1
|
Iqbal U, Malik A, Sial NT, Mehmood MH, Uttra AM, Tulain UR, Erum A, Fayyaz-Ur-Rehman M, Welson NN, Mahmoud MH, Alexiou A, Papadakis M, El-Saber Bathia G. Eucalyptol attenuates indomethacin-induced gastric ulcers in rats by modulating the ICAM-1, eNOS and COX/LOX pathways: Insights from in silico, in vitro and in vivo approaches. Food Chem Toxicol 2025; 199:115319. [PMID: 39965739 DOI: 10.1016/j.fct.2025.115319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/07/2025] [Accepted: 02/10/2025] [Indexed: 02/20/2025]
Abstract
In order to evaluate anti-inflammatory role of eucalyptol (100, 200, and 400 mg/kg orally), inflammation was induced in rats using 0.1 ml of histamine and 0.1 ml of formaldehyde. Furthermore, in vivo gastroprotective potential of eucalyptol (100, 200 and 400 mg/kg) was determined via the intraperitoneal injection of 25 mg/kg indomethacin as an ulcerative agent and omeprazole (30 mg/kg) orally as a standard. Estimation of biochemical (PGE2, ICAM-1, COX-I, COX-II, eNOS and 5-LOX) and oxidative stress (SOD, CAT, GSH, and MDA) markers were carried out in gastric tissues using ELISA. The morphological and histopathological features of the gastric tissues were studied. In vitro, eucalyptol stabilized red blood cell membranes and inhibited protein denaturation, with the maximum effect observed at a concentration of 6400 μg/mL. Eucalyptol significantly reduced rat paw edema in histamine- and formaldehyde-induced inflammation models. It increased gastric PGE2, COX-I and eNOS levels, and decreased COX-II, 5-LOX and ICAM-1. Eucalyptol reduced ulcer indices and improved histopathological changes. Eucalyptol also increased antioxidants levels with decreased MDA levels in isolated rat stomach tissues. Therefore, eucalyptol shows gastroprotective effects against histamine- and formaldehyde induced inflammation and indomethacin-induced gastric ulcers through the modulation of the COX/LOX, ICAM-1, eNOS pathways and oxidative stress biomarkers.
Collapse
Affiliation(s)
- Urooj Iqbal
- Department of Pharmacology, College of Pharmacy, University of Sargodha, Pakistan; Primary and Secondary Health Care Department, Lahore, Punjab, Pakistan.
| | - Abdul Malik
- Department of Pharmacology, College of Pharmacy, University of Sargodha, Pakistan.
| | - Nabeela Tabassum Sial
- Department of Pharmacology, College of Pharmacy, University of Sargodha, Pakistan; Institute of Pharmacy, Lahore College for Women University, Lahore, Pakistan.
| | - Malik Hassan Mehmood
- Department of Pharmaceutical Sciences, Government College University Lahore, Pakistan.
| | - Ambreen Malik Uttra
- Department of Pharmacology, College of Pharmacy, University of Sargodha, Pakistan.
| | - Ume Ruqia Tulain
- Department of Pharmaceutics, College of Pharmacy, University of Sargodha, Pakistan.
| | - Alia Erum
- Department of Pharmaceutics, College of Pharmacy, University of Sargodha, Pakistan.
| | | | - Nermeen N Welson
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Beni-Suef University, 62511, Beni Suef, Egypt.
| | - Mohamed H Mahmoud
- Department of Biochemistry, College of Science, King Saud University, Kingdom of Saudi Arabia.
| | - Athanasios Alexiou
- University Centre for Research & Development, Chandigarh University, Chandigarh-Ludhiana Highway, Mohali, Punjab, India; Department of Research & Development, Funogen, Athens, 11741, Greece.
| | - Marios Papadakis
- University Hospital Witten-Herdecke, Heusnerstrasse 40, University of Witten-Herdecke, 42283, Wuppertal, Germany.
| | - Gaber El-Saber Bathia
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, AlBeheira, Damanhour, 22511, Egypt.
| |
Collapse
|
2
|
Garavito-Duarte Y, Duarte ME, Kim SW. Efficacy of ground herb-based and essential oil-based phytobiotics on the intestinal health and performance of nursery pigs challenged with F18+Escherichia coli. J Anim Sci 2025; 103:skaf018. [PMID: 39886985 PMCID: PMC11897891 DOI: 10.1093/jas/skaf018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 01/30/2025] [Indexed: 02/01/2025] Open
Abstract
This study aimed to evaluate the efficacy of using ground herb-based phytobiotics and essential oil-based phytobiotics in pig diets on intestinal health and growth performance (GP) of nursery pigs challenged with F18+Escherichia coli. Forty nursery pigs (6.4 ± 0.1 kg) at 21 d of age were individually housed and assigned to 4 dietary treatments in a randomized complete block design, with body weight and sex as blocking factors. Basal diets were fed to pigs for 28 d in 3 phases. Treatments were negative control (NC): basal diet, non-challenged; positive control (PC): basal diet, challenged with F18+E. coli; HP: PC + 1% ground herb-based phytobiotics (Salcochek Pro, Ayurvet Limited, Kaushambi, India); EP: PC + 1% essential oil-based phytobiotics (Liq-biotic, Ayurvet Limited). The GP was recorded for each phase and fecal score (FS) was measured daily. On day 7 postweaning, the challenged groups were orally inoculated with F18+E. coli (2.0 × 1010 CFU), the NC treatment received a sterile saline solution. On day 28, pigs were euthanized to collect jejunal samples to evaluate intestinal health and relative abundance (RA) of jejunal mucosa-associated microbiota. Data were analyzed using the MIXED procedure on SAS 9.4. The PC increased (P < 0.05) the RA of Prevotellaceae, Lachnospiraceae, and Ruminococcaceae when compared to NC. The HP reduced (P < 0.05) the RA of Veillonellaceae, Prevotellaceae, and Lachnospiraceae when compared to PC. The EP tended to reduce the RA of Streptococcaceae (P = 0.073) and Corynebacteriaceae (P = 0.074) when compared to PC. The PC increased (P < 0.05) occludin and tended to increase (P = 0.096) toll-like receptor-4 (TLR4) when compared to NC. The PC decreased (P < 0.05) average daily gain and average daily feed intake when compared to NC in days 7 to 28. The PC increased FS (P < 0.05) compared to the HP and EP days 7 to 11. The HP and EP decreased (P < 0.05) FS when compared to PC during days 7 to 11 and days 7 to 18. In conclusion, F18+E. coli challenge disrupted the jejunal mucosa-associated microbiota, increased TLR4 expression and FS, and consequently reduced GP. Both HP and EP phytobiotics supported intestinal morphology during the challenge to F18+E. coli by supporting enterocyte maturation. The HP and EP treatments exhibited antimicrobial-like effects by altering the jejunal mucosa-associated microbiota and reduced FS during the first 2 weeks post-challenge. The HP treatment showed potential antioxidant effects.
Collapse
Affiliation(s)
- Yesid Garavito-Duarte
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Marcos Elias Duarte
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
3
|
Shiekh RAE, Atwa AM, Elgindy AM, Mustafa AM, Senna MM, Alkabbani MA, Ibrahim KM. Therapeutic applications of eucalyptus essential oils. Inflammopharmacology 2025; 33:163-182. [PMID: 39499358 PMCID: PMC11799053 DOI: 10.1007/s10787-024-01588-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 10/16/2024] [Indexed: 11/07/2024]
Abstract
Eucalyptus essential oils (EEOs) have gained significant attention recently anticipated to their broad range of prospective benefits in various biological applications. They have been proven to have strong antibacterial properties against a variety of bacteria, fungi, and viruses. This makes them valuable in combating infections and supporting overall hygiene. The active compounds present in these oils can help alleviate inflammation, making them valuable in addressing inflammatory conditions such as arthritis, respiratory ailments, and skin disorders. Respiratory health benefits are another prominent aspect of EEOs. Inhalation of these oils can help promote clear airways, relieve congestion, and ease symptoms of respiratory conditions like coughs, colds, and sinusitis. They are often utilized in inhalation therapies and chest rubs. They can be used topically or in massage oils to alleviate muscle and joint pain. Furthermore, these oils have shown potential in supporting wound healing. Their antimicrobial activity helps prevent infection, while their anti-inflammatory and analgesic properties contribute to reducing inflammation and pain associated with wounds. In aromatherapy, EEOs are renowned for their invigorating and uplifting qualities, promoting mental clarity, relaxation, and stress relief. Overall, EEOs hold great promise in biological applications, offering a natural and versatile approach to promote health and well-being. Continued research and exploration of their therapeutic potential will further unveil their benefits and broaden their applications in various fields.
Collapse
Affiliation(s)
- Riham A El Shiekh
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo, 11562, Egypt.
| | - Ahmed M Atwa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
- Department of Pharmacology and Toxicology, College of Pharmacy, Al-Ayen Iraqi University, Thi-Qar, 64001, Iraq
| | - Ali M Elgindy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Aya M Mustafa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Mohamed Magdy Senna
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | | | - Kawther Magdy Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| |
Collapse
|
4
|
Nora L, Marcon C, Deolindo GL, Signor MH, Muniz AL, Bajay MM, Copetti PM, Bissacotti BF, Morsch VM, da Silva AS. The Effects of a Blend of Essential Oils in the Milk of Suckling Calves on Performance, Immune and Antioxidant Systems, and Intestinal Microbiota. Animals (Basel) 2024; 14:3555. [PMID: 39765459 PMCID: PMC11672722 DOI: 10.3390/ani14243555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/05/2024] [Accepted: 12/08/2024] [Indexed: 01/11/2025] Open
Abstract
The objective of the present study was to determine whether the addition of a blend based on the essential oils of cinnamon, oregano, and eucalyptus to the liquid diets of calves would stimulate the immune system combined with anti-inflammatory action, minimize oxidative responses, and alter the intestinal microbiota, consequently enhancing animal growth. Twenty-four male Holstein calves (approximately five days old) were suckled for 60 days, underwent a weaning process, and were followed up until day 75 of the experiment. The calves were divided into control (n = 12) and phytobiotic (n = 12) groups, receiving commercial milk replacer and pelleted concentrate ad libitum. For the phytobiotic group, we added the blend to the liquid diet twice daily at 5 mL/feeding in the first 15 days and 10 mL/feeding until day 60. We detected no differences in weight gain, but animals in the phytobiotic group tended to consume less feed. Calves treated with phytobiotics showed better conversion and feed efficiency than the animals in the control group. Lower leukocyte and lymphocyte counts were observed, as was a higher cholesterol concentration. Immunoglobulin A, ceruloplasmin, and transferrin also differed between groups, with higher IgA and lower levels of acute-phase proteins (ceruloplasmin and transferrin) in calves that consumed the phytobiotic. Higher glutathione S-transferase activity was found in the serum of calves in the treatment group. The intestinal microbiota did not differ between the groups; however, the genera Acinetobacter, Pseudomonas, and Psychrobacter were the most abundant regardless of treatment. We concluded that the blend of oils based on cinnamon, oregano, and eucalyptus improved the calves' immune and antioxidant systems, improving feed efficiency without affecting the intestinal microbiota.
Collapse
Affiliation(s)
- Luisa Nora
- Graduate Program in Animal Science, Universidade do Estado de Santa Catarina (UDESC), Chapecó 89815-630, SC, Brazil; (L.N.); (C.M.); (G.L.D.); (M.M.B.)
| | - Charles Marcon
- Graduate Program in Animal Science, Universidade do Estado de Santa Catarina (UDESC), Chapecó 89815-630, SC, Brazil; (L.N.); (C.M.); (G.L.D.); (M.M.B.)
| | - Guilherme Luiz Deolindo
- Graduate Program in Animal Science, Universidade do Estado de Santa Catarina (UDESC), Chapecó 89815-630, SC, Brazil; (L.N.); (C.M.); (G.L.D.); (M.M.B.)
| | - Mateus Henrique Signor
- Department of Animal Science, Universidade do Estado de Santa Catarina (UDESC), Chapecó 89815-630, SC, Brazil; (M.H.S.); (A.L.M.)
| | - Ana Luiza Muniz
- Department of Animal Science, Universidade do Estado de Santa Catarina (UDESC), Chapecó 89815-630, SC, Brazil; (M.H.S.); (A.L.M.)
| | - Miklos Maximiliano Bajay
- Graduate Program in Animal Science, Universidade do Estado de Santa Catarina (UDESC), Chapecó 89815-630, SC, Brazil; (L.N.); (C.M.); (G.L.D.); (M.M.B.)
| | - Priscila Marquezan Copetti
- Graduate Program in Toxicological Biochemistry, Universidade Federal de Santa Maria (UFSM), Santa Maia 97105-900, RS, Brazil; (P.M.C.); (B.F.B.); (V.M.M.)
| | - Bianca Fagan Bissacotti
- Graduate Program in Toxicological Biochemistry, Universidade Federal de Santa Maria (UFSM), Santa Maia 97105-900, RS, Brazil; (P.M.C.); (B.F.B.); (V.M.M.)
| | - Vera M. Morsch
- Graduate Program in Toxicological Biochemistry, Universidade Federal de Santa Maria (UFSM), Santa Maia 97105-900, RS, Brazil; (P.M.C.); (B.F.B.); (V.M.M.)
| | - Aleksandro Schafer da Silva
- Department of Animal Science, Universidade do Estado de Santa Catarina (UDESC), Chapecó 89815-630, SC, Brazil; (M.H.S.); (A.L.M.)
| |
Collapse
|
5
|
Uyar A, Cellat M, Kanat Ö, Etyemez M, Kutlu T, Deveci MZY, Yavaş İ, Kuzu M. Bisphenol AF Caused Reproductive Toxicity in Rats and Cineole Co-Treatment Exhibited Protective Effect. Reprod Sci 2024; 31:3462-3474. [PMID: 39160422 DOI: 10.1007/s43032-024-01677-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/08/2024] [Indexed: 08/21/2024]
Abstract
Bisphenol AF (BPAF) is increasingly used and now found in products intended for human consumption. The protective effect of 1,8-cineole (CIN) against BPAF-induced reproductive toxicity was investigated. Four groups were created, with each group consisting of eight rats: control, BPAF (200 mg/kg), CIN (200 mg/kg), and BPAF + CIN groups. The results demonstrated that the BPAF group exhibited a decline in testosterone levels and a decrease in sperm parameters compared with the control. Additionally, higher levels of MDA were observed, along with lower levels of GSH and GPx activity. CAT activity also decreased slightly. Tnf-α, Nf-κB levels were significantly higher, and caspase-3 expression was elevated, while PCNA expression decreased. BPAF significantly increased tissue degeneration compared with the control. However, the BPAF + CIN group showed statistically significant improvements in sperm parameters, except for concentration. They also exhibited an increase in testosterone levels and an improvement in MDA and GSH levels compared with the BPAF group. However, GPx activity partially enhanced. Tnf-α and Nf-κB levels were significantly reduced, and caspase-3 levels declined while PCNA and Bcl-2 levels increased. The Johnsen Testicular Biopsy score showed a substantial increase. Overall, these results suggest that CIN co-treatment in rats enhanced reproductive health and exhibited antioxidant, antiapoptotic, and anti-inflammatory properties against BPAF-induced testicular damage.
Collapse
Affiliation(s)
- Ahmet Uyar
- Department of Pathology, Faculty of Veterinary Medicine, Hatay Mustafa Kemal University, 31060, Hatay, Türkiye.
| | - Mustafa Cellat
- Department of Physiology, Hatay Mustafa Kemal University, Hatay, Türkiye
| | - Özgür Kanat
- Department of Pathology, Necmettin Erbakan University, Konya, Türkiye
| | - Muhammed Etyemez
- Department of Physiology, Hatay Mustafa Kemal University, Hatay, Türkiye
| | - Tuncer Kutlu
- Department of Pathology, Faculty of Veterinary Medicine, Hatay Mustafa Kemal University, 31060, Hatay, Türkiye
| | | | - İlker Yavaş
- Department of Reproduction and Artificial Insemination, Mustafa Kemal University, Hatay, Türkiye
| | - Müslüm Kuzu
- Department of Nutrition and Dietetics, Karabuk University, Karabuk, Türkiye
| |
Collapse
|
6
|
de Sousa DP, de Assis Oliveira F, Arcanjo DDR, da Fonsêca DV, Duarte ABS, de Oliveira Barbosa C, Ong TP, Brocksom TJ. Essential Oils: Chemistry and Pharmacological Activities-Part II. Biomedicines 2024; 12:1185. [PMID: 38927394 PMCID: PMC11200837 DOI: 10.3390/biomedicines12061185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
The importance of essential oils and their components in the industrial sector is attributed to their chemical characteristics and their application in the development of products in the areas of cosmetology, food, and pharmaceuticals. However, the pharmacological properties of this class of natural products have been extensively investigated and indicate their applicability for obtaining new drugs. Therefore, this review discusses the use of these oils as starting materials to synthesize more complex molecules and products with greater commercial value and clinic potential. Furthermore, the antiulcer, cardiovascular, and antidiabetic mechanisms of action are discussed. The main mechanistic aspects of the chemopreventive properties of oils against cancer are also presented. The data highlight essential oils and their derivatives as a strategic chemical group in the search for effective therapeutic agents against various diseases.
