1
|
Wu D, Yang X, Xu Q, Yao Z, Shan C, Xu H, Ma C. In vitro and in vivo anti-osteoporotic effects of different fractions from Xanthoceras sorbifolium wood. Nat Prod Res 2025:1-7. [PMID: 40296820 DOI: 10.1080/14786419.2025.2497449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 04/17/2025] [Accepted: 04/18/2025] [Indexed: 04/30/2025]
Abstract
The wood of Xanthoceras sorbifolium (XS) is used in ethnomedicine to treat bone pain. Osteoporosis is among the causes that may result in bone pain. XS was extracted with supercritical CO2 to obtain a fraction CDF and XS residue; The XS residue was extracted by refluxing with ethanol, and the ethanol extract was concentrated to obtain a supernatant fraction (ES) and a precipitate fraction (EP); the major chemical components the fractions were identified by high-performance liquid chromatography-mass spectrometry. ES and EP effectively counteracted the dexa-methasone-induced delay in the calcification of zebrafish and promoted the differentiation of MC3T3-E1 cells. ES upregulated oestrogen receptor 1 and osteocalcin, while EP downregulated myc proto-oncogene, matrix metalloproteinases 9, preproinsulin, and interleukin 6, promoting bone formation. ES and CDF decreased the abnormal aggregation of neutrophils. ES and EP's primary components also exhibited anti-osteoporotic activity, with myricetin demonstrating the strongest anti-osteoporotic effect.
Collapse
Affiliation(s)
- Dandan Wu
- Key Laboratory of Herbage & Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Xinyue Yang
- Wuhai Municipal Health Commission, City Administrative Center, Wuhai, China
| | - Qianqian Xu
- Key Laboratory of Herbage & Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Zhiwei Yao
- Key Laboratory of Herbage & Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Chengbin Shan
- Key Laboratory of Herbage & Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Haiyan Xu
- Key Laboratory of Herbage & Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Chaomei Ma
- Key Laboratory of Herbage & Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, China
| |
Collapse
|
2
|
Zhao W, Qian J, Li J, Su T, Deng X, Fu Y, Liang X, Cui H. From death to birth: how osteocyte death promotes osteoclast formation. Front Immunol 2025; 16:1551542. [PMID: 40165960 PMCID: PMC11955613 DOI: 10.3389/fimmu.2025.1551542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 02/28/2025] [Indexed: 04/02/2025] Open
Abstract
Bone remodeling is a dynamic and continuous process involving three components: bone formation mediated by osteoblasts, bone resorption mediated by osteoclasts, and bone formation-resorption balancing regulated by osteocytes. Excessive osteocyte death is found in various bone diseases, such as postmenopausal osteoporosis (PMOP), and osteoclasts are found increased and activated at osteocyte death sites. Currently, apart from apoptosis and necrosis as previously established, more forms of cell death are reported, including necroptosis, ferroptosis and pyroptosis. These forms of cell death play important role in the development of inflammatory diseases and bone diseases. Increasing studies have revealed that various forms of osteocyte death promote osteoclast formation via different mechanism, including actively secreting pro-inflammatory and pro-osteoclastogenic cytokines, such as tumor necrosis factor alpha (TNF-α) and receptor activator of nuclear factor-kappa B ligand (RANKL), or passively releasing pro-inflammatory damage associated molecule patterns (DAMPs), such as high mobility group box 1 (HMGB1). This review summarizes the established and potential mechanisms by which various forms of osteocyte death regulate osteoclast formation, aiming to provide better understanding of bone disease development and therapeutic target.
