1
|
McLean H, Mikaberidze A, Deakin G, Xu X, Papp-Rupar M. The interplay between scion genotype, root microbiome, and Neonectria ditissima apple canker. FEMS Microbiol Ecol 2025; 101:fiaf014. [PMID: 39848913 PMCID: PMC11878798 DOI: 10.1093/femsec/fiaf014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 01/10/2025] [Accepted: 01/22/2025] [Indexed: 01/25/2025] Open
Abstract
Severity of European apple canker caused by Neonectria ditissima can vary between locations and apple genotypes. We investigated how location, cold storage/planting season, and apple scion genotype affect root-associated microbial communities. Additionally, we investigated whether differences in abundance of specific taxa could be associated with canker lesion counts. Seven scion cultivars grafted onto M9 rootstocks were inoculated with N. ditissima in the nursery and then planted in December 2018 or stored at 2°C until planting in April 2019 at three sites in Kent, UK. We assessed canker lesions and collected root samples in June 2021. Quantitative polymerase chain reaction (qPCR) and internal transcribed spacer (ITS)/16S rRNA gene amplicon sequencing was used to analyse microbial communities. Site was the primary factor affecting microbiome size, diversity, and composition. Cold storage/planting season had small but significant effects, indicating that differences in the microbiome at planting can persist long-term. Scion genotype had a limited effect on diversity but did influence the abundance of specific root-associated taxa. Bacterial α-diversity was associated with canker count in a site-dependent manner. Increased abundances of particular fungal (Rhizophagus irregularis and Epicoccum nigrum) and bacterial (Amycolatopsis and Bradyrhizobium) root-associated taxa were associated with fewer cankers.
Collapse
Affiliation(s)
- Hamish McLean
- Niab, New Road, East Malling, Kent ME19 6BJ, United Kingdom
- School of Agriculture, Policy, and Development, University of Reading, Whiteknights, Reading RG6 6BZ, United Kingdom
| | - Alexey Mikaberidze
- School of Agriculture, Policy, and Development, University of Reading, Whiteknights, Reading RG6 6BZ, United Kingdom
| | - Greg Deakin
- Niab, New Road, East Malling, Kent ME19 6BJ, United Kingdom
| | - Xiangming Xu
- Niab, New Road, East Malling, Kent ME19 6BJ, United Kingdom
| | | |
Collapse
|
2
|
Zhao W, Huang K, Mumin R, Li J, Sun Y, Cui B. Spatial variations impact the soil fungal communities of Larix gmelinii forests in Northeast China. FRONTIERS IN PLANT SCIENCE 2024; 15:1408272. [PMID: 38855467 PMCID: PMC11157130 DOI: 10.3389/fpls.2024.1408272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 04/29/2024] [Indexed: 06/11/2024]
Abstract
Soil fungi play a critical role in the biogeochemical cycles of forest ecosystems. Larix gmelinii is a strong and important timber tree species, which forms close associations with a wide range of soil fungi. However, the temporal-spatial disparity effects on the assembly of soil fungal communities in L. gmelinii forests are poorly understood. To address these questions, a total of 120 samples, including 60 bulk soil and 60 root samples, were collected from Aershan and Genhe in July (summer) and October (autumn)2021. We obtained 7,788 operational taxonomic units (OTUs) after merging, filtering, and rarefying using high-throughput sequencing. The dominant phyla are Basidiomycota, Ascomycota, Mortierellomycota, and Mucoromycota. There were 13 dominant families, among which the families with average relative abundance more than 5% included Thelephoraceae, Mortierellaceae, Archaeorhizomycoaceae, and Inocybaceae. In the functional guilds, symbiotrophic fungi had a relative advantage in the identified functions, and the relative abundances of pathotrophic and saprotrophic fungi varied significantly between sites. There were 12 families differentially expressed across compartments, 10 families differentially expressed between seasons, and 69 families were differentially expressed between sites. The variation in alpha diversity in the bulk soil was greater than that in the rhizosphere soil. Among the three parts (compartment, season, and site), the site had a crucial effect on the beta diversity of the fungal community. Deterministic processes dominated fungal community assembly in Genhe, whereas stochastic processes dominated in Aershan. Soil physicochemical properties and climatic factors significantly affected fungal community structure, among which soil total nitrogen and pH had the greatest effect. This study highlights that spatial variations play a vital role in the structure and assembly of soil fungal communities in L. gmelinii forests, which is of great significance for us in maintaining the health of the forests.
Collapse
Affiliation(s)
| | | | | | | | - Yifei Sun
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Baokai Cui
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| |
Collapse
|
3
|
Gupta VVSR, Tiedje JM. Ranking environmental and edaphic attributes driving soil microbial community structure and activity with special attention to spatial and temporal scales. MLIFE 2024; 3:21-41. [PMID: 38827504 PMCID: PMC11139212 DOI: 10.1002/mlf2.12116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/05/2024] [Accepted: 02/05/2024] [Indexed: 06/04/2024]
Abstract
The incredibly complex soil microbial communities at small scales make their analysis and identification of reasons for the observed structures challenging. Microbial community structure is mainly a result of the inoculum (dispersal), the selective advantages of those organisms under the habitat-based environmental attributes, and the ability of those colonizers to sustain themselves over time. Since soil is protective, and its microbial inhabitants have long adapted to varied soil conditions, significant portions of the soil microbial community structure are likely stable. Hence, a substantial portion of the community will not correlate to often measured soil attributes. We suggest that the drivers be ranked on the basis of their importance to the fundamental needs of the microbes: (i) those that supply energy, i.e., organic carbon and electron acceptors; (ii) environmental effectors or stressors, i.e., pH, salt, drought, and toxic chemicals; (iii) macro-organism associations, i.e., plants and their seasonality, animals and their fecal matter, and soil fauna; and (iv) nutrients, in order, N, P, and probably of lesser importance, other micronutrients, and metals. The relevance of drivers also varies with spatial and time scales, for example, aggregate to field to regional, and persistent to dynamic populations to transcripts, and with the extent of phylogenetic difference, hence phenotypic differences in organismal groups. We present a summary matrix to provide guidance on which drivers are important for particular studies, with special emphasis on a wide range of spatial and temporal scales, and illustrate this with genomic and population (rRNA gene) data from selected studies.
Collapse
Affiliation(s)
| | - James M. Tiedje
- Centre for Microbial EcologyMichigan State UniversityEast LansingMichiganUSA
| |
Collapse
|
4
|
Leal Filho W, Weissenberger S, Luetz JM, Sierra J, Simon Rampasso I, Sharifi A, Anholon R, Eustachio JHPP, Kovaleva M. Towards a greater engagement of universities in addressing climate change challenges. Sci Rep 2023; 13:19030. [PMID: 37923772 PMCID: PMC10624841 DOI: 10.1038/s41598-023-45866-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 10/25/2023] [Indexed: 11/06/2023] Open
Abstract
Many higher education institutions around the world are engaged in efforts to tackle climate change. This takes place by not only reducing their own carbon footprint but also by educating future leaders and contributing valuable research and expertise to the global effort to combat climate change. However, there is a need for studies that identify the nature of their engagement on the topic, and the extent to which they are contributing towards addressing the many problems associated with climate change. Against this background, this paper describes a study that consisted of a review of the literature and the use of case studies, which outline the importance of university engagement in climate change and describe its main features. The study identified the fact that even though climate change is a matter of great relevance to universities, its coverage in university programmes is not as wide as one could expect. Based on the findings, the paper also lists the challenges associated with the inclusion of climate change in university programmes. Finally, it describes some of the measures which may be deployed in order to maximise the contribution of higher education towards handling the challenges associated with a changing climate.
Collapse
Affiliation(s)
- Walter Leal Filho
- Department of Natural Sciences, Manchester Metropolitan University, Chester Street, Manchester, M1 5GD, UK
- European School of Sustainability Science and Research, Hamburg University of Applied Sciences, Hamburg, Germany
| | | | - Johannes M Luetz
- Graduate Research School, Alphacrucis University College, Brisbane, QLD, Australia
- School of Law and Society, The University of the Sunshine Coast, Maroochydore, QLD, Australia
- School of Social Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Javier Sierra
- European School of Sustainability Science and Research, Hamburg University of Applied Sciences, Hamburg, Germany.
- Department of Applied Economics, Faculty of Law, Research Center On Global Governance, Educational Research Institute, University of Salamanca, Paseo Tomas y Valiente, Salamanca, Spain.
| | - Izabela Simon Rampasso
- Departamento de Ingeniería Industrial, Universidad Católica del Norte, Antofagasta, Chile
| | - Ayyoob Sharifi
- The IDEC Institute & Network for Education and Research on Peace and Sustainability (NERPS), Hiroshima University, 1-5-1 Kagamiyama, Higashi Hiroshima City, Hiroshima, Japan, 739-8529
- School of Architecture and Design, Lebanese American University, Beirut, Lebanon
| | - Rosley Anholon
- School of Mechanical Engineering, University of Campinas, Campinas, Brazil
| | | | - Marina Kovaleva
- European School of Sustainability Science and Research, Hamburg University of Applied Sciences, Hamburg, Germany
| |
Collapse
|
5
|
Chen W, Zhou H, Wu Y, Wang J, Zhao Z, Li Y, Qiao L, Chen K, Liu G, Ritsema C, Geissen V, Sha X. Effects of deterministic assembly of communities caused by global warming on coexistence patterns and ecosystem functions. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118912. [PMID: 37678020 DOI: 10.1016/j.jenvman.2023.118912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/22/2023] [Accepted: 08/27/2023] [Indexed: 09/09/2023]
Abstract
Seasonal rhythms in biological and ecological dynamics are fundamental in regulating the structuring of microbial communities. Evaluating the seasonal rhythms of microorganisms in response to climate change could provide information on their variability and stability over longer timescales (>20-year). However, information on temporal variability in microorganism responses to medium- and long-term global warming is limited. In this study, we aimed to elucidate the temporal dynamics of microbial communities in response to global warming; to this end, we integrated data on the maintenance of species diversity, community composition, temporal turnover rates (v), and community assembly process in two typical ecosystems (meadows and shrub habitat) on the Qinghai-Tibet Plateau. Our results showed that 21 years of global warming would increase the importance of the deterministic process for microorganisms in both ecosystems across all seasons (R2 of grassland (GL) control: 0.524, R2 of GL warming: 0.467; R2 of shrubland (SL) control: 0.556, R2 of SL warming: 0.543), reducing species diversity and altering community composition. Due to environmental filtration pressure from 21 years of warming, the low turnover rate (v of warming: -3.13/-2.00, v of control: -2.44/-1.48) of soil microorganisms reduces the resistance and resilience of ecological communities, which could lead to higher community similarity and more clustered taxonomic assemblages occurring across years. Changes to temperature might increase selection pressure on specialist taxa, which directly causes dominant species (v of warming: -1.63, v of control: -2.49) primarily comprising these taxa to be more strongly impacted by changing temperature than conditionally (v of warming: -1.47, v of control: -1.75) or always rare taxa (v of warming: -0.57, v of control: -1.33). Evaluation of the seasonal rhythms of microorganisms in response to global warming revealed that the variability and stability of different microbial communities in different habitats had dissimilar biological and ecological performances when challenged with an external disturbance. The balance of competition and cooperation, because of environmental selection, also influenced ecosystem function in complex terrestrial ecosystems. Overall, our study enriches the limited information on the temporal variability in microorganism responses to 21 years of global warming, and provides a scientific basis for evaluating the impact of climate warming on the temporal stability of soil ecosystems.
Collapse
Affiliation(s)
- Wenjing Chen
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, 712100, China; Moutai Institute, Renhuai, 564500, PR China
| | - Huakun Zhou
- Qinghai Provincial Key Laboratory of Restoration Ecology in Cold Regions, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810000, PR China; State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810000, PR China
| | - Yang Wu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, 712100, China
| | - Jie Wang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, 712100, China
| | - Ziwen Zhao
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, 712100, China
| | - Yuanze Li
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, 712100, China
| | - Leilei Qiao
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, 712100, PR China; University of Chinese Academy of Sciences, Beijing, China
| | - Kelu Chen
- Qinghai Provincial Key Laboratory of Restoration Ecology in Cold Regions, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810000, PR China; Moutai Institute, Renhuai, 564500, PR China
| | - Guobin Liu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, 712100, China; Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, 712100, PR China
| | - Coen Ritsema
- Wageningen University & Research, Soil Physics and Land Management, POB 47, NL-6700, AA Wageningen, Netherlands
| | - Violette Geissen
- Wageningen University & Research, Soil Physics and Land Management, POB 47, NL-6700, AA Wageningen, Netherlands
| | - Xue Sha
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, 712100, China; State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810000, PR China; Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, 712100, PR China.
| |
Collapse
|
6
|
Tarnowski MJ, Varliero G, Scown J, Phelps E, Gorochowski TE. Soil as a transdisciplinary research catalyst: from bioprospecting to biorespecting. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230963. [PMID: 38026022 PMCID: PMC10646459 DOI: 10.1098/rsos.230963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023]
Abstract
The vast microbial biodiversity of soils is beginning to be observed and understood by applying modern DNA sequencing techniques. However, ensuring this potentially valuable information is used in a fair and equitable way remains a challenge. Here, we present a public engagement project that explores this topic through collaborative research of soil microbiomes at six urban locations using nanopore-based DNA sequencing. The project brought together researchers from the disciplines of synthetic biology, environmental humanities and microbial ecology, as well as school students aged 14-16 years old, to gain a broader understanding of views on the use of data from the environment. Discussions led to the transformation of 'bioprospecting', a metaphor with extractive connotations which is often used to frame environmental DNA sequencing studies, towards a more collaborative approach-'biorespecting'. This shift in terminology acknowledges that genetic information contained in soil arises as a result of entire ecosystems, including the people involved in its creation. Therefore, any use of sequence information should be accountable to the ecosystems from which it arose. As knowledge can arise from ecosystems and communities, science and technology should acknowledge this link and reciprocate with care and benefit-sharing to help improve the wellbeing of future generations.