Collapse
Affiliation(s)
| | | | - Daniel Dias Rufino Arcanjo
- LAFMOL—Laboratory of Functional and Molecular Studies in Physiopharmacology, Department of Biophysics and Physiology, Federal University of Piaui, Teresina 64049-550, Brazil; (D.D.R.A.); (C.d.O.B.)
| | - Diogo Vilar da Fonsêca
- Collegiate of Medicine, Federal University of São Francisco Valley, Bahia 48607-190, Brazil;
| | - Allana Brunna S. Duarte
- Laboratory of Pharmaceutical Chemistry, Federal University of Paraíba, João Pessoa 58051-900, Brazil;
| | - Celma de Oliveira Barbosa
- LAFMOL—Laboratory of Functional and Molecular Studies in Physiopharmacology, Department of Biophysics and Physiology, Federal University of Piaui, Teresina 64049-550, Brazil; (D.D.R.A.); (C.d.O.B.)
| | - Thomas Prates Ong
- Department of Food Science and Nutrition, School of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo 05508-000, Brazil;
- Food Research Center (FoRC), University of São Paulo, São Paulo 05508-000, Brazil
| | - Timothy John Brocksom
- Department of Chemistry, Federal University of São Carlos, São Carlos 13565-905, Brazil;
| |
Collapse
|
7
|
Araruna MEC, Júnior EBA, Serafim CADL, Pessoa MMB, Pessôa MLDS, Alves VP, da Silva MS, Sobral MV, Alves AF, Nunes MKDS, Araújo AA, Batista LM. (-)-Fenchone Prevents Cysteamine-Induced Duodenal Ulcers and Accelerates Healing Promoting Re-Epithelialization of Gastric Ulcers in Rats via Antioxidant and Immunomodulatory Mechanisms. Pharmaceuticals (Basel) 2024; 17:641. [PMID: 38794211 PMCID: PMC11124074 DOI: 10.3390/ph17050641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/01/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND (-)-Fenchone is a naturally occurring monoterpene found in the essential oils of Foeniculum vulgare Mill., Thuja occidentalis L., and Peumus boldus Molina. Pharmacological studies have reported its antinociceptive, antimicrobial, anti-inflammatory, antidiarrheal, and antioxidant activities. METHODS The preventive antiulcer effects of (-)-Fenchone were assessed through oral pretreatment in cysteamine-induced duodenal lesion models. Gastric healing, the underlying mechanisms, and toxicity after repeated doses were evaluated using the acetic acid-induced gastric ulcer rat model with oral treatment administered for 14 days. RESULTS In the cysteamine-induced duodenal ulcer model, fenchone (37.5-300 mg/kg) significantly decreased the ulcer area and prevented lesion formation. In the acetic acid-induced ulcer model, fenchone (150 mg/kg) reduced (p < 0.001) ulcerative injury. These effects were associated with increased levels of reduced glutathione (GSH), superoxide dismutase (SOD), interleukin (IL)-10, and transforming growth factor-beta (TGF-β). Furthermore, treatment with (-)-Fenchone (150 mg/kg) significantly reduced (p < 0.001) malondialdehyde (MDA), myeloperoxidase (MPO), interleukin-1 beta (IL-1β), tumor necrosis factor-alpha (TNF-α), and nuclear transcription factor kappa B (NF-κB). A 14-day oral toxicity investigation revealed no alterations in heart, liver, spleen, or kidney weight, nor in the biochemical and hematological parameters assessed. (-)-Fenchone protected animals from body weight loss while maintaining feed and water intake. CONCLUSION (-)-Fenchone exhibits low toxicity, prevents duodenal ulcers, and enhances gastric healing activities. Antioxidant and immunomodulatory properties appear to be involved in its therapeutic effects.
Collapse
Affiliation(s)
- Maria Elaine Cristina Araruna
- Postgraduate Program in Natural and Synthetic Bioactive Products, Health Sciences Center, Federal University of Paraiba (UFPB), João Pessoa 58050-585, PB, Brazil; (M.E.C.A.); (E.B.A.J.); (C.A.d.L.S.); (M.M.B.P.); (M.L.d.S.P.); (V.P.A.); (M.S.d.S.); (M.V.S.)
| | - Edvaldo Balbino Alves Júnior
- Postgraduate Program in Natural and Synthetic Bioactive Products, Health Sciences Center, Federal University of Paraiba (UFPB), João Pessoa 58050-585, PB, Brazil; (M.E.C.A.); (E.B.A.J.); (C.A.d.L.S.); (M.M.B.P.); (M.L.d.S.P.); (V.P.A.); (M.S.d.S.); (M.V.S.)
| | - Catarina Alves de Lima Serafim
- Postgraduate Program in Natural and Synthetic Bioactive Products, Health Sciences Center, Federal University of Paraiba (UFPB), João Pessoa 58050-585, PB, Brazil; (M.E.C.A.); (E.B.A.J.); (C.A.d.L.S.); (M.M.B.P.); (M.L.d.S.P.); (V.P.A.); (M.S.d.S.); (M.V.S.)
| | - Matheus Marley Bezerra Pessoa
- Postgraduate Program in Natural and Synthetic Bioactive Products, Health Sciences Center, Federal University of Paraiba (UFPB), João Pessoa 58050-585, PB, Brazil; (M.E.C.A.); (E.B.A.J.); (C.A.d.L.S.); (M.M.B.P.); (M.L.d.S.P.); (V.P.A.); (M.S.d.S.); (M.V.S.)
| | - Michelle Liz de Souza Pessôa
- Postgraduate Program in Natural and Synthetic Bioactive Products, Health Sciences Center, Federal University of Paraiba (UFPB), João Pessoa 58050-585, PB, Brazil; (M.E.C.A.); (E.B.A.J.); (C.A.d.L.S.); (M.M.B.P.); (M.L.d.S.P.); (V.P.A.); (M.S.d.S.); (M.V.S.)
| | - Vitória Pereira Alves
- Postgraduate Program in Natural and Synthetic Bioactive Products, Health Sciences Center, Federal University of Paraiba (UFPB), João Pessoa 58050-585, PB, Brazil; (M.E.C.A.); (E.B.A.J.); (C.A.d.L.S.); (M.M.B.P.); (M.L.d.S.P.); (V.P.A.); (M.S.d.S.); (M.V.S.)
| | - Marcelo Sobral da Silva
- Postgraduate Program in Natural and Synthetic Bioactive Products, Health Sciences Center, Federal University of Paraiba (UFPB), João Pessoa 58050-585, PB, Brazil; (M.E.C.A.); (E.B.A.J.); (C.A.d.L.S.); (M.M.B.P.); (M.L.d.S.P.); (V.P.A.); (M.S.d.S.); (M.V.S.)
- Department of Pharmaceutical Sciences, IPeFarM, Federal University of Paraiba, João Pessoa 58051-970, PB, Brazil
| | - Marianna Vieira Sobral
- Postgraduate Program in Natural and Synthetic Bioactive Products, Health Sciences Center, Federal University of Paraiba (UFPB), João Pessoa 58050-585, PB, Brazil; (M.E.C.A.); (E.B.A.J.); (C.A.d.L.S.); (M.M.B.P.); (M.L.d.S.P.); (V.P.A.); (M.S.d.S.); (M.V.S.)
- Department of Pharmaceutical Sciences, IPeFarM, Federal University of Paraiba, João Pessoa 58051-970, PB, Brazil
| | - Adriano Francisco Alves
- Postgraduate Program in Natural and Synthetic Bioactive Products, Health Sciences Center, Federal University of Paraiba (UFPB), João Pessoa 58050-585, PB, Brazil; (M.E.C.A.); (E.B.A.J.); (C.A.d.L.S.); (M.M.B.P.); (M.L.d.S.P.); (V.P.A.); (M.S.d.S.); (M.V.S.)
- Department of Physiology and Pathology, Health Sciences Center, Federal University of Paraiba (UFPB), João Pessoa 58050-585, PB, Brazil; (A.F.A.); (M.K.d.S.N.)
| | - Mayara Karla dos Santos Nunes
- Department of Physiology and Pathology, Health Sciences Center, Federal University of Paraiba (UFPB), João Pessoa 58050-585, PB, Brazil; (A.F.A.); (M.K.d.S.N.)
| | - Aurigena Antunes Araújo
- Department of Morphology, Histology and Basic Pathology, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil;
| | - Leônia Maria Batista
- Postgraduate Program in Natural and Synthetic Bioactive Products, Health Sciences Center, Federal University of Paraiba (UFPB), João Pessoa 58050-585, PB, Brazil; (M.E.C.A.); (E.B.A.J.); (C.A.d.L.S.); (M.M.B.P.); (M.L.d.S.P.); (V.P.A.); (M.S.d.S.); (M.V.S.)
- Department of Pharmaceutical Sciences, IPeFarM, Federal University of Paraiba, João Pessoa 58051-970, PB, Brazil
| |
Collapse
|
8
|
Piñón-Simental JS, Ayala-Ruiz LA, Ortega-Pérez LG, Magaña-Rodríguez OR, Meléndez-Herrera E, Aguilera-Méndez A, Rios-Chavez P. Use of Callistemon citrinus as a gastroprotective and anti-inflammatory agent on indomethacin-induced gastric ulcers in obese rats. PeerJ 2024; 12:e17062. [PMID: 38435992 PMCID: PMC10908265 DOI: 10.7717/peerj.17062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 02/15/2024] [Indexed: 03/05/2024] Open
Abstract
Background Obesity leads to an elevated risk of developing gastrointestinal disease such as gastric ulcers. Callistemon citrinus leaf extract has shown antioxidant, antimicrobial, hepatoprotective, and chemoprotective effects against colon cancer. The aim of this study is to evaluate the gastroprotective effect of C. citrinus leaf extract on indomethacin-induced gastric ulcers in obese rats. Methods Gastric ulcers were induced in female obese Wistar rats using a single oral dose of indomethacin (IND). In the first stage, the rats were fed with a high fat sugar diet (HFSD) for 15 weeks to induce obesity and, at the same time, the diet of the other group of animals included daily administration of ethanolic C. citrinus leaf extract (250 mg/kg) in addition to HFSD. In the second stage, gastric ulcers were induced with IND (30 mg/kg). The gastroprotective activity of C. citrinus, the inflammatory enzyme activities, and cytokines in the stomach were determined. Results C. citrinus produced a reduction of gastric lesions caused by IND. Myeloperoxidase (MPO), cyclooxygenase-2 (COX-2), and 5-lipoxygenase (5-LOX) activities also decreased. Although inflammatory biomarkers such as TNFα, IL-6, AOPP, and leptin were significantly decreased by C. citrinus, adiponectin levels increased. Moreover, C. citrinus decreased weight gain and morphological and biochemical parameters. Conclusion The use of indomethacin in rats fed with a high fat-sugar diet increased gastric ulcers. Gastroprotective effect of C. citrinus in obese rats is attributed to the reduction of pro-inflammatory cytokines and the inflammatory enzymes.
Collapse
Affiliation(s)
| | | | | | | | - Esperanza Meléndez-Herrera
- Instituto de Investigaciones sobre los Recursos Naturales, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacan, Mexico
| | - Asdrubal Aguilera-Méndez
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacan, Mexico
| | - Patricia Rios-Chavez
- Biologia, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacan, Mexico
| |
Collapse
|
9
|
Prayoga DK, Aulifa DL, Budiman A, Levita J. Plants with Anti-Ulcer Activity and Mechanism: A Review of Preclinical and Clinical Studies. Drug Des Devel Ther 2024; 18:193-213. [PMID: 38318501 PMCID: PMC10840521 DOI: 10.2147/dddt.s446949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 01/23/2024] [Indexed: 02/07/2024] Open
Abstract
Ulcer disorders including the oral mucosa, large intestine, and stomach mucosa, cause significant global health burdens. Conventional treatments such as non-steroid anti-inflammatory drugs (NSAIDs), proton pump inhibitors (PPIs), histamine H2 receptor antagonists (H2RAs), and cytoprotective agents have drawbacks like mucosal injury, diminish gastric acid secretion, and interact with concurrent medications. Therefore, alternative therapeutic approaches are needed to tackle this health concern. Plants are rich in active metabolites in the bark, roots, leaves, fruits, and seeds, and have been utilized for medicinal purposes since ancient times. The use of herbal therapy is crucial, and regulations are necessary to ensure the quality of products, particularly in randomized studies, to assess their efficacy and safety in treating ulcer disorders. This study aims to explore the anti-ulcer activity of medicinal plants in treating peptic ulcer disease, ulcerative colitis, and aphthous ulcers. Articles were searched in Scopus and PubMed, and filtered for publication from 2013 to 2023, resulting in a total of 460 from Scopus and 239 from PubMed. The articles were further screened by title and abstract and resulted in 55 articles. Natural products, rich in active metabolites, were described to manage ulcer disease by protecting the mucosa, reducing ulcer effects, inhibiting pro-inflammatory factors, and reducing bacterial load, thus improving patients' quality of life. Natural extracts have proven effective in managing other health problems, including ulcers by reducing pain and decreasing lesions. This review provides an overview of preclinical and clinical studies on medicinal plants, focusing on their effectiveness in treating conditions like peptic ulcers, ulcerative colitis, and aphthous ulcers.
Collapse
Affiliation(s)
- Deshanda Kurniawan Prayoga
- Master Program in Pharmacy, Faculty of Pharmacy, Padjadjaran University, Sumedang, West Java, 45363, Indonesia
| | - Diah Lia Aulifa
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Padjadjaran University, Sumedang, 45363, Indonesia
| | - Arif Budiman
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Padjadjaran University, Sumedang, 45363, Indonesia
| | - Jutti Levita
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Padjadjaran University, Sumedang, 45363, Indonesia
| |
Collapse
|
10
|
Abd-Alrahman AM, Ramadan MM, Maraay MF, Salem R, Saleh FM, Hashim MA, Zhernyakova A, El-Messery TM. Production of natural flavor compounds using Bacillus subtilis-fermented soybean meal extract and their biological potential: a comprehensive in vitro study. Front Nutr 2024; 10:1280209. [PMID: 38299181 PMCID: PMC10829107 DOI: 10.3389/fnut.2023.1280209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 12/27/2023] [Indexed: 02/02/2024] Open
Abstract
This study aims to investigate the production of natural flavor compounds through the utilization of Bacillus subtilis-fermented soybean meal extract and evaluate their biological potential. The experiment involved a comprehensive in vitro investigation to assess the capabilities and effects of the produced flavor compounds. The resulting flavor compounds were subjected to various in vitro tests to assess their properties, including cytotoxicity, antioxidant activity, anticancer potential, antiviral activity, and antimicrobial activity. To enhance the fermentation process, soybean meal extract was fortified with a combination of L-Lysine and L-Threonine. Gas chromatography-mass spectrometry (GC/MS) analysis was conducted on the fermented soybean meal using two strains of Bacillus subtilis, namely NRCH123 and NRCZ144. This analysis revealed the presence of various volatile compounds in all extracts, including Butylated hydroxytoluene. The fermented soybean extract with bacillus subtilis NRCZ144 (B2) fortified with a combination of 2.5% (w/w) L-Lysine and 2.5% w/w L-threonine (SLT2) exhibited a rich profile of flavor compounds, with Eucalyptol being identified as the predominant compound. The antioxidant activity of the SLT2 extract was found to be 72.04% at a concentration of 100 μg/mL, indicating significant antioxidant potential. Furthermore, when tested against the human liver cancer cell line HepG2, the extract demonstrated anticancer activity with an IC50 value of 2.26 μg/mL. The extract exhibited potent cytotoxicity, with an IC50 value of 1.02 μg/mL. Importantly, the SLT2 extract displayed strong antibacterial and antifungal activity, even at very low concentrations. The extract's antimicrobial properties indicate its potential for inhibiting the growth of bacteria and fungi.
