1
|
MDM4: What do we know about the association between its polymorphisms and cancer? MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 40:61. [PMID: 36566308 DOI: 10.1007/s12032-022-01929-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/13/2022] [Indexed: 12/25/2022]
Abstract
MDM4 is an important p53-negative regulator, consequently, it is involved in cell proliferation, DNA repair, and apoptosis regulation. MDM4 overexpression and amplification are described to lead to cancer formation, metastasis, and poor disease prognosis. Several MDM4 SNPs are in non-coding regions, and some affect the MDM4 regulation by disrupting the micro RNA binding site in 3'UTR (untranslated region). Here, we gathered several association studies with different MDM4 SNPs and populations to understand the relationship between its SNPs and solid tumor risk. Many studies failed to replicate their results regarding different populations, cancer types, and risk genotypes, leading to conflicting conclusions. We suggested that distinct haplotype patterns in different populations might affect the association between MDM4 SNPs and cancer risk. Thus, we propose to investigate some linkage SNPs in specific haplotypes to provide informative MDM4 markers for association studies with cancer.
Collapse
|
2
|
Yang W, Zhang T, Song X, Dong G, Xu L, Jiang F. SNP-Target Genes Interaction Perturbing the Cancer Risk in the Post-GWAS. Cancers (Basel) 2022; 14:5636. [PMID: 36428729 PMCID: PMC9688512 DOI: 10.3390/cancers14225636] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/10/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022] Open
Abstract
Cancer ranks as the second leading cause of death worldwide, and, being a genetic disease, it is highly heritable. Over the past few decades, genome-wide association studies (GWAS) have identified many risk-associated loci harboring hundreds of single nucleotide polymorphisms (SNPs). Some of these cancer-associated SNPs have been revealed as causal, and the functional characterization of the mechanisms underlying the cancer risk association has been illuminated in some instances. In this review, based on the different positions of SNPs and their modes of action, we discuss the mechanisms underlying how SNPs regulate the expression of target genes to consequently affect tumorigenesis and the development of cancer.
Collapse
Affiliation(s)
- Wenmin Yang
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing 210009, China
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing 210009, China
- The Fourth Clinical College, Nanjing Medical University, Nanjing 210009, China
| | - Te Zhang
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing 210009, China
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing 210009, China
- The Fourth Clinical College, Nanjing Medical University, Nanjing 210009, China
| | - Xuming Song
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing 210009, China
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing 210009, China
- The Fourth Clinical College, Nanjing Medical University, Nanjing 210009, China
| | - Gaochao Dong
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing 210009, China
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing 210009, China
| | - Lin Xu
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing 210009, China
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing 210009, China
- The Fourth Clinical College, Nanjing Medical University, Nanjing 210009, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211116, China
| | - Feng Jiang
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing 210009, China
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing 210009, China
- The Fourth Clinical College, Nanjing Medical University, Nanjing 210009, China
| |
Collapse
|
3
|
Zhou R, Li Y, Wang N, Niu C, Huang X, Cao S, Huo X. MDM4 polymorphisms associated with the risk but not the prognosis of esophageal cancer in Cixian high-incidence region from northern China. Asia Pac J Clin Oncol 2022; 18:e435-e441. [PMID: 35098683 DOI: 10.1111/ajco.13746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 12/04/2021] [Indexed: 11/27/2022]
Abstract
AIM The mouse double minute 4 (MDM4) may contribute to tumorgenesis by inhibiting p53 tumor suppressor activity. This study was designed to investigate whether MDM4 polymorphisms could affect susceptibility to esophageal squamous cell carcinoma (ESCC) and the survival of ESCC patients in a population from Cixian high-incidence region of northern China, which has not been explored. METHODS MDM4 rs1380576 and rs4245739 were genotyped by polymerase chain reaction-ligase detection reaction (PCR-LDR) in 568 ESCC patients and 578 controls. RESULTS Compared to rs1380576 C/C genotype, C/G genotype was associated with decreased risk of ESCC (odds ratio [OR] = 0.761, 95% confidence interval [CI] = 0.595-0.973). Compared to rs4245739 A/A genotype, A/C or C/C genotype was related to increased susceptibility to ESCC (OR = 1.551, 95% CI = 1.001-2.402). Individuals with GC haplotype had significantly higher risk of ESCC than those with CA or GA haplotype (OR = 1.598, 95% CI = 1.048-2.438). Neither rs1380576 nor rs4245739 influenced the survival of ESCC patients. CONCLUSION rs1380576 and rs4245739 may be used to predict susceptibility to ESCC for population in Cixian high-incidence region.
Collapse
Affiliation(s)
- Rongmiao Zhou
- Hebei Provincial Cancer Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yan Li
- Hebei Provincial Cancer Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Na Wang
- Hebei Provincial Cancer Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Chaoxu Niu
- Department of Surgery, Shijiazhuang Ping'an Hospital, Shijiazhuang, China
| | - Xi Huang
- Hebei Provincial Cancer Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Shiru Cao
- Hebei Provincial Cancer Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiangran Huo
- Hebei Provincial Cancer Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
4
|
Chhichholiya Y, Suryan AK, Suman P, Munshi A, Singh S. SNPs in miRNAs and Target Sequences: Role in Cancer and Diabetes. Front Genet 2021; 12:793523. [PMID: 34925466 PMCID: PMC8673831 DOI: 10.3389/fgene.2021.793523] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 10/28/2021] [Indexed: 12/27/2022] Open
Abstract
miRNAs are fascinating molecular players for gene regulation as individual miRNA can control multiple targets and a single target can be regulated by multiple miRNAs. Loss of miRNA regulated gene expression is often reported to be implicated in various human diseases like diabetes and cancer. Recently, geneticists across the world started reporting single nucleotide polymorphism (SNPs) in seed sequences of miRNAs. Similarly, SNPs are also reported in various target sequences of these miRNAs. Both the scenarios lead to dysregulated gene expression which may result in the progression of diseases. In the present paper, we explore SNPs in various miRNAs and their target sequences reported in various human cancers as well as diabetes. Similarly, we also present evidence of these mutations in various other human diseases.
Collapse
Affiliation(s)
- Yogita Chhichholiya
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, India
| | - Aman Kumar Suryan
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, India
| | - Prabhat Suman
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, India
| | - Anjana Munshi
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, India
| | - Sandeep Singh
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, India
| |
Collapse
|
5
|
Wu J, Lu G, Wang X. MDM4 alternative splicing and implication in MDM4 targeted cancer therapies. Am J Cancer Res 2021; 11:5864-5880. [PMID: 35018230 PMCID: PMC8727814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/31/2021] [Indexed: 06/14/2023] Open
Abstract
The oncogenic MDM4, initially named MDMX, has been identified as a p53-interacting protein and a key upstream negative regulator of the tumor suppressor p53. Accumulating evidence indicates that MDM4 plays critical roles in the initiation and progression of multiple human cancers. MDM4 is frequently amplified and upregulated in human cancers, contributing to overgrowth and apoptosis inhibition by blocking the expression of downstream target genes of p53 pathway. Disruptors for MDM4-p53 interaction have been shown to restore the anti-tumor activity of p53 in cancer cells. MDM4 possesses multiple splicing isoforms whose expressions are driven by the presence of oncogenes in cancer cells. Some of the MDM4 splicing isoforms lack p53 binding domain and may exhibit p53-independent oncogenic functions. These features render MDM4 to be an attractive therapeutic target for cancer therapy. In the present review, we primarily focus on the detailed molecular structure of MDM4 splicing isoforms, candidate regulators for initiating MDM4 splicing, deregulation of MDM4 isoforms in cancer and potential therapy strategies by targeting splicing isoforms of MDM4.
