1
|
Knockdown of LncRNA CRNDE suppresses proliferation and P-glycoprotein-mediated multidrug resistance in acute myelocytic leukemia through the Wnt/β-catenin pathway. Biosci Rep 2021; 40:224732. [PMID: 32426817 PMCID: PMC7273914 DOI: 10.1042/bsr20193450] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 04/09/2020] [Accepted: 05/13/2020] [Indexed: 12/29/2022] Open
Abstract
Mechanisms involved in non-coding RNAs have been implicated in multidrug resistance (MDR) of acute myeloid leukemia (AML). Long non-coding RNA (lncRNAs) colorectal neoplasia differentially expressed (CRNDE) is reported to be involved in the malignant progression in AML. The purpose of the present study is to explore the roles and potential molecular mechanism of CRNDE in the MDR in AML. In our study, we confirmed that the expression of CRNDE was significantly up-regulated in patients with AML, especially in AML patients after adriamycin (ADR)-based chemotherapy. Spearman correlation analysis showed a positive correlation between the levels of CRNDE and MDR1 in AML patients after ADR-based chemotherapy. Moreover, CRNDE was up-regulated in AML cells, especially in ADR-resistant AML cells. Multidrug resistance protein 1 (MDR1)/p-glycoprotein (P-gp) levels were significantly increased in ADR-resistant AML cells, compared with parental AML cells. CRNDE down-regulation inhibited cell proliferation, promoted apoptosis, reduced Ki67 expression and enhanced cleaved caspase-3 expression in AML and ADR-resistant AML cells. In addition, CRNDE knockdown led to down-regulation of P-gp/MDR1, β-catenin, c-Myc and cyclinD1 expression, and enhanced the drug sensitivity to ADR in ADR-resistant AML cells. In conclusion, knockdown of CRNDE suppresses proliferation and P-gp-mediated MDR in ADR-resistant AML cells via inhibiting the Wnt/β-catenin pathway, suggesting that repression of CRNDE might be a therapeutic target to reverse MDR of ADR-resistant AML cells.
Collapse
|
2
|
Nakonieczna S, Grabarska A, Kukula-Koch W. The Potential Anticancer Activity of Phytoconstituents against Gastric Cancer-A Review on In Vitro, In Vivo, and Clinical Studies. Int J Mol Sci 2020; 21:E8307. [PMID: 33167519 PMCID: PMC7663924 DOI: 10.3390/ijms21218307] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/03/2020] [Accepted: 11/04/2020] [Indexed: 12/13/2022] Open
Abstract
Gastric cancer belongs to the heterogeneous malignancies and, according to the World Health Organization, it is the fifth most commonly diagnosed cancer in men. The aim of this review is to provide an overview on the role of natural products of plant origin in the therapy of gastric cancer and to present the potentially active metabolites which can be used in the natural therapeutical strategies as the support to the conventional treatment. Many of the naturally spread secondary metabolites have been proved to exhibit chemopreventive properties when tested on the cell lines or in vivo. This manuscript aims to discuss the pharmacological significance of both the total extracts and the single isolated metabolites in the stomach cancer prevention and to focus on their mechanisms of action. A wide variety of plant-derived anticancer metabolites from different groups presented in the manuscript that include polyphenols, terpenes, alkaloids, or sulphur-containing compounds, underlines the multidirectional nature of natural products.
Collapse
Affiliation(s)
- Sylwia Nakonieczna
- Chair and Department of Pharmacognosy, Medical University of Lublin, 1, Chodzki str., 20-093 Lublin, Poland;
| | - Aneta Grabarska
- Chair and Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1, Chodźki, 20-093 Lublin, Poland
| | - Wirginia Kukula-Koch
- Chair and Department of Pharmacognosy, Medical University of Lublin, 1, Chodzki str., 20-093 Lublin, Poland;
| |
Collapse
|
3
|
Wang Y, Yu X, Wang L, Zhang F, Zhang Y. Research Progress on Chemical Constituents and Anticancer Pharmacological Activities of Euphorbia lunulata Bunge. BIOMED RESEARCH INTERNATIONAL 2020; 2020:3618941. [PMID: 32420336 PMCID: PMC7201523 DOI: 10.1155/2020/3618941] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 11/22/2019] [Accepted: 12/10/2019] [Indexed: 12/18/2022]
Abstract
Euphorbia lunulata Bunge (ELB) is a traditional Chinese medicine possessing the functions of expectoration, cough relief, asthma relief, detoxification, and itching relief. Modern pharmacological studies have showed that ELB exhibits a variety of activities, such as antitumor, antibacterial, and antioxidant activities. In particular, the anticancer activities of ELB have attracted much attention. In this review, we summarize the recent research progress on the chemical constituents and anticancer activities of ELB by searching the PubMed, Web of Science, and China National Knowledge Infrastructure databases. The results show that more than 151 components have been identified from extracts of ELB, including 73 terpenoids, 28 flavonoids, 8 phenylpropanoids, 7 steroids, 19 phenols, and 5 alkaloids. ELB has been shown to exhibit significant inhibitory effects on lung, cervical, gastric, breast, and liver cancers, and its anticancer effects are mainly manifested in the 3 aspects, including cell cycle arrest, cell apoptosis, and inhibition of the migration of cancer cells.