Collapse
Affiliation(s)
- Abeer M. Abd-Alrahman
- Department Food Science and Technology, Faculty of Home Economics, Al-Azhar University, Tanta, Egypt
| | - Manal M. Ramadan
- Department Chemistry of Flavor and Aroma, Food Industry and Nutrition, National Research Centre, Cairo, Egypt
| | | | - Rabab Salem
- Department Food Science and Technology, Faculty of Home Economics, Al-Azhar University, Tanta, Egypt
| | - Fatma M. Saleh
- Department Food Science and Technology, Faculty of Home Economics, Al-Azhar University, Tanta, Egypt
| | - Mahmood A Hashim
- International Research Centre “Biotechnologies of the Third Millennium,” Faculty of Biotechnologies (BioTech), ITMO University, Saint Petersburg, Russia
- Agricultural Research Center, Food Technology Research Institute, Giza, Egypt
- Department of Food and Nutrition, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - Anastasia Zhernyakova
- International Research Centre “Biotechnologies of the Third Millennium,” Faculty of Biotechnologies (BioTech), ITMO University, Saint Petersburg, Russia
| | - Tamer M. El-Messery
- International Research Centre “Biotechnologies of the Third Millennium,” Faculty of Biotechnologies (BioTech), ITMO University, Saint Petersburg, Russia
| |
Collapse
|
11
|
Tammasorn P, Charoensup W, Bunrod A, Kanjanakawinkul W, Chaiyana W. Promising Anti-Wrinkle Applications of Aromatic Extracts of Hedychium coronarium J. Koenig via Antioxidation and Collagenase Inhibition. Pharmaceuticals (Basel) 2023; 16:1738. [PMID: 38139864 PMCID: PMC10748308 DOI: 10.3390/ph16121738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
This study aimed to extract aromatic compounds from the rhizomes, leaf sheaths, and leaves of Hedychium coronarium and investigate their chemical compositions, cosmetic/cosmeceutical activities, and irritation potency. The chemical compositions were investigated via gas chromatography-mass spectrometry. The antioxidant activities were evaluated via spectrophotometry. The anti-skin wrinkle properties were investigated via collagenase, elastase, and hyaluronidase inhibition. The irritation potency was observed via a hen's egg-chorioallantoic membrane test. Eucalyptol was detected as a major component in the rhizomes and leaf sheaths, while β-caryophyllene was predominant in the leaves. The absolutes from the rhizomes were the strongest antioxidants, with ABTS scavenging properties similar to L-ascorbic acid. Interestingly, the equivalent concentration (EC1) of the absolute from the rhizome was 0.82 ± 0.01 µg FeSO4/g extract, which was significantly more potent than L-ascorbic acid (0.43 ± 0.03 µg FeSO4/g extract). The rhizome-derived absolute was the most effective against collagenase, while the concretes from the rhizomes and leaf sheaths showed promising anti-hyaluronidase activity with inhibitions of 90.5 ± 1.6% and 87.4 ± 5.1%, respectively. The irritability of the aromatic extracts was not different from that of the vehicle control, proving their safety. Therefore, the Hedychium coronarium rhizome-derived absolute was an attractive and potent antioxidant with anti-collagenase activities, indicating its potential for use in anti-aging formulations.
Collapse
Affiliation(s)
- Pattiya Tammasorn
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (P.T.); (W.C.)
| | - Wannaree Charoensup
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (P.T.); (W.C.)
| | - Anurak Bunrod
- Chulabhorn Royal Pharmaceutical Manufacturing Facilities by Chulabhorn Royal Academy, Chon Buri 20180, Thailand; (A.B.); (W.K.)
| | - Watchara Kanjanakawinkul
- Chulabhorn Royal Pharmaceutical Manufacturing Facilities by Chulabhorn Royal Academy, Chon Buri 20180, Thailand; (A.B.); (W.K.)
| | - Wantida Chaiyana
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (P.T.); (W.C.)
| |
Collapse
|
12
|
Hoch CC, Petry J, Griesbaum L, Weiser T, Werner K, Ploch M, Verschoor A, Multhoff G, Bashiri Dezfouli A, Wollenberg B. 1,8-cineole (eucalyptol): A versatile phytochemical with therapeutic applications across multiple diseases. Biomed Pharmacother 2023; 167:115467. [PMID: 37696087 DOI: 10.1016/j.biopha.2023.115467] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/28/2023] [Accepted: 09/07/2023] [Indexed: 09/13/2023] Open
Abstract
1,8-cineole (Eucalyptol), a naturally occurring compound derived from botanical sources such as eucalyptus, rosemary, and camphor laurel, has a long history of use in traditional medicine and exhibits an array of biological properties, including anti-inflammatory, antioxidant, antimicrobial, bronchodilatory, analgesic, and pro-apoptotic effects. Recent evidence has also indicated its potential role in managing conditions such as Alzheimer's disease, neuropathic pain, and cancer. This review spotlights the health advantages of 1,8-cineole, as demonstrated in clinical trials involving patients with respiratory disorders, including chronic obstructive pulmonary disease, asthma, bronchitis, and rhinosinusitis. In addition, we shed light on potential therapeutic applications of 1,8-cineole in various conditions, such as depression, epilepsy, peptic ulcer disease, diarrhea, cardiac-related heart diseases, and diabetes mellitus. A comprehensive understanding of 1,8-cineole's pharmacodynamics and safety aspects as well as developing effective formulations, might help to leverage its therapeutic value. This thorough review sets the stage for future research on diverse health benefits and potential uses of 1,8-cineole in tackling complex medical conditions.
Collapse
Affiliation(s)
- Cosima C Hoch
- Department of Otolaryngology, Head and Neck Surgery, School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany
| | - Julie Petry
- Department of Otolaryngology, Head and Neck Surgery, School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany
| | - Lena Griesbaum
- Department of Otolaryngology, Head and Neck Surgery, School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany
| | - Tobias Weiser
- Department of Otolaryngology, Head and Neck Surgery, School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany
| | - Kathrin Werner
- Department of Otolaryngology, Head and Neck Surgery, School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany
| | | | - Admar Verschoor
- Department of Otolaryngology, Head and Neck Surgery, School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany
| | - Gabriele Multhoff
- Central Institute for Translational Cancer Research, Technical University of Munich (TranslaTUM), Department of Radiation Oncology, Klinikum rechts der Isar, 81675 Munich, Germany
| | - Ali Bashiri Dezfouli
- Department of Otolaryngology, Head and Neck Surgery, School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany; Central Institute for Translational Cancer Research, Technical University of Munich (TranslaTUM), Department of Radiation Oncology, Klinikum rechts der Isar, 81675 Munich, Germany
| | - Barbara Wollenberg
- Department of Otolaryngology, Head and Neck Surgery, School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany.
| |
Collapse
|
13
|
Silva-Flores PG, Galindo-Rodríguez SA, Pérez-López LA, Álvarez-Román R. Development of Essential Oil-Loaded Polymeric Nanocapsules as Skin Delivery Systems: Biophysical Parameters and Dermatokinetics Ex Vivo Evaluation. Molecules 2023; 28:7142. [PMID: 37894621 PMCID: PMC10609357 DOI: 10.3390/molecules28207142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/06/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023] Open
Abstract
Essential oils (EOs) are natural antioxidant alternatives that reduce skin damage. However, EOs are highly volatile; therefore, their nanoencapsulation represents a feasible alternative to increase their stability and favor their residence time on the skin to guarantee their effect. In this study, EOs of Rosmarinus officinalis and Lavandula dentata were nanoencapsulated and evaluated as skin delivery systems with potential antioxidant activity. The EOs were characterized and incorporated into polymeric nanocapsules (NC-EOs) using nanoprecipitation. The antioxidant activity was evaluated using the ferric thiocyanate method. The ex vivo effects on pig skin were evaluated based on biophysical parameters using bioengineering techniques. An ex vivo dermatokinetic evaluation on pig skin was performed using modified Franz cells and the tape-stripping technique. The results showed that the EOs had good antioxidant activity (>65%), which was maintained after nanoencapsulation and purification. The nanoencapsulation of the EOs favored its deposition in the stratum corneum compared to free EOs; the highest deposition rate was obtained for 1,8-cineole, a major component of L. dentata, at 1 h contact time, compared to R. officinalis with a major deposition of the camphor component. In conclusion, NC-EOs can be used as an alternative antioxidant for skin care.
Collapse
Affiliation(s)
- Perla Giovanna Silva-Flores
- Departamento de Embriología, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico;
| | - Sergio Arturo Galindo-Rodríguez
- Departamento de Química Analítica, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66455, Mexico;
| | - Luis Alejandro Pérez-López
- Departamento de Química Analítica, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico;
| | - Rocío Álvarez-Román
- Departamento de Química Analítica, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico;
| |
Collapse
|
14
|
Alves-Silva JM, Maccioni D, Cocco E, Gonçalves MJ, Porcedda S, Piras A, Cruz MT, Salgueiro L, Maxia A. Advances in the Phytochemical Characterisation and Bioactivities of Salvia aurea L. Essential Oil. PLANTS (BASEL, SWITZERLAND) 2023; 12:1247. [PMID: 36986933 PMCID: PMC10056036 DOI: 10.3390/plants12061247] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/23/2023] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
The Salvia L. genus (Lamiaceae) is largely used in the pharmaceutical and food industry. Several species of biological relevance are extensively employed in traditional medicine, including Salvia aurea L. (syn. S. africana-lutea L.), which is used as a traditional skin disinfectant and in wounds as a healing remedy; nevertheless, these properties have not been validated yet. The aim of the present study is to characterise S. aurea essential oil (EO), unveiling its chemical composition and validating its biological properties. The EO was obtained by hydrodistillation and subsequently analysed by GC-FID and GC-MS. Different biological activities were assessed: the antifungal effect on dermatophytes and yeasts and the anti-inflammatory potential by evaluating nitric oxide (NO) production and COX-2 and iNOS protein levels. Wound-healing properties were assessed using the scratch-healing test, and the anti-aging capacity was estimated through the senescence-associated beta-galactosidase activity. S. aurea EO is mainly characterised by 1,8-cineole (16.7%), β-pinene (11.9%), cis-thujone (10.5%), camphor (9.5%), and (E)-caryophyllene (9.3%). The results showed an effective inhibition of the growth of dermatophytes. Furthermore, it significantly reduced protein levels of iNOS/COX-2 and simultaneously NO release. Additionally, the EO exhibited anti-senescence potential and enhanced wound healing. Overall, this study highlights the remarkable pharmacological properties of Salvia aurea EO, which should be further explored in order to develop innovative, sustainable, and environmentally friendly skin products.
Collapse
Affiliation(s)
- Jorge Miguel Alves-Silva
- Institute for Clinical and Biomedical Research, Health Sciences Campus, University of Coimbra, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal
- Faculty of Pharmacy, Health Sciences Campus, University of Coimbra, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal
| | - Delia Maccioni
- Laboratory of Plant Biology and Pharmaceutical Botany, Department of Life and Environmental Sciences, University of Cagliari, Viale Sant’Ignazio 13, 09123 Cagliari, Italy
| | - Emma Cocco
- Laboratory of Plant Biology and Pharmaceutical Botany, Department of Life and Environmental Sciences, University of Cagliari, Viale Sant’Ignazio 13, 09123 Cagliari, Italy
| | - Maria José Gonçalves
- Faculty of Pharmacy, Health Sciences Campus, University of Coimbra, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal
- Chemical Process Engineering and Forest Products Research Centre, Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Silvia Porcedda
- Department of Chemical and Geological Sciences, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy
| | - Alessandra Piras
- Department of Chemical and Geological Sciences, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy
| | - Maria Teresa Cruz
- Faculty of Pharmacy, Health Sciences Campus, University of Coimbra, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal
- Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
| | - Lígia Salgueiro
- Faculty of Pharmacy, Health Sciences Campus, University of Coimbra, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal
- Chemical Process Engineering and Forest Products Research Centre, Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Andrea Maxia
- Laboratory of Plant Biology and Pharmaceutical Botany, Department of Life and Environmental Sciences, University of Cagliari, Viale Sant’Ignazio 13, 09123 Cagliari, Italy
| |
Collapse
|
15
|
Alves-Silva JM, Gonçalves MJ, Silva A, Cavaleiro C, Cruz MT, Salgueiro L. Chemical Profile, Anti-Microbial and Anti-Inflammaging Activities of Santolina rosmarinifolia L. Essential Oil from Portugal. Antibiotics (Basel) 2023; 12:antibiotics12010179. [PMID: 36671380 PMCID: PMC9854695 DOI: 10.3390/antibiotics12010179] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/08/2023] [Accepted: 01/11/2023] [Indexed: 01/19/2023] Open
Abstract
Fungal infections and the accompanying inflammatory responses are associated with great morbidity and mortality due to the frequent relapses triggered by an increased resistance to antifungal agents. Furthermore, this inflammatory state can be exacerbated during inflammaging and cellular senescence. Essential oils (EO) are receiving increasing interest in the field of drug discovery due to their lipophilic nature and complex composition, making them suitable candidates in the development of new antifungal drugs and modulators of numerous molecular targets. This work chemically characterized the EO from Santolina rosmarinifolia L., collected in Setúbal (Portugal), and assessed its antifungal potential by determining its minimum inhibitory (MIC) and minimum lethal (MLC) concentration in accordance with the Clinical Laboratory Standard Guidelines (CLSI) guidelines, as well as its effect on several Candida albicans virulence factors. The anti-inflammatory effect was unveiled using lipopolysaccharide (LPS)-stimulated macrophages by assessing several pro-inflammatory mediators. The wound healing and anti-senescence potential of the EO was also disclosed. The EO was mainly characterized by β-pinene (29.6%), borneol (16.9%), myrcene (15.4%) and limonene (5.7%). It showed a strong antifungal effect against yeasts and filamentous fungi (MIC = 0.07-0.29 mg/mL). Furthermore, it inhibited dimorphic transition (MIC/16), decreased biofilm formation with a preeminent effect after 24 h (MIC/2) and disrupted preformed biofilms in C. albicans. Additionally, the EO decreased nitric oxide (NO) release (IC50 = 0.52 mg/mL) and pro-IL-1β and inducible nitric oxide synthase (iNOS) expression in LPS-stimulated macrophages, promoted wound healing (91% vs. 81% closed wound) and reduced cellular senescence (53% vs. 73% β-galactosidase-positive cells). Overall, this study highlights the relevant pharmacological properties of S. rosmarinifolia, opening new avenues for its industrial exploitation.
Collapse
Affiliation(s)
- Jorge M. Alves-Silva
- Institute for Clinical and Biomedical Research, Health Sciences Campus, University of Coimbra, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal
- Faculty of Pharmacy, Health Sciences Campus, University of Coimbra, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal
| | - Maria José Gonçalves
- Faculty of Pharmacy, Health Sciences Campus, University of Coimbra, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal
- Chemical Process Engineering and Forest Products Research Centre, Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, 3030-790 Coimbra, Portugal
| | - Ana Silva
- Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
| | - Carlos Cavaleiro
- Faculty of Pharmacy, Health Sciences Campus, University of Coimbra, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal
- Chemical Process Engineering and Forest Products Research Centre, Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, 3030-790 Coimbra, Portugal
| | - Maria Teresa Cruz
- Faculty of Pharmacy, Health Sciences Campus, University of Coimbra, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal
- Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
| | - Lígia Salgueiro
- Faculty of Pharmacy, Health Sciences Campus, University of Coimbra, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal
- Chemical Process Engineering and Forest Products Research Centre, Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, 3030-790 Coimbra, Portugal
- Correspondence:
| |
Collapse
|
16
|
Ijinu TP, Prabha B, Pushpangadan P, George V. Essential Oil-Derived Monoterpenes in Drug Discovery and Development. DRUG DISCOVERY AND DESIGN USING NATURAL PRODUCTS 2023:103-149. [DOI: 10.1007/978-3-031-35205-8_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
17
|
Altomare A, Fiore M, D’Ercole G, Imperia E, Nicolosi RM, Della Posta S, Pasqua G, Cicala M, De Gara L, Ramella S, Guarino MPL. Protective Role of Natural Compounds under Radiation-Induced Injury. Nutrients 2022; 14:5374. [PMID: 36558533 PMCID: PMC9786992 DOI: 10.3390/nu14245374] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/05/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
In recent years, evidence has shown the potential therapeutic effects of different natural compounds for the prevention and treatment of radiotherapy-induced mucositis (RIOM). RIOM represents one of the most frequent side effects associated with anti-neoplastic treatments affecting patients' quality of life and treatment response due to radiation therapy discontinuation. The innate radio-protective ability of natural products obtained from plants is in part due to the numerous antioxidants possessed as a part of their normal secondary metabolic processes. However, oxygen presence is a key point for radiation efficacy on cancer cells. The aim of this review is to describe the most recent evidence on radiation-induced injury and the emerging protective role of natural compounds in preventing and treating this specific damage without compromising treatment efficacy.
