1
|
Singh N, Chattopadhyay G, Sundaramoorthy NS, Varadarajan R, Singh R. Understanding the physiological role and cross-interaction network of VapBC35 toxin-antitoxin system from Mycobacterium tuberculosis. Commun Biol 2025; 8:327. [PMID: 40016306 PMCID: PMC11868609 DOI: 10.1038/s42003-025-07663-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 02/04/2025] [Indexed: 03/01/2025] Open
Abstract
The VapBC toxin-antitoxin (TA) system, composed of VapC toxin and VapB antitoxin, has gained attention due to its relative abundance in members of the M. tuberculosis complex. Here, we have functionally characterised VapBC35 TA system from M. tuberculosis. We show that ectopic expression of VapC35 inhibits M. smegmatis growth in a bacteriostatic manner. Also, an increase in the VapB35 antitoxin to VapC35 toxin ratio results in a stronger binding affinity of the complex with the promoter-operator DNA. We show that VapBC35 is necessary for M. tuberculosis adaptation in oxidative stress conditions but is dispensable for M. tuberculosis growth in guinea pigs. Further, using a combination of co-expression studies and biophysical methods, we report that VapC35 also interacts with non-cognate antitoxin VapB3. Taken together, the present study advances our understanding of cross-interaction networks among VapBC TA systems from M. tuberculosis.
Collapse
Affiliation(s)
- Neelam Singh
- Centre for Tuberculosis Research, Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, Faridabad-Gurugram expressway, Faridabad, Haryana, India
| | | | - Niranjana Sri Sundaramoorthy
- Centre for Tuberculosis Research, Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, Faridabad-Gurugram expressway, Faridabad, Haryana, India
| | - Raghavan Varadarajan
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, India
| | - Ramandeep Singh
- Centre for Tuberculosis Research, Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, Faridabad-Gurugram expressway, Faridabad, Haryana, India.
| |
Collapse
|
2
|
Ostyn E, Augagneur Y, Pinel-Marie ML. Insight into the environmental cues modulating the expression of bacterial toxin-antitoxin systems. FEMS Microbiol Rev 2025; 49:fuaf007. [PMID: 40052347 PMCID: PMC11951105 DOI: 10.1093/femsre/fuaf007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 02/28/2025] [Accepted: 03/05/2025] [Indexed: 03/29/2025] Open
Abstract
Bacteria require sophisticated sensing mechanisms to adjust their metabolism in response to stressful conditions and survive in hostile environments. Among them, toxin-antitoxin (TA) systems play a crucial role in bacterial adaptation to environmental challenges. TA systems are considered as stress-responsive elements, consisting of both toxin and antitoxin genes, typically organized in operons or encoded on complementary DNA strands. A decrease in the antitoxin-toxin ratio, often triggered by specific stress conditions, leads to toxin excess, disrupting essential cellular processes and inhibiting bacterial growth. These systems are categorized into eight types based on the nature of the antitoxin (RNA or protein) and the mode of action of toxin inhibition. While the well-established biological roles of TA systems include phage inhibition and the maintenance of genetic elements, the environmental cues regulating their expression remain insufficiently documented. In this review, we highlight the diversity and complexity of the environmental cues influencing TA systems expression. A comprehensive understanding of how these genetic modules are regulated could provide deeper insights into their functions and support the development of innovative antimicrobial strategies.
Collapse
Affiliation(s)
- Emeline Ostyn
- Univ Rennes, INSERM, BRM– UMR_S 1230, F-35000 Rennes, France
| | - Yoann Augagneur
- Univ Rennes, INSERM, BRM– UMR_S 1230, F-35000 Rennes, France
| | | |
Collapse
|
3
|
Narimisa N, Khoshbayan A, Gharaghani S, Razavi S, Jazi FM. Inhibitory effects of nafcillin and diosmin on biofilm formation by Salmonella Typhimurium. BMC Microbiol 2024; 24:522. [PMID: 39695365 DOI: 10.1186/s12866-024-03646-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 11/13/2024] [Indexed: 12/20/2024] Open
Abstract
OBJECTIVE The foodborne pathogen Salmonella enterica serovar Typhimurium causes self-limiting gastroenteritis in humans and is difficult to eliminate due to its ability to adhere to surfaces and form biofilms that exhibit high resistance to antimicrobial agents. To explore alternative strategies for biofilm treatment, it is essential to investigate novel agents that inhibit Salmonella biofilms. METHOD In this study, we investigated the minimum biofilm inhibitory concentrations (MBICs) and minimum biofilm eradication concentrations (MBECs) of nafcillin and diosmin, both previously identified as Lon protease inhibitors, against biofilms formed by S. Typhimurium. Furthermore, we examined the expression of genes associated with the type II toxin-antitoxin system to enhance our understanding of the impact of these inhibitors. RESULTS The findings indicated a strong antibiofilm effect of nafcillin, with MBIC and MBEC values of 8 µg/mL and 32 µg/mL, respectively. These results were confirmed by field emission scanning electron microscopy (FE-SEM), which showed that biofilm formation was reduced in the presence of nafcillin. Additionally, it revealed morphological changes in the bacteria within the nafcillin-treated biofilms. Furthermore, gene expression analyses demonstrated a significant reduction in the expression of type II TA system genes following treatment with nafcillin and diosmin. CONCLUSION This study highlights the effectiveness of nafcillin in disrupting the biofilms of S. Typhimurium. These results suggest promising avenues for the development of novel therapeutic strategies targeting biofilms associated with S. Typhimurium.
Collapse
Affiliation(s)
- Negar Narimisa
- Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amin Khoshbayan
- Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sajjad Gharaghani
- Laboratory of Bioinformatics and Drug Design (LBD), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Shabnam Razavi
- Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran.
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Faramarz Masjedian Jazi
- Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran.
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Encina-Robles J, Pérez-Villalobos V, Bustamante P. The HicAB System: Characteristics and Biological Roles of an Underappreciated Toxin-Antitoxin System. Int J Mol Sci 2024; 25:12165. [PMID: 39596231 PMCID: PMC11594946 DOI: 10.3390/ijms252212165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/06/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
Small genetic elements known as toxin-antitoxin (TA) systems are abundant in bacterial genomes and involved in stress response, phage inhibition, mobile genetic elements maintenance and biofilm formation. Type II TA systems are the most abundant and diverse, and they are organized as bicistronic operons that code for proteins (toxin and antitoxin) able to interact through a nontoxic complex. However, HicAB is one of the type II TA systems that remains understudied. Here, we review the current knowledge of HicAB systems in different bacteria, their main characteristics and the existing evidence to associate them with some biological roles, are described. The accumulative evidence reviewed here, though modest, underscores that HicAB systems are underexplored TA systems with significant potential for future research.
Collapse
Affiliation(s)
| | | | - Paula Bustamante
- Molecular and Cellular Microbiology Laboratory, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 8910060, Chile
| |
Collapse
|
5
|
Blanco P, Trigo da Roza F, Toribio-Celestino L, García-Pastor L, Caselli N, Morón Á, Ojeda F, Darracq B, Vergara E, Amaro F, San Millán Á, Skovgaard O, Mazel D, Loot C, Escudero J. Chromosomal integrons are genetically and functionally isolated units of genomes. Nucleic Acids Res 2024; 52:12565-12581. [PMID: 39385642 PMCID: PMC11551772 DOI: 10.1093/nar/gkae866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/17/2024] [Accepted: 09/23/2024] [Indexed: 10/12/2024] Open
Abstract
Integrons are genetic elements that increase the evolvability of bacteria by capturing new genes and stockpiling them in arrays. Sedentary chromosomal integrons (SCIs) can be massive and highly stabilized structures encoding hundreds of genes, whose function remains generally unknown. SCIs have co-evolved with the host for aeons and are highly intertwined with their physiology from a mechanistic point of view. But, paradoxically, other aspects, like their variable content and location within the genome, suggest a high genetic and functional independence. In this work, we have explored the connection of SCIs to their host genome using as a model the Superintegron (SI), a 179-cassette long SCI in the genome of Vibrio cholerae N16961. We have relocated and deleted the SI using SeqDelTA, a novel method that allows to counteract the strong stabilization conferred by toxin-antitoxin systems within the array. We have characterized in depth the impact in V. cholerae's physiology, measuring fitness, chromosome replication dynamics, persistence, transcriptomics, phenomics, natural competence, virulence and resistance against protist grazing. The deletion of the SI did not produce detectable effects in any condition, proving that-despite millions of years of co-evolution-SCIs are genetically and functionally isolated units of genomes.
Collapse
Affiliation(s)
- Paula Blanco
- Molecular Basis of Adaptation, Departamento de Sanidad Animal, Universidad Complutense de Madrid, Madrid 28040, Spain
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Filipa Trigo da Roza
- Molecular Basis of Adaptation, Departamento de Sanidad Animal, Universidad Complutense de Madrid, Madrid 28040, Spain
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Laura Toribio-Celestino
- Departamento de Microbiología Microbiana, Centro Nacional de Biotecnología–CSIC, Madrid 28049, Spain
| | - Lucía García-Pastor
- Molecular Basis of Adaptation, Departamento de Sanidad Animal, Universidad Complutense de Madrid, Madrid 28040, Spain
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Niccolò Caselli
- Departamento de Química Física, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Álvaro Morón
- Departamento de Genética, Fisiología y Microbiología, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Francisco Ojeda
- Molecular Basis of Adaptation, Departamento de Sanidad Animal, Universidad Complutense de Madrid, Madrid 28040, Spain
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Baptiste Darracq
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Unité Plasticité du Génome Bactérien, 75015 Paris, France
- Sorbonne Université, ED515, F-75005 Paris, France
| | - Ester Vergara
- Molecular Basis of Adaptation, Departamento de Sanidad Animal, Universidad Complutense de Madrid, Madrid 28040, Spain
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Francisco Amaro
- Departamento de Genética, Fisiología y Microbiología, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Álvaro San Millán
- Departamento de Microbiología Microbiana, Centro Nacional de Biotecnología–CSIC, Madrid 28049, Spain
| | - Ole Skovgaard
- Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark
| | - Didier Mazel
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Unité Plasticité du Génome Bactérien, 75015 Paris, France
| | - Céline Loot
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Unité Plasticité du Génome Bactérien, 75015 Paris, France
| | - José Antonio Escudero
- Molecular Basis of Adaptation, Departamento de Sanidad Animal, Universidad Complutense de Madrid, Madrid 28040, Spain
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid 28040, Spain
| |
Collapse
|
6
|
Tang Z, Jiang P, Xie W. Long Dynamic β1-β2 Loops in M. tb MazF Toxins Affect the Interaction Modes and Strengths of the Toxin-Antitoxin Pairs. Int J Mol Sci 2024; 25:9630. [PMID: 39273577 PMCID: PMC11394972 DOI: 10.3390/ijms25179630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 08/24/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024] Open
Abstract
Tuberculosis is a worldwide plague caused by the pathogen Mycobacterium tuberculosis (M. tb). Toxin-antitoxin (TA) systems are genetic elements abundantly present in prokaryotic organisms and regulate important cellular processes. MazEF is a TA system implicated in the formation of "persisters cells" of M. tb, which contain more than 10 such members. However, the exact function and inhibition mode of each MazF are not fully understood. Here we report crystal structures of MazF-mt3 in its apo form and in complex with the C-terminal half of MazE-mt3. Structural analysis suggested that two long but disordered β1-β2 loops would interfere with the binding of the cognate MazE-mt3 antitoxin. Similar loops are also present in the MazF-mt1 and -mt9 but are sustainably shortened in other M. tb MazF members, and these TA pairs behave distinctly in terms of their binding modes and their RNase activities. Systematic crystallographic and biochemical studies further revealed that the biochemical activities of M. tb toxins were combined results between the interferences from the characteristic loops and the electrostatic interactions between the cognate TA pairs. This study provides structural insight into the binding mode and the inhibition mechanism of the MazE/F TA pairs, which facilitate the structure-based peptide designs.
