggest that the LPFC-CdN pathway is involved in inhibitory control.
Collapse
Affiliation(s)
- Mineki Oguchi
- grid.412905.b0000 0000 9745 9416Brain Science Institute, Tamagawa University, Tokyo, Japan ,grid.252643.40000 0001 0029 6233School of Veterinary Medicine, Azabu University, Kanagawa, Japan
| | - Shingo Tanaka
- grid.412905.b0000 0000 9745 9416Brain Science Institute, Tamagawa University, Tokyo, Japan ,grid.260975.f0000 0001 0671 5144Department of Physiology, School of Medicine, Niigata University, Niigata, Japan
| | - Xiaochuan Pan
- grid.28056.390000 0001 2163 4895Institute for Cognitive Neurodynamics, East China University of Science and Technology, Shanghai, China
| | - Takefumi Kikusui
- grid.252643.40000 0001 0029 6233School of Veterinary Medicine, Azabu University, Kanagawa, Japan
| | - Keiko Moriya-Ito
- grid.272456.0Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Shigeki Kato
- grid.411582.b0000 0001 1017 9540Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University, Fukushima, Japan
| | - Kazuto Kobayashi
- grid.411582.b0000 0001 1017 9540Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University, Fukushima, Japan
| | - Masamichi Sakagami
- grid.412905.b0000 0000 9745 9416Brain Science Institute, Tamagawa University, Tokyo, Japan
| |
Collapse
|
5
|
Yook JS, Kim J, Kim J. Convergence Circuit Mapping: Genetic Approaches From Structure to Function. Front Syst Neurosci 2021; 15:688673. [PMID: 34234652 PMCID: PMC8255632 DOI: 10.3389/fnsys.2021.688673] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/28/2021] [Indexed: 12/22/2022] Open
Abstract
Understanding the complex neural circuits that underpin brain function and behavior has been a long-standing goal of neuroscience. Yet this is no small feat considering the interconnectedness of neurons and other cell types, both within and across brain regions. In this review, we describe recent advances in mouse molecular genetic engineering that can be used to integrate information on brain activity and structure at regional, cellular, and subcellular levels. The convergence of structural inputs can be mapped throughout the brain in a cell type-specific manner by antero- and retrograde viral systems expressing various fluorescent proteins and genetic switches. Furthermore, neural activity can be manipulated using opto- and chemo-genetic tools to interrogate the functional significance of this input convergence. Monitoring neuronal activity is obtained with precise spatiotemporal resolution using genetically encoded sensors for calcium changes and specific neurotransmitters. Combining these genetically engineered mapping tools is a compelling approach for unraveling the structural and functional brain architecture of complex behaviors and malfunctioned states of neurological disorders.
Collapse
Affiliation(s)
- Jang Soo Yook
- Center for Functional Connectomics, Korea Institute of Science and Technology (KIST), Seoul, South Korea
| | - Jihyun Kim
- Center for Functional Connectomics, Korea Institute of Science and Technology (KIST), Seoul, South Korea.,Department of Integrated Biomedical and Life Sciences, Graduate School, Korea University, Seoul, South Korea
| | - Jinhyun Kim
- Center for Functional Connectomics, Korea Institute of Science and Technology (KIST), Seoul, South Korea.,Department of Integrated Biomedical and Life Sciences, Graduate School, Korea University, Seoul, South Korea
| |
Collapse
|
6
|
Boehm MA, Bonaventura J, Gomez JL, Solís O, Stein EA, Bradberry CW, Michaelides M. Translational PET applications for brain circuit mapping with transgenic neuromodulation tools. Pharmacol Biochem Behav 2021; 204:173147. [PMID: 33549570 PMCID: PMC8297666 DOI: 10.1016/j.pbb.2021.173147] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 02/08/2023]
Abstract
Transgenic neuromodulation tools have transformed the field of neuroscience over the past two decades by enabling targeted manipulation of neuronal populations and circuits with unprecedented specificity. Chemogenetic and optogenetic neuromodulation systems are among the most widely used and allow targeted control of neuronal activity through the administration of a selective compound or light, respectively. Innovative genetic targeting strategies are utilized to transduce specific cells to express transgenic receptors and opsins capable of manipulating neuronal activity. These allow mapping of neuroanatomical projection sites and link cellular manipulations with brain circuit functions and behavior. As these tools continue to expand knowledge of the nervous system in preclinical models, developing translational applications for human therapies is becoming increasingly possible. However, new strategies for implementing and monitoring transgenic tools are needed for safe and effective use in translational research and potential clinical applications. A major challenge for such applications is the need to track the location and function of chemogenetic receptors and opsins in vivo, and new developments in positron emission tomography (PET) imaging techniques offer promising solutions. The goal of this review is to summarize current research combining transgenic tools with PET for in vivo mapping and manipulation of brain circuits and to propose future directions for translational applications.
Collapse
Affiliation(s)
- Matthew A Boehm
- National Institute on Drug Abuse Intramural Research Program, 251 Bayview Blvd, Baltimore, MD 21224, United States; Department of Neuroscience, Brown University, Providence, RI 02906, United States.
| | - Jordi Bonaventura
- National Institute on Drug Abuse Intramural Research Program, 251 Bayview Blvd, Baltimore, MD 21224, United States.
| | - Juan L Gomez
- National Institute on Drug Abuse Intramural Research Program, 251 Bayview Blvd, Baltimore, MD 21224, United States.
| | - Oscar Solís
- National Institute on Drug Abuse Intramural Research Program, 251 Bayview Blvd, Baltimore, MD 21224, United States.
| | - Elliot A Stein
- National Institute on Drug Abuse Intramural Research Program, 251 Bayview Blvd, Baltimore, MD 21224, United States.
| | - Charles W Bradberry
- National Institute on Drug Abuse Intramural Research Program, 251 Bayview Blvd, Baltimore, MD 21224, United States.
| | - Michael Michaelides
- National Institute on Drug Abuse Intramural Research Program, 251 Bayview Blvd, Baltimore, MD 21224, United States; Department of Psychiatry & Behavioral Sciences, Johns Hopkins Medicine, Baltimore, MD, 21205, United States.