Collapse
Affiliation(s)
- Jin Wu
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer CenterBuffalo, NY, USA
| | - Guanting Lu
- Department of Pathology, Key Laboratory of Tumor Molecular Research, People’s Hospital of Deyang City173 Tai Shan North Road, Deyang 618000, Sichuan, P. R. China
| | - Xinjiang Wang
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer CenterBuffalo, NY, USA
| |
Collapse
|
6
|
Wang Y, Yang Z, Chang X, Li J, Han Z. Five MDM4 gene polymorphisms on cancer risk: An updated systematic review and meta-analysis. Int J Biol Markers 2021; 36:17246008211033874. [PMID: 34347554 DOI: 10.1177/17246008211033874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
PURPOSE The study aims to provide a comprehensive account of the association of five MDM4 gene polymorphisms (rs1380576, rs1563828, rs10900598, rs11801299, and rs4245739) with susceptibility to cancer. METHODS A literature search for eligible candidate gene studies published before 27 February 2021 was conducted in PubMed, Medline and Web of Science. The following combinations of main keywords were used: (MDM4 OR MDMX OR HDMX OR mouse double minute 4 homolog) AND (polymorphism OR mutation OR variation OR SNP OR genotype) AND (cancer OR tumor OR neoplasm OR malignancy OR carcinoma OR adenocarcinoma). Potential sources of heterogeneity were sought out via meta-regression, subgroup and sensitivity analysis. RESULTS Overall, a total of 15 articles with 21,365 cases and 29,280 controls for five polymorphisms of the MDM4 gene were enrolled. In the stratified analysis of rs1380576, we found that Asians might have less susceptibility to cancer. We found that rs4245739 was correlated with a decreased risk of cancer for Asians and breast cancer susceptibility. However, for other polymorphisms, the results showed no significant association with cancer risk. CONCLUSION MDM4 rs1380576 polymorphism is negatively associated with the risk of cancer in the Asian population. MDM4 rs4245739 polymorphism is inversely associated with cancer risk for Asians and breast cancer susceptibility.
Collapse
Affiliation(s)
- Yaxuan Wang
- Department of Urology, 71213The Second Hospital of Hebei Medical University, China
| | - Zhan Yang
- Department of Urology, 71213The Second Hospital of Hebei Medical University, China
| | - Xueliang Chang
- Department of Urology, 71213The Second Hospital of Hebei Medical University, China
| | - Jingdong Li
- Department of Urology, 71213The Second Hospital of Hebei Medical University, China
| | - Zhenwei Han
- Department of Urology, 71213The Second Hospital of Hebei Medical University, China
| |
Collapse
|
7
|
Yu D, Xu Z, Cheng X, Qin J. The role of miRNAs in MDMX-p53 interplay. J Evid Based Med 2021; 14:152-160. [PMID: 33988919 DOI: 10.1111/jebm.12428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 04/16/2021] [Accepted: 04/16/2021] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRNAs) are endogenous noncoding RNAs of 19-24 nucleotides in length and are tightly related to tumorigenesis and progression. Recent studies have demonstrated that the tumor suppressor p53 and its negative controller MDMX are regulated by miRNAs in different ways. Some miRNAs directly target p53 and regulate its expression and function, whereas some miRNAs target MDMX and regulate p53's activity indirectly. The overexpression of several miRNAs can restore the activity of p53 by negatively regulating MDMX in cancer cells. Therefore, a better understanding of the miRNAs-MDMX-p53 network will put forward potential research directions for developing anticancer therapeutics. In the present review, we mainly focus on the regulatory effects of miRNAs on the MDMX-p53 interplay as well as the role of the miRNAs-MDMX-p53 network in human cancer.
Collapse
Affiliation(s)
- Dehua Yu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhiyuan Xu
- Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Xiangdong Cheng
- Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Jiangjiang Qin
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| |
Collapse
|
8
|
Klein AM, de Queiroz RM, Venkatesh D, Prives C. The roles and regulation of MDM2 and MDMX: it is not just about p53. Genes Dev 2021; 35:575-601. [PMID: 33888565 PMCID: PMC8091979 DOI: 10.1101/gad.347872.120] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In this review, Klein et al. discuss the p53-independent roles of MDM2 and MDMX. First, they review the structural and functional features of MDM2 and MDMX proteins separately and together that could be relevant to their p53-independent activities. Following this, they summarize how these two proteins are regulated and how they can function in cells that lack p53. Most well studied as proteins that restrain the p53 tumor suppressor protein, MDM2 and MDMX have rich lives outside of their relationship to p53. There is much to learn about how these two proteins are regulated and how they can function in cells that lack p53. Regulation of MDM2 and MDMX, which takes place at the level of transcription, post-transcription, and protein modification, can be very intricate and is context-dependent. Equally complex are the myriad roles that these two proteins play in cells that lack wild-type p53; while many of these independent outcomes are consistent with oncogenic transformation, in some settings their functions could also be tumor suppressive. Since numerous small molecules that affect MDM2 and MDMX have been developed for therapeutic outcomes, most if not all designed to prevent their restraint of p53, it will be essential to understand how these diverse molecules might affect the p53-independent activities of MDM2 and MDMX.