Collapse
Affiliation(s)
- Ziyun Tang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China; (Z.T.); (P.J.)
- Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Pengcheng Jiang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China; (Z.T.); (P.J.)
- Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Wei Xie
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China; (Z.T.); (P.J.)
- Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
7
|
Bustamante P, Ramos-Corominas MN, Martinez-Medina M. Contribution of Toxin-Antitoxin Systems to Adherent-Invasive E. coli Pathogenesis. Microorganisms 2024; 12:1158. [PMID: 38930540 PMCID: PMC11205521 DOI: 10.3390/microorganisms12061158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/24/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Pathobionts have been implicated in various chronic diseases, including Crohn's disease (CD), a multifactorial chronic inflammatory condition that primarily affects the gastrointestinal tract, causing inflammation and damage to the digestive system. While the exact cause of CD remains unclear, adherent-invasive Escherichia coli (AIEC) strains have emerged as key contributors to its pathogenesis. AIEC are characterized by their ability to adhere to and invade intestinal epithelial cells and survive and replicate inside macrophages. However, the mechanisms underlying the virulence and persistence of AIEC within their host remain the subject of intensive research. Toxin-antitoxin systems (TAs) play a potential role in AIEC pathogenesis and may be therapeutic targets. These systems generally consist of two components: a toxin harmful to the cell and an antitoxin that neutralizes the toxin's effects. They contribute to bacterial survival in adverse conditions and regulate bacterial growth and behavior, affecting various cellular processes in bacterial pathogens. This review focuses on the current information available to determine the roles of TAs in the pathogenicity of AIEC. Their contribution to the AIEC stress response, biofilm formation, phage inhibition, the maintenance of mobile genetic elements, and host lifestyles is discussed.
Collapse
Affiliation(s)
- Paula Bustamante
- Molecular and Cellular Microbiology Laboratory, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 8910060, Chile
| | - María Núria Ramos-Corominas
- Microbiology of Intestinal Diseases, Biology Department, Universitat de Girona, 17003 Girona, Spain; (M.N.R.-C.); (M.M.-M.)
| | - Margarita Martinez-Medina
- Microbiology of Intestinal Diseases, Biology Department, Universitat de Girona, 17003 Girona, Spain; (M.N.R.-C.); (M.M.-M.)
| |
Collapse
|
8
|
Withatanung P, Janesomboon S, Vanaporn M, Muangsombut V, Charoensudjai S, Baker DJ, Wuthiekanun V, Galyov EE, Clokie MRJ, Gundogdu O, Korbsrisate S. Induced Burkholderia prophages detected from the hemoculture: a biomarker for Burkholderia pseudomallei infection. Front Microbiol 2024; 15:1361121. [PMID: 38633694 PMCID: PMC11022660 DOI: 10.3389/fmicb.2024.1361121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 03/11/2024] [Indexed: 04/19/2024] Open
Abstract
Bacteriophages (phages), viruses that infect bacteria, are found in abundance not only in the environment but also in the human body. The use of phages for the diagnosis of melioidosis, a tropical infectious disease caused by Burkholderia pseudomallei, is emerging as a promising novel approach, but our understanding of conditions under which Burkholderia prophages can be induced remains limited. Here, we first demonstrated the isolation of Burkholderia phages from the hemocultures of melioidosis patients. The B. pseudomallei-positive hemoculture bottles were filtered to remove bacteria, and then phages were isolated and purified by spot and double agar overlay plaque assays. Forty blood samples (hemoculture-confirmed melioidosis) were tested, and phages were found in 30% of the samples. Transmission electron microscopy and genome analysis of the isolated phages, vB_HM387 and vB_HM795, showed that both phages are Myoviruses. These two phages were stable at a pH of 5-7 and temperatures of 25-37°C, suggesting their ability to survive in human blood. The genome sizes of vB_HM387 and vB_HM795 are 36.3 and 44.0 kb, respectively. A phylogenetic analysis indicated that vB_HM387 has homologs, but vB_HM795 is a novel Myovirus, suggesting the heterogeneity of Burkholderia phages in melioidosis patients. The key finding that Burkholderia phages could be isolated from the blood of melioidosis patients highlights the potential application of phage-based assays by detecting phages in blood as a pathogen-derived biomarker of infection.
Collapse
Affiliation(s)
- Patoo Withatanung
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Sujintana Janesomboon
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Muthita Vanaporn
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Veerachat Muangsombut
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | | | - Dave J. Baker
- Science Operations, Quadram Institute Bioscience, Norwich, United Kingdom
| | - Vanaporn Wuthiekanun
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Edouard E. Galyov
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Martha R. J. Clokie
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Ozan Gundogdu
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Sunee Korbsrisate
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
9
|
Zhang SP, Ye YP, Hou J, Ye ZR, Wang ZS, Yu XQ, Guo DD, Wang Y, He YX. Antitoxin MqsA decreases antibiotic susceptibility through the global regulator AgtR in Pseudomonas fluorescens. Antimicrob Agents Chemother 2023; 67:e0081223. [PMID: 37877694 PMCID: PMC10649091 DOI: 10.1128/aac.00812-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/31/2023] [Indexed: 10/26/2023] Open
Abstract
Type II toxin-antitoxin systems are highly prevalent in bacterial genomes and play crucial roles in the general stress response. Previously, we demonstrated that the type II antitoxin PfMqsA regulates biofilm formation through the global regulator AgtR in Pseudomonas fluorescens. Here, we found that both the C-terminal DNA-binding domain of PfMqsA and AgtR are involved in bacterial antibiotic susceptibility. Electrophoretic mobility shift assay (EMSA) analyses revealed that AgtR, rather than PfMqsA, binds to the intergenic region of emhABC-emhR, in which emhABC encodes an resistance-nodulation-cell division efflux pump and emhR encodes a repressor. Through quantitative real-time reverse-transcription PCR and EMSA analysis, we showed that AgtR directly activates the expression of the emhR by binding to the DNA motif [5´-CTAAGAAATATACTTAC-3´], leading to repression of the emhABC. Furthermore, we demonstrated that PfMqsA modulates the expression of EmhABC and EmhR. These findings enhance our understanding of the mechanism by which antitoxin PfMqsA contributes to antibiotic susceptibility.
Collapse
Affiliation(s)
- Si-Ping Zhang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Yi-Ping Ye
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Jun Hou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Zi-Rui Ye
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Zhi-Song Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Xiao-Quan Yu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Ding-Ding Guo
- School of Pharmacy, Lanzhou University, Lanzhou, Gansu, China
| | - Yong Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Yong-Xing He
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
10
|
Lewis AM, Willard DJ, H. Manesh MJ, Sivabalasarma S, Albers SV, Kelly RM. Stay or Go: Sulfolobales Biofilm Dispersal Is Dependent on a Bifunctional VapB Antitoxin. mBio 2023; 14:e0005323. [PMID: 37036347 PMCID: PMC10127717 DOI: 10.1128/mbio.00053-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/14/2023] [Indexed: 04/11/2023] Open
Abstract
A type II VapB14 antitoxin regulates biofilm dispersal in the archaeal thermoacidophile Sulfolobus acidocaldarius through traditional toxin neutralization but also through noncanonical transcriptional regulation. Type II VapC toxins are ribonucleases that are neutralized by their proteinaceous cognate type II VapB antitoxin. VapB antitoxins have a flexible tail at their C terminus that covers the toxin's active site, neutralizing its activity. VapB antitoxins also have a DNA-binding domain at their N terminus that allows them to autorepress not only their own promoters but also distal targets. VapB14 antitoxin gene deletion in S. acidocaldarius stunted biofilm and planktonic growth and increased motility structures (archaella). Conversely, planktonic cells were devoid of archaella in the ΔvapC14 cognate toxin mutant. VapB14 is highly conserved at both the nucleotide and amino acid levels across the Sulfolobales, extremely unusual for type II antitoxins, which are typically acquired through horizontal gene transfer. Furthermore, homologs of VapB14 are found across the Crenarchaeota, in some Euryarchaeota, and even bacteria. S. acidocaldarius vapB14 and its homolog in the thermoacidophile Metallosphaera sedula (Msed_0871) were both upregulated in biofilm cells, supporting the role of the antitoxin in biofilm regulation. In several Sulfolobales species, including M. sedula, homologs of vapB14 and vapC14 are not colocalized. Strikingly, Sulfuracidifex tepidarius has an unpaired VapB14 homolog and lacks a cognate VapC14, illustrating the toxin-independent conservation of the VapB14 antitoxin. The findings here suggest that a stand-alone VapB-type antitoxin was the product of selective evolutionary pressure to influence biofilm formation in these archaea, a vital microbial community behavior. IMPORTANCE Biofilms allow microbes to resist a multitude of stresses and stay proximate to vital nutrients. The mechanisms of entering and leaving a biofilm are highly regulated to ensure microbial survival, but are not yet well described in archaea. Here, a VapBC type II toxin-antitoxin system in the thermoacidophilic archaeon Sulfolobus acidocaldarius was shown to control biofilm dispersal through a multifaceted regulation of the archaeal motility structure, the archaellum. The VapC14 toxin degrades an RNA that causes an increase in archaella and swimming. The VapB14 antitoxin decreases archaella and biofilm dispersal by binding the VapC14 toxin and neutralizing its activity, while also repressing the archaellum genes. VapB14-like antitoxins are highly conserved across the Sulfolobales and respond similarly to biofilm growth. In fact, VapB14-like antitoxins are also found in other archaea, and even in bacteria, indicating an evolutionary pressure to maintain this protein and its role in biofilm formation.