Collapse
Affiliation(s)
- Weijie Zhao
- Key Laboratory of Emergency and Trauma of Ministry of Education, Department of Emergency Surgery, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Jiale Qian
- Key Laboratory of Emergency and Trauma of Ministry of Education, Department of Emergency Surgery, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Ji Li
- Key Laboratory of Emergency and Trauma of Ministry of Education, Department of Emergency Surgery, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Tian Su
- Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Haikou Trauma, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, China
- Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Emergency and Trauma, College of pharmacy, Hainan Medical University, Haikou, China
| | - Xiaozhong Deng
- Department of Pain Treatment, Nanxi Shan Hospital of Guangxi Zhuang Autonomous Region, Guilin, China
| | - Yonghua Fu
- Department of Hand and Foot Microsurgery, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Xuelong Liang
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Hongwang Cui
- Key Laboratory of Emergency and Trauma of Ministry of Education, Department of Emergency Surgery, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital, Hainan Medical University, Haikou, China
| |
Collapse
|
3
|
Hao G, Han S, Xiao Z, Shen J, Zhao Y, Hao Q. Synovial mast cells and osteoarthritis: Current understandings and future perspectives. Heliyon 2024; 10:e41003. [PMID: 39720069 PMCID: PMC11665477 DOI: 10.1016/j.heliyon.2024.e41003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 10/29/2024] [Accepted: 12/04/2024] [Indexed: 12/26/2024] Open
Abstract
Osteoarthritis (OA) is a prevalent joint disease worldwide that significantly impacts the quality of life of individuals, particularly those in middle-aged and elderly populations. OA was initially considered as non-inflammatory arthritis, but recent studies have identified a substantial number of immune responses in OA, leading to the recognition of inflammation as a key factor in its pathogenesis. An increasing number of studies have found that mast cell (MC) and MC-secreted inflammatory mediators and cytokines are notably increased in the synovial fluid of OA patients, indicating a potential association between MCs and the onset and progression of synovial inflammation. The present review aims to summarize the significance and mechanism of MCs in the pathogenesis of OA. Meanwhile, we also discuss the clinical potential of using MCs as therapeutic target for OA therapy. Modulating the activities of MCs or the mediators of MCs in the synovial fluid inflammatory microenvironment will be promising new options for the treatment of OA.
Collapse
Affiliation(s)
- Guanghui Hao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Southwest Medical University, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Shanqian Han
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Southwest Medical University, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Southwest Medical University, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Southwest Medical University, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Southwest Medical University, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Qi Hao
- Department of Joint Surgery, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
- The Third People's Hospital of Longmatan District, Luzhou, Sichuan, China
| |
Collapse
|
4
|
Tan JT, Cheung CL, Cheung KS. Relationship between Helicobacter pylori infection, osteoporosis, and fracture. J Gastroenterol Hepatol 2024; 39:2006-2017. [PMID: 39375877 DOI: 10.1111/jgh.16664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 05/08/2024] [Accepted: 06/07/2024] [Indexed: 10/09/2024]
Abstract
Osteoporotic fracture is a prevalent noncommunicable disease globally, causing significant mortality, morbidity, and disability. As the population ages, the healthcare and economic burden of osteoporotic fracture is expected to increase further. Due to its multifactorial features, the development of osteoporotic fracture involves a complex interplay of multiple risk factors, including genetic, environmental, and lifestyle factors. Helicobacter pylori, which infects approximately 43% of the world's population, has been associated with increased fracture risk due to hypochlorhydria from atrophic gastritis and systemic inflammation from elevated pro-inflammatory cytokines. However, the potential impact of H. pylori infection and eradication on fracture risk remains contentious among various studies due to the study design and inadequate adjustment of confounding factors including baseline gastritis phenotype. In this review, we provided a comprehensive evaluation of the current evidence focusing on the underlying mechanisms and clinical evidence of the association between H. pylori infection and osteoporotic fracture. We also discussed the potential benefits of H. pylori eradication on fracture risk.