| |
Collapse
|
7
|
Tremblay S, Acker L, Afraz A, Albaugh DL, Amita H, Andrei AR, Angelucci A, Aschner A, Balan PF, Basso MA, Benvenuti G, Bohlen MO, Caiola MJ, Calcedo R, Cavanaugh J, Chen Y, Chen S, Chernov MM, Clark AM, Dai J, Debes SR, Deisseroth K, Desimone R, Dragoi V, Egger SW, Eldridge MAG, El-Nahal HG, Fabbrini F, Federer F, Fetsch CR, Fortuna MG, Friedman RM, Fujii N, Gail A, Galvan A, Ghosh S, Gieselmann MA, Gulli RA, Hikosaka O, Hosseini EA, Hu X, Hüer J, Inoue KI, Janz R, Jazayeri M, Jiang R, Ju N, Kar K, Klein C, Kohn A, Komatsu M, Maeda K, Martinez-Trujillo JC, Matsumoto M, Maunsell JHR, Mendoza-Halliday D, Monosov IE, Muers RS, Nurminen L, Ortiz-Rios M, O'Shea DJ, Palfi S, Petkov CI, Pojoga S, Rajalingham R, Ramakrishnan C, Remington ED, Revsine C, Roe AW, Sabes PN, Saunders RC, Scherberger H, Schmid MC, Schultz W, Seidemann E, Senova YS, Shadlen MN, Sheinberg DL, Siu C, Smith Y, Solomon SS, Sommer MA, Spudich JL, Stauffer WR, Takada M, Tang S, Thiele A, Treue S, Vanduffel W, Vogels R, Whitmire MP, Wichmann T, Wurtz RH, Xu H, Yazdan-Shahmorad A, Shenoy KV, DiCarlo JJ, Platt ML. An Open Resource for Non-human Primate Optogenetics. Neuron 2020; 108:1075-1090.e6. [PMID: 33080229 PMCID: PMC7962465 DOI: 10.1016/j.neuron.2020.09.027] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/28/2020] [Accepted: 09/21/2020] [Indexed: 12/26/2022]
Abstract
Optogenetics has revolutionized neuroscience in small laboratory animals, but its effect on animal models more closely related to humans, such as non-human primates (NHPs), has been mixed. To make evidence-based decisions in primate optogenetics, the scientific community would benefit from a centralized database listing all attempts, successful and unsuccessful, of using optogenetics in the primate brain. We contacted members of the community to ask for their contributions to an open science initiative. As of this writing, 45 laboratories around the world contributed more than 1,000 injection experiments, including precise details regarding their methods and outcomes. Of those entries, more than half had not been published. The resource is free for everyone to consult and contribute to on the Open Science Framework website. Here we review some of the insights from this initial release of the database and discuss methodological considerations to improve the success of optogenetic experiments in NHPs.
Collapse
Affiliation(s)
- Sébastien Tremblay
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Leah Acker
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Arash Afraz
- National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Daniel L Albaugh
- Yerkes National Primate Research Center, Morris K. Udall Center of Excellence for Parkinson's Disease, Department of Neurology, Emory University, GA 30329, USA
| | - Hidetoshi Amita
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ariana R Andrei
- Department of Neurobiology and Anatomy, McGovern Medical School, University of Texas-Houston, Houston, TX 77030, USA
| | - Alessandra Angelucci
- Department of Ophthalmology, Moran Eye Institute, University of Utah, Salt Lake City, UT 84132, USA
| | - Amir Aschner
- Dominik P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Puiu F Balan
- Laboratory of Neuro- and Psychophysiology, KU Leuven, 3000 Leuven, Belgium
| | - Michele A Basso
- Departments of Psychiatry and Biobehavioral Sciences and Neurobiology, UCLA, Los Angeles, CA 90095, USA
| | - Giacomo Benvenuti
- Departments of Psychology and Neuroscience, Center for Perceptual Systems, University of Texas, Austin, TX 78712, USA
| | - Martin O Bohlen
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Michael J Caiola
- Yerkes National Primate Research Center, Morris K. Udall Center of Excellence for Parkinson's Disease, Department of Neurology, Emory University, GA 30329, USA
| | - Roberto Calcedo
- Gene Therapy Program, Department of Medicine, University of Pennsylvania, Philadelphia, PA 19014, USA
| | - James Cavanaugh
- Laboratory of Sensorimotor Research, National Eye Institute, NIH, Bethesda, MD 20982, USA
| | - Yuzhi Chen
- Departments of Psychology and Neuroscience, Center for Perceptual Systems, University of Texas, Austin, TX 78712, USA
| | - Spencer Chen
- Departments of Psychology and Neuroscience, Center for Perceptual Systems, University of Texas, Austin, TX 78712, USA
| | - Mykyta M Chernov
- Division of Neuroscience, Oregon National Primate Resource Center, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Andrew M Clark
- Department of Ophthalmology, Moran Eye Institute, University of Utah, Salt Lake City, UT 84132, USA
| | - Ji Dai
- CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen 518055, China
| | - Samantha R Debes
- Department of Neurobiology and Anatomy, McGovern Medical School, University of Texas-Houston, Houston, TX 77030, USA
| | - Karl Deisseroth
- Neuroscience Program, Departments of Bioengineering, Psychiatry, and Behavioral Science, Wu Tsai Neurosciences Institute, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Robert Desimone
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Valentin Dragoi
- Department of Neurobiology and Anatomy, McGovern Medical School, University of Texas-Houston, Houston, TX 77030, USA
| | - Seth W Egger
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Mark A G Eldridge
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA
| | - Hala G El-Nahal
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Francesco Fabbrini
- Laboratory of Neuro- and Psychophysiology, KU Leuven, 3000 Leuven, Belgium; Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium
| | - Frederick Federer
- Department of Ophthalmology, Moran Eye Institute, University of Utah, Salt Lake City, UT 84132, USA
| | - Christopher R Fetsch
- The Solomon H. Snyder Department of Neuroscience & Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Michal G Fortuna
- German Primate Center - Leibniz Institute for Primate Research, 37077 Göttingen, Germany
| | - Robert M Friedman
- Division of Neuroscience, Oregon National Primate Resource Center, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Naotaka Fujii
- Laboratory for Adaptive Intelligence, RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan
| | - Alexander Gail
- German Primate Center - Leibniz Institute for Primate Research, 37077 Göttingen, Germany; Bernstein Center for Computational Neuroscience, Göttingen, Germany; Faculty for Biology and Psychology, University of Göttingen, Göttingen, Germany; Leibniz Science Campus Primate Cognition, Göttingen, Germany
| | - Adriana Galvan
- Yerkes National Primate Research Center, Morris K. Udall Center of Excellence for Parkinson's Disease, Department of Neurology, Emory University, GA 30329, USA
| | - Supriya Ghosh
- Department of Neurobiology and Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, University of Chicago, Chicago, IL 60637, USA
| | - Marc Alwin Gieselmann
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle NE2 4HH, UK
| | - Roberto A Gulli
- Zuckerman Institute, Columbia University, New York, NY 10027, USA; Center for Theoretical Neuroscience, Columbia University, New York, NY 10027, USA
| | - Okihide Hikosaka
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Eghbal A Hosseini
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Xing Hu
- Yerkes National Primate Research Center, Morris K. Udall Center of Excellence for Parkinson's Disease, Department of Neurology, Emory University, GA 30329, USA
| | - Janina Hüer
- German Primate Center - Leibniz Institute for Primate Research, 37077 Göttingen, Germany
| | - Ken-Ichi Inoue
- Systems Neuroscience Section, Primate Research Institute, Kyoto University, Inuyama, Aichi 484-8506, Japan; PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
| | - Roger Janz
- Department of Neurobiology and Anatomy, McGovern Medical School, University of Texas-Houston, Houston, TX 77030, USA
| | - Mehrdad Jazayeri
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Rundong Jiang
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Niansheng Ju
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Kohitij Kar
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Carsten Klein
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Adam Kohn
- Dominik P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Misako Komatsu
- Laboratory for Adaptive Intelligence, RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan
| | - Kazutaka Maeda
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Julio C Martinez-Trujillo
- Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada; Brain and Mind Institute, University of Western Ontario, London, ON, Canada
| | - Masayuki Matsumoto
- Division of Biomedical Science, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; Transborder Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - John H R Maunsell
- Department of Neurobiology and Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, University of Chicago, Chicago, IL 60637, USA
| | - Diego Mendoza-Halliday
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ilya E Monosov
- Department of Neuroscience, Biomedical Engineering, Electrical Engineering, Neurosurgery and Pain Center, Washington University, St. Louis, MO 63110, USA
| | - Ross S Muers
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle NE2 4HH, UK
| | - Lauri Nurminen
- Department of Ophthalmology, Moran Eye Institute, University of Utah, Salt Lake City, UT 84132, USA
| | - Michael Ortiz-Rios
- German Primate Center - Leibniz Institute for Primate Research, 37077 Göttingen, Germany; Leibniz Science Campus Primate Cognition, Göttingen, Germany; Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle NE2 4HH, UK
| | - Daniel J O'Shea
- Department of Electrical Engineering, Wu Tsai Neurosciences Institute, and Bio-X Institute, and Neuroscience Graduate Program, Stanford University, Stanford, CA 94305, USA
| | - Stéphane Palfi
- Department of Neurosurgery, Assistance Publique-Hopitaux de Paris (APHP), U955 INSERM IMRB eq.15, University of Paris 12 UPEC, Faculté de Médecine, Créteil 94010, France
| | - Christopher I Petkov
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle NE2 4HH, UK
| | - Sorin Pojoga
- Department of Neurobiology and Anatomy, McGovern Medical School, University of Texas-Houston, Houston, TX 77030, USA
| | - Rishi Rajalingham
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Charu Ramakrishnan
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Evan D Remington
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Cambria Revsine
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA 19104, USA; Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20814, USA
| | - Anna W Roe
- Division of Neuroscience, Oregon National Primate Resource Center, Oregon Health and Science University, Beaverton, OR 97006, USA; Interdisciplinary Institute of Neuroscience and Technology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310029, China; Key Laboratory of Biomedical Engineering of the Ministry of Education, Zhejiang University, Hangzhou 310029, China
| | - Philip N Sabes
- Center for Integrative Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Richard C Saunders
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA
| | - Hansjörg Scherberger
- German Primate Center - Leibniz Institute for Primate Research, 37077 Göttingen, Germany; Bernstein Center for Computational Neuroscience, Göttingen, Germany; Faculty for Biology and Psychology, University of Göttingen, Göttingen, Germany; Leibniz Science Campus Primate Cognition, Göttingen, Germany
| | - Michael C Schmid
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle NE2 4HH, UK; Department of Neurosciences and Movement Sciences, Faculty of Science and Medicine, University of Fribourg, 1700 Fribourg, Switzerland
| | - Wolfram Schultz
- Department of Physiology, Development of Neuroscience, University of Cambridge, Cambridge CB3 0LT, UK
| | - Eyal Seidemann
- Departments of Psychology and Neuroscience, Center for Perceptual Systems, University of Texas, Austin, TX 78712, USA
| | - Yann-Suhan Senova
- Department of Neurosurgery, Assistance Publique-Hopitaux de Paris (APHP), U955 INSERM IMRB eq.15, University of Paris 12 UPEC, Faculté de Médecine, Créteil 94010, France
| | - Michael N Shadlen
- Department of Neuroscience, Mortimer B. Zuckerman Mind Brain Behavior Institute, The Kavli Institute for Brain Science & Howard Hughes Medical Institute, Columbia University, NY 10027, USA
| | - David L Sheinberg
- Department of Neuroscience and Carney Institute for Brain Science, Brown University, Providence, RI 02912, USA
| | - Caitlin Siu
- Department of Ophthalmology, Moran Eye Institute, University of Utah, Salt Lake City, UT 84132, USA
| | - Yoland Smith
- Yerkes National Primate Research Center, Morris K. Udall Center of Excellence for Parkinson's Disease, Department of Neurology, Emory University, GA 30329, USA
| | - Selina S Solomon
- Dominik P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Marc A Sommer
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - John L Spudich
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas-Houston, Houston, TX 77030, USA
| | - William R Stauffer
- Systems Neuroscience Institute, Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Masahiko Takada
- Systems Neuroscience Section, Primate Research Institute, Kyoto University, Inuyama, Aichi 484-8506, Japan
| | - Shiming Tang
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Alexander Thiele
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle NE2 4HH, UK
| | - Stefan Treue
- German Primate Center - Leibniz Institute for Primate Research, 37077 Göttingen, Germany; Bernstein Center for Computational Neuroscience, Göttingen, Germany; Faculty for Biology and Psychology, University of Göttingen, Göttingen, Germany; Leibniz Science Campus Primate Cognition, Göttingen, Germany
| | - Wim Vanduffel
- Laboratory of Neuro- and Psychophysiology, KU Leuven, 3000 Leuven, Belgium; Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium; MGH Martinos Center, Charlestown, MA 02129, USA; Harvard Medical School, Boston, MA 02144, USA
| | - Rufin Vogels
- Laboratory of Neuro- and Psychophysiology, KU Leuven, 3000 Leuven, Belgium; Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium
| | - Matthew P Whitmire
- Departments of Psychology and Neuroscience, Center for Perceptual Systems, University of Texas, Austin, TX 78712, USA
| | - Thomas Wichmann
- Yerkes National Primate Research Center, Morris K. Udall Center of Excellence for Parkinson's Disease, Department of Neurology, Emory University, GA 30329, USA
| | - Robert H Wurtz
- Laboratory of Sensorimotor Research, National Eye Institute, NIH, Bethesda, MD 20982, USA
| | - Haoran Xu
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Azadeh Yazdan-Shahmorad
- Center for Integrative Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA; Departments of Bioengineering and Electrical and Computer Engineering, Washington National Primate Research Center, University of Washington, Seattle, WA 98105, USA
| | - Krishna V Shenoy
- Departments of Electrical Engineering, Bioengineering, and Neurobiology, Wu Tsai Neurosciences Institute and Bio-X Institute, Neuroscience Graduate Program, and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - James J DiCarlo
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Michael L Platt
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Psychology, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Marketing, Wharton School, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
8
|
Luchicchi A, Pattij T, Viaña JNM, de Kloet S, Marchant N. Tracing goes viral: Viruses that introduce expression of fluorescent proteins in chemically-specific neurons. J Neurosci Methods 2020; 348:109004. [PMID: 33242528 DOI: 10.1016/j.jneumeth.2020.109004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 11/12/2020] [Accepted: 11/16/2020] [Indexed: 12/26/2022]
Abstract
Over the last century, there has been great progress in understanding how the brain works. In particular, the last two decades have been crucial in gaining more awareness over the complex functioning of neurotransmitter systems. The use of viral vectors in neuroscience has been pivotal for such development. Exploiting the properties of viral particles, modifying them according to the research needs, and making them target chemically-specific neurons, techniques such as optogenetics and chemogenetics have been developed, which could lead to a giant step toward gene therapy for brain disorders. In this review, we aim to provide an overview of some of the most widely used viral techniques in neuroscience. We will discuss advantages and disadvantages of these methods. In particular, attention is dedicated to the pivotal role played by the introduction of adeno-associated virus and the retrograde tracer canine-associated-2 Cre virus in order to achieve optimal visualization, and interrogation, of chemically-specific neuronal populations and their projections.