Collapse
Affiliation(s)
- April M. Lewis
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Daniel J. Willard
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Mohamad J. H. Manesh
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Shamphavi Sivabalasarma
- Institute for Biology, Molecular Biology of Archaea, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany
| | - Sonja-Verena Albers
- Institute for Biology, Molecular Biology of Archaea, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBBS, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Robert M. Kelly
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
11
|
Berne C, Zappa S, Brun YV. eDNA-stimulated cell dispersion from Caulobacter crescentus biofilms upon oxygen limitation is dependent on a toxin-antitoxin system. eLife 2023; 12:e80808. [PMID: 36475544 PMCID: PMC9851616 DOI: 10.7554/elife.80808] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
In their natural environment, most bacteria preferentially live as complex surface-attached multicellular colonies called biofilms. Biofilms begin with a few cells adhering to a surface, where they multiply to form a mature colony. When conditions deteriorate, cells can leave the biofilm. This dispersion is thought to be an important process that modifies the overall biofilm architecture and that promotes colonization of new environments. In Caulobacter crescentus biofilms, extracellular DNA (eDNA) is released upon cell death and prevents newborn cells from joining the established biofilm. Thus, eDNA promotes the dispersal of newborn cells and the subsequent colonization of new environments. These observations suggest that eDNA is a cue for sensing detrimental environmental conditions in the biofilm. Here, we show that the toxin-antitoxin system (TAS) ParDE4 stimulates cell death in areas of a biofilm with decreased O2 availability. In conditions where O2 availability is low, eDNA concentration is correlated with cell death. Cell dispersal away from biofilms is decreased when parDE4 is deleted, probably due to the lower local eDNA concentration. Expression of parDE4 is positively regulated by O2 and the expression of this operon is decreased in biofilms where O2 availability is low. Thus, a programmed cell death mechanism using an O2-regulated TAS stimulates dispersal away from areas of a biofilm with decreased O2 availability and favors colonization of a new, more hospitable environment.
Collapse
Affiliation(s)
- Cecile Berne
- Département de microbiologie, infectiologie et immunologie, Université de MontréalMontréalCanada
| | - Sébastien Zappa
- Département de microbiologie, infectiologie et immunologie, Université de MontréalMontréalCanada
| | - Yves V Brun
- Département de microbiologie, infectiologie et immunologie, Université de MontréalMontréalCanada
| |
Collapse
|
12
|
Toxin-Antitoxin Systems Alter Adaptation of Mycobacterium smegmatis to Environmental Stress. Microbiol Spectr 2022; 10:e0281522. [PMID: 36318013 PMCID: PMC9769933 DOI: 10.1128/spectrum.02815-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Toxin-antitoxin (TA) systems are ubiquitous genetic elements in prokaryotes, but their biological importance is poorly understood. Mycobacterium smegmatis contains eight putative TA systems. Previously, seven TAs have been studied, with five of them being verified as functional. Here, we show that Ms0251-0252 is a novel TA system in that expression of the toxin Ms0251 leads to growth inhibition that can be rescued by the antitoxin Ms0252. To investigate the functional roles of TA systems in M. smegmatis, we deleted the eight putative TA loci and assayed the mutants for resistance to various stresses. Deletion of all eight TA loci resulted in decreased survival under starvation conditions and altered fitness when exposed to environmental stresses. Furthermore, we showed that deletion of the eight TA loci decreased resistance to phage infection in Sauton medium compared with the results using 7H10 medium, suggesting that TA systems might have different contributions depending on the nutrient environment. Furthermore, we found that MazEF specifically played a dominant role in resistance to phage infection. Finally, transcriptome analysis revealed that MazEF overexpression led to differential expression of multiple genes, including those related to iron acquisition. Altogether, we demonstrate that TA systems coordinately function to allow M. smegmatis to adapt to changing environmental conditions. IMPORTANCE Toxin-antitoxin (TA) systems are mechanisms for rapid adaptation of bacteria to environmental changes. Mycobacterium smegmatis, a model bacterium for studying Mycobacterium tuberculosis, encodes eight putative TA systems. Here, we constructed an M. smegmatis mutant with deletions of all eight TA-encoding genes and evaluated the resistance of these mutants to environmental stresses. Our results showed that different TA systems have overlapping and, in some cases, opposing functions in adaptation to various stresses. We suggest that complementary TA modules may function together to regulate the bacterial stress response, enabling adaptation to changing environments. Together, this study provides key insights into the roles of TA systems in resistance to various environmental stresses, drug tolerance, and defense against phage infection.
Collapse
|
13
|
Gosain TP, Singh M, Singh C, Thakur KG, Singh R. Disruption of MenT2 toxin impairs the growth of Mycobacterium tuberculosis in guinea pigs. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 36342835 DOI: 10.1099/mic.0.001246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Toxin-antitoxin (TA) systems are abundantly present in the genomes of various bacterial pathogens. TA systems have been implicated in either plasmid maintenance or protection against phage infection, stress adaptation or disease pathogenesis. The genome of Mycobacterium tuberculosis encodes for more than 90 TA systems and 4 of these belong to the type IV subfamily (MenAT family). The toxins and antitoxins belonging to type IV TA systems share sequence homology with the AbiEii family of nucleotidyl transferases and the AbiEi family of putative transcriptional regulators, respectively. Here, we have performed experiments to understand the role of MenT2, a toxin from the type IV TA system, in mycobacterial physiology and disease pathogenesis. The ectopic expression of MenT2 using inducible vectors does not inhibit bacterial growth in liquid cultures. Bioinformatic and molecular modelling analysis suggested that the M. tuberculosis genome has an alternative start site upstream of the annotated menT2 gene. The overexpression of the reannotated MenT2 resulted in moderate growth inhibition of Mycobacterium smegmatis. We show that both menT2 and menA2 transcript levels are increased when M. tuberculosis is exposed to nitrosative stress, in vitro. When compared to the survival of the wild-type and the complemented strain, the ΔmenT2 mutant strain of M. tuberculosis was more resistant to being killed by nitrosative stress. However, the survival of both the ΔmenT2 mutant and the wild-type strain was similar in macrophages and when exposed to other stress conditions. Here, we show that MenT2 is required for the establishment of disease in guinea pigs. Gross pathology and histopathology analysis of lung tissues from guinea pigs infected with the ∆menT2 strain revealed significantly reduced tissue damage and inflammation. In summary, these results provide new insights into the role of MenT2 in mycobacterial pathogenesis.
Collapse
Affiliation(s)
- Tannu Priya Gosain
- Infection and Immunology Group, Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad Gurugram Expressway, Faridabad-121001, India
| | - Manisha Singh
- Infection and Immunology Group, Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad Gurugram Expressway, Faridabad-121001, India
| | - Charandeep Singh
- Structural Biology Laboratory, G. N. Ramachandran Protein Centre, Council of Scientific and Industrial Research-Institute of Microbial Technology (CSIR-IMTECH), Chandigarh-160036, India
| | - Krishan Gopal Thakur
- Structural Biology Laboratory, G. N. Ramachandran Protein Centre, Council of Scientific and Industrial Research-Institute of Microbial Technology (CSIR-IMTECH), Chandigarh-160036, India
| | - Ramandeep Singh
- Infection and Immunology Group, Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad Gurugram Expressway, Faridabad-121001, India
| |
Collapse
|
14
|
Song X, Lin Z, Yuan W. Toxin-antitoxin systems in pathogenic Vibrio species: a mini review from a structure perspective. 3 Biotech 2022; 12:125. [PMID: 35542053 DOI: 10.1007/s13205-022-03178-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/31/2022] [Indexed: 11/01/2022] Open
Abstract
Toxin-antitoxin (TA) genetic modules have been found to widely exist in bacterial chromosomes and mobile genetic elements. They are composed of stable toxins and less stable antitoxins that can counteract the toxicity of toxins. The interactions between toxins and antitoxins could play critical roles in the virulence and persistence of pathogenic bacteria. There are at least eight types of TA systems which have been identified in a variety of bacteria. Vibrio, a genus of Gram-negative bacteria, is widespread in aquatic environments and can cause various human diseases, such as epidemic cholera. In this review, we mainly explore the structures and functions of TA modules found in common Vibrio pathogens, mainly V. cholerae, for better understanding of TA action mechanisms in pathogenic bacteria.
Collapse
|
15
|
Meparambu Prabhakaran D, Patel HR, Sivakumar Krishnankutty Chandrika S, Thomas S. Genomic attributes differ between Vibrio parahaemolyticus environmental and clinical isolates including pathotypes. ENVIRONMENTAL MICROBIOLOGY REPORTS 2022; 14:365-375. [PMID: 34461673 DOI: 10.1111/1758-2229.13000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 08/07/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
Vibrio parahaemolyticus is a marine bacterium and causes opportunistic gastroenteritis in humans. Clinical strains of V. parahaemolyticus contain haemolysin and type III secretion systems (T3SS) that define their pathotype. A growing number of strains isolated recently from the environment have acquired these virulence genes constituting a pool of potential pathogens. This study used comparative genomics to identify genetic factors that delineate environmental and clinical V. parahaemolyticus population and understand the similarities and differences between the T3SS2 phylotypes. The comparative analysis revealed the presence of a cluster of genes belonging to bacterial cellulose synthesis (bcs) in isolates of environmental origin. This cluster, previously unreported in V. parahaemolyticus, exhibit significant similarity to that of Aliivibrio fischeri, and might dictate a potentially new mechanism of its environmental adaptation and persistence. The study also identified many genes predicted in silico to be T3SS effectors that are unique to T3SS2β of tdh- trh+ and tdh+ trh+ pathotype and having no identifiable homologue in tdh+ trh- T3SS2α. Overall, these findings highlight the importance of understanding the genes and strategies V. parahaemolyticus utilize for the myriad interactions with its hosts, either marine invertebrates or humans.