Collapse
Affiliation(s)
- Alyssa M Klein
- Integrated Program in Cellular, Molecular, and Biomedical Studies, Columbia University, New York, New York 10032, USA
| | | | - Divya Venkatesh
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Carol Prives
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| |
Collapse
|
9
|
Chen RX, Lu WM, Lu MP, Wang ML, Zhu XJ, Wu ZF, Tian HQ, Zhu LP, Zhang ZD, Cheng L. Polymorphisms in MicroRNA Target Sites of TGF-β Signaling Pathway Genes and Susceptibility to Allergic Rhinitis. Int Arch Allergy Immunol 2021; 182:399-407. [PMID: 33596578 PMCID: PMC8117390 DOI: 10.1159/000511975] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 09/29/2020] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The polymorphisms inside microRNA target sites locating in the 3'-UTR region may introduce the micro-RNA-binding changes, which may regulate the gene expression and correlate with the potential diseases. OBJECTIVES We aimed to investigate whether the polymorphisms in microRNA target sites of transforming growth factor beta (TGF-β) signaling pathway genes are associated with the susceptibility of mite-sensitized allergic rhinitis (AR) in a Han Chinese population. METHODS In this case-control study, 454 AR patients and 448 healthy controls were recruited. Three HapMap single-nucleotide polymorphisms (SNPs) were mapped to putative microRNA recognition sites and genotyped by TaqMan allelic discrimination assay. RESULTS The genotype and allele frequencies of 3 SNPs (rs1590 in TGFBR1; rs1434536 and rs17023107 in BMPR1B) showed lack of significant association with AR. However, in the subgroup analysis, the TG, GG, and TG/GG genotypes of rs1590 exhibited significantly increased risk of AR in the male subgroup (TG: adjusted OR = 1.57, 95% CI = 1.08-2.31; GG: adjusted OR = 1.76, 95% CI = 1.09-2.86; TG/GG: adjusted OR = 1.62, 95% CI = 1.13-2.33). The CT genotypes of rs17023107 might have potential to protect against AR in the patients age of <15 years (adjusted OR = 0.37, 95% CI = 0.14-0.95) and the males (adjusted OR = 0.48, 95% CI = 0.25-0.95). No significant association was found between SNPs and the total serum IgE level. CONCLUSIONS In a Han Chinese population, stratified by age and gender, susceptibility to mite-sensitized AR may be associated with 2 SNPs (rs1590 and rs17023107) in microRNA target sites of TGF-β signaling pathway genes.
Collapse
Affiliation(s)
- Ruo-Xi Chen
- Department of Otorhinolaryngology and Clinical Allergy Center, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Wen-Min Lu
- Department of Otorhinolaryngology, The Affiliated Changzhou No. 2 People's Hospital, Nanjing Medical University, Changzhou, China
| | - Mei-Ping Lu
- Department of Otorhinolaryngology and Clinical Allergy Center, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Mei-Lin Wang
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xin-Jie Zhu
- Department of Otorhinolaryngology and Clinical Allergy Center, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Zhong-Fei Wu
- Department of Otorhinolaryngology and Clinical Allergy Center, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Hui-Qin Tian
- Department of Otorhinolaryngology and Clinical Allergy Center, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Lu-Ping Zhu
- Department of Otorhinolaryngology, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Zheng-Dong Zhang
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Lei Cheng
- Department of Otorhinolaryngology and Clinical Allergy Center, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China,
- International Centre for Allergy Research, Nanjing Medical University, Nanjing, China,
| |
Collapse
|
10
|
Zhao DM, Diao YE, Xu Q. Association of MDM4 Gene rs4245739 Polymorphism with the Risk and Clinical Characteristics of Colorectal Cancer in a Chinese Han Population. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2020; 13:673-678. [PMID: 33273845 PMCID: PMC7705952 DOI: 10.2147/pgpm.s260209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 09/07/2020] [Indexed: 11/23/2022]
Abstract
Background Studies show that MDM4 may play a pivotal role in colorectal cancer (CRC). Recently, a host of studies suggest that MDM4 gene rs4245739 polymorphism may modify the risk of different cancers. Methods In this study, we were interested whether MDM4 gene rs4245739 polymorphism correlated with the risk and clinical characteristics of CRC. Logistic regression was adopted to estimate the association of rs4245739 polymorphism and CRC risk. Results We enrolled 444 CRC patients and 530 controls and found MDM4 gene rs4245739 polymorphism may decrease the risk of CRC. Stratified analyses uncovered that this variant was connected to a less risk of CRC in females, non-drinkers, non-smokers, and people under 60 years old. Additionally, rs4245739 polymorphism was related to TNM staging, pathological type, tumor size, and location of CRC. Furthermore, this polymorphism was significantly linked with the survival of CRC. Conclusion Totally, this study suggests that MDM4 rs4245739 polymorphism is linked with the risk and clinical characteristics of CRC.
Collapse
Affiliation(s)
- De-Ming Zhao
- Department of Gastrointestinal Surgery, Dalian Municipal Central Hospital, Dalian, People's Republic of China
| | - Yu-E Diao
- Department of General Surgery, Affiliated Hospital of Jiangnan University, Wuxi, People's Republic of China
| | - Qing Xu
- Department of Anorectal Surgery, Nantong Third People's Hospital, Nantong University, Nantong, Jiangsu, People's Republic of China
| |
Collapse
|
11
|
Xu X, Zheng S. MiR-887-3p Negatively Regulates STARD13 and Promotes Pancreatic Cancer Progression. Cancer Manag Res 2020; 12:6137-6147. [PMID: 32801863 PMCID: PMC7398873 DOI: 10.2147/cmar.s260542] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/27/2020] [Indexed: 12/18/2022] Open
Abstract
Purpose STARD13 is regulated by various miRNAs. However, there are relatively few reports describing the relationship between miRNAs and STARD13 in pancreatic cancer. Therefore, the aim of this study was to explore the relationship between miRNA and STARD13 in pancreatic cancer. Patients and Methods By analyzing the data from Gene Expression Omnibus (GEO) database, the relationship between STARD13 expression and pancreatic cancer was explored. Then, through sequence alignment, the sequence complementary to miR-887-3p in the 3ʹUTR of STARD13 mRNA was found, mutated and cloned. Dual-luciferase reporter assay was used to test the relationship between STARD13 and miR-887-3p. Pancreatic cancer tumor tissue and its adjacent tissues collected, and the expression of STARD13 and miR-887-3p in pancreatic cancer tissues was analyzed by RT-qPCR. After, miR-887-3p and its inhibitor were transfected into PANC-1 cells to further confirm the regulatory relationship between miR-887-3 and STARD13 by RT-qPCR, and CCK-8, colony formation assays, cell cycle analysis, apoptosis detection and transwell analysis were used to detect changes of proliferation, apoptosis, migration and invasion in PANC-1 cells. Finally, through in vivo experiments, the effect of miR-887-3p on tumor growth was researched. Results We found that STARD13 expression is lower in pancreatic cancer tissues, with the level of miR-887-3p being higher in these tissues. Pancreatic cancer patients with particularly low levels of STARD13 presented with a poor prognosis. MiR-887-3p negatively regulates the expression of STARD13. Increasing levels of miR-887-3p decreased the expression of STARD13, which promoted the proliferation, cell cycle process, cell migration and invasion, and inhibited the apoptosis of pancreatic cancer cells. Inhibition of miR-887-3p in SCID mice could inhibit tumor growth and promote tumor cell apoptosis. Conclusion In conclusion, STARD13 is negatively regulated by miR-887-3p in pancreatic cancer. MiR-877-3p may act to promote cancer progression, and as such, it is a viable target for intervention and diagnostic development.