Collapse
Affiliation(s)
- Jing Tong Tan
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, China
| | - Ching Lung Cheung
- Department of Pharmacology and Pharmacy, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, China
- Laboratory of Data Discovery for Health Limited (D24H), Hong Kong Science Park, Pak Shek Kok, Hong Kong Special Administrative Region, China
| | - Ka Shing Cheung
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, China
- Department of Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
5
|
Song C, Liu Y, Tao X, Cheng K, Cai W, Zhou D, Zhou Y, Wang L, Shi H, Hao Q, Liu Z. Immunomodulation Pathogenesis and Treatment of Bone Nonunion. Orthop Surg 2024; 16:1770-1782. [PMID: 38946017 PMCID: PMC11293939 DOI: 10.1111/os.14131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/23/2024] [Accepted: 05/23/2024] [Indexed: 07/02/2024] Open
Abstract
Fractures and bone nonunion commonly require surgical intervention. Serious outcomes of non-healing in the late stages of fracture place a significant financial burden on society and families. Bone nonunion occurs when a fracture stops healing, for many reasons, and leads to a variety of bad outcomes. Numerous factors, including biomechanics and immunology, are involved in the complicated mechanisms of bone nonunion. The immune-inflammatory response plays a significant part in the emergence of bone nonunion, and the occurrence, control, and remission of inflammation in the bone healing process have a significant influence on the ultimate success of bone tissue repair. In the bone microenvironment, immune cells and associated cytokines control bone repair, which is significantly influenced by macrophages, T cells, and fibroblast growth factor. To limit acute inflammation and balance osteogenesis and osteoblastogenesis for tissue repair and regeneration, immune cells and various cytokines in the local microenvironment must be precisely regulated. As a bad complication of late-stage fractures, bone nonunion has a significant effect on patients' quality of life and socioeconomic development. Therefore, in-depth research on its pathogenesis and treatment methods has important clinical value. To provide more precise, focused therapeutic options for the treatment of bone nonunion, we discuss the regulatory roles of the key immune cells engaged in bone healing within the microenvironment during bone healing and their effect on osteogenesis.
Collapse
Affiliation(s)
- Chao Song
- Department of Orthopedics and Traumatology (Trauma and Bone‐Setting), Laboratory of Integrated Chinese and Western Medicine for Orthopedic and Traumatic Diseases Prevention and Treatment, The Affiliated Traditional Chinese Medicine HospitalSouthwest Medical UniversityLuzhouChina
| | - Yong Liu
- Department of Bone and Joint Sports MedicineXingguo People's Hospital, Gannan Medical CollegeXingguoChina
| | - Xingxing Tao
- College of Integrative Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine HospitalSouthwest Medical UniversityLuzhouChina
| | - Kang Cheng
- Department of Orthopedics and Traumatology (Trauma and Bone‐Setting), Laboratory of Integrated Chinese and Western Medicine for Orthopedic and Traumatic Diseases Prevention and Treatment, The Affiliated Traditional Chinese Medicine HospitalSouthwest Medical UniversityLuzhouChina
| | - Weiye Cai
- Department of Orthopedics and Traumatology (Trauma and Bone‐Setting), Laboratory of Integrated Chinese and Western Medicine for Orthopedic and Traumatic Diseases Prevention and Treatment, The Affiliated Traditional Chinese Medicine HospitalSouthwest Medical UniversityLuzhouChina
| | - Daqian Zhou
- Department of Orthopedics and Traumatology (Trauma and Bone‐Setting), Laboratory of Integrated Chinese and Western Medicine for Orthopedic and Traumatic Diseases Prevention and Treatment, The Affiliated Traditional Chinese Medicine HospitalSouthwest Medical UniversityLuzhouChina
| | - Yang Zhou
- Department of Orthopedics and Traumatology (Trauma and Bone‐Setting), Laboratory of Integrated Chinese and Western Medicine for Orthopedic and Traumatic Diseases Prevention and Treatment, The Affiliated Traditional Chinese Medicine HospitalSouthwest Medical UniversityLuzhouChina
| | - Liquan Wang
- Department of Orthopedics and Traumatology (Trauma and Bone‐Setting), Laboratory of Integrated Chinese and Western Medicine for Orthopedic and Traumatic Diseases Prevention and Treatment, The Affiliated Traditional Chinese Medicine HospitalSouthwest Medical UniversityLuzhouChina
| | - Houyin Shi
- Department of Orthopedics and Traumatology (Trauma and Bone‐Setting), Laboratory of Integrated Chinese and Western Medicine for Orthopedic and Traumatic Diseases Prevention and Treatment, The Affiliated Traditional Chinese Medicine HospitalSouthwest Medical UniversityLuzhouChina
| | - Qi Hao
- Orthopedic Surgery, The Affiliated Traditional Chinese Medicine HospitalSouthwest Medical UniversityLuzhouChina
| | - Zongchao Liu