Collapse
Affiliation(s)
- Annamaria Altomare
- Unit of Food Science and Nutrition, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy
- Research Unit of Gastroenterology, Università Campus Biomedico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy
| | - Michele Fiore
- Operative Research Unit of Radiation Oncology, Fondazione Policlinico Universitario Campus Biomedico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy
- Research Unit of Radiation Oncology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 200, 00128 Rome, Italy
| | - Gabriele D’Ercole
- Operative Research Unit of Radiation Oncology, Fondazione Policlinico Universitario Campus Biomedico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy
| | - Elena Imperia
- Unit of Food Science and Nutrition, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy
| | - Roberta Maria Nicolosi
- Department of Environmental Biology, Sapienza Università di Roma, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Susanna Della Posta
- Unit of Food Science and Nutrition, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy
| | - Gabriella Pasqua
- Department of Environmental Biology, Sapienza Università di Roma, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Michele Cicala
- Research Unit of Gastroenterology, Università Campus Biomedico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy
- Operative Research Unit of Gastroenterology, Fondazione Policlinico Campus Bio-Medico di Roma, Via Alvaro del Portillo 200, 00128 Rome, Italy
| | - Laura De Gara
- Unit of Food Science and Nutrition, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy
| | - Sara Ramella
- Operative Research Unit of Radiation Oncology, Fondazione Policlinico Universitario Campus Biomedico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy
- Research Unit of Radiation Oncology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 200, 00128 Rome, Italy
| | - Michele Pier Luca Guarino
- Research Unit of Gastroenterology, Università Campus Biomedico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy
- Operative Research Unit of Gastroenterology, Fondazione Policlinico Campus Bio-Medico di Roma, Via Alvaro del Portillo 200, 00128 Rome, Italy
| |
Collapse
|
18
|
Mansour RB, Beji RS, Wasli H, Zekri S, Ksouri R, Megdiche-Ksouri W, Cardoso SM. Gastroprotective Effect of Microencapsulated Myrtus communis Essential Oil against Ethanol/HCl-Induced Acute Gastric Lesions. Molecules 2022; 27:1566. [PMID: 35268666 PMCID: PMC8911731 DOI: 10.3390/molecules27051566] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 12/04/2022] Open
Abstract
Myrtus communis L. essential oil (EO), mainly composed of myrtenyl acetate (30.6%), linalool (14.9%), α-pinene (11.10%) and 1,8-cineole or eucalyptol (9.9%), was microencapsulated with maltodextrin by emulsification and spray-drying, reaching a yield and efficiency of 43.7 and 48.7%, respectively. The microencapsulated myrtle EO (MMEO) was then evaluated regarding its gastroprotective activity in a model of ethanol/HCl-induced acute gastric ulcer in Wistar rats. Pretreatment with MMEO induced a remarkable inhibition of gastric lesions and acidity, correlated to high healing and protection percentages. Moreover, it exerted a potent anti-inflammatory effect on the gastric mucosa, counteracting EtOH-induced gastric lipoperoxidation and preventing the depletion of the antioxidant enzyme activity of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx). Taken together, the gastroprotective action of encapsulated MMEO may be multi-factorial, and ascribable, at least in parts, to its anti-inflammatory and antioxidant properties.
Collapse
Affiliation(s)
- Rim Ben Mansour
- Laboratory of Aromatic and Medicinal Plants, Centre of Biotechnology of Borj-Cedria, BP 901, Hammam-Lif 2050, Tunisia; (R.B.M.); (R.S.B.); (H.W.); (R.K.); (W.M.-K.)
| | - Raja Serairi Beji
- Laboratory of Aromatic and Medicinal Plants, Centre of Biotechnology of Borj-Cedria, BP 901, Hammam-Lif 2050, Tunisia; (R.B.M.); (R.S.B.); (H.W.); (R.K.); (W.M.-K.)
- High School of Health Sciences and Technics, BP 176, Bab Saadoun, Tunis 1007, Tunisia
| | - Hanen Wasli
- Laboratory of Aromatic and Medicinal Plants, Centre of Biotechnology of Borj-Cedria, BP 901, Hammam-Lif 2050, Tunisia; (R.B.M.); (R.S.B.); (H.W.); (R.K.); (W.M.-K.)
| | - Sami Zekri
- USCR, Unité de Services Communs pour la Recherche en Microscopie Electronique à Transmission, Faculté de Médecine de Tunis, Tunis 1029, Tunisia;
| | - Riadh Ksouri
- Laboratory of Aromatic and Medicinal Plants, Centre of Biotechnology of Borj-Cedria, BP 901, Hammam-Lif 2050, Tunisia; (R.B.M.); (R.S.B.); (H.W.); (R.K.); (W.M.-K.)
| | - Wided Megdiche-Ksouri
- Laboratory of Aromatic and Medicinal Plants, Centre of Biotechnology of Borj-Cedria, BP 901, Hammam-Lif 2050, Tunisia; (R.B.M.); (R.S.B.); (H.W.); (R.K.); (W.M.-K.)
| | - Susana M. Cardoso
- LAQV-REQUIMTE & Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
19
|
1,8 Cineole and Ellagic acid inhibit hepatocarcinogenesis via upregulation of MiR-122 and suppression of TGF-β1, FSCN1, Vimentin, VEGF, and MMP-9. PLoS One 2022; 17:e0258998. [PMID: 35081125 PMCID: PMC8791452 DOI: 10.1371/journal.pone.0258998] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 10/06/2021] [Indexed: 11/19/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most burdened tumors worldwide, with a complex and multifactorial pathogenesis. Current treatment approaches involve different molecular targets. Phytochemicals have shown considerable promise in the prevention and treatment of HCC. We investigated the efficacy of two natural components, 1,8 cineole (Cin) and ellagic acid (EA), against diethylnitrosamine/2-acetylaminofluorene (DEN/2-AAF) induced HCC in rats. DEN/2-AAF showed deterioration of hepatic cells with an impaired functional capacity of the liver. In addition, the levels of tumor markers including alpha-fetoprotein, arginase-1, alpha-L-fucosidase, and ferritin were significantly increased, whereas the hepatic miR-122 level was significantly decreased in induced-HCC rats. Interestingly, treatment with Cin (100mg/kg) and EA (60mg/kg) powerfully restored these biochemical alterations. Moreover, Cin and EA treatment exhibited significant downregulation in transforming growth factor beta-1 (TGF-β1), Fascin-1 (FSCN1), vascular endothelial growth factor (VEGF), matrix metalloproteinase-9 (MMP-9), and epithelial-mesenchymal transition (EMT) key marker, vimentin, along with a restoration of histopathological findings compared to HCC group. Such effects were comparable to Doxorubicin (DOX) (2mg/kg); however, a little additive effect was evident through combining these phytochemicals with DOX. Altogether, this study highlighted 1,8 cineole and ellagic acid for the first time as promising phytochemicals for the treatment of hepatocarcinogenesis via regulating multiple targets.
Collapse
|
20
|
Gastroprotective Effects of the Aqueous Extract from Taraxacum officinale in Rats Using Ultrasound, Histology, and Biochemical Analysis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2021:8987232. [PMID: 34970327 PMCID: PMC8714386 DOI: 10.1155/2021/8987232] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/16/2021] [Accepted: 12/04/2021] [Indexed: 01/14/2023]
Abstract
Taraxacum officinale F.H. Wigg. belonging to the family Asteraceae is an edible medicinal plant distributed worldwide. This study aimed to determine the gastroprotective effects of aqueous extract of T. officinale (AETo) in rats using ultrasound, histological, and biochemical analyses. In this study, gastric ulceration was induced by ethanol or piroxicam. Rats were then treated with AETo (3, 30, or 300 mg/kg). The area and histological appearance of gastric ulcers were quantified, and histochemical analysis was performed. The activity of AETo on inflammatory and oxidative stress markers was assessed in the ulcerated tissue. In addition, we investigated the thickness of the gastric wall using the ultrasound technique. Moreover, chemical analyses of AETo were performed. In rats with ethanol- or piroxicam-induced ulcers, AETo reduced the ulceration area, elevated mucin level, and the gastroprotective effect was confirmed by histological analysis. The gastroprotective effect was accompanied by increased activities of SOD, CAT, and GST, as well as an increase in GSH level and reduction in MPO activity. Furthermore, AETo reduced the thickness of the gastric wall in rats. Phytochemical analysis of AETo indicated phenolic acids and flavonoids as the main active compounds. In conclusion, the gastroprotective effect of AETo involves reduction in oxidative stress and inflammatory injury and increase in mucin content. This study advances in the elucidation of mechanisms of gastric protection of T. officinale, contributes to the prospection of new molecules gastroprotective, and proposes the ultrasonographic analyses as a new gastroprotective assessment tool in preclinical studies.
Collapse
|
21
|
Izham MNM, Hussin Y, Rahim NFC, Aziz MNM, Yeap SK, Rahman HS, Masarudin MJ, Mohamad NE, Abdullah R, Alitheen NB. Physicochemical characterization, cytotoxic effect and toxicity evaluation of nanostructured lipid carrier loaded with eucalyptol. BMC Complement Med Ther 2021; 21:254. [PMID: 34620132 PMCID: PMC8496055 DOI: 10.1186/s12906-021-03422-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 09/24/2021] [Indexed: 12/04/2022] Open
Abstract
Background Eucalyptol is an active compound of eucalyptus essential oil and was reported to have many medical attributes including cytotoxic effect on breast cancer cells. However, it has low solubility in aqueous solutions which limits its bioavailability and cytotoxic efficiency. In this study, nanostructured lipid carrier loaded with eucalyptol (NLC-Eu) was formulated and characterized and the cytotoxic effect of NLC-Eu towards breast cancer cell lines was determined. In addition, its toxicity in animal model, BALB/c mice was also incorporated into this study to validate the safety of NLC-Eu. Methods Eucalyptol, a monoterpene oxide active, was used to formulate the NLC-Eu by using high pressure homogenization technique. The physicochemical characterization of NLC-Eu was performed to assess its morphology, particle size, polydispersity index, and zeta potential. The in vitro cytotoxic effects of this encapsulated eucalyptol on human (MDA MB-231) and murine (4 T1) breast cancer cell lines were determined using the MTT assay. Additionally, acridine orange/propidium iodide assay was conducted on the NLC-Eu treated MDA MB-231 cells. The in vivo sub-chronic toxicity of the prepared NLC-Eu was investigated using an in vivo BALB/c mice model. Results As a result, the light, translucent, milky-colored NLC-Eu showed particle size of 71.800 ± 2.144 nm, poly-dispersity index of 0.258 ± 0.003, and zeta potential of − 2.927 ± 0.163 mV. Furthermore, the TEM results of NLC-Eu displayed irregular round to spherical morphology with narrow size distribution and relatively uniformed particles. The drug loading capacity and entrapment efficiency of NLC-Eu were 4.99 and 90.93%, respectively. Furthermore, NLC-Eu exhibited cytotoxic effects on both, human and mice, breast cancer cells with IC50 values of 10.00 ± 4.81 μg/mL and 17.70 ± 0.57 μg/mL, respectively at 72 h. NLC-Eu also induced apoptosis on the MDA MB-231 cells. In the sub-chronic toxicity study, all of the studied mice did not show any signs of toxicity, abnormality or mortality. Besides that, no significant changes were observed in the body weight, internal organ index, hepatic and renal histopathology, serum biochemistry, nitric oxide and malondialdehyde contents. Conclusions This study suggests that the well-characterized NLC-Eu offers a safe and promising carrier system which has cytotoxic effect on breast cancer cell lines.
Collapse
Affiliation(s)
- Mira Nadiah Mohd Izham
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Yazmin Hussin
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Nurul Fattin Che Rahim
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Muhammad Nazirul Mubin Aziz
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Swee Keong Yeap
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, 43900, Sepang, Malaysia
| | - Heshu Sulaiman Rahman
- Department of Physiology, College of Medicine, University of Sulaimani, Sulaymaniyah, 0046, Republic of Iraq
| | - Mas Jaffri Masarudin
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.,UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Nurul Elyani Mohamad
- Biotechnology Research Institute, Universiti Malaysia Sabah, 88400, Kota Kinabalu, Sabah, Malaysia
| | - Rasedee Abdullah
- Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Noorjahan Banu Alitheen
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia. .,UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| |
Collapse
|
22
|
Cai ZM, Peng JQ, Chen Y, Tao L, Zhang YY, Fu LY, Long QD, Shen XC. 1,8-Cineole: a review of source, biological activities, and application. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2021; 23:938-954. [PMID: 33111547 DOI: 10.1080/10286020.2020.1839432] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 06/11/2023]
Abstract
1,8-Cineole (also known as eucalyptol) is mostly extracted from the essential oils of plants, which showed extensively pharmacological properties including anti-inflammatory and antioxidant mainly via the regulation on NF-κB and Nrf2, and was used for the treatment of respiratory diseases and cardiovascular, etc. Although various administration routes have been used in the application of 1.8-cineole, few formulations have been developed to improve its stability and bioavailability. This review retrospects the researches on the source, biological activities, mechanisms, and application of 1,8-cineole since 2000, which provides a view for the further studies on the application and formulations of 1,8-cineole.
Collapse
Affiliation(s)
- Zi-Min Cai
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550014, China
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Jian-Qing Peng
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550014, China
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Yi Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550014, China
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Ling Tao
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550014, China
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Yan-Yan Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550014, China
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Ling-Yun Fu
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550014, China
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Qing-De Long
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550014, China
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Xiang-Chun Shen
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550014, China
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| |
Collapse
|
23
|
Serafim CADL, Araruna MEC, Alves Júnior EB, Silva LMO, Silva AO, da Silva MS, Alves AF, Araújo AA, Batista LM. (-)-Carveol Prevents Gastric Ulcers via Cytoprotective, Antioxidant, Antisecretory and Immunoregulatory Mechanisms in Animal Models. Front Pharmacol 2021; 12:736829. [PMID: 34497525 PMCID: PMC8419343 DOI: 10.3389/fphar.2021.736829] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/05/2021] [Indexed: 12/12/2022] Open
Abstract
Background: (-)-Carveol (p-Mentha-6,8-dien-2-ol) is a monocyclic monoterpenic alcohol, present in essential oils of plant species such as Cymbopogon giganteus, Illicium pachyphyllum and in spices such as Carum carvi (cumin). Pharmacological studies report its antitumor, antimicrobial, neuroprotective, vasorelaxant, antioxidant and anti-inflammatory activity. Hypothesis/Purpose: The objective of this study was to evaluate the acute non-clinical oral toxicity, gastroprotective activity of monoterpene (-)-Carveol in animal models and the related mechanisms of action. Methods: Acute toxicity was assessed according to OECD guide 423 in mice. Ethanol, stress, NSAIDs and pylorus ligation-induced gastric ulcer models were used to investigate antiulcer properties. The related mechanisms of action were using the ethanol-gastric lesions protocol. Results: (-)-Carveol has low toxicity, with a lethal dose 50% (LD50) equal to or greater than 2,500 mg/kg according to OECD guide nº 423. In all gastric ulcer induction methods evaluated, (-)-Carveol (25, 50, 100 and 200 mg/kg, p.o.) significantly reduced the ulcerative lesion in comparison with the respective control groups. To investigate the mechanisms involved in the gastroprotective activity, the antisecretory or neutralizing of gastric secretion, cytoprotective, antioxidant and immunoregulatory effects were evaluated. In the experimental protocol of pylorus ligation-induced gastric ulcer, (-)-Carveol (100 mg/kg) reduced (p < 0.001) the volume of gastric secretion in both routes (oral and intraduodenal). The previous administration of blockers NEM (sulfhydryl groups blocker), L-NAME (nitric oxide synthesis inhibitor), glibenclamide (KATP channel blocker) and indomethacin (cyclo-oxygenase inhibitor), significantly reduced the gastroprotection exercised by (-)-Carveol, suggesting the participation of these pathways in its gastroprotective activity. In addition, treatment with (-)-Carveol (100 mg/kg) increased (p < 0.001) mucus adhered to the gastric wall. Treatment also increased (p < 0.001) levels of reduced glutathione (GSH), superoxide dismutase (SOD) and interleukin-10 (IL-10). It also reduced (p < 0.001) malondialdehyde (MDA), myeloperoxidase (MPO), interleukin-1 beta (IL-1β) and tumor necrosis factor-alpha (TNF-α) levels. Conclusion: Thus, it is possible to infer that (-)-Carveol presents gastroprotective activity related to antisecretory, cytoprotective, antioxidant and immunomodulatory mechanisms.