Collapse
Affiliation(s)
- Xiaobo Xu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Shusen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| |
Collapse
|
12
|
Association of KLK3, VAMP8 and MDM4 Genetic Variants within microRNA Binding Sites with Prostate Cancer: Evidence from Serbian Population. Pathol Oncol Res 2020; 26:2409-2423. [PMID: 32556890 DOI: 10.1007/s12253-020-00839-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 06/10/2020] [Indexed: 12/25/2022]
Abstract
A growing number of studies have suggested that genetic variants affecting the micro-RNA- binding mechanisms (miRSNPs) constitute a promising novel class of biomarkers for prostate cancer (PCa) biology. Among the most extensively studied miRSNPs in the context of cancer is the variation rs4245739 in the MDM4 gene, while a recent large-scale analysis revealed significant differences in genotype distributions between aggressive and non-aggressive disease for rs1058205 in KLK3 and rs1010 in VAMP8. In this study, we examined a total of 1083 subjects for these three variants using Taqman® SNP Genotyping Assays. Three hundred and fifty-five samples of peripheral blood were obtained from patients with PCa and 358 samples from patients with benign prostatic hyperplasia (BPH). The control group consisted of 370 healthy volunteers. Comparisons of genotype distributions among PCa and BPH patients, as well as between PCa patients and healthy controls, yielded no evidence of association between the analyzed genetic variants and the risk of developing PCa. However, all three tested genetic variants have shown the association with the parameters of PCa progression. For KLK3 variant rs1058205, minor allele C was found to associate with the lower serum PSA score in PCa patients (PSA > 20 ng/ml vs. PSA < 10 ng/ml comparison, Prec = 0.038; ORrec = 0.20, 95%CI 0.04-1.05). The obtained results point out the potential relevance of the tested genetic variants for the disease aggressiveness assessment.
Collapse
|
13
|
Goodwin AJ, Li P, Halushka PV, Cook JA, Sumal AS, Fan H. Circulating miRNA 887 is differentially expressed in ARDS and modulates endothelial function. Am J Physiol Lung Cell Mol Physiol 2020; 318:L1261-L1269. [PMID: 32321279 DOI: 10.1152/ajplung.00494.2019] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Circulating microRNAs (miRNAs) can be taken up by recipient cells and have been recently associated with the acute respiratory distress syndrome (ARDS). Their role in host predisposition to the syndrome is unknown. The objective of the study was to identify circulating miRNAs associated with the development of sepsis-related ARDS and examine their impact on endothelial cell gene expression and function. We determined miRNA levels in plasma collected from subjects during the first 24 h of admission to a tertiary intensive care unit for sepsis. A miRNA that was differentially expressed between subjects who did and did not develop ARDS was identified and was transfected into human pulmonary microvascular endothelial cells (HPMECs). RNA sequencing, in silico analysis, cytokine expression, and leukocyte migration assays were used to determine the impact of this miRNA on gene expression and cell function. In two cohorts, circulating miR-887-3p levels were elevated in septic patients who developed ARDS compared with those who did not. Transfection of miR-887-3p into HPMECs altered gene expression, including the upregulation of several genes previously associated with ARDS (e.g., CXCL10, CCL5, CX3CL1, VCAM1, CASP1, IL1B, IFNB, and TLR2), and activation of cellular pathways relevant to the response to infection. Functionally, miR-887-3p increased the endothelial release of chemokines and facilitated trans-endothelial leukocyte migration. Circulating miR-887-3p is associated with ARDS in critically ill patients with sepsis. In vitro, miR-887-3p regulates the expression of genes relevant to ARDS and neutrophil tracking. This miRNA may contribute to ARDS pathogenesis and could represent a novel therapeutic target.
Collapse
Affiliation(s)
- Andrew J Goodwin
- Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Pengfei Li
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Perry V Halushka
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina.,Department of Pharmacology, Medical University of South Carolina, Charleston, South Carolina
| | - James A Cook
- Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina
| | - Aman S Sumal
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Hongkuan Fan
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
14
|
Fehlmann T, Sahay S, Keller A, Backes C. A review of databases predicting the effects of SNPs in miRNA genes or miRNA-binding sites. Brief Bioinform 2020; 20:1011-1020. [PMID: 29186316 DOI: 10.1093/bib/bbx155] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 10/23/2017] [Indexed: 12/16/2022] Open
Abstract
Modern precision medicine comprises the knowledge and understanding of individual differences in the genomic sequence of patients to provide tailor-made treatments. Regularly, such variants are considered in coding regions only, and their effects are predicted based on their impact on the amino acid sequence of expressed proteins. However, assessing the effects of variants in noncoding elements, in particular microRNAs (miRNAs) and their binding sites, is important as well, as a single miRNA can influence the expression patterns of many genes at the same time. To analyze the effects of variants in miRNAs and their target sites, several databases storing variant impact predictions have been published. In this review, we will compare the core functionalities and features of these databases and discuss the importance of up-to-date data resources in the context of web applications. Finally, we will outline some recommendations for future developments in the field.
Collapse
Affiliation(s)
- Tobias Fehlmann
- Chair for Clinical Bioinformatics, Saarland University, Saarbrücken, Germany
| | - Shashwat Sahay
- Chair for Clinical Bioinformatics, Saarland University, Saarbrücken, Germany
| | - Andreas Keller
- Chair for Clinical Bioinformatics, Saarland University, Saarbrücken, Germany
| | - Christina Backes
- Chair for Clinical Bioinformatics, Saarland University, Saarbrücken, Germany
| |
Collapse
|
15
|
Xu Z, Wang N, Xu Y, Hua L, Zhou D, Zheng M, Deng X. Effects of chronic PM 2.5 exposure on pulmonary epithelia: Transcriptome analysis of mRNA-exosomal miRNA interactions. Toxicol Lett 2019; 316:49-59. [PMID: 31520698 DOI: 10.1016/j.toxlet.2019.09.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/22/2019] [Accepted: 09/10/2019] [Indexed: 02/08/2023]
Abstract
Epidemiological studies have established the correlations between PM2.5 and a wide variety of pulmonary diseases. However, their underlying pathogeneses have not been clearly elucidated yet. In the present study, the epithelial-mesenchymal transition (EMT) phenotype with enhanced proliferation and migration activity of human pulmonary epithelial cell line BEAS-2B was observed after exposure to low dose PM2.5 exposure (50 μg/ml) for 30 passages. Then, epithelial cells derived-exosomal micro-RNA (miRNA) and intracellular total RNA were extracted, and the differentially expressed exosomal miRNAs (DE-Exo-MiRs) as well as differentially expressed protein coding genes (DEGs) were identified by RNA sequencing (RNA-seq) and transcriptome analysis. We found that chronic PM2.5 exposure stimulated the release of pulmonary epithelium derived exosomes. 45 DE-Exo-MiRs including 32 novelly predicted miRNAs and 843 DEGs between PM2.5 exposed group and the normal control were detected. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses showed that DEGs were significantly enriched in extracellular matrix organization, focal adhesion and cancer related terms. Besides, the enrichment analyses on 7774 mRNA targets of 27 DE-Exo-MiRs predicted by MiRanda software also revealed the potential regulatory role of exosomal miRNAs in pathways in cancer, Wingless/Integrated (Wnt) signaling pathway, focal adhesion related genes and other multiple pathogenic pathways. Moreover, the interactive exosomal miRNA-mRNA pair networks were constructed using Cytoscape software. Our results provided a novel basis for a better understanding of the mechanisms of chronic PM2.5 exposure induced pulmonary disorders including pulmonary fibrosis and cancer, in which exosomal miRNAs (Exo-MiRs) potentially functions by dynamically regulating gene expressions.