- Department of Orthopedics and Traumatology (Trauma and Bone‐Setting), Laboratory of Integrated Chinese and Western Medicine for Orthopedic and Traumatic Diseases Prevention and Treatment, The Affiliated Traditional Chinese Medicine HospitalSouthwest Medical UniversityLuzhouChina
- Department of OrthopedicsLuzhou Longmatan District People's HospitalLuzhouChina
| |
Collapse
|
6
|
Arakawa J, Kondoh H, Matsushita T, Ogino Y, Asai M, Tanuma SI, Uchiumi F. Induction of the human CDC45 gene promoter activity by natural compound trans‑resveratrol. Mol Med Rep 2024; 29:92. [PMID: 38577929 PMCID: PMC11025027 DOI: 10.3892/mmr.2024.13216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 03/13/2024] [Indexed: 04/06/2024] Open
Abstract
GGAA motifs in the human TP53 and HELB gene promoters play a part in responding to trans‑resveratrol (Rsv) in HeLa S3 cells. This sequence is also present in the 5'‑upstream region of the human CDC45 gene, which encodes a component of CMG DNA helicase protein complex. The cells were treated with Rsv (20 µM), then transcripts and the translated protein were analyzed by quantitative RT‑PCR and western blotting, respectively. The results showed that the CDC45 gene and protein expression levels were induced after the treatment. To examine whether they were due to the activation of transcription, a 5'‑upstream 556‑bp of the CDC45 gene was cloned and inserted into a multi‑cloning site of the Luciferase (Luc) expression vector. In the present study, various deletion/point mutation‑introduced Luc expression plasmids were constructed and they were used for the transient transfection assay. The results showed that the GGAA motif, which is included in a putative RELB protein recognizing sequence, plays a part in the promoter activity with response to Rsv in HeLa S3 cells.
Collapse
Affiliation(s)
- Jun Arakawa
- Department of Gene Regulation, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Hikaru Kondoh
- Department of Gene Regulation, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Tokiyoshi Matsushita
- Department of Gene Regulation, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Yoko Ogino
- Department of Gene Regulation, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Masashi Asai
- Department of Gene Regulation, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan
- Laboratory of Kampo Pharmacology, Faculty of Pharmaceutical Sciences, Yokohama University of Pharmacy, Yokohama, Kanagawa 245-0066, Japan
| | - Sei-Ichi Tanuma
- Genomic Medicinal Science, Research Institute for Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Fumiaki Uchiumi
- Department of Gene Regulation, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| |
Collapse
|
7
|
Liu S, Lu Q, Wang M, Guo H, Wang Y, Nong J, Wang S, Xia H, Xia T, Sun H. S-nitrosoglutathione reductase-dependent p65 denitrosation promotes osteoclastogenesis by facilitating recruitment of p65 to NFATc1 promoter. Bone 2024; 181:117036. [PMID: 38311303 DOI: 10.1016/j.bone.2024.117036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/26/2023] [Accepted: 02/01/2024] [Indexed: 02/10/2024]
Abstract
Osteoclasts, the exclusive bone resorptive cells, are indispensable for bone remodeling. Hence, understanding novel signaling modulators regulating osteoclastogenesis is clinically important. Nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1) is a master transcription factor in osteoclastogenesis, and binding of NF-κB p65 subunit to NFATc1 promoter is required for its expression. It is well-established that DNA binding activity of p65 can be regulated by various post-translational modifications, including S-nitrosation. Recent studies have demonstrated that S-nitrosoglutathione reductase (GSNOR)-mediated protein denitrosation participated in cell fate commitment by regulating gene transcription. However, the role of GSNOR in osteoclastogenesis remains unexplored and enigmatic. Here, we investigated the effect of GSNOR-mediated denitrosation of p65 on osteoclastogenesis. Our results revealed that GSNOR was up-regulated during osteoclastogenesis in vitro. Moreover, GSNOR inhibition with a chemical inhibitor impaired osteoclast differentiation, podosome belt formation, and bone resorption activity. Furthermore, GSNOR inhibition enhanced the S-nitrosation level of p65, precluded the binding of p65 to NFATc1 promoter, and suppressed NFATc1 expression. In addition, mouse model of lipopolysaccharides (LPS)-induced calvarial osteolysis was employed to evaluate the therapeutic effect of GSNOR inhibitor in vivo. Our results indicated that GSNOR inhibitor treatment alleviated the inflammatory bone loss by impairing osteoclast formation in mice. Taken together, these data have shown that GSNOR activity is required for osteoclastogenesis by facilitating binding of p65 to NFATc1 promoter via promoting p65 denitrosation, suggesting that GSNOR may be a potential therapeutic target in the treatment of osteolytic diseases.