Collapse
Affiliation(s)
- Matthew J. Tarnowski
- School of Biological Science, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
- School of Biosciences, Geography and Physics, Swansea University, Swansea SA2 8PP, UK
| | - Gilda Varliero
- Rhizosphere Processes Group, Swiss Federal Research Institute WSL, 8903 Birmensdorf, Switzerland
| | - Jim Scown
- Humanities and Social Sciences, University of Exeter, Cornwall TR10 9FE, UK
| | - Emily Phelps
- School of Biological Science, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Thomas E. Gorochowski
- School of Biological Science, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
- BrisEngBio, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK
| |
Collapse
|
7
|
Lagunas B, Richards L, Sergaki C, Burgess J, Pardal AJ, Hussain RMF, Richmond BL, Baxter L, Roy P, Pakidi A, Stovold G, Vázquez S, Ott S, Schäfer P, Gifford ML. Rhizobial nitrogen fixation efficiency shapes endosphere bacterial communities and Medicago truncatula host growth. MICROBIOME 2023; 11:146. [PMID: 37394496 DOI: 10.1186/s40168-023-01592-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 06/05/2023] [Indexed: 07/04/2023]
Abstract
BACKGROUND Despite the knowledge that the soil-plant-microbiome nexus is shaped by interactions amongst its members, very little is known about how individual symbioses regulate this shaping. Even less is known about how the agriculturally important symbiosis of nitrogen-fixing rhizobia with legumes is impacted according to soil type, yet this knowledge is crucial if we are to harness or improve it. We asked how the plant, soil and microbiome are modulated by symbiosis between the model legume Medicago truncatula and different strains of Sinorhizobium meliloti or Sinorhizobium medicae whose nitrogen-fixing efficiency varies, in three distinct soil types that differ in nutrient fertility, to examine the role of the soil environment upon the plant-microbe interaction during nodulation. RESULTS The outcome of symbiosis results in installment of a potentially beneficial microbiome that leads to increased nutrient uptake that is not simply proportional to soil nutrient abundance. A number of soil edaphic factors including Zn and Mo, and not just the classical N/P/K nutrients, group with microbial community changes, and alterations in the microbiome can be seen across different soil fertility types. Root endosphere emerged as the plant microhabitat more affected by this rhizobial efficiency-driven community reshaping, manifested by the accumulation of members of the phylum Actinobacteria. The plant in turn plays an active role in regulating its root community, including sanctioning low nitrogen efficiency rhizobial strains, leading to nodule senescence in particular plant-soil-rhizobia strain combinations. CONCLUSIONS The microbiome-soil-rhizobial dynamic strongly influences plant nutrient uptake and growth, with the endosphere and rhizosphere shaped differentially according to plant-rhizobial interactions with strains that vary in nitrogen-fixing efficiency levels. These results open up the possibility to select inoculation partners best suited for plant, soil type and microbial community. Video Abstract.
Collapse
Affiliation(s)
- Beatriz Lagunas
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK.
| | - Luke Richards
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Chrysi Sergaki
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Jamie Burgess
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | | | - Rana M F Hussain
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | | | - Laura Baxter
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
- Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| | - Proyash Roy
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
- Department of Genetic Engineering & Biotechnology, University of Dhaka, Dhaka, Bangladesh
| | - Anastasia Pakidi
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Gina Stovold
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Saúl Vázquez
- University of Nottingham, Sutton Bonington Campus, Sutton Bonington, Nottingham, LE12 5RD, UK
| | - Sascha Ott
- Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| | - Patrick Schäfer
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK.
- Present Address: Institute of Phytopathology, Research Centre for BioSystems, Land Use and Nutrition, Justus Liebig University, Giessen, 35392, Germany.
| | - Miriam L Gifford
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK.
- Warwick Integrative Synthetic Biology Centre, University of Warwick, Coventry, CV47AL, UK.
| |
Collapse
|
8
|
Sannino C, Qi W, Rüthi J, Stierli B, Frey B. Distinct taxonomic and functional profiles of high Arctic and alpine permafrost-affected soil microbiomes. ENVIRONMENTAL MICROBIOME 2023; 18:54. [PMID: 37328770 PMCID: PMC10276392 DOI: 10.1186/s40793-023-00509-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 06/02/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Global warming is affecting all cold environments, including the European Alps and Arctic regions. Here, permafrost may be considered a unique ecosystem harboring a distinct microbiome. The frequent freeze-thaw cycles occurring in permafrost-affected soils, and mainly in the seasonally active top layers, modify microbial communities and consequently ecosystem processes. Although taxonomic responses of the microbiomes in permafrost-affected soils have been widely documented, studies about how the microbial genetic potential, especially pathways involved in C and N cycling, changes between active-layer soils and permafrost soils are rare. Here, we used shotgun metagenomics to analyze the microbial and functional diversity and the metabolic potential of permafrost-affected soil collected from an alpine site (Val Lavirun, Engadin area, Switzerland) and a High Arctic site (Station Nord, Villum Research Station, Greenland). The main goal was to discover the key genes abundant in the active-layer and permafrost soils, with the purpose to highlight the potential role of the functional genes found. RESULTS We observed differences between the alpine and High Arctic sites in alpha- and beta-diversity, and in EggNOG, CAZy, and NCyc datasets. In the High Arctic site, the metagenome in permafrost soil had an overrepresentation (relative to that in active-layer soil) of genes involved in lipid transport by fatty acid desaturate and ABC transporters, i.e. genes that are useful in preventing microorganisms from freezing by increasing membrane fluidity, and genes involved in cell defense mechanisms. The majority of CAZy and NCyc genes were overrepresented in permafrost soils relative to active-layer soils in both localities, with genes involved in the degradation of carbon substrates and in the degradation of N compounds indicating high microbial activity in permafrost in response to climate warming. CONCLUSIONS Our study on the functional characteristics of permafrost microbiomes underlines the remarkably high functional gene diversity of the High Arctic and temperate mountain permafrost, including a broad range of C- and N-cycling genes, and multiple survival and energetic metabolisms. Their metabolic versatility in using organic materials from ancient soils undergoing microbial degradation determine organic matter decomposition and greenhouse gas emissions upon permafrost thawing. Attention to their functional genes is therefore essential to predict potential soil-climate feedbacks to the future warmer climate.
Collapse
Affiliation(s)
- Ciro Sannino
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy
| | - Weihong Qi
- Functional Genomics Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics SIB, Geneva, Switzerland
| | - Joel Rüthi
- Rhizosphere Processes Group, Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland
| | - Beat Stierli
- Rhizosphere Processes Group, Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland
| | - Beat Frey
- Rhizosphere Processes Group, Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland.
| |
Collapse
|
9
|
Avila-Arias H, Scharf ME, Turco RF, Richmond DS. Soil Environments Influence Gut Prokaryotic Communities in the Larvae of the Invasive Japanese Beetle Popillia japonica Newman. Front Microbiol 2022; 13:854513. [PMID: 35572692 PMCID: PMC9094118 DOI: 10.3389/fmicb.2022.854513] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
Invasive scarab beetles, like the Japanese beetle Popillia japonica Newman (JB), spend most of their lives as larvae feeding in the soil matrix. Despite the potential importance of the larval gut microbial community in driving the behavior, physiology, and nutritional ecology of this invasive insect, the role of soil biological and physicochemical characteristics in shaping this community are relatively unknown. Our objectives were to (1) characterize the degree to which larval gut microbial communities are environmentally acquired, (2) examine the combined effects of the gut region (i.e., midgut, hindgut) and local soil environments on gut microbial communities, and (3) search for soil physicochemical correlates that could be useful in future studies aimed at characterizing gut microbial community variation in soil-dwelling scarabs. Gut communities from neonates that were never in contact with the soil were different from gut communities of third instar larvae collected from the field, with neonate gut communities being significantly less rich and diverse. The influence of compartment (soil, midgut, or hindgut) on prokaryotic α- and β-diversity varied with location, suggesting that JB larval gut communities are at least partially shaped by the local environment even though the influence of compartment was more pronounced. Midgut microbiota contained transient communities that varied with the surrounding soil environment whereas hindgut microbiota was more conserved. Prokaryotic communities in the hindgut clustered separately from those of soil and midgut, which displayed greater interspersion in ordination space. Soil cation exchange capacity, organic matter, water holding capacity, and texture were moderately correlated (≥29%) with gut prokaryotic microbial composition, especially within the midgut. Findings suggest that microbial communities associated with the JB gut are partially a function of adaptation to local soil environments. However, conditions within each gut compartment appear to shape those communities in transit through the alimentary canal.
Collapse
Affiliation(s)
- Helena Avila-Arias
- Soil Insect Ecology Laboratory, Department of Entomology, Purdue University, West Lafayette, IN, United States
| | - Michael E Scharf
- Entomology and Nematology Department, University of Florida, Gainesville, FL, United States
| | - Ronald F Turco
- Department of Agronomy, Purdue University, West Lafayette, IN, United States
| | - Douglas S Richmond
- Soil Insect Ecology Laboratory, Department of Entomology, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
10
|
Bacterial Communities in the Rhizosphere at Different Growth Stages of Maize Cultivated in Soil Under Conventional and Conservation Agricultural Practices. Microbiol Spectr 2022; 10:e0183421. [PMID: 35254138 PMCID: PMC9049951 DOI: 10.1128/spectrum.01834-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Farmers in Mexico till soil intensively, remove crop residues for fodder and grow maize often in monoculture. Conservation agriculture (CA), including minimal tillage, crop residue retention and crop diversification, is proposed as a more sustainable alternative. In this study, we determined the effect of agricultural practices and the developing maize rhizosphere on soil bacterial communities. Bulk and maize (Zea mays L.) rhizosphere soil under conventional practices (CP) and CA were sampled during the vegetative, flowering and grain filling stage, and 16S rRNA metabarcoding was used to assess bacterial diversity and community structure. The functional diversity was inferred from the bacterial taxa using PICRUSt. Conservation agriculture positively affected taxonomic and functional diversity compared to CP. The agricultural practice was the most important factor in defining the structure of bacterial communities, even more so than rhizosphere and plant growth stage. The rhizosphere enriched fast growing copiotrophic bacteria, such as Rhizobiales, Sphingomonadales, Xanthomonadales, and Burkholderiales, while in the bulk soil of CP other copiotrophs were enriched, e.g., Halomonas and Bacillus. The bacterial community in the maize bulk soil resembled each other more than in the rhizosphere of CA and CP. The bacterial community structure, and taxonomic and functional diversity in the maize rhizosphere changed with maize development and the differences between the bulk soil and the rhizosphere were more accentuated when the plant aged. Although agricultural practices did not alter the effect of the rhizosphere on the soil bacterial communities in the flowering and grain filling stage, they did in the vegetative stage. IMPORTANCE We studied the effect of sustainable conservation agricultural practices versus intensive conventional ones on the soil microbial diversity, potential functionality, and community assembly in rhizosphere of maize cultivated in a semiarid environment. We found that conservation agriculture practices increased the diversity of soil microbial species and functions and strongly affected how they were structured compared to conventional practices. Microbes affected by the roots of maize, the rhizobiome, were different and more diverse than in the surrounding soil and their diversity increased when the plant grew. The agricultural practices affected the maize rhizobiome only in the early stages of growth, but this might have an important impact on the development of maize plant.
Collapse
|
11
|
Yokota M, Guan Y, Fan Y, Zhang X, Yang W. Vertical and temporal variations of soil bacterial and archaeal communities in wheat-soybean rotation agroecosystem. PeerJ 2022; 10:e12868. [PMID: 35186471 PMCID: PMC8841036 DOI: 10.7717/peerj.12868] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 01/10/2022] [Indexed: 01/10/2023] Open
Abstract
Soil microbes are an essential component of terrestrial ecosystems and drive many biogeochemical processes throughout the soil profile. Prior field studies mainly focused on the vertical patterns of soil microbial communities, meaning their temporal dynamics have been largely neglected. In the present study, we investigated the vertical and temporal patterns of soil bacterial and archaeal communities in a wheat-soybean rotation agroecosystem at a depth of millions of sequences per sample. Our results revealed different vertical bacterial and archaeal richness patterns: bacterial richness was lowest in the deep soil layer and peaked in the surface or middle soil layer. In contrast, archaeal richness did not differ among soil layers. PERMANOVA analysis indicated that both bacterial and archaeal community compositions were significantly impacted by soil depth but unaffected by sampling time. Notably, the proportion of rare bacteria gradually decreased along with the soil profile. The rare bacterial community composition was the most important indicator for soil nutrient fertility index, as determined by random forest analysis. The soil prokaryotic co-occurrence networks of the surface and middle soil layers are more connected and harbored fewer negative links than that of the deep soil layer. Overall, our results highlighted soil depth as a more important determinant than temporal variation in shaping the soil prokaryotic community and interspecific interactions and revealed a potential role of rare taxa in soil biogeochemical function.
Collapse
Affiliation(s)
| | - Yupeng Guan
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yi Fan
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ximei Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wei Yang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
12
|
Li X, Wang S, Fan Y, Zhou Z, Xu S, Zhou P, Zhou J, Wang R. Peanut Rotation and Flooding Induce Rhizobacteriome Variation With Opposing Influences on the Growth and Medicinal Yield of Corydalis yanhusuo. FRONTIERS IN PLANT SCIENCE 2022; 12:779302. [PMID: 35069636 PMCID: PMC8782247 DOI: 10.3389/fpls.2021.779302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Corydalis yanhusuo, a precious herb of the Papaveraceae family, is widely used in multiple traditional Chinese medicines for the treatment of many painful conditions, and its medicinal part is the dried tuber. Yet how to improve this plant's medicinal yield as well as its economic efficiency remains a key problem in its cultivation. The planting of C. yanhusuo in rotation with peanut (Arachis hypogaea L.) aims to improve land utilization efficiency, but the total production of tubers is severely reduced relative to fields without rotation. However, an increased yield was observed in C. yanhusuo plants grown in previously flooded fields (HR field) compared to the ones grown in the fields that had been used to cultivate peanut (PL field) or in fields without rotation or flooding (N field). Based on these phenomena, in this study, we explored the potential factors responsible for the altered growth/yield of C. yanhusuo under different field conditions. Soil physicochemical properties and the diversity and community of rhizobacteriome of C. yanhusuo were both analyzed. By testing several soil physicochemical properties, we found that the cation exchange capacity (CEC), soil organic matter (SOM), total nitrogen (TN), and pH value differed significantly among these three types of fields. 16S rRNA amplicon sequencing revealed stark differences in the composition, diversity, and potential functions of the bacterial community in the rhizosphere of C. yanhusuo plants grown in field with the peanut rotation or flooding. Notably, the Acidobacteria were enriched in the HR field, while Actinobacteria were enriched in the PL field. More importantly, further analysis showed that changed soil physicochemical properties could be one reason for why the rhizospheric bacterial community has changed; hence, soil physicochemical properties might also be affecting plant performance indirectly by regulating the rhizospheric bacterial community. The RDA analysis distinguished CEC as the most important soil physicochemical property influencing the structure and composition of the C. yanhusuo rhizobacteriome. In summary, our results suggest peanut rotation- and flooding-induced soil physicochemical properties changes would further impact the rhizobacteriome of C. yanhusuo albeit differentially, culminating in opposite effects upon the plant growth and medicinal yield of C. yanhusuo.