Collapse
Affiliation(s)
- Catarina Alves de Lima Serafim
- Postgraduate Program in Natural and Synthetic Bioactive Products, Health Sciences Center, Federal University of Paraíba (UFPB), João Pessoa, Brazil
| | - Maria Elaine Cristina Araruna
- Postgraduate Program in Natural and Synthetic Bioactive Products, Health Sciences Center, Federal University of Paraíba (UFPB), João Pessoa, Brazil
| | - Edvaldo Balbino Alves Júnior
- Postgraduate Program in Natural and Synthetic Bioactive Products, Health Sciences Center, Federal University of Paraíba (UFPB), João Pessoa, Brazil
| | - Leiliane Macena Oliveira Silva
- Postgraduate Program in Natural and Synthetic Bioactive Products, Health Sciences Center, Federal University of Paraíba (UFPB), João Pessoa, Brazil
| | - Alessa Oliveira Silva
- Postgraduate Program in Natural and Synthetic Bioactive Products, Health Sciences Center, Federal University of Paraíba (UFPB), João Pessoa, Brazil
| | - Marcelo Sobral da Silva
- Postgraduate Program in Natural and Synthetic Bioactive Products, Health Sciences Center, Federal University of Paraíba (UFPB), João Pessoa, Brazil
| | - Adriano Francisco Alves
- Department of Physiology and Pathology, Health Sciences Center, Federal University of Paraíba (UFPB), João Pessoa, Brazil
| | - Aurigena Antunes Araújo
- Department of Morphology, Histology and Basic Pathology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Leônia Maria Batista
- Postgraduate Program in Natural and Synthetic Bioactive Products, Health Sciences Center, Federal University of Paraíba (UFPB), João Pessoa, Brazil
| |
Collapse
|
24
|
Qu HJ, Lin KW, Li XL, Ou HY, Tan YF, Wang M, Wei N. Chemical Constituents and Anti-Gastric Ulcer Activity of Essential Oils of Alpinia officinarum (Zingiberaceae), Cyperus rotundus (Cyperaceae), and Their Herbal Pair. Chem Biodivers 2021; 18:e2100214. [PMID: 34402190 DOI: 10.1002/cbdv.202100214] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 08/16/2021] [Indexed: 12/11/2022]
Abstract
The essential oil (EO) of the herbal pair (HP), Alpinia officinarum-Cyperus rotundus (HP G-X) has been conventionally used in traditional Chinese medicine (TCM) for 'warming the stomach' and relieving pain. However, its pharmacologically active compounds, as well as the mechanism of its anti-gastric ulcer properties remain unclear. In this study, the EOs obtained from HP G-X and its corresponding single herbs were analyzed using GC/MS. A total of 74, 56, and 85 compounds were detected in A. officinarum (GLJ), C. rotundus (XF), and HP G-X, accounting for 93.2 %, 89.5 %, and 92.0 % of the total content, respectively. GLJ mainly contains 1,8-cineol (22.0 %) and α-terpineol (11.8 %), whereas cyperenone (22.4 %) and cyperene (12.3 %) were the major constituents in XF. These four compounds were also detected in the HP G-X with relatively high composition as 11.8 %, 5.5 %, 11.8 %, and 10.6 %, respectively. Although no new compounds were detected in HP G-X, the relative concentration of some compounds increased, while others decreased or even disappeared. HP G-X showed the lowest toxicity (TC50 >800 μg/mL) against human gastric mucosal epithelial cells (GES-1) and had the best protective effect against ethanol-induced GES-1 cell damage compared to the individual herbs. In vitro studies demonstrated that HP G-X and the corresponding single herbs significantly reduced IL-6, TNF-α, and COX-2. In addition, in vivo investigations indicated that HP G-X can protect the gastric mucosa of mice from ethanol-induced damage by inhibiting the inflammatory reaction and providing analgesia. It can also inhibit the expression of NF-κBp65, COX-2, and TRPV1 protein, reduce the concentrations of IL-6 and TNF-α, and relieve heat-induced pain. This study further substantiated the traditional application of HP G-X against gastric ulcers through both in vivo and in vitro investigations.
Collapse
Affiliation(s)
- Hui-Juan Qu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou, 571199, P. R. China
| | - Kai-Wen Lin
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou, 571199, P. R. China
| | - Xiao-Liang Li
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou, 571199, P. R. China
| | - Hong-Ya Ou
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou, 571199, P. R. China
| | - Yin-Feng Tan
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou, 571199, P. R. China
| | - Mei Wang
- Natural Products Utilization Research Unit, Agricultural Research Service, United States Department of Agriculture, University, Oxford, MS 38677, USA
| | - Na Wei
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou, 571199, P. R. China
| |
Collapse
|
25
|
Solati K, Karimi M, Rafieian-Kopaei M, Abbasi N, Abbaszadeh S, Bahmani M. Phytotherapy for Wound Healing: The Most Important Herbal Plants in Wound Healing Based on Iranian Ethnobotanical Documents. Mini Rev Med Chem 2021; 21:500-519. [PMID: 33213344 DOI: 10.2174/1389557520666201119122608] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 06/13/2020] [Accepted: 06/23/2020] [Indexed: 11/22/2022]
Abstract
Wound healing is a process that starts with the inflammatory response after the occurrence of any damage. This process initiates by restoring the wound surface coating tissue, migrating fibroblasts to form the required collagen, forming a healing tissue and finally, leading to contortion and extraction of the wound. Today, various drugs are used to heal wounds. However, the drugs used to repair wounds have some defects and side effects. In spite of all attempts to accelerate wound healing definitely, no safe drug has been introduced for this purpose. Therefore, the necessity to identify herbal plants in ethnopharmacology and ethnobotany documents with healing effects is essential. In this article, we tried to review and present effective Iranian medicinal plants and herbal compounds used for wound healing. Searching was performed on databases, including ISI Web of Science, PubMed, PubMed Central, Scopus, ISC, SID, Magiran and some other databases. The keywords used included wound healing, skin treatment, medicinal plants, ethnobotany, and phytotherapy. In this regard, 139 medicinal plants effective on wound healing were identified based on ethnopharmacology and ethnobotanical sources of Iran. Plants such as Salvia officinalis, Echium amoenum, Verbascum spp., G1ycyrrhiza glabra, Medicago sativa, Mentha pulegium, Datura stramonium L., Alhagi spp., Aloe vera, Hypericum perforatum, Pistacia atlantica and Prosopis cineraria are the most important and useful medicinal plants used for wound healing in Iran. These native Iranian medicinal plants are rich in antioxidants and biological compounds and might be used for wound healing and preparation of new drugs.
Collapse
Affiliation(s)
- Kamal Solati
- Department of Psychiatry, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mehrdad Karimi
- Department of Surgery, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mahmoud Rafieian-Kopaei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord Shahrekord, Iran
| | - Naser Abbasi
- Biotechnology and Medicinal Plants Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Saber Abbaszadeh
- Department of Clinical Biochemistry, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mahmoud Bahmani
- Biotechnology and Medicinal Plants Research Center, Ilam University of Medical Sciences, Ilam, Iran
| |
Collapse
|
26
|
Peng J, Jiang Z, Wu G, Cai Z, Du Q, Tao L, Zhang Y, Chen Y, Shen X. Improving protection effects of eucalyptol via carboxymethyl chitosan-coated lipid nanoparticles on hyperglycaemia-induced vascular endothelial injury in rats. J Drug Target 2021; 29:520-530. [PMID: 33263461 DOI: 10.1080/1061186x.2020.1859514] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/14/2020] [Accepted: 11/25/2020] [Indexed: 10/22/2022]
Abstract
Hyperglycaemia is responsible for the major pathophysiological factor of diabetes-associated vascular endothelial injury, which mainly resulted from the disturbance of equilibrium between ROS generation and elimination. Eucalyptol was verified with exact anti-oxidation effects via stimulating the secretion of endogenous antioxidant enzymes against ROS. However, the volatility, instability and poor water solubility of eucalyptol limited its pharmacological activities in vivo. In this study, we developed carboxymethyl chitosan-coated lipid nanoparticles for eucalyptol (CMC/ELN) to facilitate oral administration. A thin lipid film dispersion method was used to prepare the ELN. After CMC coating, the diameter of ELN increased from 166 nm to 177 nm and charge reversal was observed. The nanocarrier enhanced the protective effects of eucalyptol both in the high level of glucose (HG)-damaged HUVECs and endothelial injury in type I diabetes mellitus (T1DM) rat model. Furthermore, the mechanism of eucalyptol on the promotion of Nrf2 and HO-1 and reduction on Keap1 expression have been verified both in the in vitro and in vivo model. Besides, the pharmacokinetics data were verified the promotion of the oral eucalyptol absorption by the nanocarrier. Taken together, we established an optimal oral delivery system that promoted oral administration of eucalyptol to exert protective effects on hyperglycaemia-induced vascular endothelial injury.
Collapse
Affiliation(s)
- Jianqing Peng
- The State Key Laboratory of Functions and Applications of Medicinal Plants (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Zhaohui Jiang
- The State Key Laboratory of Functions and Applications of Medicinal Plants (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Guoping Wu
- The State Key Laboratory of Functions and Applications of Medicinal Plants (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Zimin Cai
- The State Key Laboratory of Functions and Applications of Medicinal Plants (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Qianming Du
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ling Tao
- The State Key Laboratory of Functions and Applications of Medicinal Plants (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Yanyan Zhang
- The State Key Laboratory of Functions and Applications of Medicinal Plants (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Yi Chen
- The State Key Laboratory of Functions and Applications of Medicinal Plants (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Xiangchun Shen
- The State Key Laboratory of Functions and Applications of Medicinal Plants (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| |
Collapse
|
27
|
Pessoa MLDS, Silva LMO, Araruna MEC, Serafim CADL, Júnior EBA, Silva AO, Pessoa MMB, Neto HD, Lima EDO, Batista LM. Antifungal activity and antidiarrheal activity via antimotility mechanisms of (-)-fenchone in experimental models. World J Gastroenterol 2020; 26:6795-6809. [PMID: 33268962 PMCID: PMC7684460 DOI: 10.3748/wjg.v26.i43.6795] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/12/2020] [Accepted: 10/01/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND (-)-Fenchone is a bicyclic monoterpene present in essential oils of plant species, such as Foeniculum vulgare and Peumus boldus, used to treatment of gastrointestinal diseases. Pharmacological studies report its anti-inflammatory, antioxidant, and antinociceptive activity.
AIM To investigate antidiarrheal activity related to gastrointestinal motility, intestinal secretion and antimicrobial activity.
METHODS A castor oil-induced diarrhea model was used to evaluate antidiarrheal activity. Intestinal transit and gastric emptying protocols were used to assess a possible antimotility effect. Muscarinic receptors, presynaptic α2-adrenergic and tissue adrenergic receptors, KATP channels, nitric oxide were investigated to uncover antimotility mechanisms of action and castor oil-induced enteropooling to elucidate antisecretory mechanisms. The antimicrobial activity was evaluated in the minimum inhibitory concentration model, the fractional inhibitory concentration index using the (-)-fenchone association method with standard antifungal agents.
RESULTS (-)-Fenchone (75, 150 and 300 mg/kg) showed antidiarrheal activity, with a significant decrease in the evacuation index. This activity is possibly related to a percentage of reduced intestinal transit (75, 150 and 300 mg/kg). The antimotility effect of (-)-fenchone decreased in the presence of pilocarpine, yohimbine, propranolol, L-NG-nitroarginine methyl ester or glibenclamide. In the enteropooling model, no reduction in intestinal fluid weight was observed. (-)- Fenchone did not show antibacterial activity; on the other hand, inhibits the growth of strains of fungi with a minimum fungicide concentration of 32 μg/mL. However, when it was associated with amphotericin B, no synergism was observed.
CONCLUSION The antidiarrheal effect of (-)-fenchone in this study involves antimotility effect and not involve antisecretory mechanisms. (-)-Fenchone presents antifungal activity; however, it did not show antibacterial activity.
Collapse
Affiliation(s)
- Michelle Liz de Souza Pessoa
- Department of Pharmaceutical Sciences, IPeFarM, Federal University of Paraíba, João Pessoa 58051-970, Paraíba, Brazil
| | | | - Maria Elaine Cristina Araruna
- Department of Pharmaceutical Sciences, IPeFarM, Federal University of Paraíba, João Pessoa 58051-970, Paraíba, Brazil
| | | | - Edvaldo Balbino Alves Júnior
- Department of Pharmaceutical Sciences, IPeFarM, Federal University of Paraíba, João Pessoa 58051-970, Paraíba, Brazil
| | - Alessa Oliveira Silva
- Department of Pharmaceutical Sciences, IPeFarM, Federal University of Paraíba, João Pessoa 58051-970, Paraíba, Brazil
| | | | - Hermes Diniz Neto
- Department of Pharmaceutical Sciences, IPeFarM, Federal University of Paraíba, João Pessoa 58051-970, Paraíba, Brazil
| | - Edeltrudes de Oliveira Lima
- Department of Pharmaceutical Sciences, IPeFarM, Federal University of Paraíba, João Pessoa 58051-970, Paraíba, Brazil
| | - Leônia Maria Batista
- Postgraduate Program in Natural and Synthetic Bioactive Products, Universidade Federal da Paraiba, João Pessoa 58051-900, Brazil
| |
Collapse
|
28
|
Assessing the Biostimulant Effects of a Novel Plant-Based Formulation on Tomato Crop. SUSTAINABILITY 2020. [DOI: 10.3390/su12208432] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The aim of this research was to evaluate the biostimulant effects of an eco-product (EP) containing essential oils of rosemary and eucalyptus on tomato crop. Experiments were conducted to evaluate EP effects on plant growth and physiological parameters (e.g., chlorophyll content), total phenols and antioxidant activity, enzyme activities (e.g., catalase), plant macronutrient content and fresh tomato fruit quality. The application of an EP once (EP-1x) increased tomato plant height by 19%, stomatal conductance, and chlorophyll content compared to the control (sprayed with water). EP triplicate (EP-3x) application significantly increased yield (0.79 kg plant−1) compared to the control (0.58 kg plant−1). However, application of EP-3x was associated with a higher percentage of fruit cracking in comparison to the control. Total phenols and antioxidant activity were affected from both the use of EP and application frequency. EP application decreased by 27.3% the leaf damage index in comparison to the control. Nutrient content in leaves (N, Mg) was significantly decreased in the case of EP-3x treatment. Fruit firmness was decreased by 19.9% in the case of EP-1x application. Fruit marketability and tomato-like aroma, fresh weight and soluble solids did not differ among the treatments. Further research is required to examine the potential use of essential oils as biostimulants.
Collapse
|
29
|
Vijayakumar K, Manigandan V, Jeyapragash D, Bharathidasan V, Anandharaj B, Sathya M. Eucalyptol inhibits biofilm formation of Streptococcus pyogenes and its mediated virulence factors. J Med Microbiol 2020; 69:1308-1318. [PMID: 32930658 DOI: 10.1099/jmm.0.001253] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Introduction. Streptococcus pyogenes is a diverse virulent synthesis pathogen responsible for invasive systemic infections. Establishment of antibiotic resistance in the pathogen has produced a need for new antibiofilm agents to control the biofilm formation and reduce biofilm-associated resistance development.Aim. The present study investigates the in vitro antibiofilm activity of eucalyptol against S. pyogenes.Methodology. The antibiofilm potential of eucalyptol was assessed using a microdilution method and their biofilm inhibition efficacy was visualized by microscopic analysis. The biochemical assays were performed to assess the influence of eucalyptol on virulence productions. Real-time PCR analysis was performed to evaluate the expression profile of the virulence genes.Results. Eucalyptol showed significant antibiofilm potential in a dose-dependent manner without affecting bacterial growth. Eucalyptol at 300 µg ml-1 (biofilm inhibitory concentration) significantly inhibited the initial stage of biofilm formation in S. pyogenes. However, eucalyptol failed to diminish the mature biofilms of S. pyogenes at biofilm inhibitory concentration and it effectively reduced the biofilm formation on stainless steel, titanium, and silicone surfaces. The biochemical assay results revealed that eucalyptol greatly affects the cell-surface hydrophobicity, auto-aggregation, extracellular protease, haemolysis and hyaluronic acid synthesis. Further, the gene-expression analysis results showed significant downregulation of virulence gene expression upon eucalyptol treatment.Conclusion. The present study suggests that eucalyptol applies its antibiofilm assets by intruding the initial biofilm formation of S. pyogenes. Supplementary studies are needed to understand the mode of action involved in biofilm inhibition.
Collapse
Affiliation(s)
- Karuppiah Vijayakumar
- Centre of advanced study in Marine Biology, Annamalai University, Parangipettai - 608 502, Tamil Nadu, India
| | - Vajravelu Manigandan
- Centre of advanced study in Marine Biology, Annamalai University, Parangipettai - 608 502, Tamil Nadu, India
| | - Danaraj Jeyapragash
- Department of Biotechnology, Karpagam academy of higher education, Eachanari, Coimbatore-641 021, Tamil Nadu, India
| | - Veeraiyan Bharathidasan
- Centre of advanced study in Marine Biology, Annamalai University, Parangipettai - 608 502, Tamil Nadu, India
| | - Balaiyan Anandharaj
- Department of Botany, Annamalai University, Annamalai Nagar, Chidambaram - 608 002, Tamil Nadu, India
| | - Madhavan Sathya
- Department of Botany, Annamalai University, Annamalai Nagar, Chidambaram - 608 002, Tamil Nadu, India
| |
Collapse
|
30
|
Anti-Inflammatory and Physicochemical Characterization of the Croton Rhamnifolioides Essential Oil Inclusion Complex in β-Cyclodextrin. BIOLOGY 2020; 9:biology9060114. [PMID: 32486128 PMCID: PMC7344496 DOI: 10.3390/biology9060114] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 12/18/2022]
Abstract
Croton rhamnifolioides is used in popular medicine for the treatment of inflammatory diseases. The objective of this study was to characterize and evaluate the anti-inflammatory effect of C. rhamnifolioides essential oil complexed in β-cyclodextrin (COEFC). The physicochemical characterization of the complexes was performed using different physical methods. The anti-inflammatory activity was evaluated in vivo by ear edema, paw edema, cotton pellet-induced granuloma, and vascular permeability by Evans blue extravasation. The mechanism of action was validated by molecular docking of the major constituent into the cyclooxygenase-2 (COX-2 enzyme). All doses of the COEFC reduced acute paw edema induced by carrageenan and dextran, as well as vascular permeability. Our results suggest the lowest effective dose of all samples inhibited the response induced by histamine or arachidonic acid as well as the granuloma formation. The complexation process showed that the pharmacological effects were maintained, however, showing similar results using much lower doses. The results demonstrated an involvement of the inhibition of pathways dependent on eicosanoids and histamine. Complexation of β-cyclodextrin/Essential oil (β-CD/EO) may present an important tool in the study of new compounds for the development of anti-inflammatory drugs.