Collapse
Affiliation(s)
- Shumin Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; School of Stomatology, Wuhan University, Wuhan 430079, China
| | - Qian Lu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; School of Stomatology, Wuhan University, Wuhan 430079, China
| | - Min Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Oral Implantology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Huilin Guo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Oral and Maxillofacial Surgery, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Yiwen Wang
- School of Stomatology, Wuhan University, Wuhan 430079, China
| | - Jingwen Nong
- School of Stomatology, Wuhan University, Wuhan 430079, China
| | - Shuo Wang
- School of Stomatology, Wuhan University, Wuhan 430079, China
| | - Haibin Xia
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Oral Implantology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Ting Xia
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Oral Implantology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| | - Huifang Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Center for Prosthodontics and Implant Dentistry, Optics Valley Branch, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| |
Collapse
|
8
|
Jiang T, Xia T, Qiao F, Wang N, Jiang Y, Xin H. Role and Regulation of Transcription Factors in Osteoclastogenesis. Int J Mol Sci 2023; 24:16175. [PMID: 38003376 PMCID: PMC10671247 DOI: 10.3390/ijms242216175] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/01/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Bones serve mechanical and defensive functions, as well as regulating the balance of calcium ions and housing bone marrow.. The qualities of bones do not remain constant. Instead, they fluctuate throughout life, with functions increasing in some situations while deteriorating in others. The synchronization of osteoblast-mediated bone formation and osteoclast-mediated bone resorption is critical for maintaining bone mass and microstructure integrity in a steady state. This equilibrium, however, can be disrupted by a variety of bone pathologies. Excessive osteoclast differentiation can result in osteoporosis, Paget's disease, osteolytic bone metastases, and rheumatoid arthritis, all of which can adversely affect people's health. Osteoclast differentiation is regulated by transcription factors NFATc1, MITF, C/EBPα, PU.1, NF-κB, and c-Fos. The transcriptional activity of osteoclasts is largely influenced by developmental and environmental signals with the involvement of co-factors, RNAs, epigenetics, systemic factors, and the microenvironment. In this paper, we review these themes in regard to transcriptional regulation in osteoclastogenesis.
Collapse
Affiliation(s)
- Tao Jiang
- School of Pharmacy, Naval Medical University, Shanghai 200433, China; (T.J.); (T.X.); (F.Q.)
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Tianshuang Xia
- School of Pharmacy, Naval Medical University, Shanghai 200433, China; (T.J.); (T.X.); (F.Q.)
| | - Fangliang Qiao
- School of Pharmacy, Naval Medical University, Shanghai 200433, China; (T.J.); (T.X.); (F.Q.)
| | - Nani Wang
- Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou 310007, China;
| | - Yiping Jiang
- School of Pharmacy, Naval Medical University, Shanghai 200433, China; (T.J.); (T.X.); (F.Q.)
| | - Hailiang Xin
- School of Pharmacy, Naval Medical University, Shanghai 200433, China; (T.J.); (T.X.); (F.Q.)
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| |
Collapse
|
9
|
Balendran T, Lim K, Hamilton JA, Achuthan AA. Targeting transcription factors for therapeutic benefit in rheumatoid arthritis. Front Immunol 2023; 14:1196931. [PMID: 37457726 PMCID: PMC10339812 DOI: 10.3389/fimmu.2023.1196931] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/16/2023] [Indexed: 07/18/2023] Open
Abstract
Rheumatoid arthritis (RA) is a destructive inflammatory autoimmune disease that causes pain and disability. Many of the currently available drugs for treating RA patients are aimed at halting the progression of the disease and alleviating inflammation. Further, some of these treatment options have drawbacks, including disease recurrence and adverse effects due to long-term use. These inefficiencies have created a need for a different approach to treating RA. Recently, the focus has shifted to direct targeting of transcription factors (TFs), as they play a vital role in the pathogenesis of RA, activating key cytokines, chemokines, adhesion molecules, and enzymes. In light of this, synthetic drugs and natural compounds are being explored to target key TFs or their signaling pathways in RA. This review discusses the role of four key TFs in inflammation, namely NF-κB, STATs, AP-1 and IRFs, and their potential for being targeted to treat RA.