Collapse
Affiliation(s)
- Yuwei Wang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Xiao Yu
- Shandong Medicine Technician College, Tai'an 271016, China
| | - Lingna Wang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Fang Zhang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yongqing Zhang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| |
Collapse
|
4
|
Retraction: Multidrug-Resistance Related Long Non-Coding RNA Expression Profile Analysis of Gastric Cancer. PLoS One 2019; 14:e0226210. [PMID: 31794596 PMCID: PMC6890251 DOI: 10.1371/journal.pone.0226210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
5
|
Deng LM, Tan T, Zhang TY, Xiao XF, Gu H. miR‑1 reverses multidrug resistance in gastric cancer cells via downregulation of sorcin through promoting the accumulation of intracellular drugs and apoptosis of cells. Int J Oncol 2019; 55:451-461. [PMID: 31268161 PMCID: PMC6615921 DOI: 10.3892/ijo.2019.4831] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 05/22/2019] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer (GC) is one of the most common cancers worldwide and results in the second greatest rate of cancer-associated mortality globally. Multidrug resistance (MDR) often develops during the chemotherapy, resulting in the failure of treatment. To investigate the molecular mechanism of MDR, the roles of microRNA (miR)-1 were studied in GC. Reverse transcription-quantitative polymerase chain reaction and western blotting were used to investigate the expression levels of miR-1 and sorcin in SGC7901/ADM and SGC7901/VCR cell lines. The effect of miR-1 on the half maximal inhibitory concentration (IC50), cell apoptosis rates and drug accumulation was uncovered by MTT assay and flow cytometric analysis. Furthermore, dual-luciferase assay and western blotting were used to determine the target of miR-1 in GC. It was demonstrated that miR-1 was highly downregulated in MDR GC cell lines, including SGC7901/ADM and SGC7901/VCR. Overexpression of miR-1 in MDR GC cells decreased IC50, but increased the cell apoptosis rates and promoted the drug accumulation in cancer cells. Dual-luciferase activity assay indicated that sorcin was the target of miR-1 in GC. In addition, overexpression of sorcin could partially reverse the effect of miR-1 in MDR GC cells. The role of miR-1 in MDR GC cells makes it a potential therapeutic target for a successful clinical outcome.
Collapse
Affiliation(s)
- Lang-Mei Deng
- Critical Care Center, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Tan Tan
- Department of Inspection, Chenzhou No.1 People's Hospital, Chenzhou, Hunan 423000, P.R. China
| | - Tian-Yi Zhang
- Critical Care Center, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Xue-Fei Xiao
- Critical Care Center, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Huan Gu
- Department of Gastroenterology, Xiangya Hospital of Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
6
|
Efficacy and Safety of Xiao Ai Ping Injection Combined with Chemotherapy in Advanced Gastric Cancer: A Systematic Review and Meta-Analysis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:3821053. [PMID: 31236124 PMCID: PMC6545757 DOI: 10.1155/2019/3821053] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 04/16/2019] [Indexed: 12/24/2022]
Abstract
Xiao Ai Ping injection (XAPI), extracted from the Chinese herbal medicine Marsdenia tenacissima, is widely used in the adjuvant treatment of tumors in China. The present study aimed to evaluate the efficacy and safety of XAPI combined with chemotherapy for treating patients with advanced gastric cancer. Seven databases were searched for relevant studies published up to October 1, 2018, and Review Manager 5.3 software and Stata 12.0 software were used for meta-analysis. Fourteen studies, representing 1097 enrolled patients, were included in our analysis. Compared with chemotherapy alone, combination treatment with XAPI and the XELOX regimen (capecitabine plus oxaliplatin) was found to improve the objective response rate (ORR) [RR=1.36; 95%CI (1.10, 1.70); P=0.006], disease control rate (DCR) [RR=1.15; 95% CI (1.04, 1.28); P=0.010], and Karnofsky Performance Status (KPS) improvement rate [RR=1.51; 95%CI (1.14, 2.00); P=0.004] and to reduce the incidence of leukopenia [RR=0.68; 95%CI (0.55,0.84); P=0.0005], liver damage [RR=0.59; 95% CI (0.37, 0.92); P=0.02], renal impairment [RR=0.39; 95% CI (0.18, 0.85); P=0.02], and hand-foot syndrome [RR=0.56; 95%CI (0.35,0.90); P=0.02]. However, median progression-free survival (PFS), 1-year survival rate, and median overall survival (OS) were not extended by XAPI plus XELOX. Combination treatment with XAPI and the SOX regimen (tegafur plus oxaliplatin) did not improve ORR or DCR, but it did enhance the KPS improvement rate [RR=1.73; 95%CI (1.23,2.43); P=0.002] and reduce the incidence of nausea and vomiting [RR=0.66; 95% CI (0.50, 0.88); P=0.004]. XAPI in combination with the FOLFOX regimen (fluorouracil/calcium folinate/oxaliplatin) enhanced only the KPS improvement rate [RR=1.68; 95%CI (1.18,2.39); P=0.004] and had no significant effect on ORR or DCR or the incidence of adverse events. A single study reported that XAPI combined with the CPT-11 regimen (irinotecan) was superior to chemotherapy alone with respect to DCR and also reduced the incidence of leukopenia, liver damage, and hand-foot syndrome during chemotherapy, while prolonging PFS. Finally, one study reported that XAPI combined with the TP regimen (palitaxel plus cisplatin) improved ORR and KPS improvement rate to a greater extent than TP alone. Although the present review has some limitations, the findings suggest that XAPI combined with chemotherapy may represent a beneficial treatment strategy, particularly the combination of XAPI and XELOX.