Collapse
|
31
|
Paseban M, Niazmand S, Soukhtanloo M, Meibodi NT, Abbasnezhad A, Mousavi SM, Niazmand MJ. The Therapeutic Effect of Nigella sativa Seed on Indomethacin-induced Gastric Ulcer in Rats. CURRENT NUTRITION & FOOD SCIENCE 2020. [DOI: 10.2174/1573401315666190114152855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Nonsteroidal anti-inflammatory drugs (NSAIDs) are widely used to relieve
pain and reduce inflammation. However, gastric complications remain a major problem limiting their
clinical usage. This study was carried out to evaluate the therapeutic effect of Nigella sativa seed
(N. sativa seed) hydroalcoholic extract on indomethacin-induced gastric ulcer in rats and its possible
mechanism.
Methods:
This study was carried out on forty-eight male Wistar rats. Gastric ulcer was induced by
indomethacin (35 mg/kg). N. sativa seed extract (100, 200, and 400 mg/kg) and ranitidine (50 mg/kg)
was administered orally for five days after ulcer induction. Ulcer index, gastric acid secretion, gastric
mucus content, total thiol, malondialdehyde (MDA), and total hexose, and protein content in gastric
juice were determined.
Results:
The ulcer index in groups of N. sativa seed was significantly lower as compared to indomethacin
group. N. sativa seed significantly decreased MDA and protein content, but increased total
thiol, total hexose, and mucus content as compared to indomethacin group. N. sativa seed did not affect
gastric acid secretion.
Conclusion:
These findings showed that the gastroprotective effect of N. sativa seed against indomethacin-
induced ulcer was mainly exerted by antioxidant activity, stimulation of gastric mucus secretion
and also increased total hexose in the gastric mucosa.
Collapse
Affiliation(s)
- Maryam Paseban
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeed Niazmand
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Soukhtanloo
- Department of Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Naser T. Meibodi
- Cutaneous Lishmanaisis Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abbasali Abbasnezhad
- Basic Sciences Department, Faculty of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Seyed M. Mousavi
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | |
Collapse
|
32
|
Marques NT, Filipe A, Pinto P, Barroso J, Trindade H, Power DM, Figueiredo AC. Trichome Density in Relation to Volatiles Emission and 1,8-Cineole Synthase Gene Expression in Thymus albicans Vegetative and Reproductive Organs. Chem Biodivers 2020; 17:e1900669. [PMID: 31984627 DOI: 10.1002/cbdv.201900669] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 01/23/2020] [Indexed: 11/09/2022]
Abstract
1,8-Cineole is the main volatile produced by Thymus albicans Hoffmanns. & Link 1,8-cineole chemotype. To understand the contribution of distinct plant organs to the high 1,8-cineole production, trichome morphology and density, as well as emitted volatiles and transcriptional expression of the 1,8-cineole synthase (CIN) gene were determined separately for T. albicans leaves, bracts, calyx, corolla and inflorescences. Scanning electron microscopy (SEM) and stereoscope microscopy observations showed the highest peltate trichome density in leaves and bracts, significantly distinct from calyx and corolla. T. albicans volatiles were collected by solid phase micro extraction (SPME) and analyzed by gas chromatography-mass spectrometry (GC/MS) and by GC for component identification and quantification, respectively. Of the 23 components identified, 1,8-cineole was the dominant volatile (57-93 %) in all T. albicans plant organs. The relative amounts of emitted volatiles clearly separated vegetative from reproductive organs. Gene expression of CIN was assigned to all organs analyzed and was consistent with the relatively high emission of 1,8-cineole in leaves and bracts. Further studies will be required to analyze monoterpenoid biosynthesis by each type of glandular trichome.
Collapse
Affiliation(s)
- Natália T Marques
- Centro de Eletrónica, Optoeletrónica e Telecomunicações, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Alexandra Filipe
- Núcleo de Biologia Comparativa e Integrativa, Centro de Ciências do Mar, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Patrícia Pinto
- Núcleo de Biologia Comparativa e Integrativa, Centro de Ciências do Mar, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - José Barroso
- Centro de Estudos do Ambiente e do Mar (CESAM Lisboa), Faculdade de Ciências da Universidade de Lisboa, Centro de Biotecnologia Vegetal (CBV), DBV, C2, Piso 1, Campo Grande, 1749-016, Lisboa, Portugal
| | - Helena Trindade
- Centro de Estudos do Ambiente e do Mar (CESAM Lisboa), Faculdade de Ciências da Universidade de Lisboa, Centro de Biotecnologia Vegetal (CBV), DBV, C2, Piso 1, Campo Grande, 1749-016, Lisboa, Portugal
| | - Deborah M Power
- Núcleo de Biologia Comparativa e Integrativa, Centro de Ciências do Mar, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Ana Cristina Figueiredo
- Centro de Estudos do Ambiente e do Mar (CESAM Lisboa), Faculdade de Ciências da Universidade de Lisboa, Centro de Biotecnologia Vegetal (CBV), DBV, C2, Piso 1, Campo Grande, 1749-016, Lisboa, Portugal
| |
Collapse
|
33
|
Systematic Analysis of Monoterpenes: Advances and Challenges in the Treatment of Peptic Ulcer Diseases. Biomolecules 2020; 10:biom10020265. [PMID: 32050614 PMCID: PMC7072639 DOI: 10.3390/biom10020265] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/03/2020] [Accepted: 02/05/2020] [Indexed: 12/13/2022] Open
Abstract
Peptic ulcer disease (PUD) is a multifactorial and complex disease caused by an imbalance of protective and aggressive factors (endogenous and exogenous). Despite advances in recent years, it is still responsible for substantial mortality and triggering clinical problems. Over the last decades, the understanding of PUD has changed a lot with the discovery of Helicobacter pylori infection. However, this disease continues to be a challenge due to side-effects, incidence of relapse from use of various anti-ulcer medicines, and the rapid appearance of antimicrobial resistance with current H. pylori therapies. Consequently, there is the need to identify more effective and safe anti-ulcer agents. The search for new therapies with natural products is a viable alternative and has been encouraged. The literature reports the importance of monoterpenes based on the extensive pharmacological action of this class, including wound healing and anti-ulcerogenic agents. In the present study, 20 monoterpenes with anti-ulcerogenic properties were evaluated by assessing recent in vitro and in vivo studies. Here, we review the anti-ulcer effects of monoterpenes against ulcerogenic factors such as ethanol, nonsteroidal anti-inflammatory drugs (NSAIDs), and Helicobacter pylori, highlighting challenges in the field.
Collapse
|
34
|
Ahmadi R, Noroozian E, Jassbi AR. Molecularly imprinted polymer solid-phase extraction for the analysis of 1,8-cineole in thyme and sagebrush distillates. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2020. [DOI: 10.1007/s13738-019-01840-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
35
|
Paseban M, Niazmand S, Soukhtanloo M, Tayyebi Meybodi N. The preventive effect of Nigella sativa seed on gastric ulcer induced by indomethacin in rat. JOURNAL OF HERBMED PHARMACOLOGY 2020; 9:12-19. [DOI: 10.15171/jhp.2020.02] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025] Open
Abstract
Introduction: Nonsteroidal anti-inflammatory drugs (NSAIDs) are considered as one of the most administrated groups of medications worldwide. Due to the role of NSAIDs in inducing gastric ulceration, their clinical applications are still challenging. Nigella sativa seed is widely used as an herbal medication against gastrointestinal complications. The present experiment was carried out to investigate the impact of N. sativa seed hydro-alcoholic extract on gastric ulcer induced by indomethacin (IND) and to evaluate its possible mechanisms in rat. Methods: This study was performed on 48 male Wistar rats. Acute gastric ulceration was induced by IND (35 mg/kg). N. sativa seed extract (100, 200, 400 mg/kg) and ranitidine (50 mg/kg) were administered orally for five days before the induction ulcer. Ulcer index, gastric acid secretion, gastric mucus content, glutathione (GSH), malondialdehyde (MDA), total hexose, gastric juice protein content were determined on the fifth day. Results: The ulcer index in all groups of N. sativa seed was significantly lower than that of the IND group. N sativa seed considerably decreased MDA and protein content, but increased total thiol, total hexose, and mucus content compared to the IND group. N. sativa seed did not affect gastric acid secretion. Conclusion: These findings were indicative of the gastroprotective effect of N. sativa seed against the IND-induced ulcer, suggesting that it can mainly be exerted through the anti-oxidant activity of the extract as well as its role in stimulating gastric mucus secretion and increasing total hexose in the gastric mucosa.
Collapse
Affiliation(s)
- Maryam Paseban
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeed Niazmand
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Neurogenic Inflammation Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Soukhtanloo
- Department of Biochemistry, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Naser Tayyebi Meybodi
- Cutaneous Lishmanaisis Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
36
|
Yang C, Kennes YM, Lepp D, Yin X, Wang Q, Yu H, Yang C, Gong J, Diarra MS. Effects of encapsulated cinnamaldehyde and citral on the performance and cecal microbiota of broilers vaccinated or not vaccinated against coccidiosis. Poult Sci 2019; 99:936-948. [PMID: 32029170 PMCID: PMC7587813 DOI: 10.1016/j.psj.2019.10.036] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/15/2019] [Accepted: 10/15/2019] [Indexed: 01/08/2023] Open
Abstract
This study investigated the effects of encapsulated cinnamaldehyde (CIN) and citral (CIT) alone or in combination (CIN + CIT) on the growth performance and cecal microbiota of nonvaccinated broilers and broilers vaccinated against coccidiosis. Vaccinated (1,600) and nonvaccinated (1,600) 0-day-old male Cobb500 broilers were randomly allocated to 5 treatments: basal diet (control) and basal diet supplemented with bacitracin (BAC, 55 ppm), CIN (100 ppm), CIT (100 ppm), and CIN (100 ppm) + CIT (100 ppm). In general, body weight (BW) and feed conversion ratio were significantly improved in birds treated with BAC, CIN, CIT, and CIN + CIT (P < 0.05) but were all decreased in vaccinated birds compared with nonvaccinated birds (P < 0.05). Significant interactions (P < 0.05) between vaccination and treatments for average daily gain during the periods of starter (day 0–9) and BW on day 10 were noted. Broilers receiving vaccines (P < 0.01) or feed supplemented with BAC, CIN, CIT, or CIN + CIT (P < 0.01) showed reductions in mortality rate from day 0 to 28. The incidences of minor coccidiosis were higher (P < 0.05) in vaccinated birds than in nonvaccinated birds. Diet supplementation with BAC or tested encapsulated essential oils showed comparable effects on the coccidiosis incidences. Similar to BAC, CIN and its combination with CIT reduced both incidence and severity of necrotic enteritis (P < 0.05). No treatment effects were observed on the cecal microbiota at the phyla level. At the genus level, significant differences between vaccination and treatment groups were observed for 5 (Lactobacillus, Ruminococcus, Faecalibacterium, Enterococcus, and Clostridium) of 40 detected genera (P < 0.05). The genus Lactobacillus was more abundant in broilers fed with CIT, while Clostridium and Enterococcus were less abundant in broilers fed with CIN, CIT, or CIN + CIT in both the vaccinated and nonvaccinated groups. Results from this study suggested that CIN alone or in combination with CIT in feed could improve chicken growth performance to the level comparable with BAC and alter cecal microbiota composition.
Collapse
Affiliation(s)
- Chongwu Yang
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, Ontario, Canada N1G 5C9; Department of Animal Science, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2
| | - Yan Martel Kennes
- Centre de recherche en sciences animales de Deschambault, Deschambault, 120-A, chemin du Roy, Canada QC G0A 1S0
| | - Dion Lepp
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, Ontario, Canada N1G 5C9
| | - Xianhua Yin
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, Ontario, Canada N1G 5C9
| | - Qi Wang
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, Ontario, Canada N1G 5C9
| | - Hai Yu
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, Ontario, Canada N1G 5C9
| | - Chengbo Yang
- Department of Animal Science, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2
| | - Joshua Gong
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, Ontario, Canada N1G 5C9.
| | - Moussa S Diarra
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, Ontario, Canada N1G 5C9.
| |
Collapse
|
37
|
Abdallah HMI, Abdel-Rahman RF, El Awdan SA, Allam RM, El-Mosallamy AEMK, Selim MS, Mohamed SS, Arbid MS, Farrag ARH. Protective effect of some natural products against chemotherapy-induced toxicity in rats. Heliyon 2019; 5:e01590. [PMID: 31080906 PMCID: PMC6507045 DOI: 10.1016/j.heliyon.2019.e01590] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 03/01/2019] [Accepted: 04/24/2019] [Indexed: 02/07/2023] Open
Abstract
Aim There is a great interest in combining anticancer drugs with natural products aiming at maximizing their efficacy while minimizing systemic toxicity. Hence, the present study was constructed aiming to investigate the protective potential of three natural products, 1,8-cineole an essential oil from Artemisia herba alba, exopolysaccharide (EPS) from locally identified marine streptomycete, and ellagic acid (EA), against chemotherapy-induced organ toxicity. Methods Isolation, production and characterization of EPS from marine streptomycete was done. Animals were allocated into five groups, GP1: normal control, GP2: cyclophosphamide (CYC), GP3: 1,8-cineole + CYC, GP4: EPS + CYC, GP4: EA + CYC. All drugs were administered orally 1 week before and concomitantly with CYC. Electrocardiography (ECG) analysis, liver enzymes (ALT and AST), cardiac serum markers (LDH and CK), oxidative stress biomarkers in hepatic and cardiac tissues (GSH and MDA), TGF-β1 and histopathological examination of hepatic and cardiac tissues were executed. Results The isolated stain produced EPS was identified as Streptomyces xiamenensis. EPS contains uronic, sulphate groups and different monosugars with Mw 4.65 × 104 g/mol and showed antioxidant activity against DPPH. Pretreatment of rats with 1,8-cineole, EPS and EA improved ECG abnormalities, decrease serum markers of hepato- and cardiotoxicity, prevent oxidative stress and decrease TGF-β1 in liver and heart tissues. Conclusion The present results demonstrate the hepatoprotective and cardioprotective effects of the above-mentioned natural products against CYC organ toxicity.
Collapse
Affiliation(s)
- Heba M I Abdallah
- Department of Pharmacology, Medical Division, National Research Centre, Giza, Egypt
| | - Rehab F Abdel-Rahman
- Department of Pharmacology, Medical Division, National Research Centre, Giza, Egypt
| | - Sally A El Awdan
- Department of Pharmacology, Medical Division, National Research Centre, Giza, Egypt
| | - Rasha M Allam
- Department of Pharmacology, Medical Division, National Research Centre, Giza, Egypt
| | | | - Manal S Selim
- Department of Microbial Biotechnology, Genetic Engineering and Biotechnology Research Division, National Research Centre, Giza, Egypt
| | - Sahar S Mohamed
- Department of Microbial Biotechnology, Genetic Engineering and Biotechnology Research Division, National Research Centre, Giza, Egypt
| | - Mahmoud S Arbid
- Department of Pharmacology, Medical Division, National Research Centre, Giza, Egypt
| | - Abdel Razik H Farrag
- Department of Pathology, Medical Division, National Research Centre, Giza, Egypt
| |
Collapse
|
38
|
Linghu KG, Wu GP, Fu LY, Yang H, Li HZ, Chen Y, Yu H, Tao L, Shen XC. 1,8-Cineole Ameliorates LPS-Induced Vascular Endothelium Dysfunction in Mice via PPAR-γ Dependent Regulation of NF-κB. Front Pharmacol 2019; 10:178. [PMID: 30930772 PMCID: PMC6423908 DOI: 10.3389/fphar.2019.00178] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 02/11/2019] [Indexed: 12/16/2022] Open
Abstract
1,8-Cineole (eucalyptol), a monoterpene, has been widely reported for the anti-inflammatory effects. Our previous data confirmed that 1,8-cineole ameliorated the inflammatory phenotype of human umbilical vein endothelial cells (HUVECs) by mediating NF-κB expression in vitro. At present, we investigated the protection effects of 1,8-cineole on vascular endothelium in lipopolysaccharide (LPS)-induced acute inflammatory injury mice and the potential mechanisms involved in the protection in HUVECs. Results from enzyme linked immunosorbent assays revealed that 1,8-cineole suppressed the secretion of interleukin (IL)-6 and IL-8 and increased the expression of IL-10 in the serum of LPS-induced mice. 1,8-Cineole reduced the inflammatory infiltration and the expression of vascular cell adhesion molecular 1 (VCAM-1) in the sections of thoracic aorta in LPS-induced acute inflammatory mice. Western blotting indicated that 1,8-cineole significantly decreased the phosphorylation of NF-κB p65 and increased the expression of PPAR-γ in the thoracic aorta tissue. 1,8-Cineole increased the expression of PPAR-γ in LPS-induced HUVECs. 1,8-Cineole and rosiglitazone reduced the protein and mRNA levels of VCAM-1, E-selectin, IL-6, and IL-8 in LPS-induced HUVECs, which could be reversed by the action of GW9662 (inhibitor of PPAR-γ). 1,8-Cineole and rosiglitazone blocked the LPS-induced IκBα degradation and NF-κB p65 nucleus translocation, which could be reversed by the pretreatment of GW9662 or silence of PPAR-γ gene. In conclusion, 1,8-cineole attenuated LPS-induced vascular endothelial cells injury via PPAR-γ dependent modulation of NF-κB.