Collapse
Affiliation(s)
- Thivya Balendran
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Keith Lim
- Department of Medicine, Western Health, The University of Melbourne, St Albans, VIC, Australia
| | - John A. Hamilton
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Adrian A. Achuthan
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
10
|
Hascoët E, Blanchard F, Blin-Wakkach C, Guicheux J, Lesclous P, Cloitre A. New insights into inflammatory osteoclast precursors as therapeutic targets for rheumatoid arthritis and periodontitis. Bone Res 2023; 11:26. [PMID: 37217496 DOI: 10.1038/s41413-023-00257-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 03/02/2023] [Accepted: 03/09/2023] [Indexed: 05/24/2023] Open
Abstract
Rheumatoid arthritis (RA) and periodontitis are chronic inflammatory diseases leading to increased bone resorption. Preventing this inflammatory bone resorption is a major health challenge. Both diseases share immunopathogenic similarities and a common inflammatory environment. The autoimmune response or periodontal infection stimulates certain immune actors, leading in both cases to chronic inflammation that perpetuates bone resorption. Moreover, RA and periodontitis have a strong epidemiological association that could be explained by periodontal microbial dysbiosis. This dysbiosis is believed to be involved in the initiation of RA via three mechanisms. (i) The dissemination of periodontal pathogens triggers systemic inflammation. (ii) Periodontal pathogens can induce the generation of citrullinated neoepitopes, leading to the generation of anti-citrullinated peptide autoantibodies. (iii) Intracellular danger-associated molecular patterns accelerate local and systemic inflammation. Therefore, periodontal dysbiosis could promote or sustain bone resorption in distant inflamed joints. Interestingly, in inflammatory conditions, the existence of osteoclasts distinct from "classical osteoclasts" has recently been reported. They have proinflammatory origins and functions. Several populations of osteoclast precursors have been described in RA, such as classical monocytes, a dendritic cell subtype, and arthritis-associated osteoclastogenic macrophages. The aim of this review is to synthesize knowledge on osteoclasts and their precursors in inflammatory conditions, especially in RA and periodontitis. Special attention will be given to recent data related to RA that could be of potential value in periodontitis due to the immunopathogenic similarities between the two diseases. Improving our understanding of these pathogenic mechanisms should lead to the identification of new therapeutic targets involved in the pathological inflammatory bone resorption associated with these diseases.
Collapse
Affiliation(s)
- Emilie Hascoët
- Nantes Université, Oniris, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000, Nantes, France
| | - Frédéric Blanchard
- Nantes Université, Oniris, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000, Nantes, France
| | | | - Jérôme Guicheux
- Nantes Université, Oniris, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000, Nantes, France.
| | - Philippe Lesclous
- Nantes Université, Oniris, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000, Nantes, France
| | - Alexandra Cloitre
- Nantes Université, Oniris, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000, Nantes, France
| |
Collapse
|
11
|
Jiao Y, Wang X, Wang Q, Geng Q, Cao X, Zhang M, Zhao L, Deng T, Xu Y, Xiao C. Mechanisms by which kidney-tonifying Chinese herbs inhibit osteoclastogenesis: Emphasis on immune cells. Front Pharmacol 2023; 14:1077796. [PMID: 36814488 PMCID: PMC9939464 DOI: 10.3389/fphar.2023.1077796] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 01/25/2023] [Indexed: 02/08/2023] Open
Abstract
The immune system plays a crucial role in regulating osteoclast formation and function and has significance for the occurrence and development of immune-mediated bone diseases. Kidney-tonifying Chinese herbs, based on the theory of traditional Chinese medicine (TCM) to unify the kidney and strengthen the bone, have been widely used in the prevention and treatment of bone diseases. The common botanical drugs are tonifying kidney-yang and nourishing kidney-yin herbs, which are divided into two parts: one is the compound prescription of TCM, and the other is the single preparation of TCM and its active ingredients. These botanical drugs regulate osteoclastogenesis directly and indirectly by immune cells, however, we have limited information on the differences between the two botanical drugs in osteoimmunology. In this review, the mechanism by which kidney-tonifying Chinese herbs inhibiting osteoclastogenesis was investigated, emphasizing the immune response. The differences in the mechanism of action between tonifying kidney-yang herbs and nourishing kidney-yin herbs were analysed, and the therapeutic value for immune-mediated bone diseases was evaluated.