Collapse
|
7
|
LncRNAs with miRNAs in regulation of gastric, liver, and colorectal cancers: updates in recent years. Appl Microbiol Biotechnol 2019; 103:4649-4677. [PMID: 31062053 DOI: 10.1007/s00253-019-09837-5] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 04/07/2019] [Accepted: 04/08/2019] [Indexed: 12/15/2022]
Abstract
Long noncoding RNA (lncRNA) is a kind of RNAi molecule composed of hundreds to thousands of nucleotides. There are several major types of functional lncRNAs which participate in some important cellular pathways. LncRNA-RNA interaction controls mRNA translation and degradation or serves as a microRNA (miRNA) sponge for silencing. LncRNA-protein interaction regulates protein activity in transcriptional activation and silencing. LncRNA guide, decoy, and scaffold regulate transcription regulators of enhancer or repressor region of the coding genes for alteration of expression. LncRNA plays a role in cellular responses including the following activities: regulation of chromatin structural modification and gene expression for epigenetic and cell function control, promotion of hematopoiesis and maturation of immunity, cell programming in stem cell and somatic cell development, modulation of pathogen infection, switching glycolysis and lipid metabolism, and initiation of autoimmune diseases. LncRNA, together with miRNA, are considered the critical elements in cancer development. It has been demonstrated that tumorigenesis could be driven by homeostatic imbalance of lncRNA/miRNA/cancer regulatory factors resulting in biochemical and physiological alterations inside the cells. Cancer-driven lncRNAs with other cellular RNAs, epigenetic modulators, or protein effectors may change gene expression level and affect the viability, immortality, and motility of the cells that facilitate cancer cell cycle rearrangement, angiogenesis, proliferation, and metastasis. Molecular medicine will be the future trend for development. LncRNA/miRNA could be one of the potential candidates in this category. Continuous studies in lncRNA functional discrepancy between cancer cells and normal cells and regional and rational genetic differences of lncRNA profiles are critical for clinical research which is beneficial for clinical practice.
Collapse
|
8
|
Zhu L, Zhang X, Fu X, Li Z, Sun Z, Wu J, Wang X, Wang F, Li X, Niu S, Ding M, Yang Z, Yang W, Yin M, Zhang L, Zhang M. c‐Myc mediated upregulation of long noncoding RNA SNHG12 regulates proliferation and drug sensitivity in natural killer/T‐cell lymphoma. J Cell Biochem 2019; 120:12628-12637. [PMID: 30825244 DOI: 10.1002/jcb.28529] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 12/29/2018] [Accepted: 01/09/2019] [Indexed: 12/28/2022]
Affiliation(s)
- Linan Zhu
- Department of Oncology The First Affiliated Hospital of Zhengzhou University Zhengzhou People’s Republic of China
| | - Xudong Zhang
- Department of Oncology The First Affiliated Hospital of Zhengzhou University Zhengzhou People’s Republic of China
| | - Xiaorui Fu
- Department of Oncology The First Affiliated Hospital of Zhengzhou University Zhengzhou People’s Republic of China
| | - Zhaoming Li
- Department of Oncology The First Affiliated Hospital of Zhengzhou University Zhengzhou People’s Republic of China
| | - Zhenchang Sun
- Department of Oncology The First Affiliated Hospital of Zhengzhou University Zhengzhou People’s Republic of China
| | - Jingjing Wu
- Department of Oncology The First Affiliated Hospital of Zhengzhou University Zhengzhou People’s Republic of China
| | - Xinhua Wang
- Department of Oncology The First Affiliated Hospital of Zhengzhou University Zhengzhou People’s Republic of China
| | - Feng Wang
- Department of Oncology The First Affiliated Hospital of Zhengzhou University Zhengzhou People’s Republic of China
| | - Xiangke Li
- Department of Oncology The First Affiliated Hospital of Zhengzhou University Zhengzhou People’s Republic of China
| | - Songtao Niu
- Department of Oncology The First Affiliated Hospital of Zhengzhou University Zhengzhou People’s Republic of China
| | - Mengjie Ding
- Department of Oncology The First Affiliated Hospital of Zhengzhou University Zhengzhou People’s Republic of China
| | - Zhenzhen Yang
- Department of Oncology The First Affiliated Hospital of Zhengzhou University Zhengzhou People’s Republic of China
| | - Wanqiu Yang
- Department of Oncology The First Affiliated Hospital of Zhengzhou University Zhengzhou People’s Republic of China
| | - Meifeng Yin
- Department of Oncology The First Affiliated Hospital of Zhengzhou University Zhengzhou People’s Republic of China
| | - Lei Zhang
- Department of Oncology The First Affiliated Hospital of Zhengzhou University Zhengzhou People’s Republic of China
| | - Mingzhi Zhang
- Department of Oncology The First Affiliated Hospital of Zhengzhou University Zhengzhou People’s Republic of China
| |
Collapse
|
9
|
LEF1-AS1 contributes to proliferation and invasion through regulating miR-544a/ FOXP1 axis in lung cancer. Invest New Drugs 2019; 37:1127-1134. [PMID: 30734202 PMCID: PMC6856024 DOI: 10.1007/s10637-018-00721-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 12/26/2018] [Indexed: 11/29/2022]
Abstract
Long non-coding RNAs (lncRNAs) are increasingly recognized as important regulators in tumor development. This study aims to investigate the potential role oflncRNALEF1-AS1, in the progression of lung cancer. Quantitative real-time PCR (qRT-PCR) and western blot assays showed that LEF1-AS1 was upregulated while miR-544a was downregulated in lung cancer specimens and cells. Overexpression of LEF1-AS1 led to the enhancement of cell proliferation and invasion, revealed by CCK-8 assay and transwell assay. A negative correlation was found between LEF1-AS1 and miR-544a. BLAST analysis and dual-luciferase assay confirmed that FOXP1 is a downstream effector of miR-544a. Therefore, the LEF1-AS1/miR-544a/FOXP1 axis is an important contributor to lung cancer progression. Collectively, our novel data uncovers a new mechanism that governs tumor progression in lung cancer and provides new targets that may be used for disease monitoring and therapeutic intervention of lung cancer.