Collapse
Affiliation(s)
- Xiaodan Li
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
- The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, China
| | - Songfeng Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
- The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, China
| | - Yating Fan
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
- The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, China
| | - Zhe Zhou
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
- The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, China
| | - Sheng Xu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
- The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, China
| | - Penglei Zhou
- Jiangsu Jiangtong Agricultural Science and Technology Development Co., Ltd., Huaian, China
| | - Jiayu Zhou
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
- The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, China
| | - Ren Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
- The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, China
| |
Collapse
|
13
|
Obanda V, Otieno VA, Kingori EM, Ndeereh D, Lwande OW, Chiyo PI. Identifying Edaphic Factors and Normalized Difference Vegetation Index Metrics Driving Wildlife Mortality From Anthrax in Kenya’s Wildlife Areas. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.643334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Anthrax, an acute disease of homeotherms caused by soil-borne Bacillus anthracis is implicated in dramatic declines in wildlife mainly in sub-Saharan Africa. Anthrax outbreaks are often localized in space and time. Therefore, understanding predictors of the spatial and temporal occurrence of anthrax in wildlife areas is useful in supporting early warning and improved response and targeting measures to reduce the impact of epizootic risk on populations. Spatial localization of anthrax is hypothesized to be driven by edaphic factors, while the temporal outbreaks are thought to be driven by extreme weather events including temperature, humidity, rainfall, and drought. Here, we test the role of select edaphic factors and normalized difference vegetation index (NDVI) metrics driven by vegetation structure and climate variability on the spatial and temporal patterns of wildlife mortality from anthrax in key wildlife areas in Kenya over a 20-year period, from 2000 to 2019. There was a positive association between the number of anthrax outbreaks and the total number of months anthrax was reported during the study period and the nitrogen and organic carbon content of the soil in each wildlife area. The monthly occurrence (timing) of anthrax in Lake Nakuru (with the most intense outbreaks) was positively related to the previous month’s spatial heterogeneity in NDVI and monthly NDVI deviation from 20-year monthly means. Generalized linear models revealed that the number of months anthrax was reported in a year (intensity) was positively related to spatial heterogeneity in NDVI, total organic carbon and cation exchange capacity of the soil. These results, examined in the light of experimental studies on anthrax persistence and amplification in the soil enlighten on mechanisms by which these factors are driving anthrax outbreaks and spatial localization.
Collapse
|
14
|
Qin C, Bartelme R, Chung YA, Fairbanks D, Lin Y, Liptzin D, Muscarella C, Naithani K, Peay K, Pellitier P, St. Rose A, Stanish L, Werbin Z, Zhu K. From DNA sequences to microbial ecology: Wrangling NEON soil microbe data with the
neonMicrobe
R package. Ecosphere 2021. [DOI: 10.1002/ecs2.3842] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Clara Qin
- Department of Environmental Studies University of California Santa Cruz Santa Cruz California USA
| | - Ryan Bartelme
- BIO5 Institute University of Arizona Tucson Arizona USA
- CyVerse.org Tucson Arizona USA
| | - Y. Anny Chung
- Department of Plant Biology and Department of Plant Pathology University of Georgia Athens Georgia USA
| | - Dawson Fairbanks
- Department of Environmental Science University of Arizona Tucson Arizona USA
| | - Yang Lin
- Department of Soil and Water Sciences University of Florida Gainesville Florida USA
| | | | - Chance Muscarella
- Department of Environmental Science University of Arizona Tucson Arizona USA
| | - Kusum Naithani
- Department of Biological Sciences University of Arkansas Fayetteville Fayetteville Arkansas USA
| | - Kabir Peay
- Department of Biology Stanford University Stanford California USA
| | - Peter Pellitier
- Department of Biology Stanford University Stanford California USA
| | - Ayanna St. Rose
- Department of Biological Sciences University of Arkansas Fayetteville Fayetteville Arkansas USA
| | - Lee Stanish
- Institute of Arctic and Alpine Research University of Colorado Boulder USA
| | - Zoey Werbin
- Department of Biology Boston University Boston Massachusetts USA
| | - Kai Zhu
- Department of Environmental Studies University of California Santa Cruz Santa Cruz California USA
| |
Collapse
|
15
|
Soil microbiota and microarthropod communities in oil contaminated sites in the European Subarctic. Sci Rep 2021; 11:19620. [PMID: 34608182 PMCID: PMC8490368 DOI: 10.1038/s41598-021-98680-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 09/01/2021] [Indexed: 02/08/2023] Open
Abstract
The present comprehensive study aimed to estimate the aftermath of oil contamination and the efficacy of removing the upper level of polluted soil under the conditions of the extreme northern taiga of northeastern European Russia. Soil samples from three sites were studied. Two sites were contaminated with the contents of a nearby sludge collector five years prior to sampling. The highly contaminated upper soil level was removed from one of them. The other was left for self-restoration. A chemical analysis of the soils was conducted, and changes in the composition of the soil zoocoenosis and bacterial and fungal microbiota were investigated. At both contaminated sites, a decrease in the abundance and taxonomic diversity of indicator groups of soil fauna, oribatid mites and collembolans compared to the background site were found. The pioneer eurytopic species Oppiella nova, Proisotoma minima and Xenyllodes armatus formed the basis of the microarthropod populations in the contaminated soil. A complete change in the composition of dominant taxonomic units was observed in the microbiota, both the bacterial and fungal communities. There was an increase in the proportion of representatives of Proteobacteria and Actinobacteria in polluted soils compared to the background community. Hydrocarbon-degrading bacteria-Alcanivorax, Rhodanobacter ginsengisoli, Acidobacterium capsulatum, and Acidocella-and fungi-Amorphotheca resinae abundances greatly increased in oil-contaminated soil. Moreover, among both bacteria and fungi, a sharp increase in the abundance of uncultivated organisms that deserve additional attention as potential oil degraders or organisms with a high resistance to oil contamination were observed. The removal of the upper soil level was partly effective in terms of decreasing the oil product concentration (from approximately 21 to 2.6 g/kg of soil) and preventing a decrease in taxonomic richness but did not prevent alterations in the composition of the microbiota or zoocoenosis.
Collapse
|
16
|
Fu R, Cheng R, Wang S, Li J, Zhang J. Succinoglycan Riclin reshaped the soil microbiota by accumulating plant probiotic species to improve the soil suppressiveness on Fusarium wilt of cucumber seedlings. Int J Biol Macromol 2021; 182:1883-1892. [PMID: 34062161 DOI: 10.1016/j.ijbiomac.2021.05.180] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/14/2021] [Accepted: 05/26/2021] [Indexed: 11/26/2022]
Abstract
Biocontrol of soil-borne pathogens by recruiting soil microbiota brings forth benefits to soil quality and plant production while lowers environmental impact. Succinoglycan possesses various biological activities, but its role in soil amendment is still elusive. The succinoglycan Riclin was investigated in this study as a polysaccharide-type biocontrol agent for improving the soil suppressiveness on a typical fungal pathogen Fusarium oxysporum f. sp. cucumerinum (FOC). Results demonstrated that addition of Riclin increased the soil microbial carbon and lowered the species richness of soil fungal communities. After addition of 2.5 mg/g Riclin for 90 days, the relative abundance of Actinobacteria and Firmicutes were increased by 76.6% and 193.4%, compared with the control. Meanwhile, Proteobacteria and Ascomycota were decreased by 25.9% and 30.4%. The relative abundance of beneficial genera, namely Nocardioides, Kribbella, Streptomyces, Gaiella, Marmoricola, Bacillus, and Rhizobium, became 1.13, 5.17, 0.87, 0.45, 3.57, 4.53, and 6.30 folds higher than the control, respectively. Antagonism towards soil-borne pathogens was probably enhanced as both hydrolase activity and biosynthesis of bioactive secondary compounds were improved. Importantly, Riclin-treated soil significantly reduced the incidence of Fusarium wilt of cucumber seedlings by suppression of FOC. In conclusion, addition of Riclin was conducive to the improvement of soil suppressiveness.
Collapse
Affiliation(s)
- Renjie Fu
- Center for Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing 210094, China
| | - Rui Cheng
- Center for Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing 210094, China
| | - Shiming Wang
- Center for Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing 210094, China
| | - Jing Li
- Center for Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing 210094, China.
| | - Jianfa Zhang
- Center for Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing 210094, China
| |
Collapse
|
17
|
Thomas-Barry G, St Martin CCG, Lynch MDJ, Ramsubhag A, Rouse-Miller J, Charles TC. Driving factors influencing the rhizobacteriome community structure of plants adapted to multiple climatic stressors in edaphic savannas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 769:145214. [PMID: 33493909 DOI: 10.1016/j.scitotenv.2021.145214] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 01/10/2021] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
The natural variation of multiple abiotic stresses in hyper-seasonal edaphic savanna provides a unique opportunity to study the rhizobacteriome community structure of plants adapted to climate change-like conditions in the humid tropics. In this study, we evaluated changes in soil, plant and rhizobacteriome community structure parameters across seasons (wet and dry) in two edaphic savannas (SV-1 and SV-5) using four dominant plant species. We then examined relationships between rhizobacteriome community structure and soil properties, plant biomass, and conventional and novel root traits. We further hypothesized that plants adapted to the Aripo Savanna had a core rhizobacteriome, which was specific to plant species and related to root foraging traits. Our results showed that cation exchange capacity (CEC) and the concentration of micronutrients (Fe, Cu and B) were the only soil factors that differed across savanna and season, respectively. Plant biomass traits were generally higher in the dry season, with a higher allocation to root growth in SV-5. Root traits were more plastic in SV-5, and network length-distribution was the only root trait which showed a consistent pattern of lower values in the dry season for three of the dominant plant species. Rhizobacterial community compositions were dominated by Proteobacteria and Acidobacteria, as well as WPS-2, which is dominant in extreme environments. We identified a shared core rhizobacteriome across plant species and savannas. Cation exchange capacity was a major driver of rhizobacterial community assemblies across savannas. Savanna-specific drivers of rhizobacterial community assemblies included CEC and Fe for SV-1, and CEC, TDS, NH4+, NO3-, Mn, K, and network length-distribution for SV-5. Plant factors on the microbiome were minimal, and host selectivity was mediated by the seasonal changes. We conclude that edaphoclimatic factors (soil and season) are the key determinants influencing rhizobacteriome community structure in multiple stressed-environments, which are ecologically similar to the Aripo Savanna.
Collapse
Affiliation(s)
- Gem Thomas-Barry
- Faculty of Science and Technology, The University of the West Indies at St. Augustine, Trinidad and Tobago.
| | | | - Michael D J Lynch
- Department of Biology, University of Waterloo, University Avenue West, Waterloo, ON N2L 3G1, Canada; Metagenom Bio Life Science Inc, Waterloo, ON N2L 5V4, Canada
| | - Adesh Ramsubhag
- Faculty of Science and Technology, The University of the West Indies at St. Augustine, Trinidad and Tobago
| | - Judy Rouse-Miller
- Faculty of Science and Technology, The University of the West Indies at St. Augustine, Trinidad and Tobago
| | - Trevor C Charles
- Department of Biology, University of Waterloo, University Avenue West, Waterloo, ON N2L 3G1, Canada; Metagenom Bio Life Science Inc, Waterloo, ON N2L 5V4, Canada
| |
Collapse
|
18
|
Baruch Z, Liddicoat C, Cando-Dumancela C, Laws M, Morelli H, Weinstein P, Young JM, Breed MF. Increased plant species richness associates with greater soil bacterial diversity in urban green spaces. ENVIRONMENTAL RESEARCH 2021; 196:110425. [PMID: 33157108 DOI: 10.1016/j.envres.2020.110425] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/29/2020] [Accepted: 10/31/2020] [Indexed: 06/11/2023]
Abstract
The vegetation and soil microbiome within urban green spaces is increasingly managed to help conserve biodiversity and improve human health concurrently. However, the effects of green space management on urban soil ecosystems is poorly understood, despite their importance. Across 40 urban green spaces in metropolitan Adelaide, South Australia, we show that soil bacterial communities are strongly affected by urban green space type (incl. sport fields, community gardens, parklands and revegetated areas), and that plant species richness is positively associated with soil bacterial diversity. Importantly, these microbiome trends were not affected by geographic proximity of sample sites. Our results provide early evidence that urban green space management can have predictable effects on the soil microbiome, at least from a diversity perspective, which could prove important to inform policy development if urban green spaces are to be managed to optimise population health benefits.