Collapse
Affiliation(s)
- Divya Meparambu Prabhakaran
- Cholera and Biofilm Research Lab, Department of Pathogen Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Hardip R Patel
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, 2601, Australia
| | | | - Sabu Thomas
- Cholera and Biofilm Research Lab, Department of Pathogen Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| |
Collapse
|
16
|
Mahmoudi M, Sadeghifard N, Maleki A, Yeo CC, Ghafourian S. relBE Toxin-antitoxin System as a Reliable Anti-biofilm Target in Pseudomonas aeruginosa. J Appl Microbiol 2022; 133:683-695. [PMID: 35445489 DOI: 10.1111/jam.15585] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 04/13/2022] [Accepted: 04/16/2022] [Indexed: 11/29/2022]
Abstract
AIMS The ability of the pathogenic bacterium Pseudomonas aeruginosa to produce biofilms has made it more difficult to treat its infections with current antibiotics. Several genes are involved in biofilm production, and toxin-antitoxin (TA) loci have been reported to be responsible for the regulation of biofilm-associated genes. This study was aimed at evaluating various TA loci in P. aeruginosa to find a reliable target in order to disrupt biofilm formation. METHODS AND RESULTS Thirty clinical isolates of P. aeruginosa were assessed for biofilm production as well as the presence of various TA loci in their genomes. The relBETA locus was present in all 30 P. aeruginosa isolates but its expression was not detectable in isolates that did not show biofilm production. Quantitative real-time -PCR (q-PCR) also demonstrated that the expression of relBE was higher in isolates with stronger biofilm-producing capability. Knocking out the relBE locus in one biofilm-producing P. aeruginosa isolate led to the cessation of biofilm-producing capacity in that isolate and eliminated the expression of ndvB, which is among the genes involved in biofilm production. CONCLUSIONS These results inferred the involvement of relBE TA locus in the regulation of biofilm production in P. aeruginosa and indicated the possibility of relBE as an anti-biofilm target for this pathogen.
Collapse
Affiliation(s)
- Mina Mahmoudi
- Department of Microbiology, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Nourkhoda Sadeghifard
- Department of Microbiology, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Abbas Maleki
- Department of Microbiology, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Chew Chieng Yeo
- Faculty of Medicine, Biomedical Research Centre, Universiti Sultan Zainal Abidin, Kuala Terengganu, Malaysia
| | - Sobhan Ghafourian
- Department of Microbiology, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| |
Collapse
|
17
|
Zhao L, Yin G, Zhang Y, Duan C, Wang Y, Kang Z. A comparative study on the genomes, transcriptomes, and metabolic properties of Escherichia coli strains Nissle 1917, BL21(DE3), and MG1655. ENGINEERING MICROBIOLOGY 2022; 2:100012. [PMID: 39628614 PMCID: PMC11610980 DOI: 10.1016/j.engmic.2022.100012] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 02/14/2022] [Accepted: 02/14/2022] [Indexed: 12/06/2024]
Abstract
Escherichia coli is the most well-studied model prokaryote and has become an indispensable host for the biotechnological production of proteins and biochemicals. In particular, the probiotic status of one E. coli strain, E. coli Nissle 1917 (EcN) has helped it become a new favorite amongst synthetic biologists. To broaden its potential applications, here we assemble a comparative study on the genomes, transcriptomes, and metabolic properties of E. coli strains EcN, BL21(DE3), and MG1655. Comparative genomics data suggests that EcN possesses 1404 unique CDSs. In particular, EcN has additional iron transport systems which endow EcN with a higher tolerance to iron scarcity when compared to two other E. coli strains. EcN transcriptome data demonstrates that E. coli strains EcN, BL21(DE3), and MG1655 all have comparable activities of the central metabolic pathway, however only EcN inherits the arginine deiminase pathway. Additionally, we found that EcN displayed a lower expression of ribosomal proteins compared to BL21(DE3) and MG1655. This comparative study on E. coli strains EcN, BL21(DE3), and MG1655 aims to provide a reference for further engineering EcN as a biotechnological tool.
Collapse
Affiliation(s)
- Linlin Zhao
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Guobin Yin
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Yonglin Zhang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Chaofan Duan
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yang Wang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Zhen Kang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
18
|
Song Y, Zhang S, Luo G, Shen Y, Li C, Zhu Y, Huang Q, Mou X, Tang X, Liu T, Wu S, Tong A, He Y, Bao R. Type II Antitoxin HigA Is a Key Virulence Regulator in Pseudomonas aeruginosa. ACS Infect Dis 2021; 7:2930-2940. [PMID: 34554722 DOI: 10.1021/acsinfecdis.1c00401] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Bacterial type II toxin-antitoxin (TA) systems are abundant genetic elements and are involved in a diverse array of physiological processes. These systems encode an antitoxin protein that directly binds and effectively neutralizes the protein toxin. Recent studies have highlighted the key roles of type II TA modules in bacterial virulence and pathogenesis, but the underlying mechanisms remain unclear. Here, we investigated the antitoxin HigA in Pseudomonas aeruginosa infection. Proteomic analysis of the higA deletion strain revealed an enhanced expression of pathogenic proteins. We further verified that HigA negatively controlled T3SS and T6SS expression by directly interacting with the promoter regions of the regulators amrZ and exsA, respectively. In other words, the reversal of HigA-mediated transcriptional inhibition on stress stimulation could induce virulence genes. These findings confirm the crucial roles of the type II antitoxin in bacterial infection, which highlights the potential of the HigBA TA system as an antibacterial treatment target.
Collapse
Affiliation(s)
- Yingjie Song
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610093, China
| | - Siping Zhang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, P.R. China
| | - Guihua Luo
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610093, China
| | - Yalin Shen
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610093, China
| | - Changcheng Li
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610093, China
| | - Yibo Zhu
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610093, China
| | - Qin Huang
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610093, China
| | - Xingyu Mou
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610093, China
| | - Xinyue Tang
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610093, China
| | - Tonggen Liu
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610093, China
| | - Siying Wu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610044, China
| | - Aiping Tong
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610093, China
| | - Yongxing He
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, P.R. China
| | - Rui Bao
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610093, China
| |
Collapse
|
19
|
Gu Q, He P, Wang D, Ma J, Zhong X, Zhu Y, Zhang Y, Bai Q, Pan Z, Yao H. An Auto-Regulating Type II Toxin-Antitoxin System Modulates Drug Resistance and Virulence in Streptococcus suis. Front Microbiol 2021; 12:671706. [PMID: 34475853 PMCID: PMC8406773 DOI: 10.3389/fmicb.2021.671706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/26/2021] [Indexed: 11/13/2022] Open
Abstract
Toxin-antitoxin (TA) systems are ubiquitous genetic elements that play an essential role in multidrug tolerance and virulence of bacteria. So far, little is known about the TA systems in Streptococcus suis. In this study, the Xress-MNTss TA system, composed of the MNTss toxin in the periplasmic space and its interacting Xress antitoxin, was identified in S. suis. β-galactosidase activity and electrophoretic mobility shift assay (EMSA) revealed that Xress and the Xress-MNTss complex could bind directly to the Xress-MNTss promoter as well as downregulate streptomycin adenylyltransferase ZY05719_RS04610. Interestingly, the Xress deletion mutant was less pathogenic in vivo following a challenge in mice. Transmission electron microscopy and adhesion assays pointed to a significantly thinner capsule but greater biofilm-formation capacity in ΔXress than in the wild-type strain. These results indicate that Xress-MNTss, a new type II TA system, plays an important role in antibiotic resistance and pathogenicity in S. suis.
Collapse
Affiliation(s)
- Qibing Gu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing, China.,OIE Reference Laboratory for Swine Streptococcosis, Nanjing, China
| | - Peijuan He
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing, China.,OIE Reference Laboratory for Swine Streptococcosis, Nanjing, China
| | - Dan Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing, China.,OIE Reference Laboratory for Swine Streptococcosis, Nanjing, China
| | - Jiale Ma
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing, China.,OIE Reference Laboratory for Swine Streptococcosis, Nanjing, China
| | - Xiaojun Zhong
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing, China.,OIE Reference Laboratory for Swine Streptococcosis, Nanjing, China.,College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Yinchu Zhu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing, China.,OIE Reference Laboratory for Swine Streptococcosis, Nanjing, China.,Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yue Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing, China.,OIE Reference Laboratory for Swine Streptococcosis, Nanjing, China.,College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Qiankun Bai
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing, China.,OIE Reference Laboratory for Swine Streptococcosis, Nanjing, China
| | - Zihao Pan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing, China.,OIE Reference Laboratory for Swine Streptococcosis, Nanjing, China
| | - Huochun Yao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing, China.,OIE Reference Laboratory for Swine Streptococcosis, Nanjing, China
| |
Collapse
|
20
|
Kamruzzaman M, Wu AY, Iredell JR. Biological Functions of Type II Toxin-Antitoxin Systems in Bacteria. Microorganisms 2021; 9:microorganisms9061276. [PMID: 34208120 PMCID: PMC8230891 DOI: 10.3390/microorganisms9061276] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 12/14/2022] Open
Abstract
After the first discovery in the 1980s in F-plasmids as a plasmid maintenance system, a myriad of toxin-antitoxin (TA) systems has been identified in bacterial chromosomes and mobile genetic elements (MGEs), including plasmids and bacteriophages. TA systems are small genetic modules that encode a toxin and its antidote and can be divided into seven types based on the nature of the antitoxin molecules and their mechanism of action to neutralise toxins. Among them, type II TA systems are widely distributed in chromosomes and plasmids and the best studied so far. Maintaining genetic material may be the major function of type II TA systems associated with MGEs, but the chromosomal TA systems contribute largely to functions associated with bacterial physiology, including the management of different stresses, virulence and pathogenesis. Due to growing interest in TA research, extensive work has been conducted in recent decades to better understand the physiological roles of these chromosomally encoded modules. However, there are still controversies about some of the functions associated with different TA systems. This review will discuss the most current findings and the bona fide functions of bacterial type II TA systems.