Collapse
Affiliation(s)
- Zihan Xu
- Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Ning Wang
- Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China.
| | - Ye Xu
- Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China.
| | - Li Hua
- Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Dan Zhou
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| | - Min Zheng
- Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China.
| | - Xiaobei Deng
- Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
16
|
Somatic Mutations in miRNA Genes in Lung Cancer-Potential Functional Consequences of Non-Coding Sequence Variants. Cancers (Basel) 2019; 11:cancers11060793. [PMID: 31181801 PMCID: PMC6627760 DOI: 10.3390/cancers11060793] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 06/06/2019] [Accepted: 06/06/2019] [Indexed: 02/07/2023] Open
Abstract
A growing body of evidence indicates that miRNAs may either drive or suppress oncogenesis. However, little is known about somatic mutations in miRNA genes. To determine the frequency and potential consequences of miRNA gene mutations, we analyzed whole exome sequencing datasets of 569 lung adenocarcinoma (LUAD) and 597 lung squamous cell carcinoma (LUSC) samples generated in The Cancer Genome Atlas (TCGA) project. Altogether, we identified 1091 somatic sequence variants affecting 522 different miRNA genes and showed that half of all cancers had at least one such somatic variant/mutation. These sequence variants occurred in most crucial parts of miRNA precursors, including mature miRNA and seed sequences. Due to our findings, we hypothesize that seed mutations may affect miRNA:target interactions, drastically changing the pool of predicted targets. Mutations may also affect miRNA biogenesis by changing the structure of miRNA precursors, DROSHA and DICER cleavage sites, and regulatory sequence/structure motifs. We identified 10 significantly overmutated hotspot miRNA genes, including the miR-379 gene in LUAD enriched in mutations in the mature miRNA and regulatory sequences. The occurrence of mutations in the hotspot miRNA genes was also shown experimentally. We present a comprehensive analysis of somatic variants in miRNA genes and show that some of these genes are mutational hotspots, suggesting their potential role in cancer.
Collapse
|
17
|
Yu F, Jiang Z, Song A. Association of rs11801299 and rs1380576 polymorphisms at MDM4 with risk, clinicopathological features and prognosis in patients with retinoblastoma. Cancer Epidemiol 2019; 58:153-159. [PMID: 30597480 DOI: 10.1016/j.canep.2018.12.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 10/28/2018] [Accepted: 12/17/2018] [Indexed: 12/25/2022]
Abstract
BACKGROUND rs11801299 and rs1380576, two novel polymorphisms in MDM4 gene, have been investigated in several different cancer types. However, the role of these two polymorphisms in retinoblastoma (RB) remains unclear. METHODS A total of 126 patients with primary RB and 148 age-/gender-matched controls were included in this retrospective study. The frequency of rs11801299 and rs1380576 were determined between RB patients and controls. The association of these two polymorphisms with clinicopathological characteristics, prognosis were further evaluated. RESULTS AA genotype at rs11801299 was significantly associated with an increased risk of developing RB (OR = 2.06, 95%CI 1.09-3.90). The possibility of developing RB was also significantly increased in individuals with A allele at rs11801299 (OR = 1.49, 95%CI 1.06-2.08). RB patients carrying AA genotype and A allele at rs11801299 were more likely to have tumor invasion and poor differentiation. As for rs1380576, a significantly lower risk of developing RB was observed in patients with G allele (CG + GG) compared with wild-type CC genotype (OR = 0.59, 95%CI 0.36-3.95). RB patients with GG genotype or G allele had a lower risk of developing highly aggressive cancer. Kaplan-Meier curves and log-rank results revealed that RB patients carrying AA genotype or A allele (AA + GA) at rs11801299 had significantly poorer prognosis. Multivariate COX analysis showed that the rs11801299 G allele was associated with decreased survival but was not an independent prognostic factor. CONCLUSION rs11801299 was significantly associated with RB risk, pathological differentiation, tumor aggressiveness and poor prognosis.
Collapse
Affiliation(s)
- Fenghua Yu
- Department of Ophthalmology, Central Hospital of Linyi, Yishui, Shandong, 276400, China
| | - Zhongming Jiang
- Department of Ophthalmology, Central Hospital of Linyi, Yishui, Shandong, 276400, China
| | - Aiping Song
- Department of Ophthalmology, Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, 250014, China.
| |
Collapse
|
18
|
Association of Single Nucleotide Polymorphisms of the MDM4 Gene With the Susceptibility to Breast Cancer in a Southeast Iranian Population Sample. Clin Breast Cancer 2018; 18:e883-e891. [DOI: 10.1016/j.clbc.2018.01.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 01/12/2018] [Accepted: 01/13/2018] [Indexed: 01/14/2023]
|
19
|
Abstract
MicroRNAs (miRNAs) are post-transcriptional regulators of gene expression, involved in the silencing of messenger RNA (mRNA) translation. The importance of miRNA signatures in disease screening, prognosis, and progression of different tumor types and subtypes is increasing. miRNA expression levels change depending on numerous factors. In this review, we are describing the circumstances under which miRNA levels can change, these are named 'levels' of heterogeneity of miRNAs. miRNAs can have oncogenic, tumor suppressive, or both roles depending on tumor type and target mRNA whose translation they silence. The expression levels of a single miRNA may vary across different cancer types and subtypes, indicating that a miRNA signature may be tissue specific. miRNA levels of expression also vary during disease formation and propagation, indicating the presence of a time profile for their expression. The complexity of the miRNA-mRNA interference network mirrors different genetic and epigenetic changes that influence miRNA and mRNA availability to each other, and hence, their binding ability. The potential role of miRNAs as biomarkers is two-fold; first, for monitoring of the phases of cancer pathogenesis, and second, to characterize the particular type/subtype of cancer. It is important that a particular miRNA should be characterized by examining as many types and subtypes of cancers as are available, as well as being extracted from different types of samples, in order to obtain a complete picture of its behavior and importance in the disease pathology.