Collapse
|
10
|
Dong L, Hong H, Chen X, Huang Z, Wu W, Wu F. LINC02163 regulates growth and epithelial-to-mesenchymal transition phenotype via miR-593-3p/FOXK1 axis in gastric cancer cells. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:607-615. [PMID: 29893595 DOI: 10.1080/21691401.2018.1464462] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Recently, long non-coding RNAs (lncRNAs) were involved in promoting gastric cancer (GC) initiation and progression. In the current study, we revealed that the expression level of LINC02163 was elevated in GC cell lines and tissues. Knockdown of LINC02163 inhibited GC cells growth and invasion both in vitro and in vivo. Mechanismly, LINC02163 exerted as a ceRNA and negatively regulated miR-593-3p expression. In addition, FOXK1 was identified as a down-stream target of miR-593-3p. The miR-593-3p/FOXK1 axis mediated LINC02163's effect on GC. To the best of our knowledge, our findings provided the first evidence that LINC02163 functioned as an oncogene in GC. LINC02163 may be a candidate prognostic biomarker and a target for new therapies in GC patients.
Collapse
Affiliation(s)
- Lemei Dong
- a Department of Gastroenterology , The First Affiliated Hospital of Wenzhou Medical University , Wenzhou City , China
| | - Huisuo Hong
- b Department of Anesthesiology , The First Affiliated Hospital of Wenzhou Medical University , Wenzhou , Zhejiang , P.R. China
| | - Xiaowei Chen
- a Department of Gastroenterology , The First Affiliated Hospital of Wenzhou Medical University , Wenzhou City , China
| | - Zhiming Huang
- a Department of Gastroenterology , The First Affiliated Hospital of Wenzhou Medical University , Wenzhou City , China
| | - Wei Wu
- a Department of Gastroenterology , The First Affiliated Hospital of Wenzhou Medical University , Wenzhou City , China
| | - Fang Wu
- a Department of Gastroenterology , The First Affiliated Hospital of Wenzhou Medical University , Wenzhou City , China
| |
Collapse
|
11
|
Guo X, Fu Z, Bi Y, Zheng J, Wang L, He X, Li F, Lei X, Ren Q. [Chinese herbal medicine Euphorbia esula extract induces apoptosis and inhibits the proliferation, migration and invasion of multidrug resistant gastric carcinoma cells]. SHENG WU YI XUE GONG CHENG XUE ZA ZHI = JOURNAL OF BIOMEDICAL ENGINEERING = SHENGWU YIXUE GONGCHENGXUE ZAZHI 2018; 35:244-251. [PMID: 29745530 PMCID: PMC9935092 DOI: 10.7507/1001-5515.201609009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Indexed: 11/03/2022]
Abstract
This paper aims to study the effects of traditional Chinese medicine Euphorbia esula on multidrug resistant human gastric cancer cells in the cell proliferation, migration, invasion and apoptosis, and to study the apoptosis-inducing pathway. Different dilutions of Euphorbia esula extract were used to process human multidrug resistant gastric cancer SGC7901/ADR cells. Cell proliferation inhibition phenomenon was determined by MTT experiment. Nuclear morphological changes of apoptotic cells and apoptotic indexes were observed and determined by Hochest33528 staining followed with fluorescence microscope observing. Flow cytometry was used to detect cell apoptosis rate. Cell migration and invasion ability were observed and determined by Transwell method. Spectrophotometry was used to detect caspase-3 and caspase-9 enzyme activity. Western blotting was used to detect subcellular distribution of cytochrome c. The results showed that Euphorbia esula extract had obvious inhibition effect on proliferation of gastric cancer multidrug resistant SGC7901/ADR cells, which was time- and concentration-dependent. After processing multidrug resistant gastric cancer SGC7901/ADR cells with Euphorbia esula extract, the apoptotic index and apoptosis rate were significantly increased than those in the control group, which showed a time- and dose-dependent mode; but if a caspase inhibitor was added, apoptosis index was not obviously increased. Transwell method showed that migration and invasion ability of the Euphorbia esula extract-processed SGC7901/ADR cells dropped significantly. Spectrophotometry showed that in Euphorbia esula extract-processed SGC7901/ADR cells, caspase-3 and caspase-9 expression were increased, which had significant differences with the control group. Western blotting test showed that the distribution of cytochrome c decreased in mitochondria, while increased in the cytoplasm (i.e., cytochrome c escaped from mitochondria to the cytoplasm). In conclusion, Euphorbia esula extract could inhibit the proliferation, migration and invasion, and induce apoptosis in human gastric cancer multidrug resistant SGC7901/ADR cells; and cytochrome c, caspase-9 and caspase-3 might be involved in cell apoptosis induced by Euphorbia esula extract, suggesting endogenous or mitochondrial apoptotic pathway.