Collapse
Affiliation(s)
- Muhammad Kamruzzaman
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia;
- Correspondence: (M.K.); (J.R.I.)
| | - Alma Y. Wu
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia;
| | - Jonathan R. Iredell
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia;
- Westmead Hospital, Westmead, NSW 2145, Australia
- Correspondence: (M.K.); (J.R.I.)
| |
Collapse
|
21
|
Sarpong DD, Murphy ER. RNA Regulated Toxin-Antitoxin Systems in Pathogenic Bacteria. Front Cell Infect Microbiol 2021; 11:661026. [PMID: 34084755 PMCID: PMC8167048 DOI: 10.3389/fcimb.2021.661026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 04/29/2021] [Indexed: 01/05/2023] Open
Abstract
The dynamic host environment presents a significant hurdle that pathogenic bacteria must overcome to survive and cause diseases. Consequently, these organisms have evolved molecular mechanisms to facilitate adaptation to environmental changes within the infected host. Small RNAs (sRNAs) have been implicated as critical regulators of numerous pathways and systems in pathogenic bacteria, including that of bacterial Toxin-Antitoxin (TA) systems. TA systems are typically composed of two factors, a stable toxin, and a labile antitoxin which functions to protect against the potentially deleterious activity of the associated toxin. Of the six classes of bacterial TA systems characterized to date, the toxin component is always a protein. Type I and Type III TA systems are unique in that the antitoxin in these systems is an RNA molecule, whereas the antitoxin in all other TA systems is a protein. Though hotly debated, the involvement of TA systems in bacterial physiology is recognized by several studies, with the Type II TA system being the most extensively studied to date. This review focuses on RNA-regulated TA systems, highlighting the role of Type I and Type III TA systems in several pathogenic bacteria.
Collapse
Affiliation(s)
- David D. Sarpong
- Department of Biological Sciences, Ohio University, Athens, OH, United States
- Infectious and Tropical Diseases Institute, Ohio University, Athens, OH, United States
- Molecular and Cellular Biology Program, Ohio University, Athens, OH, United States
| | - Erin R. Murphy
- Infectious and Tropical Diseases Institute, Ohio University, Athens, OH, United States
- Molecular and Cellular Biology Program, Ohio University, Athens, OH, United States
- Department of Biomedical Sciences, Ohio University, Heritage College of Osteopathic Medicine, Athens, OH, United States
| |
Collapse
|
22
|
Srivastava A, Pati S, Kaushik H, Singh S, Garg LC. Toxin-antitoxin systems and their medical applications: current status and future perspective. Appl Microbiol Biotechnol 2021; 105:1803-1821. [PMID: 33582835 DOI: 10.1007/s00253-021-11134-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 01/13/2021] [Accepted: 01/20/2021] [Indexed: 12/11/2022]
Abstract
Almost all bacteria synthesize two types of toxins-one for its survival by regulating different cellular processes and another as a strategy to interact with host cells for pathogenesis. Usually, "bacterial toxins" are contemplated as virulence factors that harm the host organism. However, toxins produced by bacteria, as a survival strategy against the host, also hamper its cellular processes. To overcome this, the bacteria have evolved with the production of a molecule, referred to as antitoxin, to negate the deleterious effect of the toxin against itself. The toxin and antitoxins are encoded by a two-component toxin-antitoxin (TA) system. The antitoxin, a protein or RNA, sequesters the toxins of the TA system for neutralization within the bacterial cell. In this review, we have described different TA systems of bacteria and their potential medical and biotechnological applications. It is of interest to note that while bacterial toxin-antitoxin systems have been well studied, the TA system in unicellular eukaryotes, though predicted by the investigators, have never been paid the desired attention. In the present review, we have also touched upon the TA system of eukaryotes identified to date. KEY POINTS: Bacterial toxins harm the host and also affect the bacterial cellular processes. The antitoxin produced by bacteria protect it from the toxin's harmful effects. The toxin-antitoxin systems can be targeted for various medical applications.
Collapse
Affiliation(s)
- Akriti Srivastava
- Department of Life Sciences, Shiv Nadar University, Gautam Buddha Nagar, Greater Noida, Uttar Pradesh, 201314, India
| | - Soumya Pati
- Department of Life Sciences, Shiv Nadar University, Gautam Buddha Nagar, Greater Noida, Uttar Pradesh, 201314, India
| | - Himani Kaushik
- Gene Regulation Laboratory, National Institute of Immunology, New Delhi, 110067, India
| | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India.
| | - Lalit C Garg
- Gene Regulation Laboratory, National Institute of Immunology, New Delhi, 110067, India.
| |
Collapse
|
23
|
Klimkaitė L, Armalytė J, Skerniškytė J, Sužiedėlienė E. The Toxin-Antitoxin Systems of the Opportunistic Pathogen Stenotrophomonas maltophilia of Environmental and Clinical Origin. Toxins (Basel) 2020; 12:E635. [PMID: 33019620 PMCID: PMC7650669 DOI: 10.3390/toxins12100635] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/22/2020] [Accepted: 09/25/2020] [Indexed: 12/16/2022] Open
Abstract
Stenotrophomonas maltophilia is a ubiquitous environmental bacterium that has recently emerged as a multidrug-resistant opportunistic pathogen causing bloodstream, respiratory, and urinary tract infections. The connection between the commensal environmental S. maltophilia and the opportunistic pathogen strains is still under investigation. Bacterial toxin-antitoxin (TA) systems have been previously associated with pathogenic traits, such as biofilm formation and resistance to antibiotics, which are important in clinical settings. The same species of the bacterium can possess various sets of TAs, possibly influencing their overall stress response. While the TA systems of other important opportunistic pathogens have been researched, nothing is known about the TA systems of S. maltophilia. Here, we report the identification and characterization of S. maltophilia type II TA systems and their prevalence in the isolates of clinical and environmental origins. We found 49 putative TA systems by bioinformatic analysis in S. maltophilia genomes. Despite their even spread in sequenced S. maltophilia genomes, we observed that relBE, hicAB, and previously undescribed COG3832-ArsR operons were present solely in clinical S. maltophilia isolates collected in Lithuania, while hipBA was more frequent in the environmental ones. The kill-rescue experiments in Escherichia coli proved higBA, hicAB, and relBE systems to be functional TA modules. Together with different TA profiles, the clinical S. maltophilia isolates exhibited stronger biofilm formation, increased antibiotic, and serum resistance compared to environmental isolates. Such tendencies suggest that certain TA systems could be used as indicators of virulence traits.
Collapse
Affiliation(s)
| | - Julija Armalytė
- Institute of Biosciences, Life Sciences Center, Vilnius University, LT-1025 Vilnius, Lithuania; (L.K.); (J.S.)
| | | | - Edita Sužiedėlienė
- Institute of Biosciences, Life Sciences Center, Vilnius University, LT-1025 Vilnius, Lithuania; (L.K.); (J.S.)
| |
Collapse
|
24
|
Jahanshahi S, Li Y. An Effective Method for Quantifying RNA Expression of IbsC-SibC, a Type I Toxin-Antitoxin System in Escherichia coli. Chembiochem 2020; 21:3120-3130. [PMID: 32516493 DOI: 10.1002/cbic.202000280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/04/2020] [Indexed: 01/28/2023]
Abstract
Toxin and antitoxin (TA) systems are small genetic modules consisting of a toxin protein and an RNA or protein antitoxin. It is difficult to study their functions in a large part due to the lack of effective methods to study toxin RNAs, which usually exist at exceptionally low levels. Herein, we describe a sensitive reverse transcription quantitative PCR (RT-qPCR) method that is able to quantitate such RNA species. The method was directed at detection of the toxin mRNA of the ibsC-sibC TA pair, and its high specificity was validated by sequencing. The approach was used to determine relative expression of the IbsC and SibC RNAs at different cell-growth phases; this revealed an expression pattern that cannot be explained by the prevailing notion of growth stasis by the toxin and rescue by the antitoxin. The usefulness of the method was further showcased by the determination of average cellular copy numbers of the IbsC-SibC RNAs in wild-type E. coli cells and RNA abundance in E. coli cells engineered with extra copies of the ibsC-sibC genes. With a robust method to quantitate cellular small RNAs at very low concentrations, we are now equipped to study the expression of TA systems under different conditions to gain useful insights about their functions.
Collapse
Affiliation(s)
- Shahrzad Jahanshahi
- M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, DeGroote School of Medicine, School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4 K1, Canada
| | - Yingfu Li
- M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, DeGroote School of Medicine, School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4 K1, Canada
| |
Collapse
|
25
|
Wu AY, Kamruzzaman M, Iredell JR. Specialised functions of two common plasmid mediated toxin-antitoxin systems, ccdAB and pemIK, in Enterobacteriaceae. PLoS One 2020; 15:e0230652. [PMID: 32603331 PMCID: PMC7326226 DOI: 10.1371/journal.pone.0230652] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 06/17/2020] [Indexed: 12/17/2022] Open
Abstract
Toxin-antitoxin systems (TAS) are commonly found on bacterial plasmids and are generally involved in plasmid maintenance. In addition to plasmid maintenance, several plasmid-mediated TAS are also involved in bacterial stress response and virulence. Even though the same TAS are present in a variety of plasmid types and bacterial species, differences in their sequences, expression and functions are not well defined. Here, we aimed to identify commonly occurring plasmid TAS in Escherichia coli and Klebsiella pneumoniae and compare the sequence, expression and plasmid stability function of their variants. 27 putative type II TAS were identified from 1063 plasmids of Klebsiella pneumoniae in GenBank. Among these, ccdAB and pemIK were found to be most common, also occurring in plasmids of E. coli. Comparisons of ccdAB variants, taken from E. coli and K. pneumoniae, revealed sequence differences, while pemIK variants from IncF and IncL/M plasmids were almost identical. Similarly, the expression and plasmid stability functions of ccdAB variants varied according to the host strain and species, whereas the expression and functions of pemIK variants were consistent among host strains. The specialised functions of some TAS may determine the host specificity and epidemiology of major antibiotic resistance plasmids.