Collapse
Affiliation(s)
- Nina Petrovic
- Department for Radiobiology and Molecular Genetics, Vinca Institute of Nuclear Sciences, University of Belgrade, Mike Alasa 12-14, Belgrade, 11000, Serbia. .,Institute for Oncology and Radiology of Serbia, Pasterova 14, Belgrade, 11000, Serbia.
| | - Sercan Ergün
- Ulubey Vocational Higher School, Ordu University, 52850, Ordu, Turkey
| | - Esma R Isenovic
- Department for Radiobiology and Molecular Genetics, Vinca Institute of Nuclear Sciences, University of Belgrade, Mike Alasa 12-14, Belgrade, 11000, Serbia.,Faculty of Stomatology, Pancevo, University Business Academy, Novi Sad, Serbia
| |
Collapse
|
20
|
Wang MJ, Luo YJ, Shi ZY, Xu XL, Yao GL, Liu RP, Zhao H. The associations between MDM4 gene polymorphisms and cancer risk. Oncotarget 2018; 7:55611-55623. [PMID: 27742919 PMCID: PMC5342440 DOI: 10.18632/oncotarget.10877] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 07/10/2016] [Indexed: 01/01/2023] Open
Abstract
Considerable studies have investigated the associations between MDM4 gene polymorphisms and cancer risk recently, but with contradictory results. The aim of this meta-analysis was to evaluate the associations between MDM4 gene polymorphisms and cancer risk. Relevant studies were identified by a systematic search of PubMed, Embase, and CNKI databases. Crude odds ratios (ORs) and 95% confidence intervals (CIs) were used to describe the strength of the associations. Fifty-six studies published in 11 publications involving 18,910 cases and 51,609 controls were included in this meta-analysis. Five MDM4 gene polymorphisms were evaluated: rs4245739, rs1563828, rs11801299, rs10900598, and rs1380576. Our analyses suggested that the rs4245739 polymorphism was significantly associated with overall cancer risk. Furthermore, stratification analyses of ethnicity indicated that rs4245739 decreased the risk of cancer among the Asian population, and stratification analyses of smoking status indicated that rs4245739 decreased the risk of cancer among nonsmokers. However, stratification analyses of cancer type and sex suggested that rs4245739 was not related to cancer risk. There were no associations of rs1563828, rs11801299, rs10900598, or rs1380576 with overall cancer risk. In conclusion, our analyses indicated that rs4245739 polymorphism in the MDM4 gene may play an important role in the etiology of cancer.
Collapse
Affiliation(s)
- Ming-Jie Wang
- Department of Orthopedics, Affiliated Hospital of Nanjing Medical University, Changzhou Second People's Hospital, Changzhou 213003, China
| | - Yong-Jun Luo
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Zhi-Yong Shi
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, China National Clinical Research Center for Neurological Diseases, Beijing 100050, China
| | - Xiao-Liang Xu
- Liver Surgery of Jiangsu Province People's Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Guo-Liang Yao
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Rui-Ping Liu
- Department of Orthopedics, Affiliated Hospital of Nanjing Medical University, Changzhou Second People's Hospital, Changzhou 213003, China
| | - Hui Zhao
- Department of General Surgery, Third Affiliated Hospital of Nantong University, Wuxi, 214000, China
| |
Collapse
|
21
|
Anwar SL, Wulaningsih W, Watkins J. Profile of the breast cancer susceptibility marker rs4245739 identifies a role for miRNAs. Cancer Biol Med 2017; 14:387-395. [PMID: 29372105 PMCID: PMC5785168 DOI: 10.20892/j.issn.2095-3941.2017.0050] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 08/16/2017] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVE To determine the influence of the single nucleotide polymorphism (SNP) rs4245739 on the binding and expression of microRNAs and subsequent MDM4 expression and the correlation of these factors with clinical determinants of ER-negative breast cancers. METHODS FindTar and miRanda were used to detect the manner in which potential microRNAs are affected by the SNP rs4245739-flanking sequence. RNA sequencing data for ER-negative breast cancer from The Cancer Genome Atlas (TCGA) were used to compare the expression of miR-184, miR-191, miR-193a, miR-378, and MDM4 in different rs4245739 genotypes. RESULTS Comparison of ER-negative cancer patients with and without the expression of miR-191 as well as profile microRNAs (miR-184, miR-191, miR-193a and miR-378 altogether) can differentiate the expression of MDM4 among different rs4245739 genotypes. Although simple genotyping alone did not reveal significant clinical relationships, the combination of genotyping and microRNA profiles was able to significantly differentiate individuals with larger tumor size and lower number of involved lymph nodes (P < 0.05) in the risk group (A allele). CONCLUSIONS We present two novel methods to analyze SNPs within 3'UTRs that use: (i) a single miRNA marker expression and (ii) an expression profile of miRNAs predicted to bind to the SNP region. We demonstrate that the application of these two methods, in particular the miRNA profile approach, permits detection of new molecular and clinical features related to the rs4245739 variant in ER-negative breast cancer.
Collapse
Affiliation(s)
- Sumadi Lukman Anwar
- PILAR Research Network, Cambridgeshire CB1 2JD, UK
- Division of Surgical Oncology, Department of Surgery, Faculty of Medicine Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Wahyu Wulaningsih
- PILAR Research Network, Cambridgeshire CB1 2JD, UK
- Division of Surgical Oncology, Department of Surgery, Faculty of Medicine Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
- Division of Hemato-Oncology, Department of Internal Medicine, Faculty of Medicine Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Johnathan Watkins
- PILAR Research Network, Cambridgeshire CB1 2JD, UK
- Division of Surgical Oncology, Department of Surgery, Faculty of Medicine Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| |
Collapse
|
22
|
Fang X, Li X, Yin Z, Xia L, Quan X, Zhao Y, Zhou B. Genetic variation at the microRNA binding site of CAV1 gene is associated with lung cancer susceptibility. Oncotarget 2017; 8:92943-92954. [PMID: 29190968 PMCID: PMC5696234 DOI: 10.18632/oncotarget.21687] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 09/05/2017] [Indexed: 01/09/2023] Open
Abstract
Single nucleotide polymorphism (SNP) may influence the genesis and development of cancer in a variety of ways depending on their location. Here we conducted a study in Chinese female non-smokers to investigate the relationship between rs1049337, rs926198 and the risk or survival of lung cancer. Further, we explored whether rs1049337 could alter the binding affinity between the mRNA of CAV1 and the corresponding microRNAs. Finally, we evaluated the relationship between expression level of CAV1 and prognosis of lung cancer. The results showed that the rs1049337-C allele and rs926198-C allele were the protective alleles of lung cancer risk. Haplotype analysis indicated that the C-C haplotype (constructed by rs1049337 and rs926198) was a protective haplotype for lung cancer risk. The result of luciferase reporter assay showed that rs1049337 can affect the binding affinity of CAV1 mRNA to the corresponding microRNAs both in A549 cell line and H1299 cell line. Compared with C allele, T allele had a relatively decreased luciferase activity. Compared with paired normal adjacent tissue or normal lung tissue, lung cancer tissue showed a relatively low level of CAV1. Refer to those patients at early stage of lung cancer, the expression level of CAV1 in patients at late stage of lung cancer was relatively low. In conclusion, the results indicated that rs1049337, it's a SNP located at 3′UTR region of CAV1 may affect lung cancer risk by altering the binding affinity between the mRNA of CAV1 and the corresponding microRNAs.