Collapse
Affiliation(s)
- Zdravko Baruch
- School of Biological Sciences, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Craig Liddicoat
- School of Public Health, University of Adelaide, Adelaide, SA, 5005, Australia; College of Science and Engineering, Flinders University, Adelaide, SA, 5042 Australia
| | | | - Mark Laws
- School of Biological Sciences, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Hamish Morelli
- School of Biological Sciences, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Philip Weinstein
- School of Biological Sciences, University of Adelaide, Adelaide, SA, 5005, Australia; School of Public Health, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Jennifer M Young
- College of Science and Engineering, Flinders University, Adelaide, SA, 5042 Australia
| | - Martin F Breed
- College of Science and Engineering, Flinders University, Adelaide, SA, 5042 Australia.
| |
Collapse
|
19
|
Roscioli JR, Meredith LK, Shorter JH, Gil-Loaiza J, Volkmann THM. Soil gas probes for monitoring trace gas messengers of microbial activity. Sci Rep 2021; 11:8327. [PMID: 33859224 PMCID: PMC8050213 DOI: 10.1038/s41598-021-86930-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/15/2021] [Indexed: 02/02/2023] Open
Abstract
Soil microbes vigorously produce and consume gases that reflect active soil biogeochemical processes. Soil gas measurements are therefore a powerful tool to monitor microbial activity. Yet, the majority of soil gases lack non-disruptive subsurface measurement methods at spatiotemporal scales relevant to microbial processes and soil structure. To address this need, we developed a soil gas sampling system that uses novel diffusive soil probes and sample transfer approaches for high-resolution sampling from discrete subsurface regions. Probe sampling requires transferring soil gas samples to above-ground gas analyzers where concentrations and isotopologues are measured. Obtaining representative soil gas samples has historically required balancing disruption to soil gas composition with measurement frequency and analyzer volume demand. These considerations have limited attempts to quantify trace gas spatial concentration gradients and heterogeneity at scales relevant to the soil microbiome. Here, we describe our new flexible diffusive probe sampling system integrated with a modified, reduced volume trace gas analyzer and demonstrate its application for subsurface monitoring of biogeochemical cycling of nitrous oxide (N2O) and its site-specific isotopologues, methane, carbon dioxide, and nitric oxide in controlled soil columns. The sampling system observed reproducible responses of soil gas concentrations to manipulations of soil nutrients and redox state, providing a new window into the microbial response to these key environmental forcings. Using site-specific N2O isotopologues as indicators of microbial processes, we constrain the dynamics of in situ microbial activity. Unlocking trace gas messengers of microbial activity will complement -omics approaches, challenge subsurface models, and improve understanding of soil heterogeneity to disentangle interactive processes in the subsurface biome.
Collapse
Affiliation(s)
- Joseph R. Roscioli
- grid.276808.30000 0000 8659 5172Aerodyne Research, Inc., Billerica, MA 01821 USA
| | - Laura K. Meredith
- grid.134563.60000 0001 2168 186XSchool of Natural Resources and the Environment, University of Arizona, Tucson, AZ 85721 USA ,grid.134563.60000 0001 2168 186XUniversity of Arizona, Biosphere 2, Oracle, AZ 85623 USA
| | - Joanne H. Shorter
- grid.276808.30000 0000 8659 5172Aerodyne Research, Inc., Billerica, MA 01821 USA
| | - Juliana Gil-Loaiza
- grid.134563.60000 0001 2168 186XSchool of Natural Resources and the Environment, University of Arizona, Tucson, AZ 85721 USA
| | - Till H. M. Volkmann
- grid.134563.60000 0001 2168 186XUniversity of Arizona, Biosphere 2, Oracle, AZ 85623 USA ,grid.435925.c0000 0001 2289 0372Applied Intelligence, Accenture, Kronberg Im Taunus, 61476 Hesse, Germany
| |
Collapse
|
20
|
Distribution patterns of Acidobacteriota in different fynbos soils. PLoS One 2021; 16:e0248913. [PMID: 33750980 PMCID: PMC7984625 DOI: 10.1371/journal.pone.0248913] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/09/2021] [Indexed: 11/28/2022] Open
Abstract
The Acidobacteriota is ubiquitous and is considered as one of the major bacterial phyla in soils. The current taxonomic classifications of this phylum are divided into 15 class-level subdivisions (SDs), with only 5 of these SDs containing cultured and fully described species. Within the fynbos biome, the Acidobacteriota has been reported as one of the dominant bacterial phyla, with relative abundances ranging between 4–26%. However, none of these studies reported on the specific distribution and diversity of the Acidobacteriota within these soils. Therefore, in this study we aimed to first determine the relative abundance and diversity of the Acidobacteriota in three pristine fynbos nature reserve soils, and secondly, whether differences in the acidobacterial composition can be attributed to environmental factors, such as soil abiotic properties. A total of 27 soil samples were collected at three nature reserves, namely Jonkershoek, Hottentots Holland, and Kogelberg. The variable V4-V5 region of the 16S rRNA gene was sequenced using the Ion Torrent S5 platform. The mean relative abundance of the Acidobacteriota were 9.02% for Jonkershoek, 14.91% for Kogelberg, and most significantly (p<0.05), 18.42% for Hottentots Holland. A total of 33 acidobacterial operational taxonomic units (OTUs) were identified. The dominant subdivisions identified in all samples included SDs 1, 2, and 3. Significant differences were observed in the distribution and composition of these OTUs between nature reserves. The SD1 were negatively correlated to soil pH, hydrogen (H+), potassium (K+) and carbon (C). In contrast, SD2, was positively correlated to soil pH, phosphorus (P), and K+, and unclassified members of SD3 was positively correlated to H+, K, and C. This study is the first to report on the specific acidobacterial distribution in pristine fynbos soils in South Africa.
Collapse
|
21
|
Abstract
Bacterial community composition is largely influenced by environmental factors, and this applies to the Arctic region. However, little is known about the role of spatial factors in structuring such communities. In this study, we evaluated the influence of spatial scale on bacterial community structure across an Arctic landscape. Our results showed that spatial factors accounted for approximately 10% of the variation at the landscape scale, equivalent to observations across the whole Arctic region, suggesting that while the role and magnitude of other processes involved in community structure may vary, the role of dispersal may be stable globally in the region. We assessed dispersal limitation by identifying the spatial autocorrelation distance, standing at approximately 60 m, which would be required in order to obtain fully independent samples and may inform future sampling strategies in the region. Finally, indicator taxa with strong statistical correlations with environment variables were identified. However, we showed that these strong taxa-environment associations may not always be reflected in the geographical distribution of these taxa.IMPORTANCE The significance of this study is threefold. It investigated the influence of spatial scale on the soil bacterial community composition across a typical Arctic landscape and demonstrated that conclusions reached when examining the influence of specific environmental variables on bacterial community composition are dependent upon the spatial scales over which they are investigated. This study identified a dispersal limitation (spatial autocorrelation) distance of approximately 60 m, required to obtain samples with fully independent bacterial communities, and therefore, should serve to inform future sampling strategies in the region and potentially elsewhere. The work also showed that strong taxa-environment statistical associations may not be reflected in the observed landscape distribution of the indicator taxa.
Collapse
|
22
|
Stewart JD, Ontai A, Yusoof K, Ramirez KS, Bilinski T. Functional redundancy in local spatial scale microbial communities suggests stochastic processes at an urban wilderness preserve in Austin, TX, USA. FEMS Microbiol Lett 2021; 368:6122587. [PMID: 33507263 DOI: 10.1093/femsle/fnab010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 01/25/2021] [Indexed: 12/26/2022] Open
Abstract
Empirical evidence supports selection of soil microbial communities by edaphic properties across large spatial scales; however, less is known at smaller spatial scales. The goal of this research was to evaluate relationships between ecosystem characteristics and bacterial community structure/function at broad taxonomic resolutions in soils across small spatial scales. We employed 16S rRNA gene sequencing, community-level physiological profiling and soil chemical analysis to address this goal. We found weak relationships between gradients in soil characteristics and community structure/function. Specific operational taxonomic units did not respond to edaphic variation, but Acidobacteria, Bacteroidetes and Nitrospirae shifted their relative abundances. High metabolic diversity within the bacterial communities was observed despite general preference of Tween 40/80. Carbon metabolism patterns suggest dominance of functional specialists at our times of measurement. Pairwise comparison of carbon metabolism patterns indicates high levels of functional redundancy. Lastly, at broad taxonomic scales, community structure and function weakly covary with edaphic properties. This evidence suggests that stochasticity or unmeasured environmental gradients may be influential in bacterial community assembly in soils at small spatial scales.
Collapse
Affiliation(s)
- Justin D Stewart
- Department of Ecological Science, Faculty of Earth and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
- Department of Biology, St Edward's University, 3001 S Congress Ave, Austin, TX 78704, Austin, TX, USA
| | - Amy Ontai
- Department of Biology, St Edward's University, 3001 S Congress Ave, Austin, TX 78704, Austin, TX, USA
- Department of Microbial Pathogenesis and Microbial Sciences Institute, Yale University School of Medicine, 06520, New Haven, CT, USA
| | - Kizil Yusoof
- Department of Biology, St Edward's University, 3001 S Congress Ave, Austin, TX 78704, Austin, TX, USA
- Department of Microbiology, Immunology, and Molecular Genetics, University of Texas Health Science Center, 78249, San Antonio, TX, USA
| | - Kelly S Ramirez
- Department of Biological Sciences, The University of Texas at El Paso, 79968, El Paso, TX, USA
| | - Teresa Bilinski
- Department of Biology, St Edward's University, 3001 S Congress Ave, Austin, TX 78704, Austin, TX, USA
- Department of Ecology and Evolutionary Biology, University of Colorado, 80309, Boulder, CO, USA
| |
Collapse
|
23
|
Adkins J, Docherty KM, Gutknecht JLM, Miesel JR. How do soil microbial communities respond to fire in the intermediate term? Investigating direct and indirect effects associated with fire occurrence and burn severity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 745:140957. [PMID: 32736103 DOI: 10.1016/j.scitotenv.2020.140957] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/11/2020] [Accepted: 07/11/2020] [Indexed: 06/11/2023]
Abstract
Fires transform soil microbial communities directly via heat-induced mortality and indirectly by altering plant and soil characteristics. Emerging evidence suggests the magnitude of changes to some plant and soil properties increases with burn severity, but the persistence of changes varies among plant and soil characteristics, ranging from months to years post-fire. Thus, which environmental attributes shape microbial communities at intermediate time points during ecosystem recovery, and how these characteristics vary with severity, remains poorly understood. We identified the network of properties that influence microbial communities three years after fire, along a burn severity gradient in Sierra Nevada mixed-conifer forest. We used phospholipid fatty acid (PLFA) analysis and bacterial 16S-rDNA amplicon sequencing to characterize the microbial community in mineral soil. Using structural equation modelling, we applied a systems approach to identifying the interconnected relationships among severity, vegetation, soil, and microbial communities. Dead tree basal area, soil pH, and extractable phosphorus increased with severity, whereas live tree basal area, forest floor mass, and the proportion of the ≥53 μm soil fraction decreased. Forest floor loss was associated with decreased soil moisture across the severity gradient, decreased live tree basal area was associated with increased shrub coverage, and increased dead tree basal area was associated with increases in total and inorganic soil nitrogen. Soil fungal abundance decreased across the severity gradient, despite a slightly positive response of fungi to lower soil moisture in high severity areas. Bacterial phylogenetic diversity was negatively related to severity and was driven by differences in nutrients and soil texture. The abundance of Bacteroidetes increased and the abundance of Acidobacteria decreased across the severity gradient due to differences in soil pH. Overall, we found that the effects of burn severity on vegetation and soil physicochemical characteristics interact to shape microbial communities at an intermediate time point in ecosystem recovery.
Collapse
Affiliation(s)
- Jaron Adkins
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA.
| | - Kathryn M Docherty
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, USA
| | - Jessica L M Gutknecht
- Department of Soil, Water, and Climate, University of Minnesota, Twin Cities St. Paul, MN, USA
| | - Jessica R Miesel
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
24
|
Hermans SM, Buckley HL, Curran-Cournane F, Taylor M, Lear G. Temporal variation in soil bacterial communities can be confounded with spatial variation. FEMS Microbiol Ecol 2020; 96:5909033. [PMID: 32949457 DOI: 10.1093/femsec/fiaa192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/17/2020] [Indexed: 11/12/2022] Open
Abstract
Investigating temporal variation in soil bacterial communities advances our fundamental understanding of the causal processes driving biological variation, and how the composition of these important ecosystem members may change into the future. Despite this, temporal variation in soil bacteria remains understudied, and the effects of spatial heterogeneity in bacterial communities on the detection of temporal changes is largely unknown. Using 16S rRNA gene amplicon sequencing, we evaluated temporal patterns in soil bacterial communities from indigenous forest and human-impacted sites sampled repeatedly over a 5-year period. Temporal variation appeared to be greater when fewer spatial samples per site were analysed, as well as in human-impacted compared to indigenous sites (P < 0.01 for both). The biggest portion of variation in bacterial community richness and composition was explained by soil physicochemical variables (13-24%) rather than spatial distance or sampling time (<1%). These results highlight the importance of adequate spatiotemporal replication when sampling soil communities for environmental monitoring, and the importance of conducting temporal research across a wide variety of land uses. This will ensure we have a true understanding of how bacterial communities change over space and time; the work presented here provides important considerations for how such research should be designed.
Collapse
Affiliation(s)
- Syrie M Hermans
- School of Biological Sciences, University of Auckland, 3A Symonds Street, Auckland 1010, New Zealand
| | - Hannah L Buckley
- School of Science, Auckland University of Technology, 34 St Paul Street, Auckland 1010, New Zealand
| | - Fiona Curran-Cournane
- Ministry for the Environment-Manatū Mō Te Taiao, 45 Queen Street, Auckland 1010, New Zealand
| | - Matthew Taylor
- Waikato Regional Council, 401 Grey Street, Hamilton 3216, New Zealand
| | - Gavin Lear
- School of Biological Sciences, University of Auckland, 3A Symonds Street, Auckland 1010, New Zealand
| |
Collapse
|
25
|
Yu J, Pavia MJ, Deem LM, Crow SE, Deenik JL, Penton CR. DNA-Stable Isotope Probing Shotgun Metagenomics Reveals the Resilience of Active Microbial Communities to Biochar Amendment in Oxisol Soil. Front Microbiol 2020; 11:587972. [PMID: 33329461 PMCID: PMC7717982 DOI: 10.3389/fmicb.2020.587972] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/08/2020] [Indexed: 12/03/2022] Open
Abstract
The functions and interactions of individual microbial populations and their genes in agricultural soils amended with biochar remain elusive but are crucial for a deeper understanding of nutrient cycling and carbon (C) sequestration. In this study, we coupled DNA stable isotope probing (SIP) with shotgun metagenomics in order to target the active community in microcosms which contained soil collected from biochar-amended and control plots under napiergrass cultivation. Our analyses revealed that the active community was composed of high-abundant and low-abundant populations, including Actinobacteria, Proteobacteria, Gemmatimonadetes, and Acidobacteria. Although biochar did not significantly shift the active taxonomic and functional communities, we found that the narG (nitrate reductase) gene was significantly more abundant in the control metagenomes. Interestingly, putative denitrifier genomes generally encoded one gene or a partial denitrification pathway, suggesting denitrification is typically carried out by an assembly of different populations within this Oxisol soil. Altogether, these findings indicate that the impact of biochar on the active soil microbial community are transient in nature. As such, the addition of biochar to soils appears to be a promising strategy for the long-term C sequestration in agricultural soils, does not impart lasting effects on the microbial functional community, and thus mitigates un-intended microbial community shifts that may lead to fertilizer loss through increased N cycling.