Collapse
Affiliation(s)
- Antonio Luchicchi
- Department of Anatomy and Neurosciences, Amsterdam UMC, VU University Medical Center, de Boelelaan 1108, 1081HZ, Amsterdam, the Netherlands.
| | - Tommy Pattij
- Department of Anatomy and Neurosciences, Amsterdam UMC, VU University Medical Center, de Boelelaan 1108, 1081HZ, Amsterdam, the Netherlands
| | - John Noel M Viaña
- Center for Neurogenomics and Cognitive Research (CNCR), VU University Amsterdam, de Boelelaan 1085, 1081HZ, Amsterdam, the Netherlands; Australian National Centre for the Public Awareness of Science, ANU College of Science, The Australian National University, Linnaeus Way, Acton, ACT 2601, Australia
| | - Sybren de Kloet
- Center for Neurogenomics and Cognitive Research (CNCR), VU University Amsterdam, de Boelelaan 1085, 1081HZ, Amsterdam, the Netherlands
| | - Nathan Marchant
- Department of Anatomy and Neurosciences, Amsterdam UMC, VU University Medical Center, de Boelelaan 1108, 1081HZ, Amsterdam, the Netherlands
| |
Collapse
|
9
|
Cushnie AK, El-Nahal HG, Bohlen MO, May PJ, Basso MA, Grimaldi P, Wang MZ, de Velasco Ezequiel MF, Sommer MA, Heilbronner SR. Using rAAV2-retro in rhesus macaques: Promise and caveats for circuit manipulation. J Neurosci Methods 2020; 345:108859. [PMID: 32668316 PMCID: PMC7539563 DOI: 10.1016/j.jneumeth.2020.108859] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 07/01/2020] [Accepted: 07/10/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Recent genetic technologies such as opto- and chemogenetics allow for the manipulation of brain circuits with unprecedented precision. Most studies employing these techniques have been undertaken in rodents, but a more human-homologous model for studying the brain is the nonhuman primate (NHP). Optimizing viral delivery of transgenes encoding actuator proteins could revolutionize the way we study neuronal circuits in NHPs. NEW METHOD: rAAV2-retro, a popular new capsid variant, produces robust retrograde labeling in rodents. Whether rAAV2-retro's highly efficient retrograde transport would translate to NHPs was unknown. Here, we characterized the anatomical distribution of labeling following injections of rAAV2-retro encoding opsins or DREADDs in the cortico-basal ganglia and oculomotor circuits of rhesus macaques. RESULTS rAAV2-retro injections in striatum, frontal eye field, and superior colliculus produced local labeling at injection sites and robust retrograde labeling in many afferent regions. In every case, however, a few brain regions with well-established projections to the injected structure lacked retrogradely labeled cells. We also observed robust terminal field labeling in downstream structures. COMPARISON WITH EXISTING METHOD(S) Patterns of labeling were similar to those obtained with traditional tract-tracers, except for some afferent labeling that was noticeably absent. CONCLUSIONS rAAV2-retro promises to be useful for circuit manipulation via retrograde transduction in NHPs, but caveats were revealed by our findings. Some afferently connected regions lacked retrogradely labeled cells, showed robust axon terminal labeling, or both. This highlights the importance of anatomically characterizing rAAV2-retro's expression in target circuits in NHPs before moving to manipulation studies.
Collapse
Affiliation(s)
- Adriana K Cushnie
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, United States
| | - Hala G El-Nahal
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, United States
| | - Martin O Bohlen
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, United States
| | - Paul J May
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, 39216, United States
| | - Michele A Basso
- Fuster Laboratory of Cognitive Neuroscience, Department of Psychiatry and Biobehavioral Sciences and Neurobiology, Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, Univ. of California Los Angeles, Los Angeles, CA 90095, United States
| | - Piercesare Grimaldi
- Fuster Laboratory of Cognitive Neuroscience, Department of Psychiatry and Biobehavioral Sciences and Neurobiology, Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, Univ. of California Los Angeles, Los Angeles, CA 90095, United States
| | - Maya Zhe Wang
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, United States
| | | | - Marc A Sommer
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, United States; Department of Neurobiology, Duke University School of Medicine, Durham, NC 27708, United States; Center for Cognitive Neuroscience, Duke University, Durham, NC 27708, United States
| | - Sarah R Heilbronner
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, United States.
| |
Collapse
|
10
|
Kar K, DiCarlo JJ. Fast Recurrent Processing via Ventrolateral Prefrontal Cortex Is Needed by the Primate Ventral Stream for Robust Core Visual Object Recognition. Neuron 2020; 109:164-176.e5. [PMID: 33080226 DOI: 10.1016/j.neuron.2020.09.035] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/05/2020] [Accepted: 09/25/2020] [Indexed: 10/23/2022]
Abstract
Distributed neural population spiking patterns in macaque inferior temporal (IT) cortex that support core object recognition require additional time to develop for specific, "late-solved" images. This suggests the necessity of recurrent processing in these computations. Which brain circuits are responsible for computing and transmitting these putative recurrent signals to IT? To test whether the ventrolateral prefrontal cortex (vlPFC) is a critical recurrent node in this system, here, we pharmacologically inactivated parts of vlPFC and simultaneously measured IT activity while monkeys performed object discrimination tasks. vlPFC inactivation deteriorated the quality of late-phase (>150 ms from image onset) IT population code and produced commensurate behavioral deficits for late-solved images. Finally, silencing vlPFC caused the monkeys' IT activity and behavior to become more like those produced by feedforward-only ventral stream models. Together with prior work, these results implicate fast recurrent processing through vlPFC as critical to producing behaviorally sufficient object representations in IT.