Collapse
Affiliation(s)
- Xue Fang
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, China.,Liaoning Provincial Department of Education, Key Laboratory of Cancer Etiology and Prevention, China Medical University, Liaoning, China.,Department of Epidemiology, School of Public Health, Shenyang Medical College, Shenyang, China
| | - Xuelian Li
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, China.,Liaoning Provincial Department of Education, Key Laboratory of Cancer Etiology and Prevention, China Medical University, Liaoning, China
| | - Zhihua Yin
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, China.,Liaoning Provincial Department of Education, Key Laboratory of Cancer Etiology and Prevention, China Medical University, Liaoning, China
| | - Lingzi Xia
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, China.,Liaoning Provincial Department of Education, Key Laboratory of Cancer Etiology and Prevention, China Medical University, Liaoning, China
| | - Xiaowei Quan
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, China.,Liaoning Provincial Department of Education, Key Laboratory of Cancer Etiology and Prevention, China Medical University, Liaoning, China
| | - Yuxia Zhao
- Department of Radiotherapy, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Baosen Zhou
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, China.,Liaoning Provincial Department of Education, Key Laboratory of Cancer Etiology and Prevention, China Medical University, Liaoning, China
| |
Collapse
|
23
|
De-Ugarte L, Serra-Vinardell J, Nonell L, Balcells S, Arnal M, Nogues X, Mellibovsky L, Grinberg D, Diez-Perez A, Garcia-Giralt N. Expression profiling of microRNAs in human bone tissue from postmenopausal women. Hum Cell 2017; 31:33-41. [PMID: 28933035 DOI: 10.1007/s13577-017-0181-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 07/18/2017] [Indexed: 12/13/2022]
Abstract
Bone tissue is composed of several cell types, which express their own microRNAs (miRNAs) that will play a role in cell function. The set of total miRNAs expressed in all cell types configures the specific signature of the bone tissue in one physiological condition. The aim of this study was to explore the miRNA expression profile of bone tissue from postmenopausal women. Tissue was obtained from trabecular bone and was analyzed in fresh conditions (n = 6). Primary osteoblasts were also obtained from trabecular bone (n = 4) and human osteoclasts were obtained from monocyte precursors after in vitro differentiation (n = 5). MicroRNA expression profiling was obtained for each sample by microarray and a global miRNA analysis was performed combining the data acquired in all the microarray experiments. From the 641 miRNAs detected in bone tissue samples, 346 (54%) were present in osteoblasts and/or osteoclasts. The other 46% were not identified in any of the bone cells analyzed. Intersection of osteoblast and osteoclast arrays identified 101 miRNAs shared by both cell types, which accounts for 30-40% of miRNAs detected in these cells. In osteoblasts, 266 miRNAs were detected, of which 243 (91%) were also present in the total bone array, representing 38% of all bone miRNAs. In osteoclasts, 340 miRNAs were detected, of which 196 (58%) were also present in the bone tissue array, representing 31% of all miRNAs detected in total bone. These analyses provide an overview of miRNAs expressed in bone tissue, broadening our knowledge in the microRNA field.
Collapse
Affiliation(s)
- Laura De-Ugarte
- Musculoskeletal Research Group, IMIM (Hospital del Mar Medical Research Institute), Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), ISCIII, C/Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Jenny Serra-Vinardell
- Department of Genetics, Microbiology and Statistics, Facultat de Biologia, Universitat de Barcelona, IBUB, IRSJD, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Barcelona, Spain
| | - Lara Nonell
- Microarray Analysis Service, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Susana Balcells
- Department of Genetics, Microbiology and Statistics, Facultat de Biologia, Universitat de Barcelona, IBUB, IRSJD, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Barcelona, Spain
| | - Magdalena Arnal
- Microarray Analysis Service, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Xavier Nogues
- Musculoskeletal Research Group, IMIM (Hospital del Mar Medical Research Institute), Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), ISCIII, C/Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Leonardo Mellibovsky
- Musculoskeletal Research Group, IMIM (Hospital del Mar Medical Research Institute), Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), ISCIII, C/Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Daniel Grinberg
- Department of Genetics, Microbiology and Statistics, Facultat de Biologia, Universitat de Barcelona, IBUB, IRSJD, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Barcelona, Spain
| | - Adolfo Diez-Perez
- Musculoskeletal Research Group, IMIM (Hospital del Mar Medical Research Institute), Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), ISCIII, C/Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Natalia Garcia-Giralt
- Musculoskeletal Research Group, IMIM (Hospital del Mar Medical Research Institute), Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), ISCIII, C/Dr. Aiguader 88, 08003, Barcelona, Spain.
| |
Collapse
|
24
|
Variations within 3'-UTR of MDM4 gene contribute to clinical outcomes of advanced non-small cell lung cancer patients following platinum-based chemotherapy. Oncotarget 2017; 8:16313-16324. [PMID: 27462918 PMCID: PMC5369965 DOI: 10.18632/oncotarget.10771] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 06/17/2016] [Indexed: 01/22/2023] Open
Abstract
Single-nucleotide polymorphism (SNPs) in microRNA (miRNA)-binding sites may modulate the posttranscriptional regulation of gene expression and explain individual sensitivity to platinum agents. This study aimed to investigate the impact of SNPs located at 3′-untranslated region (UTR) of MDM4 gene, on clinical outcomes of advanced non-small cell lung cancer (NSCLC) patients. Four SNPs were genotyped by using DNA from blood samples of advanced NSCLC patients (642 in the Discovery set and 330 in the Replication set) and were analyzed the relationships with clinical outcomes. Carriers with rs10900598 CC genotype and rs4245739 AC genotype showed increased overall survival (OS) than those with AA genotype (P = 0.017 and P = 0.037, respectively) in the Discovery set and after pooling results from the Replication set. A combined effect on survival of variant alleles was also concluded and validated. Stratification analysis revealed that the effect of MDM4 SNPs was more pronounced in lung adenocarcinoma (LAC) subgroups. A reduced expression of the reporter gene for the C allele of rs4245739 was observed in NSCLC cells using luciferase reporter gene assays. Taken together, our results demonstrate that genetic variations in 3′-UTR of MDM4 gene may influence outcomes of advanced NSCLC by miRNAs-mediated regulation.
Collapse
|
25
|
Moszyńska A, Gebert M, Collawn JF, Bartoszewski R. SNPs in microRNA target sites and their potential role in human disease. Open Biol 2017; 7:170019. [PMID: 28381629 PMCID: PMC5413909 DOI: 10.1098/rsob.170019] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 03/08/2017] [Indexed: 12/14/2022] Open
Abstract
In the post-genomic era, the goal of personalized medicine is to determine the correlation between genotype and phenotype. Developing high-throughput genotyping technologies such as genome-wide association studies (GWAS) and the 1000 Genomes Project (http://www.internationalgenome.org/about/#1000G_PROJECT) has dramatically enhanced our ability to map where changes in the genome occur on a population level by identifying millions of single nucleotide polymorphisms (SNPs). Polymorphisms, particularly those within the coding regions of proteins and at splice junctions, have received the most attention, but it is also now clear that polymorphisms in the non-coding regions are important. In these non-coding regions, the enhancer and promoter regions have received the most attention, whereas the 3'-UTR regions have until recently been overlooked. In this review, we examine how SNPs affect microRNA-binding sites in these regions, and how mRNA stability changes can lead to disease pathogenesis.