Collapse
Affiliation(s)
- Julian Yu
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
- Center for Fundamental and Applied Microbiomics, The Biodesign Institute, Arizona State University, Tempe, AZ, United States
| | - Michael J. Pavia
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
- Center for Fundamental and Applied Microbiomics, The Biodesign Institute, Arizona State University, Tempe, AZ, United States
- Swette Center for Environmental Biotechnology, The Biodesign Institute, Arizona State University, Tempe, AZ, United States
| | - Lauren M. Deem
- Natural Resources and Environmental Management, University of Hawai‘i at Mânoa, Honolulu, HI, United States
| | - Susan E. Crow
- Natural Resources and Environmental Management, University of Hawai‘i at Mânoa, Honolulu, HI, United States
| | - Jonathan L. Deenik
- Tropical Plant and Soil Sciences, University of Hawai‘i at Mânoa, Honolulu, HI, United States
| | - Christopher Ryan Penton
- Center for Fundamental and Applied Microbiomics, The Biodesign Institute, Arizona State University, Tempe, AZ, United States
- College of Integrative Sciences and Arts, Arizona State University, Mesa, AZ, United States
| |
Collapse
|
26
|
Abstract
Microbiome research projects are often interdisciplinary, involving fields such as microbiology, genetics, ecology, evolution, bioinformatics, and statistics. These research projects can be an excellent fit for undergraduate courses ranging from introductory biology labs to upper-level capstone courses. Microbiome research projects can attract the interest of students majoring in health and medical sciences, environmental sciences, and agriculture, and there are meaningful ties to real-world issues relating to human health, climate change, and environmental sustainability and resilience in pristine, fragile ecosystems to bustling urban centers. In this review, we will discuss the potential of microbiome research integrated into classes using a number of different modalities. Our experience scaling-up and implementing microbiome projects at a range of institutions across the US has provided us with insight and strategies for what works well and how to diminish common hurdles that are encountered when implementing undergraduate microbiome research projects. We will discuss how course-based microbiome research can be leveraged to help faculty make advances in their own research and professional development and the resources that are available to support faculty interested in integrating microbiome research into their courses.
Collapse
Affiliation(s)
- Theodore R Muth
- Department of Biology, Brooklyn College of The City University of New York, Brooklyn, NY, United States.,Molecular, Cellular, and Developmental Biology Department at The Graduate Center of The City University of New York, New York, NY, United States
| | - Avrom J Caplan
- Department of Biology, Dyson College of Arts and Sciences, Pace University, New York, NY, United States
| |
Collapse
|
27
|
Baruch Z, Liddicoat C, Laws M, Kiri Marker L, Morelli H, Yan D, Young JM, Breed MF. Characterising the soil fungal microbiome in metropolitan green spaces across a vegetation biodiversity gradient. FUNGAL ECOL 2020. [DOI: 10.1016/j.funeco.2020.100939] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
28
|
Kirubakaran R, ArulJothi KN, Revathi S, Shameem N, Parray JA. Emerging priorities for microbial metagenome research. BIORESOURCE TECHNOLOGY REPORTS 2020; 11:100485. [PMID: 32835181 PMCID: PMC7319936 DOI: 10.1016/j.biteb.2020.100485] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 12/20/2022]
Abstract
Overwhelming anthropogenic activities lead to deterioration of natural resources and the environment. The microorganisms are considered desirable, due to their suitability for easy genetic manipulation and handling. With the aid of modern biotechnological techniques, the culturable microorganisms have been widely exploited for the benefit of mankind. Metagenomics, a powerful tool to access the abundant biodiversity of the environmental samples including the unculturable microbes, to determine microbial diversity and population structure, their ecological roles and expose novel genes of interest. This review focuses on the microbial adaptations to the adverse environmental conditions, metagenomic techniques employed towards microbial biotechnology. Metagenomic approach helps to understand microbial ecology and to identify useful microbial derivatives like antibiotics, toxins, and enzymes with diverse and enhanced function. It also summarizes the application of metagenomics in clinical diagnosis, improving microbial ecology, therapeutics, xenobiotic degradation and impact on agricultural crops.
Collapse
Affiliation(s)
| | - K N ArulJothi
- Department of Genetic Engineering, SRM Institute of Science and Technology, Chennai, India
- Department of Human Biology, University of Cape Town, Cape Town, South Africa
| | | | - Nowsheen Shameem
- Department of Environmental Science, Cluster University Srinagar, J&K, India
| | - Javid A Parray
- Department of Environmental Science, Govt SAM Degree College Budgam, J&K, India
| |
Collapse
|
29
|
Abstract
Plant pathogens are a critical component of the microbiome that exist as populations undergoing ecological and evolutionary processes within their host. Many aspects of virulence rely on social interactions mediated through multiple forms of public goods, including quorum-sensing signals, exoenzymes, and effectors. Virulence and disease progression involve life-history decisions that have social implications with large effects on both host and microbe fitness, such as the timing of key transitions. Considering the molecular basis of sequential stages of plant-pathogen interactions highlights many opportunities for pathogens to cheat, and there is evidence for ample variation in virulence. Case studies reveal systems where cheating has been demonstrated and others where it is likely occurring. Harnessing the social interactions of pathogens, along with leveraging novel sensing and -omics technologies to understand microbial fitness in the field, will enable us to better manage plant microbiomes in the interest of plant health.
Collapse
Affiliation(s)
- Maren L Friesen
- Department of Plant Pathology and Department of Crop and Soil Sciences, Washington State University, Pullman, Washington 99164, USA;
| |
Collapse
|
30
|
Carey CJ, Glassman SI, Bruns TD, Aronson EL, Hart SC. Soil microbial communities associated with giant sequoia: How does the world's largest tree affect some of the world's smallest organisms? Ecol Evol 2020; 10:6593-6609. [PMID: 32724535 PMCID: PMC7381575 DOI: 10.1002/ece3.6392] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/29/2020] [Accepted: 04/22/2020] [Indexed: 02/01/2023] Open
Abstract
Giant sequoia (Sequoiadendron giganteum) is an iconic conifer that lives in relict populations on the western slopes of the California Sierra Nevada. In these settings, it is unusual among the dominant trees in that it associates with arbuscular mycorrhizal fungi rather than ectomycorrhizal fungi. However, it is unclear whether differences in microbial associations extend more broadly to nonmycorrhizal components of the soil microbial community. To address this question, we used next-generation amplicon sequencing to characterize bacterial/archaeal and fungal microbiomes in bulk soil (0-5 cm) beneath giant sequoia and co-occurring sugar pine (Pinus lambertiana) individuals. We did this across two groves with distinct parent material in Yosemite National Park, USA. We found tree-associated differences were apparent despite a strong grove effect. Bacterial/archaeal richness was greater beneath giant sequoia than sugar pine, with a core community double the size. The tree species also harbored compositionally distinct fungal communities. This pattern depended on grove but was associated with a consistently elevated relative abundance of Hygrocybe species beneath giant sequoia. Compositional differences between host trees correlated with soil pH and soil moisture. We conclude that the effects of giant sequoia extend beyond mycorrhizal mutualists to include the broader community and that some but not all host tree differences are grove-dependent.
Collapse
Affiliation(s)
| | - Sydney I. Glassman
- Department of Microbiology and Plant PathologyUniversity of CaliforniaRiversideCAUSA
| | - Thomas D. Bruns
- Department of Plant and Microbial BiologyUniversity of CaliforniaBerkeleyCAUSA
| | - Emma L. Aronson
- Department of Microbiology and Plant PathologyUniversity of CaliforniaRiversideCAUSA
| | - Stephen C. Hart
- Department of Life and Environmental Sciences and the Sierra Nevada Research InstituteUniversity of CaliforniaMercedCAUSA
| |
Collapse
|
31
|
Richter-Heitmann T, Hofner B, Krah FS, Sikorski J, Wüst PK, Bunk B, Huang S, Regan KM, Berner D, Boeddinghaus RS, Marhan S, Prati D, Kandeler E, Overmann J, Friedrich MW. Stochastic Dispersal Rather Than Deterministic Selection Explains the Spatio-Temporal Distribution of Soil Bacteria in a Temperate Grassland. Front Microbiol 2020; 11:1391. [PMID: 32695081 PMCID: PMC7338559 DOI: 10.3389/fmicb.2020.01391] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 05/29/2020] [Indexed: 01/15/2023] Open
Abstract
Spatial and temporal processes shaping microbial communities are inseparably linked but rarely studied together. By Illumina 16S rRNA sequencing, we monitored soil bacteria in 360 stations on a 100 square meter plot distributed across six intra-annual samplings in a rarely managed, temperate grassland. Using a multi-tiered approach, we tested the extent to which stochastic or deterministic processes influenced the composition of local communities. A combination of phylogenetic turnover analysis and null modeling demonstrated that either homogenization by unlimited stochastic dispersal or scenarios, in which neither stochastic processes nor deterministic forces dominated, explained local assembly processes. Thus, the majority of all sampled communities (82%) was rather homogeneous with no significant changes in abundance-weighted composition. However, we detected strong and uniform taxonomic shifts within just nine samples in early summer. Thus, community snapshots sampled from single points in time or space do not necessarily reflect a representative community state. The potential for change despite the overall homogeneity was further demonstrated when the focus shifted to the rare biosphere. Rare OTU turnover, rather than nestedness, characterized abundance-independent β-diversity. Accordingly, boosted generalized additive models encompassing spatial, temporal and environmental variables revealed strong and highly diverse effects of space on OTU abundance, even within the same genus. This pure spatial effect increased with decreasing OTU abundance and frequency, whereas soil moisture – the most important environmental variable – had an opposite effect by impacting abundant OTUs more than the rare ones. These results indicate that – despite considerable oscillation in space and time – the abundant and resident OTUs provide a community backbone that supports much higher β-diversity of a dynamic rare biosphere. Our findings reveal complex interactions among space, time, and environmental filters within bacterial communities in a long-established temperate grassland.
Collapse
Affiliation(s)
- Tim Richter-Heitmann
- Microbial Ecophysiology Group, Faculty of Biology/Chemistry, University of Bremen, Bremen, Germany.,International Max Planck Research School of Marine Microbiology, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Benjamin Hofner
- Institut für Medizininformatik, Biometrie und Epidemiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Franz-Sebastian Krah
- Biodiversity Conservation, Institute for Ecology, Evolution and Diversity, Biologicum, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Johannes Sikorski
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Pia K Wüst
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Boyke Bunk
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Sixing Huang
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Kathleen M Regan
- Institute of Soil Science and Land Evaluation, Soil Biology Department, University of Hohenheim, Stuttgart, Germany
| | - Doreen Berner
- Institute of Soil Science and Land Evaluation, Soil Biology Department, University of Hohenheim, Stuttgart, Germany
| | - Runa S Boeddinghaus
- Institute of Soil Science and Land Evaluation, Soil Biology Department, University of Hohenheim, Stuttgart, Germany
| | - Sven Marhan
- Institute of Soil Science and Land Evaluation, Soil Biology Department, University of Hohenheim, Stuttgart, Germany
| | - Daniel Prati
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Ellen Kandeler
- Institute of Soil Science and Land Evaluation, Soil Biology Department, University of Hohenheim, Stuttgart, Germany
| | - Jörg Overmann
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Michael W Friedrich
- Microbial Ecophysiology Group, Faculty of Biology/Chemistry, University of Bremen, Bremen, Germany
| |
Collapse
|
32
|
Mathieu C, Hermans SM, Lear G, Buckley TR, Lee KC, Buckley HL. A Systematic Review of Sources of Variability and Uncertainty in eDNA Data for Environmental Monitoring. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00135] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
33
|
Drivers of Foliar Fungal Endophytic Communities of Kudzu (Pueraria montana var. lobata) in the Southeast United States. DIVERSITY 2020. [DOI: 10.3390/d12050185] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Fungal endophytes play important roles in plant fitness and plant–microbe interactions. Kudzu (Pueraria montana var. lobata) is a dominant, abundant, and highly aggressive invasive plant in the Southeast United States. Kudzu serves as a pathogen reservoir that impacts economically important leguminous crops. We conducted the first investigations on kudzu fungal endophytes (Illumina MiSeq—ITS2) to elucidate drivers of endophytic communities across the heart of the invasive range in the Southeast United States (TN, MS, AL, GA). We tested the impacts of multiple environmental parameters (Chlorophyll, NO3−, K+, soil pH, leaf area, host genotype, traffic intensity, and geographic location) on foliar endophyte communities. Endophytic communities were diverse and structured by many factors in our PerMANOVA analyses, but location, genotype, and traffic (proxy for pollution) were the strongest drivers of community composition (R2 = 0.152, p < 0.001, R2 = 0.129, p < 0.001, and R2 = 0.126, p < 0.001, respectively). Further, we examined the putative ecological interactions between endophytic fungi and plant pathogens. We identify numerous OTUs that are positively and strongly associated with pathogen occurrence, largely within the families Montagnulaceae and Tremellales incertae sedis. Taken together, these data suggest location, host genetics and local pollution play instrumental roles in structuring communities, and integrative plant management must consider these factors when developing management strategies.