Collapse
Affiliation(s)
- Xianli Guo
- Department of Biochemistry and Molecular Biology, Yan'an University, Yan'an, Shaanxi 716000, P.R.China
| | - Zhaoying Fu
- Department of Biochemistry and Molecular Biology, Yan'an University, Yan'an, Shaanxi 716000, P.R.China;Institute of Molecular Biology and Immunology, Yan'an University, Yan'an, Shaanxi 716000, P.R.China
| | - Yun Bi
- First Affiliated Hospital, Yan'an University, Yan'an, Shaanxi 716000,
| | - Jun Zheng
- First Affiliated Hospital, Yan'an University, Yan'an, Shaanxi 716000, P.R.China
| | - Lei Wang
- First Affiliated Hospital, Yan'an University, Yan'an, Shaanxi 716000, P.R.China
| | - Xiaolong He
- First Affiliated Hospital, Yan'an University, Yan'an, Shaanxi 716000, P.R.China
| | - Fei Li
- First Affiliated Hospital, Yan'an University, Yan'an, Shaanxi 716000, P.R.China
| | - Xing Lei
- First Affiliated Hospital, Yan'an University, Yan'an, Shaanxi 716000, P.R.China
| | - Qingquan Ren
- First Affiliated Hospital, Yan'an University, Yan'an, Shaanxi 716000, P.R.China
| |
Collapse
|
12
|
Fu Z, Han X, Du J, Han X, Liu W, Shao S, Liu X. Euphorbia lunulata extract acts on multidrug resistant gastric cancer cells to inhibit cell proliferation, migration and invasion, arrest cell cycle progression, and induce apoptosis. JOURNAL OF ETHNOPHARMACOLOGY 2018; 212:8-17. [PMID: 28811220 DOI: 10.1016/j.jep.2017.08.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 07/31/2017] [Accepted: 08/09/2017] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The milky sap or the aboveground part of the plant Euphorbia lunulata has long been used by Chinese people to treat noncancerous growths and cancerous ailments but the specific mode of action and the action mechanism remain to be elucidated. AIM OF THE STUDY To investigate the effects of Euphorbia lunulata extract on cell proliferation, migration, invasion, cell cycle progression, and apoptosis of multidrug resistant human gastric cancer cells; To study the mechanism of apoptosis induction by Euphorbia lunulata extract in multidrug resistant human gastric cancer cells. MATERIALS AND METHODS The aboveground part of fresh Euphorbia lunulata plant was extracted first with ethanol and then with n-hexane. The aseptic extract at varying concentrations was used to treat the multidrug resistant human gastric cancer SGC7901/ADR cells. After treatment, the inhibition of cell proliferation was examined by MTT assay. The inhibitions of cell migration and invasion were detected by Transwell method. The alteration of cell cycle progression was studied by flow cytometry. The morphological changes of cell nuclei were observed with fluorescence microscopy following Hoechst 33258 staining and the apoptotic indexes were calculated. The activation of caspase enzymes was analyzed by spectrophotometry. The sub-cellular distribution of cytochrome complex and the expression of Bax and Bcl-2 proteins were determined by Western blot. RESULTS The proliferation, migration, and invasion of SGC7901/ADR cells were significantly inhibited by Euphorbia lunulata extract, which showed time- and dose-dependent manners. Cell cycle was arrested in G2/M phase. Significant apoptotic morphological changes were observed in the nuclei of the treated cells, and apoptotic indexes were increased significantly; these changes were diminished when Z-VAD-FMK, a caspase inhibitor, was also presented. The activities of caspase-3, caspase-8, and caspase-9 were increased. The sub-cellular distribution of cytochrome complex was altered----reduced in the mitochondria and increased in the cytoplasm. The expression of Bax was upregulated, while that of Bcl-2 was downregulated. CONCLUSION Euphorbia lunulata extract inhibited the proliferation, migration, and invasion of SGC7901/ADR cells, arrested cell cycle progression, and induced cell apoptosis; the mechanism of apoptosis induction involved both the extrinsic and the intrinsic pathways.
Collapse
Affiliation(s)
- Zhaoying Fu
- School of Medicine, Yanan University, Yanan, Shaanxi Province 716000, China; Institute of Molecular Biology and Immunology, Yanan University, Yanan, Shaanxi Province 716000, China.
| | - Xiaodong Han
- School of Medicine, Yanan University, Yanan, Shaanxi Province 716000, China; Institute of Molecular Biology and Immunology, Yanan University, Yanan, Shaanxi Province 716000, China.
| | - Juan Du
- School of Medicine, Yanan University, Yanan, Shaanxi Province 716000, China; Institute of Molecular Biology and Immunology, Yanan University, Yanan, Shaanxi Province 716000, China.
| | - Xiaoxiao Han
- School of Medicine, Yanan University, Yanan, Shaanxi Province 716000, China.
| | - Weipeng Liu
- School of Medicine, Yanan University, Yanan, Shaanxi Province 716000, China.
| | - Shumei Shao
- School of Medicine, Yanan University, Yanan, Shaanxi Province 716000, China.
| | - Xiaobin Liu
- School of Medicine, Yanan University, Yanan, Shaanxi Province 716000, China.