Collapse
Affiliation(s)
- Kohitij Kar
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 01239, USA; Center for Brains, Minds and Machines, Massachusetts Institute of Technology, Cambridge, MA 01239, USA.
| | - James J DiCarlo
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 01239, USA; Center for Brains, Minds and Machines, Massachusetts Institute of Technology, Cambridge, MA 01239, USA
| |
Collapse
|
11
|
Fredericks JM, Dash KE, Jaskot EM, Bennett TW, Lerchner W, Dold G, Ide D, Cummins AC, Der Minassian VH, Turchi JN, Richmond BJ, Eldridge MAG. Methods for mechanical delivery of viral vectors into rhesus monkey brain. J Neurosci Methods 2020; 339:108730. [PMID: 32302596 DOI: 10.1016/j.jneumeth.2020.108730] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/07/2020] [Accepted: 04/09/2020] [Indexed: 11/16/2022]
Abstract
BACKGROUND Modern molecular tools make it possible to manipulate neural activity in a reversible and cell-type specific manner. For rhesus monkey research, molecular tools are generally introduced via viral vectors. New instruments designed specifically for use in monkey research are needed to enhance the efficiency and reliability of vector delivery. NEW METHOD A suite of multi-channel injection devices was developed to permit efficient and uniform vector delivery to cortical regions of the monkey brain. Manganese was co-infused with virus to allow rapid post-surgical confirmation of targeting accuracy using MRI. A needle guide was designed to increase the accuracy of sub-cortical targeting using stereotaxic co-ordinates. RESULTS The multi-channel injection devices produced dense, uniform coverage of dorsal surface cortex, ventral surface cortex, and intra-sulcal cortex, respectively. Co-infusion of manganese with the viral vector allowed for immediate verification of injection accuracy. The needle guide improved accuracy of targeting sub-cortical structures by preventing needle deflection. COMPARISON WITH EXISTING METHOD(S) The current methods, hand-held injections or single slow mechanical injection, for surface cortex transduction do not, in our hands, produce the density and uniformity of coverage provided by the injector arrays and associated infusion protocol. CONCLUSIONS The efficiency and reliability of vector delivery has been considerably improved by the development of new methods and instruments. This development should facilitate the translation of chemo- and optogenetic studies performed in smaller animals to larger animals such as rhesus monkeys.
Collapse
Affiliation(s)
- J Megan Fredericks
- Laboratory of Neuropsychology, NIMH/NIH/DHHS, Bethesda, MD, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10014, USA
| | - Kiana E Dash
- Laboratory of Neuropsychology, NIMH/NIH/DHHS, Bethesda, MD, USA
| | - Emilia M Jaskot
- Laboratory of Neuropsychology, NIMH/NIH/DHHS, Bethesda, MD, USA
| | | | - Walter Lerchner
- Laboratory of Neuropsychology, NIMH/NIH/DHHS, Bethesda, MD, USA
| | - George Dold
- Section on Instrumentation, NIH/DHHS, Bethesda, MD, USA
| | - David Ide
- Section on Instrumentation, NIH/DHHS, Bethesda, MD, USA
| | | | | | - Janita N Turchi
- Laboratory of Neuropsychology, NIMH/NIH/DHHS, Bethesda, MD, USA
| | | | | |
Collapse
|
12
|
Diehl MM, Lempert KM, Parr AC, Ballard I, Steele VR, Smith DV. Toward an integrative perspective on the neural mechanisms underlying persistent maladaptive behaviors. Eur J Neurosci 2018; 48:1870-1883. [PMID: 30044022 PMCID: PMC6113118 DOI: 10.1111/ejn.14083] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 06/13/2018] [Accepted: 06/26/2018] [Indexed: 01/29/2023]
Affiliation(s)
- Maria M. Diehl
- Department of Psychiatry, University of Puerto Rico School of Medicine, San Juan, PR 00936
| | - Karolina M. Lempert
- Department of Psychology, University of Pennsylvania, Philadelphia, PA 19104
| | - Ashley C. Parr
- Centre for Neuroscience Studies, Queen’s University, Kingston, Ontario
| | - Ian Ballard
- Neurosciences Graduate Training Program, Stanford University, Stanford, CA 94305
| | - Vaughn R. Steele
- Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - David V. Smith
- Department of Psychology, Temple University, Philadelphia, PA 19122
| |
Collapse
|
13
|
Kikusui T, Kajita M, Otsuka N, Hattori T, Kumazawa K, Watarai A, Nagasawa M, Inutsuka A, Yamanaka A, Matsuo N, Covington HE, Mogi K. Sex differences in olfactory-induced neural activation of the amygdala. Behav Brain Res 2018; 346:96-104. [DOI: 10.1016/j.bbr.2017.11.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 11/21/2017] [Accepted: 11/24/2017] [Indexed: 12/26/2022]
|
14
|
Bell AH, Bultitude JH. Methods matter: A primer on permanent and reversible interference techniques in animals for investigators of human neuropsychology. Neuropsychologia 2018; 115:211-219. [PMID: 28943365 PMCID: PMC6018620 DOI: 10.1016/j.neuropsychologia.2017.09.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 09/07/2017] [Accepted: 09/19/2017] [Indexed: 12/05/2022]
Abstract
The study of patients with brain lesions has contributed greatly to our understanding of the biological bases of human cognition, but this approach also has several unavoidable limitations. Research that uses animal models complements and extends human neuropsychology by addressing many of these limitations. In this review, we provide an overview of permanent and reversible animal lesion techniques for researchers of human neuropsychology, with the aim of highlighting how these methods provide a valuable adjunct to behavioural, neuroimaging, physiological, and clinical investigations in humans. Research in animals has provided important lessons about how the limitations of one or more techniques, or differences in their mechanism of action, has impacted upon the understanding of brain organisation and function. These cautionary tales highlight the importance of striving for a thorough understanding of how any intereference technique works (whether in animal or human), and for how to best use animal research to clarify the precise mechanisms underlying temporary lesion methods in humans.