Collapse
|
34
|
Bandopadhyay S, Sintim HY, DeBruyn JM. Effects of biodegradable plastic film mulching on soil microbial communities in two agroecosystems. PeerJ 2020; 8:e9015. [PMID: 32341903 PMCID: PMC7179572 DOI: 10.7717/peerj.9015] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 03/27/2020] [Indexed: 11/20/2022] Open
Abstract
Plastic mulch films are used globally in crop production but incur considerable disposal and environmental pollution issues. Biodegradable plastic mulch films (BDMs), an alternative to polyethylene (PE)-based films, are designed to be tilled into the soil where they are expected to be mineralized to carbon dioxide, water and microbial biomass. However, insufficient research regarding the impacts of repeated soil incorporation of BDMs on soil microbial communities has partly contributed to limited adoption of BDMs. In this study, we evaluated the effects of BDM incorporation on soil microbial community structure and function over two years in two geographical locations: Knoxville, TN, and in Mount Vernon, WA, USA. Treatments included four plastic BDMs (three commercially available and one experimental film), a biodegradable cellulose paper mulch, a non-biodegradable PE mulch and a no mulch plot. Bacterial community structure determined using 16S rRNA gene amplicon sequencing revealed significant differences by location and season. Differences in bacterial communities by mulch treatment were not significant for any season in either location, except for Fall 2015 in WA where differences were observed between BDMs and no-mulch plots. Extracellular enzyme assays were used to characterize communities functionally, revealing significant differences by location and sampling season in both TN and WA but minimal differences between BDMs and PE treatments. Overall, BDMs had comparable influences on soil microbial communities to PE mulch films.
Collapse
Affiliation(s)
- Sreejata Bandopadhyay
- Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, TN, United States of America
| | - Henry Y Sintim
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States of America.,Department of Crop and Soil Sciences, University of Georgia, Athens, GA, United States of America
| | - Jennifer M DeBruyn
- Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, TN, United States of America
| |
Collapse
|
35
|
Yang DD, Alexander A, Kinnersley M, Cook E, Caudy A, Rosebrock A, Rosenzweig F. Fitness and Productivity Increase with Ecotypic Diversity among Escherichia coli Strains That Coevolved in a Simple, Constant Environment. Appl Environ Microbiol 2020; 86:e00051-20. [PMID: 32060029 PMCID: PMC7117940 DOI: 10.1128/aem.00051-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 02/05/2020] [Indexed: 12/11/2022] Open
Abstract
The productivity of a biological community often correlates with its diversity. In the microbial world this phenomenon can sometimes be explained by positive, density-dependent interactions such as cross-feeding and syntrophy. These metabolic interactions help account for the astonishing variety of microbial life and drive many of the biogeochemical cycles without which life as we know it could not exist. While it is difficult to recapitulate experimentally how these interactions evolved among multiple taxa, we can explore in the laboratory how they arise within one. These experiments provide insight into how different bacterial ecotypes evolve and from these, possibly new "species." We have previously shown that in a simple, constant environment a single clone of Escherichia coli can give rise to a consortium of genetically and phenotypically differentiated strains, in effect, a set of ecotypes, that coexist by cross-feeding. We marked these different ecotypes and their shared ancestor by integrating fluorescent protein into their genomes and then used flow cytometry to show that each evolved strain is more fit than the shared ancestor, that pairs of evolved strains are fitter still, and that the entire consortium is the fittest of all. We further demonstrate that the rank order of fitness values agrees with estimates of yield, indicating that an experimentally evolved consortium more efficiently converts primary and secondary resources to offspring than its ancestor or any member acting in isolation.IMPORTANCE Polymicrobial consortia occur in both environmental and clinical settings. In many cases, diversity and productivity correlate in these consortia, especially when sustained by positive, density-dependent interactions. However, the evolutionary history of such entities is typically obscure, making it difficult to establish the relative fitness of consortium partners and to use those data to illuminate the diversity-productivity relationship. Here, we dissect an Escherichia coli consortium that evolved under continuous glucose limitation in the laboratory from a single common ancestor. We show that a partnership consisting of cross-feeding ecotypes is better able to secure primary and secondary resources and to convert those resources to offspring than the ancestral clone. Such interactions may be a prelude to a special form of syntrophy and are likely determinants of microbial community structure in nature, including those having clinical significance such as chronic infections.
Collapse
Affiliation(s)
- Dong-Dong Yang
- Division Biological Sciences, University of Montana, Missoula, Montana, USA
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Ashley Alexander
- Division Biological Sciences, University of Montana, Missoula, Montana, USA
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Margie Kinnersley
- Division Biological Sciences, University of Montana, Missoula, Montana, USA
| | - Emily Cook
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Amy Caudy
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Adam Rosebrock
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Frank Rosenzweig
- Division Biological Sciences, University of Montana, Missoula, Montana, USA
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
36
|
Ding L, Shang Y, Zhang W, Zhang Y, Li S, Wei X, Zhang Y, Song X, Chen X, Liu J, Yang F, Yang X, Zou C, Wang P. Disentangling the effects of driving forces on soil bacterial and fungal communities under shrub encroachment on the Guizhou Plateau of China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 709:136207. [PMID: 31887509 DOI: 10.1016/j.scitotenv.2019.136207] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 12/15/2019] [Accepted: 12/17/2019] [Indexed: 06/10/2023]
Abstract
Global shrub encroachment (SE) affects the structure and function of grassland ecosystem. The effects of SE on plant and soil abiotic properties have been well studied; however, little is known about the extent to which driving forces structure soil microbes under SE, especially in subalpine regions of the Guizhou Plateau of China, which is undergoing progressive SE. We investigated the plant factors (viz, plant diversity and relative shrub cover), soil physicochemical properties, enzymatic activities, and microbial communities, quantified microbial element limitations under three encroachment stages, and disentangled the effects sizes of the factors that structure the diversity and composition of soil microbial communities. Redundancy analysis showed that soil factors made a greater contribution than plant factors to shaping the diversity and composition of the soil bacterial community, soil chemical factors made a greater contribution than physical factors both to structuring the diversity and composition of the soil bacterial community and to structuring the composition of the soil fungal community; and soil nutrient stoichiometry made a greater contribution than soil nutrient content to shaping soil bacterial community's diversity and fungal community's composition. In contrast, soil nutrient content made a greater contribution than soil nutrient stoichiometry to shaping the soil bacterial community's composition. The decrease in bacterial community's diversity observed under SE was attributable to increases in the carbon and nitrogen limitations consequent to SE, and the nitrogen limitation had a greater contribution to the soil bacterial community's diversity and composition than did the carbon limitation. These findings provide updated knowledge of the driving forces shaping the diversity and composition of soil microbial communities, which could be crucial for improving microbial prediction models and revealing the element cycling that occurs in SE biomes.
Collapse
Affiliation(s)
- Leilei Ding
- Guizhou Institution of Prataculture, Guizhou Academy of Agricultural Sciences, Guiyang 550006, Guizhou, China
| | - Yishun Shang
- Guizhou Institution of Prataculture, Guizhou Academy of Agricultural Sciences, Guiyang 550006, Guizhou, China
| | - Wen Zhang
- Guizhou Institution of Prataculture, Guizhou Academy of Agricultural Sciences, Guiyang 550006, Guizhou, China
| | - Yu Zhang
- Guizhou Institution of Prataculture, Guizhou Academy of Agricultural Sciences, Guiyang 550006, Guizhou, China
| | - Shige Li
- Guizhou Institution of Prataculture, Guizhou Academy of Agricultural Sciences, Guiyang 550006, Guizhou, China
| | - Xin Wei
- Guizhou Institution of Prataculture, Guizhou Academy of Agricultural Sciences, Guiyang 550006, Guizhou, China
| | - Yujun Zhang
- Guizhou Institution of Prataculture, Guizhou Academy of Agricultural Sciences, Guiyang 550006, Guizhou, China
| | - Xuelian Song
- Guizhou Institution of Prataculture, Guizhou Academy of Agricultural Sciences, Guiyang 550006, Guizhou, China
| | - Xi Chen
- Guizhou Institution of Prataculture, Guizhou Academy of Agricultural Sciences, Guiyang 550006, Guizhou, China
| | - Jiajia Liu
- Guizhou Institution of Prataculture, Guizhou Academy of Agricultural Sciences, Guiyang 550006, Guizhou, China
| | - Fuli Yang
- College of Animal Science, Guizhou University, Guiyang 550006, Guizhou, China
| | - Xuedong Yang
- Guizhou Grassland Technology Spread Station, Guiyang 550006, Guizhou, China; College of Forestry, Guizhou University, Guiyang 550006, Guizhou, China
| | - Chao Zou
- College of Animal Science, Guizhou University, Guiyang 550006, Guizhou, China
| | - Puchang Wang
- Guizhou Institution of Prataculture, Guizhou Academy of Agricultural Sciences, Guiyang 550006, Guizhou, China; College of Animal Science, Guizhou University, Guiyang 550006, Guizhou, China.
| |
Collapse
|
37
|
Wade J, Culman SW, Logan JAR, Poffenbarger H, Demyan MS, Grove JH, Mallarino AP, McGrath JM, Ruark M, West JR. Improved soil biological health increases corn grain yield in N fertilized systems across the Corn Belt. Sci Rep 2020; 10:3917. [PMID: 32127596 PMCID: PMC7054259 DOI: 10.1038/s41598-020-60987-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 02/04/2020] [Indexed: 12/02/2022] Open
Abstract
Nitrogenous fertilizers have nearly doubled global grain yields, but have also increased losses of reactive N to the environment. Current public investments to improve soil health seek to balance productivity and environmental considerations. However, data integrating soil biological health and crop N response to date is insufficient to reliably drive conservation policy and inform management. Here we used multilevel structural equation modeling and N fertilizer rate trials to show that biologically healthier soils produce greater corn yields per unit of fertilizer. We found the effect of soil biological health on corn yield was 18% the magnitude of N fertilization, Moreover, we found this effect was consistent for edaphic and climatic conditions representative of 52% of the rainfed acreage in the Corn Belt (as determined using technological extrapolation domains). While N fertilization also plays a role in building or maintaining soil biological health, soil biological health metrics offer limited a priori information on a site's responsiveness to N fertilizer applications. Thus, increases in soil biological health can increase corn yields for a given unit of N fertilizer, but cannot completely replace mineral N fertilization in these systems. Our results illustrate the potential for gains in productivity through investment in soil biological health, independent of increases in mineral N fertilizer use.
Collapse
Affiliation(s)
- Jordon Wade
- School of Environment & Natural Resources, The Ohio State University, Ohio, USA.
- Department of Crop Sciences, University of Illinois, Urbana-Champaign, Illinois, USA.
| | - Steve W Culman
- School of Environment & Natural Resources, The Ohio State University, Ohio, USA
| | - Jessica A R Logan
- College of Education and Human Ecology, The Ohio State University, Ohio, USA
| | - Hanna Poffenbarger
- Department of Plant and Soil Sciences, University of Kentucky, Kentucky, USA
| | - M Scott Demyan
- School of Environment & Natural Resources, The Ohio State University, Ohio, USA
| | - John H Grove
- Department of Plant and Soil Sciences, University of Kentucky, Kentucky, USA
| | | | - Joshua M McGrath
- Department of Plant and Soil Sciences, University of Kentucky, Kentucky, USA
| | - Matthew Ruark
- Department of Soil Science, University of Wisconsin - Madison, Wisconsin, USA
| | - Jaimie R West
- Department of Soil Science, University of Wisconsin - Madison, Wisconsin, USA
| |
Collapse
|
38
|
Effects of Spatial Variability and Relic DNA Removal on the Detection of Temporal Dynamics in Soil Microbial Communities. mBio 2020; 11:mBio.02776-19. [PMID: 31964728 PMCID: PMC6974563 DOI: 10.1128/mbio.02776-19] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Nearly all microbial communities are dynamic in time. Understanding how temporal dynamics in microbial community structure affect soil biogeochemistry and fertility are key to being able to predict the responses of the soil microbiome to environmental perturbations. Here, we explain the effects of soil spatial structure and relic DNA on the determination of microbial community fluctuations over time. We found that intensive spatial sampling was required to identify temporal effects in microbial communities because of the high degree of spatial heterogeneity in soil and that DNA from nonliving sources masks important temporal patterns. We identified groups of microbes with shared temporal responses and show that these patterns were predictable from changes in soil characteristics. These results provide insight into the environmental preferences and temporal relationships between individual microbial taxa and highlight the importance of considering relic DNA when trying to detect temporal dynamics in belowground communities. Few studies have comprehensively investigated the temporal variability in soil microbial communities despite widespread recognition that the belowground environment is dynamic. In part, this stems from the challenges associated with the high degree of spatial heterogeneity in soil microbial communities and because the presence of relic DNA (DNA from dead cells or secreted extracellular DNA) may dampen temporal signals. Here, we disentangle the relationships among spatial, temporal, and relic DNA effects on prokaryotic and fungal communities in soils collected from contrasting hillslopes in Colorado, USA. We intensively sampled plots on each hillslope over 6 months to discriminate between temporal variability, intraplot spatial heterogeneity, and relic DNA effects on the soil prokaryotic and fungal communities. We show that the intraplot spatial variability in microbial community composition was strong and independent of relic DNA effects and that these spatial patterns persisted throughout the study. When controlling for intraplot spatial variability, we identified significant temporal variability in both plots over the 6-month study. These microbial communities were more dissimilar over time after relic DNA was removed, suggesting that relic DNA hinders the detection of important temporal dynamics in belowground microbial communities. We identified microbial taxa that exhibited shared temporal responses and show that these responses were often predictable from temporal changes in soil conditions. Our findings highlight approaches that can be used to better characterize temporal shifts in soil microbial communities, information that is critical for predicting the environmental preferences of individual soil microbial taxa and identifying linkages between soil microbial community composition and belowground processes.