Collapse
Affiliation(s)
- Alma Y. Wu
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, The University of Sydney, Westmead, New South Wales, Australia
| | - Muhammad Kamruzzaman
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, The University of Sydney, Westmead, New South Wales, Australia
- * E-mail: (MK); (JI)
| | - Jonathan R. Iredell
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, The University of Sydney, Westmead, New South Wales, Australia
- Westmead Hospital, Westmead, New South Wales, Australia
- * E-mail: (MK); (JI)
| |
Collapse
|
26
|
Bustamante P, Vidal R. Repertoire and Diversity of Toxin - Antitoxin Systems of Crohn's Disease-Associated Adherent-Invasive Escherichia coli. New Insight of T his Emergent E. coli Pathotype. Front Microbiol 2020; 11:807. [PMID: 32477289 PMCID: PMC7232551 DOI: 10.3389/fmicb.2020.00807] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 04/06/2020] [Indexed: 12/13/2022] Open
Abstract
Adherent-invasive Escherichia coli (AIEC) corresponds to an E. coli pathovar proposed as a possible agent trigger associated to Crohn's disease. It is characterized for its capacity to adhere and to invade epithelial cells, and to survive and replicate inside macrophages. Mechanisms that allow intestinal epithelium colonization, and host factors that favor AIEC persistence have been partly elucidated. However, bacterial factors involved in AIEC persistence are currently unknown. Toxin-antitoxin (TA) systems are recognized elements involved in bacterial persistence, in addition to have a role in stabilization of mobile genetic elements and stress response. The aim of this study was to elucidate the repertoire and diversity of TA systems in the reference AIEC NRG857c strain and to compare it with AIEC strains whose genomes are available at databases. In addition, toxin expression levels under in vitro stress conditions found by AIEC through the intestine and within the macrophage were measured. Our results revealed that NRG857c encodes at least 33 putative TA systems belonging to types I, II, IV, and V, distributed around all the chromosome, and some in close proximity to genomic islands. A TA toxin repertoire marker of the pathotype was not found and the repertoire of 33 TA toxin genes described here was exclusive of the reference strains, NRG857c and LF82. Most toxin genes were upregulated in the presence of bile salts and acidic pH, as well as within the macrophage. However, different transcriptional responses were detected between reference strains (NRG857c and HM605), recalling the high diversity associated to this pathotype. To our knowledge this is the first analysis of TA systems associated to AIEC and it has revealed new insight associated to this emergent E. coli pathotype.
Collapse
Affiliation(s)
- Paula Bustamante
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Roberto Vidal
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Instituto Milenio de Inmunología e Inmunoterapia, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
27
|
Hughes-Games A, Roberts AP, Davis SA, Hill DJ. Identification of integrative and conjugative elements in pathogenic and commensal Neisseriaceae species via genomic distributions of DNA uptake sequence dialects. Microb Genom 2020; 6:e000372. [PMID: 32375974 PMCID: PMC7371117 DOI: 10.1099/mgen.0.000372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 04/13/2020] [Indexed: 02/02/2023] Open
Abstract
Mobile genetic elements (MGEs) are key factors responsible for dissemination of virulence determinants and antimicrobial-resistance genes amongst pathogenic bacteria. Conjugative MGEs are notable for their high gene loads donated per transfer event, broad host ranges and phylogenetic ubiquity amongst prokaryotes, with the subclass of chromosomally inserted integrative and conjugative elements (ICEs) being particularly abundant. The focus on a small number of model systems has biased the study of ICEs towards those conferring readily selectable phenotypes to host cells, whereas the identification and characterization of integrated cryptic elements remains challenging. Even though antimicrobial resistance and horizontally acquired virulence genes are major factors aggravating neisserial infection, conjugative MGEs of Neisseria gonorrhoeae and Neisseria meningitidis remain poorly characterized. Using a phenotype-independent approach based on atypical distributions of DNA uptake sequences (DUSs) in MGEs relative to the chromosomal background, we have identified two groups of chromosomally integrated conjugative elements in Neisseria: one found almost exclusively in pathogenic species possibly deriving from the genus Kingella, the other belonging to a group of Neisseria mucosa-like commensals. The former element appears to enable transfer of traditionally gonococcal-specific loci such as the virulence-associated toxin-antitoxin system fitAB to N. meningitidis chromosomes, whilst the circular form of the latter possesses a unique attachment site (attP) sequence seemingly adapted to exploit DUS motifs as chromosomal integration sites. In addition to validating the use of DUS distributions in Neisseriaceae MGE identification, the >170 identified ICE sequences provide a valuable resource for future studies of ICE evolution and host adaptation.
Collapse
Affiliation(s)
- Alex Hughes-Games
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
- Bristol Centre for Functional Nanomaterials, HH Wills Physics Laboratory, University of Bristol, Bristol, UK
| | - Adam P. Roberts
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Sean A. Davis
- School of Chemistry, University of Bristol, Bristol, UK
| | - Darryl J. Hill
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| |
Collapse
|
28
|
Agarwal S, Tiwari P, Deep A, Kidwai S, Gupta S, Thakur KG, Singh R. System-Wide Analysis Unravels the Differential Regulation and In Vivo Essentiality of Virulence-Associated Proteins B and C Toxin-Antitoxin Systems of Mycobacterium tuberculosis. J Infect Dis 2019. [PMID: 29529224 DOI: 10.1093/infdis/jiy109] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Toxin-antitoxin (TA) systems are bicistronic genetic modules that are ubiquitously present in bacterial genomes. The Mycobacterium tuberculosis genome encodes 90 putative TA systems, and these are considered to be associated with maintenance of bacterial genomic stability or bacterial survival under unfavorable environmental conditions. The majority of these in M. tuberculosis have been annotated as belonging to the virulence-associated protein B and C (VapBC) family. However, their precise role in bacterial physiology has not been elucidated. Here, we functionally characterized VapC toxins from M. tuberculosis and show that overexpression of some homologs inhibits growth of Mycobacterium bovis bacillus Calmette-Guérin in a bacteriostatic manner. Expression profiling of messenger RNA revealed that these VapC toxins were differentially induced upon exposure of M. tuberculosis to stress conditions. We also unraveled that transcriptional cross-activation exists between TA systems in M. tuberculosis. This study provides the first evidence for the essentiality of VapBC3 and VapBC4 systems in M. tuberculosis virulence.
Collapse
Affiliation(s)
- Sakshi Agarwal
- Tuberculosis Research Laboratory, Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, Faridabad, Haryana
| | - Prabhakar Tiwari
- Tuberculosis Research Laboratory, Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, Faridabad, Haryana
| | - Amar Deep
- Tuberculosis Research Laboratory, Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, Faridabad, Haryana.,Structural Biology Laboratory, G. N. Ramachandran Protein Centre, Institute of Microbial Technology, Council of Scientific and Industrial Research, Chandigarh, India
| | - Saqib Kidwai
- Tuberculosis Research Laboratory, Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, Faridabad, Haryana
| | - Shamba Gupta
- Tuberculosis Research Laboratory, Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, Faridabad, Haryana
| | - Krishan Gopal Thakur
- Structural Biology Laboratory, G. N. Ramachandran Protein Centre, Institute of Microbial Technology, Council of Scientific and Industrial Research, Chandigarh, India
| | - Ramandeep Singh
- Tuberculosis Research Laboratory, Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, Faridabad, Haryana
| |
Collapse
|
29
|
Riffaud C, Pinel-Marie ML, Pascreau G, Felden B. Functionality and cross-regulation of the four SprG/SprF type I toxin-antitoxin systems in Staphylococcus aureus. Nucleic Acids Res 2019; 47:1740-1758. [PMID: 30551143 PMCID: PMC6393307 DOI: 10.1093/nar/gky1256] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 11/29/2018] [Accepted: 12/04/2018] [Indexed: 01/21/2023] Open
Abstract
Toxin–antitoxin (TA) systems are ubiquitous among bacteria, frequently expressed in multiple copies, and important for functions such as antibiotic resistance and persistence. Type I TA systems are composed of a stable toxic peptide whose expression is repressed by an unstable RNA antitoxin. Here, we investigated the functionalities, regulation, and possible cross-talk between three core genome copies of the pathogenicity island-encoded ‘sprG1/sprF1’ type I TA system in the human pathogen Staphylococcus aureus. Except for SprG4, all RNA from these pairs, sprG2/sprF2, sprG3/sprF3, sprG4/sprF4, are expressed in the HG003 strain. SprG2 and SprG3 RNAs encode toxic peptides whose overexpression triggers bacteriostasis, which is counteracted at the RNA level by the overexpression of SprF2 and SprF3 antitoxins. Complex formation between each toxin and its cognate antitoxin involves their overlapping 3′ ends, and each SprF antitoxin specifically neutralizes the toxicity of its cognate SprG toxin without cross-talk. However, overexpression studies suggest cross-regulations occur at the RNA level between the SprG/SprF TA systems during growth. When subjected to H2O2-induced oxidative stress, almost all antitoxin levels dropped, while only SprG1 and SprF1 were reduced during phagocytosis-induced oxidative stress. SprG1, SprF1, SprF2, SprG3 and SprF3 levels also decrease during hyperosmotic stress. This suggests that novel SprG/SprF TA systems are involved in S. aureus persistence.
Collapse
Affiliation(s)
- Camille Riffaud
- Université de Rennes 1, Inserm, BRM (Bacterial Regulatory RNAs and Medicine) UMR_S 1230, 35000 Rennes, France
| | - Marie-Laure Pinel-Marie
- Université de Rennes 1, Inserm, BRM (Bacterial Regulatory RNAs and Medicine) UMR_S 1230, 35000 Rennes, France
| | - Gaëtan Pascreau
- Université de Rennes 1, Inserm, BRM (Bacterial Regulatory RNAs and Medicine) UMR_S 1230, 35000 Rennes, France
| | - Brice Felden
- Université de Rennes 1, Inserm, BRM (Bacterial Regulatory RNAs and Medicine) UMR_S 1230, 35000 Rennes, France
| |
Collapse
|
30
|
A ParDE-family toxin antitoxin system in major resistance plasmids of Enterobacteriaceae confers antibiotic and heat tolerance. Sci Rep 2019; 9:9872. [PMID: 31285520 PMCID: PMC6614396 DOI: 10.1038/s41598-019-46318-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 06/26/2019] [Indexed: 11/16/2022] Open
Abstract
Toxin-antitoxin (TA) systems were initially discovered as plasmid addiction systems on low-copy-number plasmids. Thousands of TA loci have since been identified on chromosomes, plasmids and mobile elements in bacteria and archaea with diverse roles in bacterial physiology and in maintenance of genetic elements. Here, we identified and characterised a plasmid mediated type II TA system in Enterobacteriaceae as a member of the ParDE super family. This system (hereafter, ParDEI) is distributed among IncI and IncF-type antibiotic resistance and virulence plasmids found in avian and human-source Escherichia coli and Salmonella. It is found that ParDEI is a plasmid stability and stress response module that increases tolerance of aminoglycoside, quinolone and β-lactam antibiotics in E. coli by ~100–1,000-fold, and thus to levels beyond those achievable in the course of antibiotic therapy for human infections. ParDEI also confers a clear survival advantage at 42 °C and expression of the ParEI toxin in trans induces the SOS response, inhibits cell division and promotes biofilm formation. This transmissible high-level antibiotic tolerance is likely to be an important factor in the success of the IncI and IncF plasmids which carry it and the important pathogens in which these are resident.