| |
Collapse
|
13
|
Hao S, Yao L, Huang J, He H, Yang F, Di Y, Jin C, Fu D. Genome-Wide Analysis Identified a Number of Dysregulated Long Noncoding RNA (lncRNA) in Human Pancreatic Ductal Adenocarcinoma. Technol Cancer Res Treat 2018; 17:1533034617748429. [PMID: 29343207 PMCID: PMC5784569 DOI: 10.1177/1533034617748429] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 09/25/2017] [Accepted: 11/14/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Long noncoding RNAs have been shown to play crucial roles in cancer biology, while the long noncoding RNA landscapes of pancreatic ductal adenocarcinoma have not been completely characterized. We aimed to determine whether long noncoding RNA could serve as early diagnostic biomarkers for pancreatic ductal adenocarcinoma. METHOD We conducted a genome-wide microarray analysis on pancreatic ductal adenocarcinoma and their adjacent noncancerous tissues from 8 Chinese patients. RESULTS A total of 3352 significantly differentially expressed long noncoding RNAs were detected. Of total, 1249 long noncoding RNAs were upregulated and 2103 were downregulated (fold change ≥2, P < 0.05, FDR <0.05). These differentially expressed long noncoding RNAs were not evenly distributed among chromosomes in human genome. Hierarchical clustering of these differentially expressed long noncoding RNAs revealed large variabilities in long noncoding RNA expression among individual patient, indicating that certain long noncoding RNAs could play a unique role or be used as a biomarker for specific subtype of pancreatic ductal adenocarcinoma. Gene Ontology enrichment and pathway analysis identified several remarkably dysregulated pathways in pancreatic ductal adenocarcinoma tissue, such as interferon-γ-mediated signaling pathway, mitotic cell cycle and proliferation, extracellular matrix receptor interaction, focal adhesion, and regulation of actin cytoskeleton. The co-expression network analysis detected 393 potential interactions between 80 differentially expressed long noncoding RNAs and 105 messenger RNAs. We experimentally verified 7 most markedly dysregulated long noncoding RNAs from the network. CONCLUSION Our study provided a genome-wide survey of dysregulated long noncoding RNAs and long noncoding RNA/messenger RNA co-regulation networks in pancreatic ductal adenocarcinoma tissue. These dysregulated long noncoding RNA/messenger RNA networks could be used as biomarkers to provide early diagnosis of pancreatic ductal adenocarcinoma or its subtype, predict prognosis, and evaluate treatment efficacy.
Collapse
Affiliation(s)
- Sijie Hao
- Department of Pancreatic Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Lie Yao
- Department of Pancreatic Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Jiaxin Huang
- Department of Pancreatic Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Hang He
- Department of Pancreatic Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Feng Yang
- Department of Pancreatic Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Yang Di
- Department of Pancreatic Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Chen Jin
- Department of Pancreatic Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Deliang Fu
- Department of Pancreatic Surgery, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
14
|
Fu ZY. Role of ATP-binding cassette transporters, apoptosis, and long non-coding RNAs in gastric cancer multidrug resistance. Shijie Huaren Xiaohua Zazhi 2017; 25:2838-2850. [DOI: 10.11569/wcjd.v25.i32.2838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cancer multidrug resistance refers to the cross resistance of cancer cells to a variety of anticancer drugs, which can be primary or secondary. Several mechanisms attribute to cancer multidrug resistance. In this paper, the recent progress in the understanding of the mechanisms of multi-drug resistance of gastric cancer cells with regard to the role of adenosine triphosphate binding cassette transporters, apoptosis, and long non-coding RNAs is reviewed.
Collapse
Affiliation(s)
- Zhao-Ying Fu
- Institute of Molecular Biology and Immunology, Medical School of Yan'an University, Yan'an 716000, Shaanxi Province, China
| |
Collapse
|
15
|
Wang J, Liu X, Yan C, Liu J, Wang S, Hong Y, Gu A, Zhao P. LEF1-AS1, a long-noncoding RNA, promotes malignancy in glioblastoma. Onco Targets Ther 2017; 10:4251-4260. [PMID: 28894380 PMCID: PMC5584905 DOI: 10.2147/ott.s130365] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES The long-noncoding RNAs (lncRNAs) are identified as new crucial regulators of diverse cellular processes in glioblastoma (GBM) tissues. However, the expression pattern and biological function of lncRNAs remain largely unknown. Here, for the first time, the effects of lncRNA lymphoid enhancer-binding factor 1 antisense RNA 1 (LEF1-AS1) on GBM progression both in vitro and in vivo are investigated. MATERIALS AND METHODS Expression profiles of LEF1-AS1 in GBM specimens were investigated by bioinformatics analyses. LEF1-AS1 expression in GBM tissues was detected using a quantitative polymerase chain reaction. LEF1-AS1 expression was inhibited by transfecting the LEF1-AS1-specific small interfering RNAs (siRNAs) and stable cell lines established were inhibited by transfecting si-LEF1-AS1 viruses. The Cell Counting Kit-8, ethynyl deoxyuridine, and colony formation assay were used to examine proliferation function. The flow cytometry detected cell-cycle change and apoptosis. Migration effects were detected by a Transwell assay. The tumor xenografts and immunohistochemistry were performed to evaluate tumor growth in vivo. RESULTS In this study, LEF1-AS1 expression was found significantly upregulated in GBM specimens compared with normal tissues. The 5-year overall survival in GBM patients from The Cancer Genome Atlas with high expression of LEF1-AS1 was inferior to that with low expression. It was confirmed that expression of LEF1-AS1 was higher in GBM tissues than normal ones. Knockdown of LEF1-AS1 significantly inhibited the malignancy of GBM cells, including proliferation and invasion, and promoted cell apoptosis. The result of Western blot assays indicated that knockdown of LEF1-AS1-mediated tumor suppression in GBM cells may be via the reduction of ERK and Akt/mTOR signaling activities. Finally, the in vivo experiment also demonstrated that knockdown LEF1-AS1 inhibited the growth-promoting effect of LEF1-AS1 of U87 cells. CONCLUSION Our result indicated that lncRNA LEF1-AS1 acts as an oncogene in GBM and may be a pivotal target for this disease.