Collapse
Affiliation(s)
- Andrew H Bell
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK; Department of Experimental Psychology, University of Oxford, Oxford, UK.
| | - Janet H Bultitude
- Department of Psychology, University of Bath, Bath, UK; Centre for Pain Research, University of Bath, Bath, UK; The Centre for Functional Magnetic Resonance Imaging of the Brain, University of Oxford, Oxford, UK
| |
Collapse
|
15
|
Ting JT, Kalmbach B, Chong P, de Frates R, Keene CD, Gwinn RP, Cobbs C, Ko AL, Ojemann JG, Ellenbogen RG, Koch C, Lein E. A robust ex vivo experimental platform for molecular-genetic dissection of adult human neocortical cell types and circuits. Sci Rep 2018; 8:8407. [PMID: 29849137 PMCID: PMC5976666 DOI: 10.1038/s41598-018-26803-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 05/16/2018] [Indexed: 12/20/2022] Open
Abstract
The powerful suite of available genetic tools is driving tremendous progress in understanding mouse brain cell types and circuits. However, the degree of conservation in human remains largely unknown in large part due to the lack of such tools and healthy tissue preparations. To close this gap, we describe a robust and stable adult human neurosurgically-derived ex vivo acute and cultured neocortical brain slice system optimized for rapid molecular-genetic manipulation. Surprisingly, acute human brain slices exhibited exceptional viability, and neuronal intrinsic membrane properties could be assayed for at least three days. Maintaining adult human slices in culture under sterile conditions further enabled the application of viral tools to drive rapid expression of exogenous transgenes. Widespread neuron-specific labeling was achieved as early as two days post infection with HSV-1 vectors, with virally-transduced neurons exhibiting membrane properties largely comparable to uninfected neurons over this short timeframe. Finally, we demonstrate the suitability of this culture paradigm for optical manipulation and monitoring of neuronal activity using genetically encoded probes, opening a path for applying modern molecular-genetic tools to study human brain circuit function.
Collapse
Affiliation(s)
| | - Brian Kalmbach
- Allen Institute for Brain Science, Seattle, WA, USA.,Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA, USA
| | - Peter Chong
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - C Dirk Keene
- Department of Pathology, University of Washington School of Medicine, Seattle, WA, USA
| | - Ryder P Gwinn
- Epilepsy Surgery and Functional Neurosurgery, Swedish Neuroscience Institute, Seattle, WA, USA
| | - Charles Cobbs
- The Ben and Catherine Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle, WA, USA
| | - Andrew L Ko
- Regional Epilepsy Center at Harborview Medical Center, Seattle, WA, USA.,Department of Neurological Surgery, University of Washington School of Medicine, Seattle, WA, USA
| | - Jeffrey G Ojemann
- Regional Epilepsy Center at Harborview Medical Center, Seattle, WA, USA.,Department of Neurological Surgery, University of Washington School of Medicine, Seattle, WA, USA
| | - Richard G Ellenbogen
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle, WA, USA
| | | | - Ed Lein
- Allen Institute for Brain Science, Seattle, WA, USA.,Department of Neurological Surgery, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
16
|
Campbell EJ, Marchant NJ. The use of chemogenetics in behavioural neuroscience: receptor variants, targeting approaches and caveats. Br J Pharmacol 2018; 175:994-1003. [PMID: 29338070 DOI: 10.1111/bph.14146] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 12/13/2017] [Accepted: 12/27/2017] [Indexed: 12/18/2022] Open
Abstract
The last decade has seen major advances in neuroscience tools allowing us to selectively modulate cellular pathways in freely moving animals. Chemogenetic approaches such as designer receptors exclusively activated by designer drugs (DREADDs) permit the remote control of neuronal function by systemic drug administration. These approaches have dramatically advanced our understanding of the neural control of behaviour. Here, we review the different techniques and genetic approaches available for the restriction of chemogenetic receptors to defined neuronal populations. We highlight the use of a dual virus approach to target specific circuitries and the effectiveness of different routes of administration of designer drugs. Finally, we discuss the potential caveats associated with DREADDs including off-target effects of designer drugs, the effects of chronic chemogenetic receptor activation and the issue of collateral projections associated with DREADD activation and inhibition.
Collapse
Affiliation(s)
- Erin J Campbell
- The Florey Institute of Neuroscience and Mental Health, Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Nathan J Marchant
- The Florey Institute of Neuroscience and Mental Health, Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia.,Department of Anatomy & Neurosciences, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
17
|
Nectow AR, Moya MV, Ekstrand MI, Mousa A, McGuire KL, Sferrazza CE, Field BC, Rabinowitz GS, Sawicka K, Liang Y, Friedman JM, Heintz N, Schmidt EF. Rapid Molecular Profiling of Defined Cell Types Using Viral TRAP. Cell Rep 2017; 19:655-667. [PMID: 28423326 DOI: 10.1016/j.celrep.2017.03.048] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 02/11/2017] [Accepted: 03/14/2017] [Indexed: 12/13/2022] Open
Abstract
Translational profiling methodologies enable the systematic characterization of cell types in complex tissues, such as the mammalian brain, where neuronal isolation is exceptionally difficult. Here, we report a versatile strategy for profiling CNS cell types in a spatiotemporally restricted fashion by engineering a Cre-dependent adeno-associated virus expressing an EGFP-tagged ribosomal protein (AAV-FLEX-EGFPL10a) to access translating mRNAs by translating ribosome affinity purification (TRAP). We demonstrate the utility of this AAV to target a variety of genetically and anatomically defined neural populations expressing Cre recombinase and illustrate the ability of this viral TRAP (vTRAP) approach to recapitulate the molecular profiles obtained by bacTRAP in corticothalamic neurons across multiple serotypes. Furthermore, spatially restricting adeno-associated virus (AAV) injections enabled the elucidation of regional differences in gene expression within this cell type. Altogether, these results establish the broad applicability of the vTRAP strategy for the molecular dissection of any CNS or peripheral cell type that can be engineered to express Cre.
Collapse
Affiliation(s)
- Alexander R Nectow
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA; Princeton Neuroscience Institute, Princeton University, Lot 20 Washington Road, Princeton, NJ 08544, USA.
| | - Maria V Moya
- Laboratory of Molecular Biology, Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Mats I Ekstrand
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Awni Mousa
- Laboratory of Molecular Biology, Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Kelly L McGuire
- Laboratory of Molecular Biology, Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Caroline E Sferrazza
- Laboratory of Molecular Biology, Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Bianca C Field
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Gabrielle S Rabinowitz
- Laboratory of Molecular Neuro-Oncology, Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | - Kirsty Sawicka
- Laboratory of Molecular Neuro-Oncology, Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | - Yupu Liang
- Hospital Informatics, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | - Jeffrey M Friedman
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Nathaniel Heintz
- Laboratory of Molecular Biology, Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| | - Eric F Schmidt
- Laboratory of Molecular Biology, Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
18
|
Dobrzanski G, Kossut M. Application of the DREADD technique in biomedical brain research. Pharmacol Rep 2017; 69:213-221. [DOI: 10.1016/j.pharep.2016.10.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 10/21/2016] [Accepted: 10/24/2016] [Indexed: 12/25/2022]
|
19
|
Galvan A, Caiola MJ, Albaugh DL. Advances in optogenetic and chemogenetic methods to study brain circuits in non-human primates. J Neural Transm (Vienna) 2017; 125:547-563. [PMID: 28238201 DOI: 10.1007/s00702-017-1697-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 02/14/2017] [Indexed: 12/22/2022]
Abstract
Over the last 10 years, the use of opto- and chemogenetics to modulate neuronal activity in research applications has increased exponentially. Both techniques involve the genetic delivery of artificial proteins (opsins or engineered receptors) that are expressed on a selective population of neurons. The firing of these neurons can then be manipulated using light sources (for opsins) or by systemic administration of exogenous compounds (for chemogenetic receptors). Opto- and chemogenetic tools have enabled many important advances in basal ganglia research in rodent models, yet these techniques have faced a slow progress in non-human primate (NHP) research. In this review, we present a summary of the current state of these techniques in NHP research and outline some of the main challenges associated with the use of these genetic-based approaches in monkeys. We also explore cutting-edge developments that will facilitate the use of opto- and chemogenetics in NHPs, and help advance our understanding of basal ganglia circuits in normal and pathological conditions.