Collapse
|
39
|
Carini P, Delgado-Baquerizo M, Hinckley ELS, Holland-Moritz H, Brewer TE, Rue G, Vanderburgh C, McKnight D, Fierer N. Effects of Spatial Variability and Relic DNA Removal on the Detection of Temporal Dynamics in Soil Microbial Communities. mBio 2020; 11:e02776-19. [PMID: 31964728 PMCID: PMC6974563 DOI: 10.1128/mbio.02776-19 10.1128/mbio.02776-19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 12/03/2019] [Indexed: 12/25/2023] Open
Abstract
Few studies have comprehensively investigated the temporal variability in soil microbial communities despite widespread recognition that the belowground environment is dynamic. In part, this stems from the challenges associated with the high degree of spatial heterogeneity in soil microbial communities and because the presence of relic DNA (DNA from dead cells or secreted extracellular DNA) may dampen temporal signals. Here, we disentangle the relationships among spatial, temporal, and relic DNA effects on prokaryotic and fungal communities in soils collected from contrasting hillslopes in Colorado, USA. We intensively sampled plots on each hillslope over 6 months to discriminate between temporal variability, intraplot spatial heterogeneity, and relic DNA effects on the soil prokaryotic and fungal communities. We show that the intraplot spatial variability in microbial community composition was strong and independent of relic DNA effects and that these spatial patterns persisted throughout the study. When controlling for intraplot spatial variability, we identified significant temporal variability in both plots over the 6-month study. These microbial communities were more dissimilar over time after relic DNA was removed, suggesting that relic DNA hinders the detection of important temporal dynamics in belowground microbial communities. We identified microbial taxa that exhibited shared temporal responses and show that these responses were often predictable from temporal changes in soil conditions. Our findings highlight approaches that can be used to better characterize temporal shifts in soil microbial communities, information that is critical for predicting the environmental preferences of individual soil microbial taxa and identifying linkages between soil microbial community composition and belowground processes.IMPORTANCE Nearly all microbial communities are dynamic in time. Understanding how temporal dynamics in microbial community structure affect soil biogeochemistry and fertility are key to being able to predict the responses of the soil microbiome to environmental perturbations. Here, we explain the effects of soil spatial structure and relic DNA on the determination of microbial community fluctuations over time. We found that intensive spatial sampling was required to identify temporal effects in microbial communities because of the high degree of spatial heterogeneity in soil and that DNA from nonliving sources masks important temporal patterns. We identified groups of microbes with shared temporal responses and show that these patterns were predictable from changes in soil characteristics. These results provide insight into the environmental preferences and temporal relationships between individual microbial taxa and highlight the importance of considering relic DNA when trying to detect temporal dynamics in belowground communities.
Collapse
Affiliation(s)
- Paul Carini
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado, USA
| | - Manuel Delgado-Baquerizo
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado, USA
- Departamento de Biología y Geología, Física y Química Inorgánica, Escuela Superior de Ciencias Experimentales, Universidad Rey Juan Carlos, Móstoles, Spain
| | - Eve-Lyn S Hinckley
- Institute of Arctic and Alpine Research, University of Colorado, Boulder, Colorado, USA
- Environmental Studies Program, University of Colorado, Boulder, Colorado, USA
| | - Hannah Holland-Moritz
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado, USA
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, USA
| | - Tess E Brewer
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado, USA
| | - Garrett Rue
- Institute of Arctic and Alpine Research, University of Colorado, Boulder, Colorado, USA
| | - Caihong Vanderburgh
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado, USA
| | - Diane McKnight
- Institute of Arctic and Alpine Research, University of Colorado, Boulder, Colorado, USA
| | - Noah Fierer
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado, USA
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, USA
| |
Collapse
|
40
|
Griffin JS, Haug LA, Rivera VA, Gonzalez LMH, Kelly JJ, Miller WM, Wells GF, Packman AI. Soil hydrology drives ecological niche differentiation in a native prairie microbiome. FEMS Microbiol Ecol 2020; 96:5593953. [PMID: 31626296 DOI: 10.1093/femsec/fiz163] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 10/16/2019] [Indexed: 11/14/2022] Open
Abstract
While the impacts of soil moisture on soil microbiome diversity and composition are well characterized, the influence of hydrological regime has been overlooked. As precipitation patterns are altered by climate change, understanding the impact of soil hydrology on community structure and function is critical. In this work, water level was continuously monitored for over a year in a Midwestern prairie-wetland at 10 cm depth increments up to a depth of 120 cm in 10 locations. We analyzed microbiome composition and edaphic factors in soil cores collected from this unique spatially distributed, longitudinal data set. We demonstrate that the fraction of time that each sample was inundated explains more variability in diversity and composition across this site than other commonly assessed edaphic factors, such as soil pH or depth. Finally, we show that these compositional changes influence abundance of ammonia oxidizers. The observed patterns in community composition and diversity are fundamentally regulated by the interaction of water with a structured landscape, particularly an elevated sand ridge characterized by drier conditions and a lower-lying wetland with more clayey soils. Similar processes are generally expected to influence the biogeography of many terrestrial environments, as morphology, hydrology and soil properties generally co-vary.
Collapse
Affiliation(s)
- James S Griffin
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA
| | - Loren A Haug
- Department of Civil and Environmental Engineering, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA
| | - Vivien A Rivera
- Department of Civil and Environmental Engineering, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA
| | - Liliana M Hernandez Gonzalez
- Department of Civil and Environmental Engineering, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA
| | - John J Kelly
- Department of Biology, Loyola University Chicago, 1032 W Sheridan Rd., Chicago, IL 60660, USA
| | - William M Miller
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA
| | - George F Wells
- Department of Civil and Environmental Engineering, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA
| | - Aaron I Packman
- Department of Civil and Environmental Engineering, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA
| |
Collapse
|
41
|
Changes in soil bacterial community diversity following the removal of invasive feral pigs from a Hawaiian tropical montane wet forest. Sci Rep 2019; 9:14681. [PMID: 31604976 PMCID: PMC6789016 DOI: 10.1038/s41598-019-48922-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 08/06/2019] [Indexed: 12/01/2022] Open
Abstract
Nonnative, invasive feral pigs (Sus scrofa) modify habitats by disturbing soils and vegetation, which can alter biogeochemical processes. Soil microbial communities drive nutrient cycling and therefore also play important roles in shaping ecosystem structure and function, but the responses of soil microbes to nonnative ungulate removal remains poorly studied. We examined changes in the soil bacterial community over a ~25 year chronosequence of feral pig removal in tropical montane wet forests on the Island of Hawai’i. We extracted bacterial eDNA from soil samples collected inside and outside of ungulate exclosures along this chronosequence and sequenced the eDNA using the Illumina platform. We found that ungulate removal increased diversity of soil bacteria, with diversity scores positively correlated with time since removal. While functional and phylogenetic diversity were not significantly different between pig present and pig removed soils, soil bulk density, which decreases following the removal of feral pigs, was a useful predictor of dissimilarity among sites and correlated to changes in functional diversity. Additionally, increases in soil porosity, potassium, and calcium were correlated to increases in functional diversity. Finally, sites with greater mean annual temperatures were shown to have higher scores of both functional and phylogenetic diversity. As such, we conclude that feral pigs influence overall bacterial community diversity directly while influencing functional diversity indirectly through alterations to soil structure and nutrients. Comparatively, phylogenetic differences between communities are better explained by mean annual temperature as a climatic predictor of community dissimilarity.
Collapse
|
42
|
Grossman JJ, Butterfield AJ, Cavender-Bares J, Hobbie SE, Reich PB, Gutknecht J, Kennedy PG. Non-symbiotic soil microbes are more strongly influenced by altered tree biodiversity than arbuscular mycorrhizal fungi during initial forest establishment. FEMS Microbiol Ecol 2019; 95:5553462. [PMID: 31437281 DOI: 10.1093/femsec/fiz134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 08/21/2019] [Indexed: 11/13/2022] Open
Abstract
While the relationship between plant and microbial diversity has been well studied in grasslands, less is known about similar relationships in forests, especially for obligately symbiotic arbuscular mycorrhizal (AM) fungi. To assess the effect of varying tree diversity on microbial alpha- and beta-diversity, we sampled soil from plots in a high-density tree diversity experiment in Minnesota, USA, 3 years after establishment. About 3 of 12 tree species are AM hosts; the other 9 primarily associate with ectomycorrhizal fungi. We used phospho- and neutral lipid fatty acid analysis to characterize the biomass and functional identity of the whole soil bacterial and fungal community and high throughput sequencing to identify the species-level richness and composition of the AM fungal community. We found that plots of differing tree composition had different bacterial and fungal communities; plots with conifers, and especially Juniperus virginiana, had lower densities of several bacterial groups. In contrast, plots with a higher density or diversity of AM hosts showed no sign of greater AM fungal abundance or diversity. Our results indicate that early responses to plant diversity vary considerably across microbial groups, with AM fungal communities potentially requiring longer timescales to respond to changes in host tree diversity.
Collapse
Affiliation(s)
- Jake J Grossman
- Arnold Arboretum, Harvard University, 1300 Centre St., Boston, MA 02131, USA.,Department of Ecology, Evolution, and Behavior, University of Minnesota -- Twin Cities, 1475 Gortner Ave., St. Paul, MN, 55108, USA
| | - Allen J Butterfield
- Department of Chemical Engeineering, University of Minnesota -- Duluth, 1303 Ordean Ct., Duluth, MN 55812, USA
| | - Jeannine Cavender-Bares
- Department of Ecology, Evolution, and Behavior, University of Minnesota -- Twin Cities, 1475 Gortner Ave., St. Paul, MN, 55108, USA
| | - Sarah E Hobbie
- Department of Ecology, Evolution, and Behavior, University of Minnesota -- Twin Cities, 1475 Gortner Ave., St. Paul, MN, 55108, USA
| | - Peter B Reich
- Department of Forest Resources, University of Minnesota -- Twin Cities, 1530 Cleveland Ave. N., St. Paul, MN 55108, USA.,Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith 2751, NSW, Australia
| | - Jessica Gutknecht
- Department of Soil, Water, and Climate, University of Minnesota --Twin Cities, 1991 Upper Buford Circle, St. Paul, MN 55108, USA
| | - Peter G Kennedy
- Department of Plant and Microbial Biology, University of Minnesota -- Twin Cities, 1475 Gortner Ave., St. Paul, MN 55108, USA
| |
Collapse
|
43
|
Zhao H, Li X, Zhang Z, Yang J, Zhao Y, Yang Z, Hu Q. Effects of natural vegetative restoration on soil fungal and bacterial communities in bare patches of the southern Taihang Mountains. Ecol Evol 2019; 9:10432-10441. [PMID: 31624558 PMCID: PMC6787810 DOI: 10.1002/ece3.5564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 11/25/2022] Open
Abstract
Understanding the distribution and composition of soil microbes in bare patches is a critical step to improving ecological remediation. The effects of different vegetative restoration types on soil microbes within semi-arid bare patches remain unclear. Here, we evaluated the distribution of soil fungi and bacteria among different ecological restoration types at the southern Taihang Mountains. Analysis of variance showed that the chemical properties of soil with vegetation cover have higher nutrient quality than those of the exposed soil. The results also suggested that vegetative restoration significantly improved the diversity and the richness of the soil fungal and bacterial communities. Sequencing results showed that Ascomycota and Basidiomycota were the main soil fungal communities, whereas Proteobacteria, Acidobacteria, and Actinobacteria were the main soil bacterial communities. There were significant relationships between the contents of moisture, organic matter and organic carbon and the soil fungal/bacterial communities. Venn and network diagrams indicated that the vegetative restoration types largely influenced the soil fungi and weakly influenced the soil bacteria in the bare patches. This study discusses the importance of vegetative restoration in the ecological remediation of bare patches. These findings provide effective references for soil restorative measures, water conservation, and bare-spot reduction at the southern Taihang Mountains in future.
Collapse
Affiliation(s)
- He Zhao
- College of ForestryHenan Agricultural UniversityZhengzhouChina
| | - Xuanzhen Li
- College of ForestryHenan Agricultural UniversityZhengzhouChina
| | - Zhiming Zhang
- College of ForestryHenan Agricultural UniversityZhengzhouChina
| | - JianTao Yang
- College of ForestryHenan Agricultural UniversityZhengzhouChina
| | - Yong Zhao
- College of ForestryHenan Agricultural UniversityZhengzhouChina
| | - Zi Yang
- College of ForestryHenan Agricultural UniversityZhengzhouChina
| | - Qili Hu
- College of ForestryHenan Agricultural UniversityZhengzhouChina
| |
Collapse
|
44
|
Sánchez-López KB, De Los Santos-Ramos FJ, Gómez-Acata ES, Luna-Guido M, Navarro-Noya YE, Fernández-Luqueño F, Dendooven L. TiO 2 nanoparticles affect the bacterial community structure and Eisenia fetida (Savigny, 1826) in an arable soil. PeerJ 2019; 7:e6939. [PMID: 31380145 PMCID: PMC6661143 DOI: 10.7717/peerj.6939] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 04/11/2019] [Indexed: 01/08/2023] Open
Abstract
The amount of nanoparticles (NP), such as TiO2, has increased substantially in the environment. It is still largely unknown, however, how NP might interact with earthworms and organic material and how this might affect the bacterial community structure and their functionality. Therefore, an arable soil was amended with TiO2 NP at 0, 150 or 300 mg kg−1 and subjected to different treatments. Treatments were soil amended with ten earthworms (Eisenia fetida (Savigny, 1826)) with fully developed clitellum and an average fresh mass of 0.5 to 500 g dry soil, 1.75 g tyndallized Quaker® oat seeds Avena sativa (L.) kg−1, or earthworms plus oat seeds, or left unamended. The bacterial community structure was monitored throughout the incubation period. The bacterial community in the unamended soil changed over time and application of oats, earthworm and a combination of both even further, with the largest change found in the latter. Application of NP to the unamended soil and the earthworm-amended soil altered the bacterial community, but combining it by adding oats negated that effect. It was found that the application of organic material, that is, oats, reduced the effect of the NP applied to soil. However, as the organic material applied was mineralized by the soil microorganisms, the effect of NP increased again over time.