Collapse
Affiliation(s)
| | | | - Changsheng Yan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing
| | - Jie Liu
- Xuzhou Maternity and Child Health Care Hospital, Xuzhou Medical University, Xuzhou
| | - Songtao Wang
- Department of Intensive Care Unit, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai
| | | | - Aihua Gu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology
- Key Laboratory of Modern Toxicology, of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | | |
Collapse
|
16
|
Tian X, Zhang H, Zhang B, Zhao J, Li T, Zhao Y. Microarray expression profile of long non-coding RNAs in paclitaxel-resistant human lung adenocarcinoma cells. Oncol Rep 2017; 38:293-300. [DOI: 10.3892/or.2017.5691] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 05/15/2017] [Indexed: 11/05/2022] Open
|
17
|
Expression Profile of Long Noncoding RNAs in Human Earlobe Keloids: A Microarray Analysis. BIOMED RESEARCH INTERNATIONAL 2016; 2016:5893481. [PMID: 28101509 PMCID: PMC5215475 DOI: 10.1155/2016/5893481] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 09/14/2016] [Accepted: 11/01/2016] [Indexed: 11/17/2022]
Abstract
Background. Long noncoding RNAs (lncRNAs) play key roles in a wide range of biological processes and their deregulation results in human disease, including keloids. Earlobe keloid is a type of pathological skin scar, and the molecular pathogenesis of this disease remains largely unknown. Methods. In this study, microarray analysis was used to determine the expression profiles of lncRNAs and mRNAs between 3 pairs of earlobe keloid and normal specimens. Gene Ontology (GO) categories and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed to identify the main functions of the differentially expressed genes and earlobe keloid-related pathways. Results. A total of 2068 lncRNAs and 1511 mRNAs were differentially expressed between earlobe keloid and normal tissues. Among them, 1290 lncRNAs and 1092 mRNAs were upregulated, and 778 lncRNAs and 419 mRNAs were downregulated. Pathway analysis revealed that 24 pathways were correlated to the upregulated transcripts, while 11 pathways were associated with the downregulated transcripts. Conclusion. We characterized the expression profiles of lncRNA and mRNA in earlobe keloids and suggest that lncRNAs may serve as diagnostic biomarkers for the therapy of earlobe keloid.
Collapse
|
18
|
Li C, Zou J, Zheng G, Chu J. MiR-30a Decreases Multidrug Resistance (MDR) of Gastric Cancer Cells. Med Sci Monit 2016; 22:4509-4515. [PMID: 27876712 PMCID: PMC5123779 DOI: 10.12659/msm.898415] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 04/11/2016] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND The effectiveness of chemotherapy for gastric cancer is largely limited by either intrinsic or acquired drug resistance. In this study, we aimed to explore the association between miR-30a dysregulation and multidrug resistance (MDR) in gastric cancer cells. MATERIAL AND METHODS We recruited 20 patients with advanced gastric cancer. Chemosensitivity was assessed after completion of the chemotherapy. SGC-7901 and SGC-7901/DDP cells were transfected for miR-30a overexpression or knockdown. Then, MTT assay was performed to assess the IC50 of DPP and 5-FU in SGC-7901 and SGC-7901/DDP cells. Flow cytometry analysis was used to detect DPP- and 5-FU-induced cell apoptosis. Western blot analysis and immunofluorescence staining were used to assess EMT of the cells. RESULTS MiR-30a was significantly downregulated in the chemoresistant tissues. In both SGC-7901 and SGC-7901/DDP cells, miR-30a overexpression decreased the expression of P-gp, a MDR-related protein. MTT assay and flow cytometry analysis showed that miR-30a inhibition increased chemoresistance, while miR-30a overexpression decreased chemoresistance in gastric cancer cells. Both Western blot analysis and immunofluorescence staining confirmed that miR-30a inhibition decreased E-cadherin but increased N-cadherin in SGC-7901 cells, while miR-30a overexpression increased E-cadherin but decreased N-cadherin in SGC-7901 cells. CONCLUSIONS MiR-30a can decrease multidrug resistance (MDR) of gastric cancer cells. It is also an important miRNA modulating EMT of the cancer cells.
Collapse
Affiliation(s)
- Chunying Li
- Department of Gastroenterology, Cangzhou Central Hospital, Cangzhou, Hebei, P.R. China
| | - Jinhai Zou
- Department of Nuclear Medicine, Cangzhou Central Hospital, Cangzhou, Hebei, P.R. China
| | - Guoqi Zheng
- Department of Gastroenterology, Cangzhou Central Hospital, Cangzhou, Hebei, P.R. China
| | - Jiankun Chu
- Department of Gastroenterology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, P.R. China
| |
Collapse
|
19
|
Long non-coding RNAs in cancer drug resistance development. DNA Repair (Amst) 2016; 45:25-33. [PMID: 27427176 DOI: 10.1016/j.dnarep.2016.06.003] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 06/29/2016] [Accepted: 06/29/2016] [Indexed: 02/06/2023]
Abstract
The presence or emergence of chemoresistance in tumor cells is a major burden in cancer therapy. While drug resistance is a multifactorial phenomenon arising from altered membrane transport of drugs, altered drug metabolism, altered DNA repair, reduced apoptosis rate and alterations of drug metabolism, it can also be linked to genetic and epigenetic factors. Long non-coding RNAs (lncRNAs) have important regulatory roles in many aspects of genome function including gene transcription, splicing, and epigenetics as well as biological processes involved in cell cycle, cell differentiation, development, and pluripotency. As such, it may not be surprising that some lncRNAs have been recently linked to carcinogenesis and drug resistance/sensitivity. Research is accelerating to decipher the exact molecular mechanism of lncRNA-regulated drug resistance and its therapeutic implications. In this article, we will review the structure, biogenesis, and mode of action of lncRNAs. Then, the involvement of lncRNAs in drug resistance will be discussed in detail.