Collapse
Affiliation(s)
- Adriana Galvan
- Department of Neurology, Yerkes National Primate Research Center, School of Medicine, Emory University, Atlanta, GA, 30329, USA. .,Udall Center of Excellence for Parkinson's Disease Research, Emory University, 954 Gatewood Road NE, Atlanta, GA, 30329, USA. .,Department of Neurology, School of Medicine, Emory University, Atlanta, GA, 30322, USA.
| | - Michael J Caiola
- Department of Neurology, Yerkes National Primate Research Center, School of Medicine, Emory University, Atlanta, GA, 30329, USA.,Udall Center of Excellence for Parkinson's Disease Research, Emory University, 954 Gatewood Road NE, Atlanta, GA, 30329, USA
| | - Daniel L Albaugh
- Department of Neurology, Yerkes National Primate Research Center, School of Medicine, Emory University, Atlanta, GA, 30329, USA.,Udall Center of Excellence for Parkinson's Disease Research, Emory University, 954 Gatewood Road NE, Atlanta, GA, 30329, USA
| |
Collapse
|
20
|
Pignataro D, Sucunza D, Rico AJ, Dopeso-Reyes IG, Roda E, Rodríguez-Perez AI, Labandeira-Garcia JL, Broccoli V, Kato S, Kobayashi K, Lanciego JL. Gene therapy approaches in the non-human primate model of Parkinson's disease. J Neural Transm (Vienna) 2017; 125:575-589. [PMID: 28130586 DOI: 10.1007/s00702-017-1681-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 01/16/2017] [Indexed: 12/23/2022]
Abstract
The field of gene therapy has recently witnessed a number of major conceptual changes. Besides the traditional thinking that comprises the use of viral vectors for the delivery of a given therapeutic gene, a number of original approaches have been recently envisaged, focused on using vectors carrying genes to further modify basal ganglia circuits of interest. It is expected that these approaches will ultimately induce a therapeutic potential being sustained by gene-induced changes in brain circuits. Among others, at present, it is technically feasible to use viral vectors to (1) achieve a controlled release of neurotrophic factors, (2) conduct either a transient or permanent silencing of any given basal ganglia circuit of interest, (3) perform an in vivo cellular reprogramming by promoting the conversion of resident cells into dopaminergic-like neurons, and (4) improving levodopa efficacy over time by targeting aromatic L-amino acid decarboxylase. Furthermore, extensive research efforts based on viral vectors are currently ongoing in an attempt to better replicate the dopaminergic neurodegeneration phenomena inherent to the progressive intraneuronal aggregation of alpha-synuclein. Finally, a number of incoming strategies will soon emerge over the horizon, these being sustained by the underlying goal of promoting alpha-synuclein clearance, such as, for instance, gene therapy initiatives based on increasing the activity of glucocerebrosidase. To provide adequate proof-of-concept on safety and efficacy and to push forward true translational initiatives based on these different types of gene therapies before entering into clinical trials, the use of non-human primate models undoubtedly plays an instrumental role.
Collapse
Affiliation(s)
- D Pignataro
- Department of Neurosciences, Center for Applied Medical Research (CIMA), University of Navarra, Pio XII Ave 55, Edificio CIMA, 31008, Pamplona, Navarra, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - D Sucunza
- Department of Neurosciences, Center for Applied Medical Research (CIMA), University of Navarra, Pio XII Ave 55, Edificio CIMA, 31008, Pamplona, Navarra, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - A J Rico
- Department of Neurosciences, Center for Applied Medical Research (CIMA), University of Navarra, Pio XII Ave 55, Edificio CIMA, 31008, Pamplona, Navarra, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - I G Dopeso-Reyes
- Department of Neurosciences, Center for Applied Medical Research (CIMA), University of Navarra, Pio XII Ave 55, Edificio CIMA, 31008, Pamplona, Navarra, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - E Roda
- Department of Neurosciences, Center for Applied Medical Research (CIMA), University of Navarra, Pio XII Ave 55, Edificio CIMA, 31008, Pamplona, Navarra, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - A I Rodríguez-Perez
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - J L Labandeira-Garcia
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - V Broccoli
- Division of Neuroscience, Ospedale San Raffaele, 20132, Milan, Italy
- CNR Institute of Neuroscience, 20129, Milan, Italy
| | - S Kato
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - K Kobayashi
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - José L Lanciego
- Department of Neurosciences, Center for Applied Medical Research (CIMA), University of Navarra, Pio XII Ave 55, Edificio CIMA, 31008, Pamplona, Navarra, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain.
| |
Collapse
|
21
|
Kobayashi K, Kato S, Kobayashi K. Genetic manipulation of specific neural circuits by use of a viral vector system. J Neural Transm (Vienna) 2017; 125:67-75. [DOI: 10.1007/s00702-016-1674-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 12/30/2016] [Indexed: 01/05/2023]
|
22
|
PET imaging-guided chemogenetic silencing reveals a critical role of primate rostromedial caudate in reward evaluation. Nat Commun 2016; 7:13605. [PMID: 27922009 PMCID: PMC5150653 DOI: 10.1038/ncomms13605] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 10/18/2016] [Indexed: 01/09/2023] Open
Abstract
The rostromedial caudate (rmCD) of primates is thought to contribute to reward value processing, but a causal relationship has not been established. Here we use an inhibitory DREADD (Designer Receptor Exclusively Activated by Designer Drug) to repeatedly and non-invasively inactivate rmCD of macaque monkeys. We inject an adeno-associated viral vector expressing the inhibitory DREADD, hM4Di, into the rmCD bilaterally. To visualize DREADD expression in vivo, we develop a non-invasive imaging method using positron emission tomography (PET). PET imaging provides information critical for successful chemogenetic silencing during experiments, in this case the location and level of hM4Di expression, and the relationship between agonist dose and hM4Di receptor occupancy. Here we demonstrate that inactivating bilateral rmCD through activation of hM4Di produces a significant and reproducible loss of sensitivity to reward value in monkeys. Thus, the rmCD is involved in making normal judgments about the value of reward.