Collapse
Affiliation(s)
- Ke-Gang Linghu
- The Department of Pharmacology of Materia Medica (the State Key Laboratory of Functions and Applications of Medicinal Plants, the High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, the Key Laboratory of Optimal Utilization of Natural Medicine Resources), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau, China
| | - Guo-Ping Wu
- The Department of Pharmacology of Materia Medica (the State Key Laboratory of Functions and Applications of Medicinal Plants, the High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, the Key Laboratory of Optimal Utilization of Natural Medicine Resources), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Ling-Yun Fu
- The Department of Pharmacology of Materia Medica (the State Key Laboratory of Functions and Applications of Medicinal Plants, the High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, the Key Laboratory of Optimal Utilization of Natural Medicine Resources), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Hong Yang
- The Department of Pharmacology of Materia Medica (the State Key Laboratory of Functions and Applications of Medicinal Plants, the High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, the Key Laboratory of Optimal Utilization of Natural Medicine Resources), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Hai-Zhi Li
- The Department of Pharmacology of Materia Medica (the State Key Laboratory of Functions and Applications of Medicinal Plants, the High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, the Key Laboratory of Optimal Utilization of Natural Medicine Resources), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Yan Chen
- The Department of Pharmacology of Materia Medica (the State Key Laboratory of Functions and Applications of Medicinal Plants, the High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, the Key Laboratory of Optimal Utilization of Natural Medicine Resources), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
- The Department of Pharmaceutics of TCM (the High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability, the Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Hua Yu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau, China
| | - Ling Tao
- The Department of Pharmaceutics of TCM (the High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability, the Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Xiang-Chun Shen
- The Department of Pharmacology of Materia Medica (the State Key Laboratory of Functions and Applications of Medicinal Plants, the High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, the Key Laboratory of Optimal Utilization of Natural Medicine Resources), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| |
Collapse
|
39
|
Jiang F, Wu G, Li W, Yang J, Yan J, Wang Y, Yao W, Zhou X, He Z, Wu L, Xiao C, Xiao T, Zhang M, Shen X, Tao L. Preparation and protective effects of 1,8-cineole-loaded self-microemulsifying drug delivery system on lipopolysaccharide-induced endothelial injury in mice. Eur J Pharm Sci 2019; 127:14-23. [PMID: 30336203 DOI: 10.1016/j.ejps.2018.10.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 08/23/2018] [Accepted: 10/12/2018] [Indexed: 11/19/2022]
Abstract
An optimised 1,8-cineole-loaded self-microemulsifying drug delivery system (CIN-SMEDDS) with a mean droplet size, polydispersity index, mean zeta potential and encapsulation efficiency of 38.14 ± 1.47 nm, 0.208 ± 0.036, -9.312 ± 1.764 mV and 95.35% ± 1.13%, respectively, successfully ameliorated the lipopolysaccharide (LPS)-induced endothelial injury in mice. Acute toxicity assay in mice through the oral administration of CIN-SMEDDS showed that the median lethal dose of CIN-SMEDDS was 2998.9 mg/kg. The results of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay indicated that the cytotoxicity of CIN-SMEDDS to Caco-2 cells may be ascribed to the surfactant/co-surfactant mixture. In particular, CIN-SMEDDS remarkably inhibited inflammatory cytokines IL-1β, IL-6 and IL-8 with a simultaneous increase in IL-10 in LPS-treated mice. Haematoxylin-eosin staining results showed that CIN-SMEDDS attenuated LPS-induced vascular endothelial injury. Western blot results showed that the vascular protective effects of CIN-SMEDDS were associated with the NF-κB and peroxisome proliferator-activated receptor γ signalling pathways. These findings indicated that CIN-SMEDDS can attenuate LPS-induced endothelial injury and thus was proposed as a promising agent for the treatment of inflammatory cardiovascular disease.
Collapse
Affiliation(s)
- Feng Jiang
- The Department of Pharmaceutics of TCM, The State Key Laboratory of Functions and Applications of Medicinal Plants, The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability, The Union Key Laboratory of Guiyang City, The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou 550025, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou 550025, China
| | - Guoping Wu
- The Department of Pharmaceutics of TCM, The State Key Laboratory of Functions and Applications of Medicinal Plants, The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability, The Union Key Laboratory of Guiyang City, The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou 550025, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou 550025, China
| | - Wanrong Li
- The Department of Pharmaceutics of TCM, The State Key Laboratory of Functions and Applications of Medicinal Plants, The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability, The Union Key Laboratory of Guiyang City, The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou 550025, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou 550025, China
| | - Jiajia Yang
- The Department of Pharmaceutics of TCM, The State Key Laboratory of Functions and Applications of Medicinal Plants, The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability, The Union Key Laboratory of Guiyang City, The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou 550025, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou 550025, China
| | - Junli Yan
- The Department of Pharmaceutics of TCM, The State Key Laboratory of Functions and Applications of Medicinal Plants, The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability, The Union Key Laboratory of Guiyang City, The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou 550025, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou 550025, China
| | - Yi Wang
- The Department of Pharmaceutics of TCM, The State Key Laboratory of Functions and Applications of Medicinal Plants, The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability, The Union Key Laboratory of Guiyang City, The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou 550025, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou 550025, China
| | - Wenli Yao
- The Department of Pharmaceutics of TCM, The State Key Laboratory of Functions and Applications of Medicinal Plants, The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability, The Union Key Laboratory of Guiyang City, The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou 550025, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou 550025, China
| | - Xue Zhou
- The Department of Pharmaceutics of TCM, The State Key Laboratory of Functions and Applications of Medicinal Plants, The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability, The Union Key Laboratory of Guiyang City, The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou 550025, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou 550025, China
| | - Zhiyong He
- The Department of Pharmaceutics of TCM, The State Key Laboratory of Functions and Applications of Medicinal Plants, The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability, The Union Key Laboratory of Guiyang City, The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou 550025, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou 550025, China
| | - Linjing Wu
- The Department of Pharmaceutics of TCM, The State Key Laboratory of Functions and Applications of Medicinal Plants, The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability, The Union Key Laboratory of Guiyang City, The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou 550025, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou 550025, China
| | - Chaoda Xiao
- The Department of Pharmaceutics of TCM, The State Key Laboratory of Functions and Applications of Medicinal Plants, The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability, The Union Key Laboratory of Guiyang City, The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou 550025, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou 550025, China
| | - Ting Xiao
- The Department of Pharmaceutics of TCM, The State Key Laboratory of Functions and Applications of Medicinal Plants, The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability, The Union Key Laboratory of Guiyang City, The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou 550025, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou 550025, China
| | - Min Zhang
- School of Basic Medical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou 550025, China.
| | - Xiangchun Shen
- The Department of Pharmaceutics of TCM, The State Key Laboratory of Functions and Applications of Medicinal Plants, The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability, The Union Key Laboratory of Guiyang City, The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou 550025, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou 550025, China.
| | - Ling Tao
- The Department of Pharmaceutics of TCM, The State Key Laboratory of Functions and Applications of Medicinal Plants, The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability, The Union Key Laboratory of Guiyang City, The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou 550025, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou 550025, China.
| |
Collapse
|
40
|
Akolade JO, Balogun M, Swanepoel A, Ibrahim RB, Yusuf AA, Labuschagne P. Microencapsulation of eucalyptol in polyethylene glycol and polycaprolactone using particles from gas-saturated solutions. RSC Adv 2019; 9:34039-34049. [PMID: 35528904 PMCID: PMC9074077 DOI: 10.1039/c9ra06419b] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 09/29/2019] [Indexed: 12/30/2022] Open
Abstract
Eucalyptol is the natural cyclic ether which constitutes the bulk of terpenoids found in essential oils of Eucalyptus spp. and is used in aromatherapy for treatment of migraine, sinusitis, asthma and stress. It acts by inhibiting arachidonic acid metabolism and cytokine production. Chemical instability and volatility of eucalyptol restrict its therapeutic application and necessitate the need to develop an appropriate delivery system to achieve extended release and enhance its bioactivity. However, the synthesis method of the delivery system must be suitable to prevent loss or inactivation of the drug during processing. In this study, supercritical carbon dioxide (scCO2) was explored as an alternative solvent for encapsulation and co-precipitation of eucalyptol with polyethylene glycol (PEG) and/or polycaprolactone (PCL) using the particles from gas-saturated solution (PGSS) process. Polymers and eucalyptol were pre-mixed and then processed in a PGSS autoclave at 45 °C and 80 bar for 1 h. The mixture in scCO2 was micronized and characterized. The presence of eucalyptol in the precipitated particles was confirmed by infrared spectroscopy, gas chromatography and mass spectrometry. The weight ratios of PEG–PCL blends significantly influenced loading capacity and encapsulation efficiency with 77% of eucalyptol encapsulated in a 4 : 1 composite blend of PEG–PCL. The particle size distribution of the PGSS-micronized particles ranged from 30 to 260 μm. ScCO2 assisted microencapsulation in PEG and PCL reduced loss of the volatile drug during a two-hour vaporization study and addition of PCL extended the mean release time in simulated physiological fluids. Free radical scavenging and lipoxygenase inhibitory activities of eucalyptol formulated in the PGSS-micronized particles was sustained. Findings from this study showed that the scCO2-assisted micronization can be used for encapsulation of volatile drugs in polymeric microparticles without affecting bioactivity of the drug. Application of supercritical carbon dioxide as an alternative solvent for microformulation of the volatile unstable drug, eucalyptol in polymeric composites.![]()
Collapse
Affiliation(s)
- Jubril Olayinka Akolade
- Polymers and Composites, Chemicals Cluster, CSIR
- South Africa
- Biotechnology Advanced Research Centre
- Sheda Science and Technology Complex
- Nigeria
| | | | - Andri Swanepoel
- Polymers and Composites, Chemicals Cluster, CSIR
- South Africa
| | | | | | | |
Collapse
|
41
|
Evaluation of gastroprotective and ulcer healing activities of yellow mombin juice from Spondias mombin L. PLoS One 2018; 13:e0201561. [PMID: 30395566 PMCID: PMC6218193 DOI: 10.1371/journal.pone.0201561] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 07/17/2018] [Indexed: 12/13/2022] Open
Abstract
Spondias mombin L. (yellow mombin) is a tree with a nutritional fruit that is commonly consumed in the North and Northeast of Brazil, as the juice of its pulp is rich in antioxidant compounds. This study aimed to investigate the gastroprotective and ulcer healing activities of yellow mombin juice (YMJ) in Wistar rats, and to elucidate the possible involved mechanisms. Phytochemical characterization of the lyophilized fruit juice was performed by high-performance liquid chromatography (HPLC). The gastroprotective activity of YMJ was investigated in ethanol (25, 50, and 100% YMJ) and indomethacin (100% YMJ) models of acute gastric ulcer in rats. Then, the effect of YMJ on mucus production and gastric secretions, and the involvement of non-protein sulfhydryl groups and prostaglandins in the gastroprotective process were examined. Moreover, the ulcer healing effect of YMJ was investigated in a model of acetic acid-induced chronic ulcer through histological and immunohistochemical analyses. HPLC results identified the presence of epicatechin (7.1 ± 1.6 μg/mL) and quercetin (17.3 ± 2.5 μg/mL) in YMJ. Ethanol-induced gastric lesions were inhibited by YMJ (25, 50, and 100%) by 42.42, 45.09, and 98.21% respectively, and indomethacin-induced lesions were inhibited by YMJ (100%) by 58.96%, compared to control group. Moreover, YMJ reduced gastric content and total acidy by 57.35 and 71.97%, respectively, compared to the control group. Treatment with YMJ also promoted healing of chronic ulcer, regeneration of the gastric mucosa, and restoration of mucus levels in glandular cells, as confirmed by histological analysis. It also increased cellular proliferation, as demonstrated by high reactivity to Ki-67 and bromodeoxyuridine. In conclusion, YMJ was found to possess gastroprotective and ulcer healing activities that are correlated to its antisecretory action. These results support the commercial exploration of YMJ as a functional food.
Collapse
|
42
|
Barboza KRM, Coco LZ, Alves GM, Peters B, Vasquez EC, Pereira TMC, Meyrelles SS, Campagnaro BP. Gastroprotective effect of oral kefir on indomethacin-induced acute gastric lesions in mice: Impact on oxidative stress. Life Sci 2018; 209:370-376. [PMID: 30120965 DOI: 10.1016/j.lfs.2018.08.035] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/07/2018] [Accepted: 08/13/2018] [Indexed: 02/06/2023]
Abstract
AIMS This study investigated the gastroprotective effects and the systemic oxidative status of oral kefir pretreatment in albino mice submitted to acute gastric ulcer induced by indomethacin. MAIN METHODS Male Swiss mice were divided into three groups (n = 7): Vehicle (0.3 mL of whole milk/100 g body weight, pH adjusted to 5.0), Kefir (0.3 mL of kefir/100 g body weight) and Proton Pump Inhibitor (PPI, 30 mg/kg of lansoprazole), via gavage for 14 days. Animals were fasted for 16 h and treated orally with indomethacin (40 mg/kg). After 6 h the animals were euthanized, the blood samples were obtained and used for the determination of ROS production, oxidation of macromolecules and apoptosis. The stomachs were removed, opened by the greater curvature, and a macroscopic analysis of the gastric lesions was performed. KEY FINDINGS Our findings demonstrated that the symbiotic kefir significantly alleviated blood oxidative stress by reducing superoxide anion, hydrogen peroxide and hydroxyl/peroxynitrite radicals, thereby leading to reduced oxidative damage to macromolecules due to a decreased oxidative stress status in induced gastric lesions. These anti-oxidative properties might contribute favorably to the ulcer attenuation in the kefir group. SIGNIFICANCE Taken together, these findings support a significant role played by the antioxidant actions of kefir in counteracting the gastric damage induced by this cyclooxygenase inhibitor. It is also worthy to mention that, kefir also exerted the gastroprotective property partly by inhibiting oxidative systemic damage. Based on these considerations, it was implied that kefir might be a contributor for the ROS-scavenging effect.