Collapse
|
20
|
Wang Q, Zhang J, Liu Y, Zhang W, Zhou J, Duan R, Pu P, Kang C, Han L. A novel cell cycle-associated lncRNA, HOXA11-AS, is transcribed from the 5-prime end of the HOXA transcript and is a biomarker of progression in glioma. Cancer Lett 2016; 373:251-259. [PMID: 26828136 DOI: 10.1016/j.canlet.2016.01.039] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 01/08/2016] [Accepted: 01/24/2016] [Indexed: 01/17/2023]
Abstract
The comprehensive lncRNA expression signature in glioma has not yet been fully elucidated. We performed a high-throughput microarray to detect the ncRNA expression profiles of 220 human glioma tissues. Here, we found that a novel lncRNA, HOXA11-AS, was the antisense transcript of the HOX11 gene. It was shown that HOXA11-AS was closely associated with glioma grade and poor prognosis. Multivariate Cox regression analysis revealed that HOXA11-AS was an independent prognostic factor in glioblastoma multiforme patients, and its expression was correlated with the glioma molecular subtypes of the Cancer Genome Atlas. Gene set enrichment analysis indicated that the gene sets most correlated with HOXA11-AS expression were involved in cell cycle progression. Over-expression of the HOXA11-AS transcript promoted cell proliferation in vitro, while knockdown of HOXA11-AS expression repressed cell proliferation via regulation of cell cycle progression. The growth-promoting and growth-inhibiting effects of HOXA11-AS were also demonstrated in a xenograft mouse model. Our data confirms, for the first time, that HOXA11-AS is an important long non-coding RNA that primarily serves as a prognostic factor for glioma patient survival. HOXA11-AS could serve as a biomarker for identifying glioma molecular subtypes and as therapeutic target for glioma patients.
Collapse
Affiliation(s)
- Qixue Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China; Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin 300052, China; Key Laboratory of Post-trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin 300052, China; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin 300052, China; Chinese Glioma Cooperative Group (CGCG), 6 Tiantanxi Li, Beijing 100050, China
| | - Junxia Zhang
- Chinese Glioma Cooperative Group (CGCG), 6 Tiantanxi Li, Beijing 100050, China; Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yanwei Liu
- Chinese Glioma Cooperative Group (CGCG), 6 Tiantanxi Li, Beijing 100050, China; Glioma Center, Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
| | - Wei Zhang
- Chinese Glioma Cooperative Group (CGCG), 6 Tiantanxi Li, Beijing 100050, China; Glioma Center, Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
| | - Junhu Zhou
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China; Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin 300052, China; Key Laboratory of Post-trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin 300052, China; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin 300052, China; Chinese Glioma Cooperative Group (CGCG), 6 Tiantanxi Li, Beijing 100050, China
| | - Ran Duan
- Chinese Glioma Cooperative Group (CGCG), 6 Tiantanxi Li, Beijing 100050, China; Glioma Center, Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
| | - Peiyu Pu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China; Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin 300052, China; Key Laboratory of Post-trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin 300052, China; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin 300052, China; Chinese Glioma Cooperative Group (CGCG), 6 Tiantanxi Li, Beijing 100050, China
| | - Chunsheng Kang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China; Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin 300052, China; Key Laboratory of Post-trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin 300052, China; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin 300052, China; Chinese Glioma Cooperative Group (CGCG), 6 Tiantanxi Li, Beijing 100050, China
| | - Lei Han
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China; Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin 300052, China; Key Laboratory of Post-trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin 300052, China; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin 300052, China; Chinese Glioma Cooperative Group (CGCG), 6 Tiantanxi Li, Beijing 100050, China.
| |
Collapse
|
21
|
Yang Z, Guo X, Li G, Shi Y, Li L. Long noncoding RNAs as potential biomarkers in gastric cancer: Opportunities and challenges. Cancer Lett 2015; 371:62-70. [PMID: 26577810 DOI: 10.1016/j.canlet.2015.11.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Revised: 11/05/2015] [Accepted: 11/05/2015] [Indexed: 02/06/2023]
Abstract
Gastric cancer (GC) is a major threat to human health, and its prognosis is poor due to the lack of appropriate biomarkers. LncRNAs are a group of non-protein-coding RNAs that regulate gene expression at the transcriptional or posttranscriptional level. LncRNAs play essential roles in GC initiation and development in the same way as oncogenes or tumour suppressor genes. Recent investigations have revealed that lncRNAs are often aberrantly expressed in GC; are involved in cell proliferation, apoptosis, migration and invasion; and correlate with the malignant phenotype of GC. LncRNAs, especially the lncRNAs present in the blood and gastric juice, show potential value as biomarkers for the diagnosis of GC or for determining disease prognosis. However, there are still many challenges to be faced before lncRNAs can be used in clinical applications. In this review, we summarise lncRNAs as the potential biomarkers for GC and the current challenges associated with the clinical application.
Collapse
Affiliation(s)
- Ziguo Yang
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, China
| | - Xiaobo Guo
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, China.
| | - Guimei Li
- Department of Pediatrics, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, China
| | - Yulong Shi
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, China
| | - Leping Li
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, China
| |
Collapse
|