Collapse
|
31
|
Chatterjee R, Shreenivas MM, Sunil R, Chakravortty D. Enteropathogens: Tuning Their Gene Expression for Hassle-Free Survival. Front Microbiol 2019; 9:3303. [PMID: 30687282 PMCID: PMC6338047 DOI: 10.3389/fmicb.2018.03303] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 12/19/2018] [Indexed: 12/27/2022] Open
Abstract
Enteropathogenic bacteria have been the cause of the majority of foodborne illnesses. Much of the research has been focused on elucidating the mechanisms by which these pathogens evade the host immune system. One of the ways in which they achieve the successful establishment of a niche in the gut microenvironment and survive is by a chain of elegantly regulated gene expression patterns. Studies have shown that this process is very elaborate and is also regulated by several factors. Pathogens like, enteropathogenic Escherichia coli (EPEC), Salmonella Typhimurium, Shigella flexneri, Yersinia sp. have been seen to employ various regulated gene expression strategies. These include toxin-antitoxin systems, quorum sensing systems, expression controlled by nucleoid-associated proteins (NAPs), several regulons and operons specific to these pathogens. In the following review, we have tried to discuss the common gene regulatory systems of enteropathogenic bacteria as well as pathogen-specific regulatory mechanisms.
Collapse
Affiliation(s)
- Ritika Chatterjee
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
- Division of Biological Sciences, Indian Institute of Science, Bengaluru, India
| | - Meghanashree M. Shreenivas
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
- Division of Biological Sciences, Indian Institute of Science, Bengaluru, India
- Undergraduate Studies, Indian Institute of Science, Bengaluru, India
| | - Rohith Sunil
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
- Division of Biological Sciences, Indian Institute of Science, Bengaluru, India
- Undergraduate Studies, Indian Institute of Science, Bengaluru, India
| | - Dipshikha Chakravortty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
- Division of Biological Sciences, Indian Institute of Science, Bengaluru, India
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
32
|
Shur KV, Bekker OB, Zaichikova MV, Maslov DA, Akimova NI, Zakharevich NV, Chekalina MS, Danilenko VN. Genetic Aspects of Drug Resistance and Virulence in Mycobacterium tuberculosis. RUSS J GENET+ 2018. [DOI: 10.1134/s1022795418120141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
33
|
Xu J, Zhang N, Cao M, Ren S, Zeng T, Qin M, Zhao X, Yuan F, Chen H, Bei W. Identification of Three Type II Toxin-Antitoxin Systems in Streptococcus suis Serotype 2. Toxins (Basel) 2018; 10:toxins10110467. [PMID: 30428568 PMCID: PMC6266264 DOI: 10.3390/toxins10110467] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/06/2018] [Accepted: 11/07/2018] [Indexed: 01/15/2023] Open
Abstract
Type II toxin-antitoxin (TA) systems are highly prevalent in bacterial genomes and have been extensively studied. These modules involve in the formation of persistence cells, the biofilm formation, and stress resistance, which might play key roles in pathogen virulence. SezAT and yefM-yoeB TA modules in Streptococcus suis serotype 2 (S. suis 2) have been studied, although the other TA systems have not been identified. In this study, we investigated nine putative type II TA systems in the genome of S. suis 2 strain SC84 by bioinformatics analysis and identified three of them (two relBE loci and one parDE locus) that function as typical type II TA systems. Interestingly, we found that the introduction of the two RelBE TA systems into Escherichia coli or the induction of the ParE toxin led to cell filamentation. Promoter activity assays indicated that RelB1, RelB2, ParD, and ParDE negatively autoregulated the transcriptions of their respective TA operons, while RelBE2 positively autoregulated its TA operon transcription. Collectively, we identified three TA systems in S. suis 2, and our findings have laid an important foundation for further functional studies on these TA systems.
Collapse
Affiliation(s)
- Jiali Xu
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Nian Zhang
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Manman Cao
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Sujing Ren
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Ting Zeng
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Minglu Qin
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Xigong Zhao
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Fangyan Yuan
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis, Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan 430064, China.
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Weicheng Bei
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
34
|
Mechanisms of Bacterial Tolerance and Persistence in the Gastrointestinal and Respiratory Environments. Clin Microbiol Rev 2018; 31:31/4/e00023-18. [PMID: 30068737 DOI: 10.1128/cmr.00023-18] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Pathogens that infect the gastrointestinal and respiratory tracts are subjected to intense pressure due to the environmental conditions of the surroundings. This pressure has led to the development of mechanisms of bacterial tolerance or persistence which enable microorganisms to survive in these locations. In this review, we analyze the general stress response (RpoS mediated), reactive oxygen species (ROS) tolerance, energy metabolism, drug efflux pumps, SOS response, quorum sensing (QS) bacterial communication, (p)ppGpp signaling, and toxin-antitoxin (TA) systems of pathogens, such as Escherichia coli, Salmonella spp., Vibrio spp., Helicobacter spp., Campylobacter jejuni, Enterococcus spp., Shigella spp., Yersinia spp., and Clostridium difficile, all of which inhabit the gastrointestinal tract. The following respiratory tract pathogens are also considered: Staphylococcus aureus, Pseudomonas aeruginosa, Acinetobacter baumannii, Burkholderia cenocepacia, and Mycobacterium tuberculosis Knowledge of the molecular mechanisms regulating the bacterial tolerance and persistence phenotypes is essential in the fight against multiresistant pathogens, as it will enable the identification of new targets for developing innovative anti-infective treatments.
Collapse
|
35
|
Schneider B, Weigel W, Sztukowska M, Demuth DR. Identification and functional characterization of type II toxin/antitoxin systems in Aggregatibacter actinomycetemcomitans. Mol Oral Microbiol 2018; 33:224-233. [PMID: 29319934 PMCID: PMC5969271 DOI: 10.1111/omi.12215] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2018] [Indexed: 11/30/2022]
Abstract
Type II toxin/antitoxin (TA) systems contribute to the formation of persister cells and biofilm formation for many organisms. Aggregatibacter actinomycetemcomitans thrives in the complex oral microbial community subjected to continual environmental flux. Little is known regarding the presence and function of type II TA systems in this organism or their contribution to adaptation and persistence in the biofilm. We identified 11 TA systems that are conserved across all seven serotypes of A. actinomycetemcomitans and represent the RelBE, MazEF and HipAB families of type II TA systems. The systems selectively responded to various environmental conditions that exist in the oral cavity. Two putative RelBE‐like TA systems, D11S_1194‐1195 and D11S_1718‐1719 were induced in response to low pH and deletion of D11S_1718‐1719 significantly reduced metabolic activity of stationary phase A. actinomycetemcomitans cells upon prolonged exposure to acidic conditions. The deletion mutant also exhibited reduced biofilm biomass when cultured under acidic conditions. The D11S_1194 and D11S_1718 toxin proteins inhibited in vitro translation of dihydrofolate reductase (DHFR) and degraded ribosome‐associated, but not free, MS2 virus RNA. In contrast, the corresponding antitoxins (D11S_1195 and D11S_1719), or equimolar mixtures of toxin and antitoxin, had no effect on DHFR production or RNA degradation. Together, these results suggest that D11S_1194‐1195 and D11S_1718‐1719 are RelBE‐like type II TA systems that are activated under acidic conditions and may function to cleave ribosome‐associated mRNA to inhibit translation in A. actinomycetemcomitans. In vivo, these systems may facilitate A. actinomycetemcomitans adaptation and persistence in acidic local environments in the dental biofilm.
Collapse
Affiliation(s)
- B Schneider
- Department of Oral Immunology and Infectious Disease, University of Louisville School of Dentistry, Louisville, KY, USA
| | - W Weigel
- Department of Oral Immunology and Infectious Disease, University of Louisville School of Dentistry, Louisville, KY, USA
| | - M Sztukowska
- Department of Oral Immunology and Infectious Disease, University of Louisville School of Dentistry, Louisville, KY, USA
| | - D R Demuth
- Department of Oral Immunology and Infectious Disease, University of Louisville School of Dentistry, Louisville, KY, USA
| |
Collapse
|
36
|
Burbank LP, Stenger DC. The DinJ/RelE Toxin-Antitoxin System Suppresses Bacterial Proliferation and Virulence of Xylella fastidiosa in Grapevine. PHYTOPATHOLOGY 2017; 107:388-394. [PMID: 27938243 DOI: 10.1094/phyto-10-16-0374-r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Xylella fastidiosa, the causal agent of Pierce's disease of grapes, is a slow-growing, xylem-limited, bacterial pathogen. Disease progression is characterized by systemic spread of the bacterium through xylem vessel networks, causing leaf-scorching symptoms, senescence, and vine decline. It appears to be advantageous to this pathogen to avoid excessive blockage of xylem vessels, because living bacterial cells are generally found in plant tissue with low bacterial cell density and minimal scorching symptoms. The DinJ/RelE toxin-antitoxin system is characterized here for a role in controlling bacterial proliferation and population size during plant colonization. The DinJ/RelE locus is transcribed from two separate promoters, allowing for coexpression of antitoxin DinJ with endoribonuclease toxin RelE, in addition to independent expression of RelE. The ratio of antitoxin/toxin expressed is dependent on bacterial growth conditions, with lower amounts of antitoxin present under conditions designed to mimic grapevine xylem sap. A knockout mutant of DinJ/RelE exhibits a hypervirulent phenotype, with higher bacterial populations and increased symptom development and plant decline. It is likely that DinJ/RelE acts to prevent excessive population growth, contributing to the ability of the pathogen to spread systemically without completely blocking the xylem vessels and increasing probability of acquisition by the insect vector.