Collapse
Affiliation(s)
- Katia Berenice Sánchez-López
- Nanoscience and Nanotechnology Program, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Francisco J De Los Santos-Ramos
- Department of Physiology, Biophysics and Neuroscience, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Elizabeth Selene Gómez-Acata
- Department of Biotechnology, Centro de investigación y de estudios avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Marco Luna-Guido
- Department of Biotechnology, Centro de investigación y de estudios avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Yendi E Navarro-Noya
- CONACYT Cathedra, Tlaxcala Center of the Behavior Biology, Autonomous University of Tlaxcala, Tlaxcala, Mexico
| | - Fabián Fernández-Luqueño
- Nanoscience and Nanotechnology Program, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Luc Dendooven
- Department of Biotechnology, Centro de investigación y de estudios avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
45
|
O’Brien FJM, Almaraz M, Foster MA, Hill AF, Huber DP, King EK, Langford H, Lowe MA, Mickan BS, Miller VS, Moore OW, Mathes F, Gleeson D, Leopold M. Soil Salinity and pH Drive Soil Bacterial Community Composition and Diversity Along a Lateritic Slope in the Avon River Critical Zone Observatory, Western Australia. Front Microbiol 2019; 10:1486. [PMID: 31312189 PMCID: PMC6614384 DOI: 10.3389/fmicb.2019.01486] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 06/14/2019] [Indexed: 01/25/2023] Open
Abstract
Soils are crucial in regulating ecosystem processes, such as nutrient cycling, and supporting plant growth. To a large extent, these functions are carried out by highly diverse and dynamic soil microbiomes that are in turn governed by numerous environmental factors including weathering profile and vegetation. In this study, we investigate geophysical and vegetation effects on the microbial communities of iron-rich lateritic soils in the highly weathered landscapes of Western Australia (WA). The study site was a lateritic hillslope in southwestern Australia, where gradual erosion of the duricrust has resulted in the exposure of the different weathering zones. High-throughput amplicon sequencing of the 16S rRNA gene was used to investigate soil bacterial community diversity, composition and functioning. We predicted that shifts in the microbial community would reflect variations in certain edaphic properties associated with the different layers of the lateritic profile and vegetation cover. Our results supported this hypothesis, with electrical conductivity, pH and clay content having the strongest correlation with beta diversity, and many of the differentially abundant taxa belonging to the phyla Actinobacteria and Proteobacteria. Soil water repellence, which is associated with Eucalyptus vegetation, also affected beta diversity. This enhanced understanding of the natural system could help to improve future crop management in WA since the physicochemical properties of the agricultural soils in this region are inherited from laterites via the weathering and pedogenesis processes.
Collapse
Affiliation(s)
| | - Maya Almaraz
- National Center for Ecological Analysis and Synthesis, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Melissa A. Foster
- U.S. Bureau of Reclamation, Denver Federal Center, Denver, CO, United States
| | - Alice F. Hill
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Boulder, CO, United States
| | - David P. Huber
- Department of Biological Sciences, Idaho State University, Pocatello, ID, United States
| | - Elizabeth K. King
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, United States
| | - Harry Langford
- Department of Geography, The University of Sheffield, Sheffield, United Kingdom
| | - Mary-Anne Lowe
- UWA School of Agriculture and Environment, The University of Western Australia, Crawley, WA, Australia
| | - Bede S. Mickan
- UWA School of Agriculture and Environment, The University of Western Australia, Crawley, WA, Australia
| | - Valerie S. Miller
- Department of Renewable Resources, University of Alberta, Edmonton, AB, Canada
| | - Oliver W. Moore
- School of Earth and Environment, University of Leeds, Leeds, United Kingdom
| | - Falko Mathes
- UWA School of Agriculture and Environment, The University of Western Australia, Crawley, WA, Australia
| | - Deirdre Gleeson
- UWA School of Agriculture and Environment, The University of Western Australia, Crawley, WA, Australia
| | - Matthias Leopold
- UWA School of Agriculture and Environment, The University of Western Australia, Crawley, WA, Australia
| |
Collapse
|
46
|
Lee SA, Kim Y, Kim JM, Chu B, Joa JH, Sang MK, Song J, Weon HY. A preliminary examination of bacterial, archaeal, and fungal communities inhabiting different rhizocompartments of tomato plants under real-world environments. Sci Rep 2019; 9:9300. [PMID: 31243310 PMCID: PMC6594962 DOI: 10.1038/s41598-019-45660-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 06/10/2019] [Indexed: 01/21/2023] Open
Abstract
Plant microbiota is a key determinant of plant health and productivity. The composition and structure of plant microbiota varies according to plant tissue and compartment, which are specific habitats for microbial colonization. To investigate the structural composition of the microbiome associated with tomato roots under natural systems, we characterized the bacterial, archaeal, and fungal communities of three belowground compartments (rhizosphere, endosphere, and bulk soil) of tomato plants collected from 23 greenhouses in 7 geographic locations of South Korea. The microbial diversity and structure varied by rhizocompartment, with the most distinctive community features found in the endosphere. The bacterial and fungal communities in the bulk soil and rhizosphere were correlated with soil physicochemical properties, such as pH, electrical conductivity, and exchangeable cation levels, while this trend was not evident in the endosphere samples. A small number of core bacterial operational taxonomic units (OTUs) present in all samples from the rhizosphere and endosphere represented more than 60% of the total relative abundance. Among these core microbes, OTUs belonging to the genera Acidovorax, Enterobacter, Pseudomonas, Rhizobium, Streptomyces, and Variovorax, members of which are known to have beneficial effects on plant growth, were more relatively abundant in the endosphere samples. A co-occurrence network analysis indicated that the microbial community in the rhizosphere had a larger and more complex network than those in the bulk soil and endosphere. The analysis also identified keystone taxa that might play important roles in microbe-microbe interactions in the community. Additionally, profiling of predicted gene functions identified many genes associated with membrane transport in the endospheric and rhizospheric communities. Overall, the data presented here provide preliminary insight into bacterial, archaeal, and fungal phylogeny, functionality, and interactions in the rhizocompartments of tomato roots under real-world environments.
Collapse
Affiliation(s)
- Shin Ae Lee
- Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration (RDA), Wanju, 55365, South Korea
| | - Yiseul Kim
- Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration (RDA), Wanju, 55365, South Korea
| | - Jeong Myeong Kim
- Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration (RDA), Wanju, 55365, South Korea
| | - Bora Chu
- Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration (RDA), Wanju, 55365, South Korea
| | - Jae-Ho Joa
- Research Institute of Climate Change and Agriculture, National Institute of Horticultural & Herbal Science, RDA, Jeju, 63240, South Korea
| | - Mee Kyung Sang
- Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration (RDA), Wanju, 55365, South Korea
| | - Jaekyeong Song
- Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration (RDA), Wanju, 55365, South Korea
| | - Hang-Yeon Weon
- Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration (RDA), Wanju, 55365, South Korea.
| |
Collapse
|
47
|
Comparative Metagenomics Reveals Enhanced Nutrient Cycling Potential after 2 Years of Biochar Amendment in a Tropical Oxisol. Appl Environ Microbiol 2019; 85:AEM.02957-18. [PMID: 30952661 DOI: 10.1128/aem.02957-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 03/19/2019] [Indexed: 11/20/2022] Open
Abstract
The complex structural and functional responses of agricultural soil microbial communities to the addition of carbonaceous compounds such as biochar remain poorly understood. This severely limits the predictive ability for both the potential enhancement of soil fertility and greenhouse gas mitigation. In this study, we utilized shotgun metagenomics in order to decipher changes in the microbial community in soil microcosms after 14 days of incubation at 23°C, which contained soils from biochar-amended and control plots cultivated with Napier grass. Our analyses revealed that biochar-amended soil microbiomes exhibited significant shifts in both community composition and predicted metabolism. Key metabolic pathways related to carbon turnover, such as the utilization of plant-derived carbohydrates as well as denitrification, were enriched under biochar amendment. These community shifts were in part associated with increased soil carbon, such as labile and aromatic carbon compounds, which was likely stimulated by the increased available nutrients associated with biochar amendment. These findings indicate that the soil microbiome response to the combination of biochar addition and to incubation conditions confers enhanced nutrient cycling and a small decrease in CO2 emissions and potentially mitigates nitrous oxide emissions.IMPORTANCE The incorporation of biochar into soil is a promising management strategy for sustainable agriculture owing to its potential to sequester carbon and improve soil fertility. Expanding the addition of biochar to large-scale agriculture hinges on its lasting beneficial effects on the microbial community. However, there exists a significant knowledge gap regarding the specific role that biochar plays in altering the key biological soil processes that influence plant growth and carbon storage in soil. Previous studies that examined the soil microbiome under biochar amendment principally characterized only how the composition alters in response to biochar amendment. In the present study, we shed light on the functional alterations of the microbial community response 2 years after biochar amendment. Our results show that biochar increased the abundance of genes involved in denitrification and carbon turnover and that biochar-amended soil microcosms had a reduction in cumulative CO2 production.
Collapse
|
48
|
Lopez S, Goux X, Echevarria G, Calusinska M, Morel JL, Benizri E. Community diversity and potential functions of rhizosphere-associated bacteria of nickel hyperaccumulators found in Albania. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 654:237-249. [PMID: 30445325 DOI: 10.1016/j.scitotenv.2018.11.056] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 10/25/2018] [Accepted: 11/04/2018] [Indexed: 06/09/2023]
Abstract
Ultramafic (i.e. serpentine) soils are widespread in the Balkans and particularly in Albania. They account for a large part of plant endemism in that region and host several hyperaccumulator species, which are characterized by leaf nickel concentrations frequently above 1%. This rich nickel hyperaccumulating flora could serve as candidate to be used in phytoextraction and agromining. Despite recent interest in metal hyperaccumulating plants and agromining, very few studies have investigated the bacterial diversity and the influence of environmental factors on microbial gene profiles in the rhizosphere of hyperaccumulator plants growing on ultramafic soils. Because rhizospheric bacteria could be crucial to the success of phytoremediation, we studied a total of 48 nickel-hyperaccumulating plants which were sampled from four species that are widespread in Albania: Noccaea ochroleuca, Odontarrhena smolikana, O. rigida and O. chalcidica. All samples were taken from the ultramafic regions of Librazhd and Pogradec in eastern Albania in October 2015. Our study shows that Proteobacteria, Actinobacteria and Acidobacteria dominated the soil bacterial communities. Of these three phyla, only Proteobacteria was relatively abundant. This study underlines the influence of soil Cation Exchange Capacity on the bacterial community's diversity and structure. Based on the predicted metagenomes, the genes belonging to amino acid, lipid and carbohydrate metabolisms were identified as major gene families. Our study sheds some light on our understanding of how bacterial communities are structured within and affect the rhizosphere of hyperaccumulator plants from ultramafic soils in Albania.
Collapse
Affiliation(s)
- Séverine Lopez
- Université de Lorraine, INRA, Laboratoire Sols et Environnement, 54000 Nancy, France
| | - Xavier Goux
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 4422 Belvaux, Luxembourg
| | - Guillaume Echevarria
- Université de Lorraine, INRA, Laboratoire Sols et Environnement, 54000 Nancy, France
| | - Magdalena Calusinska
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 4422 Belvaux, Luxembourg
| | - Jean Louis Morel
- Université de Lorraine, INRA, Laboratoire Sols et Environnement, 54000 Nancy, France
| | - Emile Benizri
- Université de Lorraine, INRA, Laboratoire Sols et Environnement, 54000 Nancy, France.
| |
Collapse
|
49
|
Malard LA, Pearce DA. Microbial diversity and biogeography in Arctic soils. ENVIRONMENTAL MICROBIOLOGY REPORTS 2018; 10:611-625. [PMID: 30028082 DOI: 10.1111/1758-2229.12680] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 07/13/2018] [Accepted: 07/17/2018] [Indexed: 06/08/2023]
Abstract
Microorganisms dominate terrestrial environments in the polar regions and Arctic soils are known to harbour significant microbial diversity, far more diverse and numerous in the region than was once thought. Furthermore, the geographic distribution and structure of Arctic microbial communities remains elusive, despite their important roles in both biogeochemical cycling and in the generation and decomposition of climate active gases. Critically, Arctic soils are estimated to store over 1500 Pg of carbon and, thus, have the potential to generate positive feedback within the climate system. As the Arctic region is currently undergoing rapid change, the likelihood of faster release of greenhouse gases such as CO2 , CH4 and N2 O is increasing. Understanding the microbial communities in the region, in terms of their diversity, abundance and functional activity, is key to producing accurate models of greenhouse gas release. This review brings together existing data to determine what we know about microbial diversity and biogeography in Arctic soils.
Collapse
Affiliation(s)
- Lucie A Malard
- Faculty of Health and Life Sciences, Northumbria University, Newcastle-upon-Tyne, NE1 8ST, UK
| | - David A Pearce
- Faculty of Health and Life Sciences, Northumbria University, Newcastle-upon-Tyne, NE1 8ST, UK
| |
Collapse
|
50
|
Nitrogen Mineralization and Microbial Biomass Dynamics in Different Tropical Soils Amended with Contrasting Organic Resources. SOIL SYSTEMS 2018. [DOI: 10.3390/soilsystems2040063] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The use of location-specific and underutilized organic residues (OR) as soil amendments in small-holder agro-ecosystems is promising. Six ORs (Leucaena leucocephala, Centrosema pubescens, Gliricidia sepium, Pueraria phaseoloides, Azadirachta indica, and Theobroma cacao) were amended to three tropical soils each at 24 mg g−1 dry soil in 120-day incubation study to estimate their nitrogen (N) mineralization and microbial biomass carbon (C) dynamics. Inorganic N contents varied among ORs, soil type and incubation days. Regardless of soil type, Gliricidia had the highest inorganic N among the studied ORs. Mineralization rate of 1.4 to 1.5 mg N kg−1 soil day−1 was observed for Lego and Tec soils, respectively, and was twice higher than Nya soil. However, Nya soil released higher inorganic N than Tec and Lego soils, implying high N mineralization efficiency in the former. Consistent soil pH increase was respectively observed for Theobroma and Pueraria treatments in all soils. Moreover, Theobroma and Pueraria amendments showed the highest soil microbial biomass C (MBC) at the end of the incubation. The assessed soil properties likely affected by the dominant edaphic factors and management influenced differences in MBC and dissolved organic carbon (DOC) while OR quality indices controlled N mineralization. Thus, we conclude that soil properties and OR type are important factors for optimal utilization of organic resources.
Collapse
|