Collapse
Affiliation(s)
- Kelly Ribeiro Moura Barboza
- Laboratory of Translational Physiology and Pharmacology, Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), Vila Velha, ES, Brazil
| | - Larissa Zambom Coco
- Laboratory of Translational Physiology and Pharmacology, Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), Vila Velha, ES, Brazil
| | - Gisele Maziero Alves
- Laboratory of Translational Physiology and Pharmacology, Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), Vila Velha, ES, Brazil
| | - Beatriz Peters
- Laboratory of Translational Physiology and Pharmacology, Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), Vila Velha, ES, Brazil
| | - Elisardo Corral Vasquez
- Laboratory of Translational Physiology and Pharmacology, Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), Vila Velha, ES, Brazil.
| | - Thiago Melo Costa Pereira
- Laboratory of Translational Physiology and Pharmacology, Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), Vila Velha, ES, Brazil; Federal Institute of Education, Science and Technology (IFES), Vila Velha, ES, Brazil
| | - Silvana Santos Meyrelles
- Laboratory of Translational Physiology, Health Sciences Center, Federal University of Espirito Santo (UFES), Vitoria, Brazil
| | - Bianca Prandi Campagnaro
- Laboratory of Translational Physiology and Pharmacology, Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), Vila Velha, ES, Brazil.
| |
Collapse
|
43
|
Fu Y, Wu HQ, Cui HL, Li YY, Li CZ. Gastroprotective and anti-ulcer effects of oxymatrine against several gastric ulcer models in rats: Possible roles of antioxidant, antiinflammatory, and prosurvival mechanisms. Phytother Res 2018; 32:2047-2058. [PMID: 30024074 DOI: 10.1002/ptr.6148] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 06/02/2018] [Accepted: 06/10/2018] [Indexed: 01/16/2023]
Affiliation(s)
- Yan Fu
- Department of Paediatrics; Xinxiang Central Hospital of Henan Province; Xinxiang 453000 China
| | - Huan-qing Wu
- Department of Paediatrics; Xinxiang Central Hospital of Henan Province; Xinxiang 453000 China
| | - Huai-liang Cui
- Department of Paediatrics; Xinxiang Central Hospital of Henan Province; Xinxiang 453000 China
| | - Yue-yun Li
- Department of Paediatrics; Xinxiang Central Hospital of Henan Province; Xinxiang 453000 China
| | - Chang-zheng Li
- Institute of biological life sciences; Xinxiang Medical University; Xinxiang 453003 China
| |
Collapse
|
44
|
Antiulcer Activity and Potential Mechanism of Action of the Leaves of Spondias mombin L. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:1731459. [PMID: 29854075 PMCID: PMC5944294 DOI: 10.1155/2018/1731459] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 01/25/2018] [Accepted: 02/18/2018] [Indexed: 12/12/2022]
Abstract
Spondias mombin L. is used in folk medicine for the treatment of inflammation and gastrointestinal diseases. Our study investigated the antiulcer activity of S. mombin ethanolic extract (SmEE) and its majority compounds gallic acid (GA) and ellagic acid (EA). Phytochemical characterization was performed by HPLC. The SmEE was screened for in vitro antioxidant activities using phosphomolybdenum, ABTS, DPPH, and FRAP assays. The antiulcer activity of SmEE, GA, EA, or GA + EA was evaluated by gastric lesion models induced by absolute ethanol and indomethacin. Following this, it is capable of stimulating mucus production, antisecretory capacity, and the influence of −SH groups and NO in the effect of SmEE. Its healing activity was demonstrated by acetic acid-induced chronic ulcer model. Anti-Helicobacter pylori activity was assessed by determining the MIC of the SmEE (64–1024 μg/mL). The HPLC results identified the presence of gallic acid and ellagic acid in SmEE. The extract showed antioxidant activity in vitro. SmEE (50, 100, and 200 mg/kg) reduced the area of ulcerative lesions induced by ethanol in 23.8, 90.3, and 90.2%, respectively. In NSAID model, the SmEE induced protection of 36.8, 49.4, and 49.9%, respectively. GA (10 mg/kg) or EA (7 mg/kg) or the association of GA + EA (10 + 7 mg/kg) inhibited the ethanol-induced lesions in 71.8, 70.9, and 94.9%, respectively, indicating synergistic action. SmEE (100 mg/kg) decreased acid secretion and H+ concentration in the gastric contents, increased levels of mucus, and showed to be dependent of −SH groups and NO on the protection of the gastric mucosa. In chronic ulcer model, SmEE reduced the gastric area lesion. SmEE showed anti-H. pylori activity. In conclusion, our study showed that SmEE has antiulcerogenic activity. GA and EA are isolated gastric protectors and, when associated, acted synergistically to protect the gastric mucosa.
Collapse
|
45
|
Martins AOBPB, Rodrigues LB, Cesário FRAS, de Oliveira MRC, Tintino CDM, Castro FFE, Alcântara IS, Fernandes MNM, de Albuquerque TR, da Silva MSA, de Sousa Araújo AA, Júniur LJQ, da Costa JGM, de Menezes IRA, Wanderley AG. Anti-edematogenic and anti-inflammatory activity of the essential oil from Croton rhamnifolioides leaves and its major constituent 1,8-cineole (eucalyptol). Biomed Pharmacother 2017; 96:384-395. [DOI: 10.1016/j.biopha.2017.10.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/12/2017] [Accepted: 10/02/2017] [Indexed: 12/13/2022] Open
|
46
|
Azab SS, Abdel Jaleel GA, Eldahshan OA. Anti-inflammatory and gastroprotective potential of leaf essential oil of Cinnamomum glanduliferum in ethanol-induced rat experimental gastritis. PHARMACEUTICAL BIOLOGY 2017; 55:1654-1661. [PMID: 28447506 PMCID: PMC7011983 DOI: 10.1080/13880209.2017.1314512] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 12/19/2016] [Accepted: 03/29/2017] [Indexed: 05/21/2023]
Abstract
CONTEXT Nothing could be found in the literature concerning Cinnamomum glanduliferum (Wall) Meissn (Lauraceae) bark (CG) in Egypt. OBJECTIVE To investigate CG volatile oil chemically and its anti-inflammatory and gastroprotective effects. MATERIALS AND METHODS Essential oils were investigated by GC-MS. Leaves oil was assessed at doses of 250, 500 and 1000 mg/kg for its anti-inflammatory effect against carrageenan-induced rat oedema model. Serum inflammation markers were measured. The gastro-protective effect of the same doses of the volatile oil was also tested in ethanol-induced non-ulcerative gastritis model in rats. Stomach oxidative stress markers were examined following 1 h after intragastric ethanol administration. RESULTS Twenty-five and 20 compounds were identified from leaf and branch oils, respectively (98.85 and 99.13%). The major ones were: eucalyptol (59.44%; 55.74%), sabinene (14.99%; 7.12%), α-terpineol (6.44%; 9.81%), α-pinene (5.27%; 4.71%). Following 4 h of treatment leaves volatile oil at doses of 250, 500 and 1000 mg/kg significantly reduced paw volume to 94, 82 and 69%, respectively. The same doses significantly reduced COX-2 activity to 73.8, 50.7 and 21.4 nmol/min/mL, respectively. A significant reduction of PGE2 concentration was observed (2.95 ± 0.2, 2.45 ± 0.15 and 1.75 ± 0.015 pg/mL). CG oil exhibited a significant modulatory effect on ethanol-induced gastritis in rats as the level of NO reduced to 32, 37 and 41 μM nitrate/g and also a significant inhibition of lipid peroxidation was observed via reduction of MDA concentration (1.15, 1.11 and 1.04 nmol/g). CONCLUSION CG volatile oil exhibited an anti-inflammatory effect and protected against ethanol-induced non-ulcerative gastritis.
Collapse
Affiliation(s)
- Samar S. Azab
- Pharmacology & Toxicology Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | | | - Omayma A. Eldahshan
- Pharmacognosy Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
- CONTACT Omayma A. Eldahshan , Pharmacognosy Department, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
| |
Collapse
|
47
|
Abstract
Preclinical research remains an important tool for discovery and validation of novel therapeutics for gastrointestinal disorders. While in vitro assays can be used to verify receptor-ligand interactions and test for structural activity of new compounds, only whole-animal studies can demonstrate drug efficacy within the gastrointestinal system. Most major gastrointestinal disorders have been modeled in animals; however the translational relevance of each model is not equal. The purpose of this chapter is to provide a critical evaluation of common animal models that are being used to develop pharmaceuticals for gastrointestinal disorders. For brevity, the models are presented for upper gastrointestinal disorders involving the esophagus, stomach, and small intestine and lower gastrointestinal disorders that focus on the colon. Particular emphasis is used to explain the face and construct validity of each model, and the limitations of each model, including data interpretation, are highlighted. This chapter does not evaluate models that rely on surgical or other non-pharmacological interventions for treatment.
Collapse
|
48
|
Arunachalam K, Balogun SO, Pavan E, de Almeida GVB, de Oliveira RG, Wagner T, Cechinel Filho V, de Oliveira Martins DT. Chemical characterization, toxicology and mechanism of gastric antiulcer action of essential oil from Gallesia integrifolia (Spreng.) Harms in the in vitro and in vivo experimental models. Biomed Pharmacother 2017; 94:292-306. [PMID: 28763752 DOI: 10.1016/j.biopha.2017.07.064] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 07/01/2017] [Accepted: 07/14/2017] [Indexed: 12/12/2022] Open
Abstract
Gallesia integrifolia is a Brazilian Amazon tree whose bark decoction is popularly used to treat peptic ulcer. The essential oil from the inner stem bark of G. integrifolia (EOGi) was chemically characterized by GC/MS. The in vitro cytotoxicity and genotoxicity were evaluated in CHO-K1 cells, while the in vivo oral acute toxicity was performed in mice. The gastroprotective effect of EOGi was assessed in acidified ethanol and piroxicam and ulcer healing on acetic acid -induced ulcer models in rodents. Anti-secretory, mucus, K+-ATP channels, prostaglandins (PGs), nitric oxide (NO), TNF-α, IL-1β, IL-10, catalase (CAT) and myeloperoxidase (MPO) activities and in vitro Helicobacter pylori action by EOGi were evaluated. EOGi exhibited cytotoxic effects only at 72h and no acute toxicity. EOGi showed gastroprotective and ulcer healing effects. EOGi gastroprotection was attenuated by indomethacin pre-treatment. Gastric volume and total acidity were reduced, while gastric pH was elevated. EOGi increased mucus and NO productions and CAT activity, and inhibited MPO activity, TNF-α and IL-1β concentrations and augmented IL-10. EOGi was not active against H. pylori. These results indicated that EOGi is safe and exerts preventive and curative gastric ulcer effects by multitarget actions. Twenty compounds were identified and (-)-alpha-santalene was the main compound.
Collapse
Affiliation(s)
- Karuppusamy Arunachalam
- Área de Farmacologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso (UFMT), Cuiabá, Brazil
| | - Sikiru Olaitan Balogun
- Área de Farmacologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso (UFMT), Cuiabá, Brazil; Curso de Farmácia, Faculdade Noroeste do Mato Grosso, Associação Juinense de Ensino Superior (AJES), Juína, Mato Grosso, Brazil
| | - Eduarda Pavan
- Área de Farmacologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso (UFMT), Cuiabá, Brazil
| | - Guilherme Vieira Botelho de Almeida
- Área de Farmacologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso (UFMT), Cuiabá, Brazil
| | - Ruberlei Godinho de Oliveira
- Área de Farmacologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso (UFMT), Cuiabá, Brazil
| | - Theodoro Wagner
- Programa de Pós-Graduação em Ciências Farmacêuticas e Núcleo de Investigações Químico-Farmacêuticas (NIQFAR), Universidade do Vale do Itajaí, Itajaí, Santa Catarina, Brazil
| | - Valdir Cechinel Filho
- Programa de Pós-Graduação em Ciências Farmacêuticas e Núcleo de Investigações Químico-Farmacêuticas (NIQFAR), Universidade do Vale do Itajaí, Itajaí, Santa Catarina, Brazil
| | | |
Collapse
|
49
|
Yang HJ, Kim MJ, Kwon DY, Kang ES, Kang S, Park S. Gastroprotective actions of Taraxacum coreanum Nakai water extracts in ethanol-induced rat models of acute and chronic gastritis. JOURNAL OF ETHNOPHARMACOLOGY 2017; 208:84-93. [PMID: 28687507 DOI: 10.1016/j.jep.2017.06.045] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 06/25/2017] [Accepted: 06/27/2017] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Taraxacum coreanum Nakai has been traditionally used for treating inflammatory diseases including gastrointestinal diseases. AIM OF THE STUDY We studied whether water extracts of Taraxacum coreanum Nakai (TCN) had a protective effect on acute and chronic gastritis induced by ethanol/HCl in an animal model of gastritis and its mechanism was also explored. MATERIALS AND METHODS In the acute study, rats were orally administered 0.15g/mL dextrin (normal-control), 0.15g/mL dextrin (control), 0.05g/mL TCN (TCN-L), 0.15g/mL TCN (TCN-H), or 0.01g/mL omeprazole (orally; positive-control), followed by oral administration of 1mL of 60% ethanol plus 150mM HCl (inducer). In the chronic study, rats were administered 10% diluted inducer in drinking water, and 0.6% dextrin, 0.2% or 0.6% TCN, and 0.05% omeprazole were administered in chow for 4 weeks. Acid content, gastric structure, oxidative stress, and markers of inflammation in the stomach tissue were measured at the end of experiment. RESULTS Acute and chronic ethanol/HCl administration caused the inner layer of the stomach to redden, hemorrhage, and edema in the control group; TCN-H reduced these symptoms more effectively than did the omeprazole positive-control. Acid production and total acidity in the stomach increased in the control group, which was markedly suppressed by omeprazole. TCN also reduced the acid production and acidity, but not to the same degree as omeprazole. H-E and PAS staining revealed that in the inner layer of the stomach, cellular structure was disrupted, with an increased nuclear size and thickness, disarrangement, and decreased mucin in the control group. TCN prevented the cellular disruption in the inner layer, and TCN-H was more effective than the positive-control. This was associated with oxidative stress and inflammation. TCN dose-dependently reduced the infiltration of mast cells and TNF-α expression in the inner layer of the stomach, and decreased lipid peroxides by increasing superoxide dismutase and glutathione peroxidase expression. CONCLUSIONS TCN-H acutely and chronically protected against gastritis and gastric ulcer by reducing oxidative stress and inflammation, not by completely suppressing gastric acid production.
Collapse
Affiliation(s)
- Hye Jeong Yang
- Food Functional Research Division, Korean Food Research Institutes, Sungnam, South Korea.
| | - Min Jung Kim
- Food Functional Research Division, Korean Food Research Institutes, Sungnam, South Korea.
| | - Dae Young Kwon
- Food Functional Research Division, Korean Food Research Institutes, Sungnam, South Korea.
| | - Eun Seon Kang
- Dept. of Food and Nutrition, Obesity/Diabetes Center, Hoseo University, Asan, South Korea.
| | - Suna Kang
- Dept. of Food and Nutrition, Obesity/Diabetes Center, Hoseo University, Asan, South Korea.
| | - Sunmin Park
- Dept. of Food and Nutrition, Obesity/Diabetes Center, Hoseo University, Asan, South Korea.
| |
Collapse
|
50
|
Caceres AI, Liu B, Jabba SV, Achanta S, Morris JB, Jordt SE. Transient Receptor Potential Cation Channel Subfamily M Member 8 channels mediate the anti-inflammatory effects of eucalyptol. Br J Pharmacol 2017; 174:867-879. [PMID: 28240768 DOI: 10.1111/bph.13760] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 02/11/2017] [Accepted: 02/16/2017] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Eucalyptol (1,8-cineol), the major ingredient in the essential oil of eucalyptus leaves and other medicinal plants, has long been known for its anti-inflammatory properties. Eucalyptol interacts with the TRP cation channels among other targets, but it is unclear which of these mediates its anti-inflammatory effects. EXPERIMENTAL APPROACH Effects of eucalyptol were compared in wild-type and TRPM8 channel-deficient mice in two different models: footpad inflammation elicited by complete Freund's adjuvant (CFA) and pulmonary inflammation following administration of LPS. Oedema formation, behavioural inflammatory pain responses, leukocyte infiltration, enzyme activities and cytokine and chemokine levels were measured. KEY RESULTS In the CFA model, eucalyptol strongly attenuated oedema and mechanical allodynia and reduced levels of inflammatory cytokines (IL-1β, TNF-α and IL-6), effects comparable with those of ibuprofen. In the LPS model of pulmonary inflammation, eucalyptol treatment diminished leukocyte infiltration, myeloperoxidase activity and production of TNF-α, IL-1β, IFN-γ and IL-6. Genetic deletion of TRPM8 channels abolished the anti-inflammatory effects of eucalyptol in both models. Eucalyptol was at least sixfold more potent on human, than on mouse TRPM8 channels. A metabolite of eucalyptol, 2-hydroxy-1,8-cineol, also activated human TRPM8 channels. CONCLUSION AND IMPLICATIONS Among the pharmacological targets of eucalyptol, TRPM8 channels were essential for its anti-inflammatory effects in mice. Human TRPM8 channels are more sensitive to eucalyptol than rodent TRPM8 channels explaining the higher potency of eucalyptol in humans. Metabolites of eucalyptol could contribute to its anti-inflammatory effects. The development of more potent and selective TRPM8 agonists may yield novel anti-inflammatory agents.
Collapse
Affiliation(s)
- Ana I Caceres
- Department of Anesthesiology, Duke University School of Medicine, Durham, NC, USA
| | - Boyi Liu
- Department of Anesthesiology, Duke University School of Medicine, Durham, NC, USA
- Department of Neurobiology and Acupuncture Research, The 3rd Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Sairam V Jabba
- Department of Anesthesiology, Duke University School of Medicine, Durham, NC, USA
| | | | - John B Morris
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT, USA
| | - Sven-Eric Jordt
- Department of Anesthesiology, Duke University School of Medicine, Durham, NC, USA
- Yale Tobacco Center of Regulatory Science (TCORS), Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|