Collapse
Affiliation(s)
- Lindsey P Burbank
- United States Department of Agriculture-Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, Parlier, CA 93648-9757
| | - Drake C Stenger
- United States Department of Agriculture-Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, Parlier, CA 93648-9757
| |
Collapse
|
37
|
Kato F, Yabuno Y, Yamaguchi Y, Sugai M, Inouye M. Deletion of mazF increases Staphylococcus aureus biofilm formation in an ica-dependent manner. Pathog Dis 2017; 75:3063887. [DOI: 10.1093/femspd/ftx026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 03/07/2017] [Indexed: 11/12/2022] Open
|
38
|
Cárdenas-Mondragón MG, Ares MA, Panunzi LG, Pacheco S, Camorlinga-Ponce M, Girón JA, Torres J, De la Cruz MA. Transcriptional Profiling of Type II Toxin-Antitoxin Genes of Helicobacter pylori under Different Environmental Conditions: Identification of HP0967-HP0968 System. Front Microbiol 2016; 7:1872. [PMID: 27920769 PMCID: PMC5118875 DOI: 10.3389/fmicb.2016.01872] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 11/07/2016] [Indexed: 12/24/2022] Open
Abstract
Helicobacter pylori is a Gram-negative bacterium that colonizes the human gastric mucosa and is responsible for causing peptic ulcers and gastric carcinoma. The expression of virulence factors allows the persistence of H. pylori in the stomach, which results in a chronic, sometimes uncontrolled inflammatory response. Type II toxin-antitoxin (TA) systems have emerged as important virulence factors in many pathogenic bacteria. Three type II TA systems have previously been identified in the genome of H. pylori 26695: HP0315-HP0316, HP0892-HP0893, and HP0894-HP0895. Here we characterized a heretofore undescribed type II TA system in H. pylori, HP0967-HP0968, which is encoded by the bicistronic operon hp0968-hp0967 and belongs to the Vap family. The predicted HP0967 protein is a toxin with ribonuclease activity whereas HP0968 is an antitoxin that binds to its own regulatory region. We found that all type II TA systems were expressed in H. pylori during early stationary growth phase, and differentially expressed in the presence of urea, nickel, and iron, although, the hp0968-hp0967 pair was the most affected under these environmental conditions. Transcription of hp0968-hp0967 was strongly induced in a mature H. pylori biofilm and when the bacteria interacted with AGS epithelial cells. Kanamycin and chloramphenicol considerably boosted transcription levels of all the four type II TA systems. The hp0968-hp0967 TA system was the most frequent among 317 H. pylori strains isolated from all over the world. This study is the first report on the transcription of type II TA genes in H. pylori under different environmental conditions. Our data show that the HP0967 and HP0968 proteins constitute a bona fide type II TA system in H. pylori, whose expression is regulated by environmental cues, which are relevant in the context of infection of the human gastric mucosa.
Collapse
Affiliation(s)
- María G Cárdenas-Mondragón
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatria, Centro Médico Nacional Siglo XXI, IMSS Mexico City, Mexico
| | - Miguel A Ares
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatria, Centro Médico Nacional Siglo XXI, IMSS Mexico City, Mexico
| | - Leonardo G Panunzi
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2, Inserm, U1104, CNRS UMR7280 Marseille, France
| | - Sabino Pacheco
- Departamento de Microbiología Molecular, Instituto de Biotecnología UNAM Cuernavaca, Mexico
| | - Margarita Camorlinga-Ponce
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatria, Centro Médico Nacional Siglo XXI, IMSS Mexico City, Mexico
| | - Jorge A Girón
- Centro de Detección Biomolecular, Benemérita Universidad Autónoma de Puebla Puebla, Mexico
| | - Javier Torres
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatria, Centro Médico Nacional Siglo XXI, IMSS Mexico City, Mexico
| | - Miguel A De la Cruz
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatria, Centro Médico Nacional Siglo XXI, IMSS Mexico City, Mexico
| |
Collapse
|
39
|
|
40
|
Lobato-Márquez D, Díaz-Orejas R, García-Del Portillo F. Toxin-antitoxins and bacterial virulence. FEMS Microbiol Rev 2016; 40:592-609. [PMID: 27476076 DOI: 10.1093/femsre/fuw022] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2016] [Indexed: 12/25/2022] Open
Abstract
Bacterial virulence relies on a delicate balance of signals interchanged between the invading microbe and the host. This communication has been extensively perceived as a battle involving harmful molecules produced by the pathogen and host defenses. In this review, we focus on a largely unexplored element of this dialogue, as are toxin-antitoxin (TA) systems of the pathogen. TA systems are reported to respond to stresses that are also found in the host and, as a consequence, could modulate the physiology of the intruder microbe. This view is consistent with recent studies that demonstrate a contribution of distinct TA systems to virulence since their absence alters the course of the infection. TA loci are stress response modules that, therefore, could readjust pathogen metabolism to favor the generation of slow-growing or quiescent cells 'before' host defenses irreversibly block essential pathogen activities. Some toxins of these TA modules have been proposed as potential weapons used by the pathogen to act on host targets. We discuss all these aspects based on studies that support some TA modules as important regulators in the pathogen-host interface.
Collapse
Affiliation(s)
- Damián Lobato-Márquez
- Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas (CNB-CSIC), Darwin 3, 28049 Madrid, Spain Centro de Investigaciones Biológicas-CSIC (CIB-CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Ramón Díaz-Orejas
- Centro de Investigaciones Biológicas-CSIC (CIB-CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Francisco García-Del Portillo
- Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas (CNB-CSIC), Darwin 3, 28049 Madrid, Spain
| |
Collapse
|
41
|
Emerging Roles of Toxin-Antitoxin Modules in Bacterial Pathogenesis. Molecules 2016; 21:molecules21060790. [PMID: 27322231 PMCID: PMC6273597 DOI: 10.3390/molecules21060790] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 06/06/2016] [Accepted: 06/13/2016] [Indexed: 11/17/2022] Open
Abstract
Toxin-antitoxin (TA) cassettes are encoded widely by bacteria. The modules typically comprise a protein toxin and protein or RNA antitoxin that sequesters the toxin factor. Toxin activation in response to environmental cues or other stresses promotes a dampening of metabolism, most notably protein translation, which permits survival until conditions improve. Emerging evidence also implicates TAs in bacterial pathogenicity. Bacterial persistence involves entry into a transient semi-dormant state in which cells survive unfavorable conditions including killing by antibiotics, which is a significant clinical problem. TA complexes play a fundamental role in inducing persistence by downregulating cellular metabolism. Bacterial biofilms are important in numerous chronic inflammatory and infectious diseases and cause serious therapeutic problems due to their multidrug tolerance and resistance to host immune system actions. Multiple TAs influence biofilm formation through a network of interactions with other factors that mediate biofilm production and maintenance. Moreover, in view of their emerging contributions to bacterial virulence, TAs are potential targets for novel prophylactic and therapeutic approaches that are required urgently in an era of expanding antibiotic resistance. This review summarizes the emerging evidence that implicates TAs in the virulence profiles of a diverse range of key bacterial pathogens that trigger serious human disease.
Collapse
|
42
|
Klemenčič M, Dolinar M. Orthocaspase and toxin-antitoxin loci rubbing shoulders in the genome of Microcystis aeruginosa PCC 7806. Curr Genet 2016; 62:669-675. [PMID: 26968707 DOI: 10.1007/s00294-016-0582-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 02/10/2016] [Accepted: 02/12/2016] [Indexed: 12/12/2022]
Abstract
Programmed cell death in multicellular organisms is a coordinated and precisely regulated process. On the other hand, in bacteria we have little clue about the network of interacting molecules that result in the death of a single cell within a population or the death of almost complete population, such as often observed in cyanobacterial blooms. With the recent discovery that orthocaspase MaOC1 of the cyanobacterium Microcystis aeruginosa is an active proteolytic enzyme, we have gained a possible hint about at least one step in the process, but the picture is far from complete. Interestingly, the genomic context of MaOC1 revealed the presence of multiple copies of genes that belong to toxin-antitoxin modules. It has been speculated that these also play a role in bacterial programmed cell death. The discovery of two components linked to cell death within the same genomic region could open new ways to deciphering the underlying mechanisms of cyanobacterial cell death.
Collapse
Affiliation(s)
- Marina Klemenčič
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000, Ljubljana, Slovenia
| | - Marko Dolinar
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000, Ljubljana, Slovenia.
| |
Collapse
|
43
|
Zaychikova MV, Zakharevich NV, Sagaidak MO, Bogolubova NA, Smirnova TG, Andreevskaya SN, Larionova EE, Alekseeva MG, Chernousova LN, Danilenko VN. Mycobacterium tuberculosis Type II Toxin-Antitoxin Systems: Genetic Polymorphisms and Functional Properties and the Possibility of Their Use for Genotyping. PLoS One 2015; 10:e0143682. [PMID: 26658274 PMCID: PMC4680722 DOI: 10.1371/journal.pone.0143682] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 11/08/2015] [Indexed: 12/05/2022] Open
Abstract
Various genetic markers such as IS-elements, DR-elements, variable number tandem repeats (VNTR), single nucleotide polymorphisms (SNPs) in housekeeping genes and other groups of genes are being used for genotyping. We propose a different approach. We suggest the type II toxin-antitoxin (TA) systems, which play a significant role in the formation of pathogenicity, tolerance and persistence phenotypes, and thus in the survival of Mycobacterium tuberculosis in the host organism at various developmental stages (colonization, infection of macrophages, etc.), as the marker genes. Most genes of TA systems function together, forming a single network: an antitoxin from one pair may interact with toxins from other pairs and even from other families. In this work a bioinformatics analysis of genes of the type II TA systems from 173 sequenced genomes of M. tuberculosis was performed. A number of genes of type II TA systems were found to carry SNPs that correlate with specific genotypes. We propose a minimally sufficient set of genes of TA systems for separation of M. tuberculosis strains at nine basic genotype and for further division into subtypes. Using this set of genes, we genotyped a collection consisting of 62 clinical isolates of M. tuberculosis. The possibility of using our set of genes for genotyping using PCR is also demonstrated.
Collapse
Affiliation(s)
- Marina V. Zaychikova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
- Scientific Research Center for Biotechnology of Antibiotics "BIOAN", Moscow, Russia
| | | | - Maria O. Sagaidak
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
- State University, Moscow Institute of Physics and Technology, Moscow, Russia
| | | | | | | | | | - Maria G. Alekseeva
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | | | - Valery N. Danilenko
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
- Scientific Research Center for Biotechnology of Antibiotics "BIOAN", Moscow, Russia
- * E-mail:
| |
Collapse
|