Collapse
Affiliation(s)
- Adrianna Moszyńska
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Gdansk, Poland
| | - Magdalena Gebert
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Gdansk, Poland
| | - James F Collawn
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Rafał Bartoszewski
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
26
|
The role of MDM4 SNP34091 A>C polymorphism in cancer: a meta-analysis on 19,328 patients and 51,058 controls. Int J Biol Markers 2017; 32:e62-e67. [PMID: 27646776 DOI: 10.5301/jbm.5000228] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2016] [Indexed: 12/30/2022]
Abstract
BACKGROUND Cancer is one of the leading causes of death in the world. Several observational studies have suggested a significant association of the MDM4 SNP34091 A>C polymorphism with cancers. However, the results of the published studies are inconsistent. MATERIALS AND METHODS PubMed, Embase/Ovid and the Chinese National Knowledge Infrastructure were searched for relevant studies with a time limit of April 20, 2016. Pooled odds ratios (ORs) with 95% confidence intervals (CIs) were used to evaluate the strength of the association between MDM4 polymorphism and cancer risk. Publication bias was estimated using Begg's funnel plots and Egger's regression test. RESULTS A total of 19,328 patients and 51,058 controls were included in the analysis. Overall, a significantly decreased risk of cancer was associated with MDM4 SNP34091 polymorphism for the allele model (C vs. A, OR = 0.715, 95% CI: 0.622-0.821, p = 0.000), dominant model (CC + AC vs. AA, OR = 0.684, 95% CI: 0.563-0.831, p = 0.000), recessive model (CC vs. AC + AA, OR = 1.139, 95% CI = 1.055-1.230, p = 0.001) and heterozygote model (AC vs. AA, OR = 0.687, 95% CI = 0.568-0.832). In the subgroup analysis by cancer type, no significant association was found in the breast cancer subgroup. In the subgroup analysis by geographical region, 2 genetic models, the allele and heterozygote models, showed a significant association in Chinese populations. CONCLUSIONS The results of our meta-analysis showed that the MDM4 SNP34091 A>C polymorphism may function as a protective factor against cancer risk.
Collapse
|
27
|
Zhai Y, Dai Z, He H, Gao F, Yang L, Dong Y, Lu J. A PRISMA-compliant meta-analysis of MDM4 genetic variants and cancer susceptibility. Oncotarget 2016; 7:73935-73944. [PMID: 27738340 PMCID: PMC5342025 DOI: 10.18632/oncotarget.12558] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 10/04/2016] [Indexed: 12/31/2022] Open
Abstract
Molecular epidemiological research suggests that mouse double minute 4 (MDM4) polymorphisms may be associated with cancer susceptibility, but results remain controversial. To derive a more precise evaluation, we performed a PRISMA compliant meta-analysis focused on five single nucleotide polymorphisms (rs11801299, rs1380576, rs10900598, rs1563828, and rs4245739) of MDM4. Overall, 23 studies involving 22,218 cases and 55,033 controls were analyzed. The results showed that rs4245739 was significantly associated with a decreased cancer risk in the allelic (C vs. A: odds ratio [OR] = 0.848, 95% confidence interval [CI] = 0.765-0.941, P = 0.002), heterozygous (AC vs. AA: OR = 0.831, 95% CI = 0.735-0.939, P = 0.003), and dominant (AC+CC vs. A: OR = 0.823, 95% CI = 0.727-0.932, P = 0.002) models. The association was more prominent in Asians. No significant association was found using any genetic model for the rs11801299, rs1380576, rs10900598, and rs1563828 SNPs. These results indicate that the rs4245739 polymorphism may contribute to a decreased cancer susceptibility and support the hypothesis that genetic variants in the MDM4 genes act as important modifiers of cancer risk.
Collapse
Affiliation(s)
- Yajing Zhai
- Department of Pharmacy, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Zhijun Dai
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Hairong He
- Clinical Research Center, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Fan Gao
- Clinical Research Center, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Lihong Yang
- Clinical Research Center, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Yalin Dong
- Department of Pharmacy, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Jun Lu
- Clinical Research Center, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| |
Collapse
|
28
|
Xu C, Zhu J, Fu W, Liang Z, Song S, Zhao Y, Lyu L, Zhang A, He J, Duan P. MDM4 rs4245739 A > C polymorphism correlates with reduced overall cancer risk in a meta-analysis of 69477 subjects. Oncotarget 2016; 7:71718-71726. [PMID: 27687591 PMCID: PMC5342115 DOI: 10.18632/oncotarget.12326] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 09/21/2016] [Indexed: 02/07/2023] Open
Abstract
Mouse double minute 4 (MDM4) is a p53-interacting oncoprotein that plays an important role in the p53 tumor suppressor pathway. The common rs4245739 A > C polymorphism creates a miR-191 binding site in the MDM4 gene transcript. Numerous studies have investigated the association between this MDM4 polymorphism and cancer risk, but have failed to reach a definitive conclusion. To address this issue, we conducted a meta-analysis by selecting eligible studies from MEDLINE, EMBASE, and Chinese Biomedical databases. Odds ratios (ORs) and 95% confidence intervals (CIs) were used to assess the strength of the associations. We also performed genotype-based mRNA expression analysis using data from 270 individuals retrieved from public datasets. A total of 15 studies with 19796 cases and 49681 controls were included in the final meta-analysis. The pooled results revealed that the MDM4 rs4245739C allele is associated with a decreased cancer risk in the heterozygous (AC vs. AA: OR = 0.82, 95% CI = 0.73-0.93), dominant (AC/CC vs. AA: OR = 0.82, 95% CI = 0.72-0.93), and allele contrast models (C vs. A: OR = 0.84, 95% CI = 0.76-0.94). The association was more prominent in Asians and population-based studies. We also found that the rs4245739C allele was associated with decreased MDM4 mRNA expression, especially for Caucasians. Thus the MDM4 rs4245739 A > C polymorphism appears to be associated with decreased cancer risk. These findings would be strengthened by new studies with larger sample sizes and encompassing additional ethnicities.
Collapse
Affiliation(s)
- Chaoyi Xu
- 1 Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Jinhong Zhu
- 3 Molecular Epidemiology Laboratory and Department of Laboratory Medicine, Harbin Medical University Cancer Hospital, Harbin 150040, Heilongjiang, China
| | - Wen Fu
- 2 Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Zongwen Liang
- 1 Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Shujie Song
- 4 Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Yuan Zhao
- 1 Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Lihua Lyu
- 4 Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Anqi Zhang
- 1 Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Jing He
- 1 Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
- 2 Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Ping Duan
- 1 Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| |
Collapse
|