Collapse
|
23
|
Stauffer WR, Lak A, Yang A, Borel M, Paulsen O, Boyden ES, Schultz W. Dopamine Neuron-Specific Optogenetic Stimulation in Rhesus Macaques. Cell 2016; 166:1564-1571.e6. [PMID: 27610576 PMCID: PMC5018252 DOI: 10.1016/j.cell.2016.08.024] [Citation(s) in RCA: 160] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 07/10/2016] [Accepted: 08/12/2016] [Indexed: 12/12/2022]
Abstract
Optogenetic studies in mice have revealed new relationships between well-defined neurons and brain functions. However, there are currently no means to achieve the same cell-type specificity in monkeys, which possess an expanded behavioral repertoire and closer anatomical homology to humans. Here, we present a resource for cell-type-specific channelrhodopsin expression in Rhesus monkeys and apply this technique to modulate dopamine activity and monkey choice behavior. These data show that two viral vectors label dopamine neurons with greater than 95% specificity. Infected neurons were activated by light pulses, indicating functional expression. The addition of optical stimulation to reward outcomes promoted the learning of reward-predicting stimuli at the neuronal and behavioral level. Together, these results demonstrate the feasibility of effective and selective stimulation of dopamine neurons in non-human primates and a resource that could be applied to other cell types in the monkey brain. Cell-type-specific promoter drives Cre-dependent ChR2 expression in monkey Optogenetically activated neurons had dopamine-like features and reward responses Dopamine neurons respond strongly to cues predicting optical stimulation Monkeys choose predicted optogenetic stimulation over no predicted stimulation
Collapse
Affiliation(s)
- William R Stauffer
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK.
| | - Armin Lak
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Aimei Yang
- McGovern Brain Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Melodie Borel
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Ole Paulsen
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Edward S Boyden
- McGovern Brain Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Wolfram Schultz
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| |
Collapse
|
24
|
El-Shamayleh Y, Ni AM, Horwitz GD. Strategies for targeting primate neural circuits with viral vectors. J Neurophysiol 2016; 116:122-34. [PMID: 27052579 PMCID: PMC4961743 DOI: 10.1152/jn.00087.2016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 04/05/2016] [Indexed: 11/22/2022] Open
Abstract
Understanding how the brain works requires understanding how different types of neurons contribute to circuit function and organism behavior. Progress on this front has been accelerated by optogenetics and chemogenetics, which provide an unprecedented level of control over distinct neuronal types in small animals. In primates, however, targeting specific types of neurons with these tools remains challenging. In this review, we discuss existing and emerging strategies for directing genetic manipulations to targeted neurons in the adult primate central nervous system. We review the literature on viral vectors for gene delivery to neurons, focusing on adeno-associated viral vectors and lentiviral vectors, their tropism for different cell types, and prospects for new variants with improved efficacy and selectivity. We discuss two projection targeting approaches for probing neural circuits: anterograde projection targeting and retrograde transport of viral vectors. We conclude with an analysis of cell type-specific promoters and other nucleotide sequences that can be used in viral vectors to target neuronal types at the transcriptional level.
Collapse
Affiliation(s)
- Yasmine El-Shamayleh
- Department of Physiology and Biophysics and Washington National Primate Research Center, University of Washington, Seattle, Washington; and
| | - Amy M Ni
- Department of Neuroscience and Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Gregory D Horwitz
- Department of Physiology and Biophysics and Washington National Primate Research Center, University of Washington, Seattle, Washington; and
| |
Collapse
|
25
|
Abstract
Unraveling the complex network of neural circuits that form the nervous system demands tools that can manipulate specific circuits. The recent evolution of genetic tools to target neural circuits allows an unprecedented precision in elucidating their function. Here we describe two general approaches for achieving circuit specificity. The first uses the genetic identity of a cell, such as a transcription factor unique to a circuit, to drive expression of a molecule that can manipulate cell function. The second uses the spatial connectivity of a circuit to achieve specificity: one genetic element is introduced at the origin of a circuit and the other at its termination. When the two genetic elements combine within a neuron, they can alter its function. These two general approaches can be combined to allow manipulation of neurons with a specific genetic identity by introducing a regulatory gene into the origin or termination of the circuit. We consider the advantages and disadvantages of both these general approaches with regard to specificity and efficacy of the manipulations. We also review the genetic techniques that allow gain- and loss-of-function within specific neural circuits. These approaches introduce light-sensitive channels (optogenetic) or drug sensitive channels (chemogenetic) into neurons that form specific circuits. We compare these tools with others developed for circuit-specific manipulation and describe the advantages of each. Finally, we discuss how these tools might be applied for identification of the neural circuits that mediate behavior and for repair of neural connections.
Collapse
Affiliation(s)
- Hong Geun Park
- Burke Medical Research Institute, White Plains, NY, USA.
| | - Jason B Carmel
- Burke Medical Research Institute, White Plains, NY, USA
- Brain and Mind Research Institute and Departments of Neurology and Pediatrics, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
26
|
Smith KS, Bucci DJ, Luikart BW, Mahler SV. DREADDS: Use and application in behavioral neuroscience. Behav Neurosci 2016; 130:137-55. [PMID: 26913540 DOI: 10.1037/bne0000135] [Citation(s) in RCA: 167] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Technological advances over the last decade are changing the face of behavioral neuroscience research. Here we review recent work on the use of one such transformative tool in behavioral neuroscience research, chemogenetics (or Designer Receptors Exclusively Activated by Designer Drugs, DREADDS). As transformative technologies such as DREADDs are introduced, applied, and refined, their utility in addressing complex questions about behavior and cognition becomes clear and exciting. In the behavioral neuroscience field, remarkable new findings now regularly appear as a result of the ability to monitor and intervene in neural processes with high anatomical precision as animals behave in complex task environments. As these new tools are applied to behavioral questions, individualized procedures for their use find their way into diverse labs. Thus, "tips of the trade" become important for wide dissemination not only for laboratories that are using the tools but also for those who are interested in incorporating them into their own work. Our aim is to provide an up-to-date perspective on how the DREADD technique is being used for research on learning and memory, decision making, and goal-directed behavior, as well as to provide suggestions and considerations for current and future users based on our collective experience. (PsycINFO Database Record
Collapse
Affiliation(s)
- Kyle S Smith
- Department of Psychological and Brain Sciences, Dartmouth College
| | - David J Bucci
- Department of Psychological and Brain Sciences, Dartmouth College
| | - Bryan W Luikart
- Department of Physiology and Neurobiology, Geisel School of Medicine, Dartmouth College
| | - Stephen V Mahler
- Department of Neurobiology and Behavior, University of California Irvine
| |
Collapse
|