Collapse
Affiliation(s)
- Yi Jiao
- Beijing University of Chinese Medicine, China-Japan Friendship Clinical Medical College, Beijing, China,Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Xing Wang
- Beijing University of Chinese Medicine, China-Japan Friendship Clinical Medical College, Beijing, China,Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Qiong Wang
- Beijing University of Chinese Medicine, China-Japan Friendship Clinical Medical College, Beijing, China,Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Qishun Geng
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Xiaoxue Cao
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Mengxiao Zhang
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Lu Zhao
- China-Japan Friendship Hospital, Capital Medical University, Beijing, China
| | - Tingting Deng
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Yuan Xu
- Department of TCM Rheumatology, China-Japan Friendship Hospital, Beijing, China,*Correspondence: Yuan Xu, ; Cheng Xiao,
| | - Cheng Xiao
- Beijing University of Chinese Medicine, China-Japan Friendship Clinical Medical College, Beijing, China,Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China,Department of Emergency, China-Japan Friendship Hospital, Beijing, China,*Correspondence: Yuan Xu, ; Cheng Xiao,
| |
Collapse
|
12
|
Hong SJ, Jung S, Jang JS, Mo S, Kwon JO, Kim MK, Kim HH. PARK2 Induces Osteoclastogenesis through Activation of the NF-κB Pathway. Mol Cells 2022; 45:749-760. [PMID: 36047447 PMCID: PMC9589368 DOI: 10.14348/molcells.2022.0058] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/25/2022] [Accepted: 06/20/2022] [Indexed: 11/27/2022] Open
Abstract
Osteoclast generation from monocyte/macrophage lineage precursor cells needs to be tightly regulated to maintain bone homeostasis and is frequently over-activated in inflammatory conditions. PARK2, a protein associated with Parkinson's disease, plays an important role in mitophagy via its ubiquitin ligase function. In this study, we investigated whether PARK2 is involved in osteoclastogenesis. PARK2 expression was found to be increased during the receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast differentiation. PARK2 gene silencing with siRNA significantly reduced osteoclastogenesis induced by RANKL, LPS (lipopolysaccharide), TNFα (tumor necrosis factor α), and IL-1β (interleukin-1β). On the other hand, overexpression of PARK2 promoted osteoclastogenesis. This regulation of osteoclastogenesis by PARK2 was mediated by IKK (inhibitory κB kinase) and NF-κB activation while MAPK (mitogen-activated protein kinases) activation was not involved. Additionally, administration of PARK2 siRNA significantly reduced osteoclastogenesis and bone loss in an in vivo model of inflammatory bone erosion. Taken together, this study establishes a novel role for PARK2 as a positive regulator in osteoclast differentiation and inflammatory bone destruction.
Collapse
Affiliation(s)
- Seo Jin Hong
- Department of Cell and Developmental Biology, BK21 Program and Dental Research Institute (DRI), School of Dentistry, Seoul National University, Seoul 03080, Korea
| | - Suhan Jung
- Department of Cell and Developmental Biology, BK21 Program and Dental Research Institute (DRI), School of Dentistry, Seoul National University, Seoul 03080, Korea
| | - Ji Sun Jang
- Department of Cell and Developmental Biology, BK21 Program and Dental Research Institute (DRI), School of Dentistry, Seoul National University, Seoul 03080, Korea
| | - Shenzheng Mo
- Department of Cell and Developmental Biology, BK21 Program and Dental Research Institute (DRI), School of Dentistry, Seoul National University, Seoul 03080, Korea
| | - Jun-Oh Kwon
- Department of Cell and Developmental Biology, BK21 Program and Dental Research Institute (DRI), School of Dentistry, Seoul National University, Seoul 03080, Korea
| | - Min Kyung Kim
- Department of Cell and Developmental Biology, BK21 Program and Dental Research Institute (DRI), School of Dentistry, Seoul National University, Seoul 03080, Korea
| | - Hong-Hee Kim
- Department of Cell and Developmental Biology, BK21 Program and Dental Research Institute (DRI), School of Dentistry, Seoul National University, Seoul 03080, Korea
| |
Collapse
|
13
|
Baratchart E, Lo CH, Lynch CC, Basanta D. Integrated computational and in vivo models reveal Key Insights into macrophage behavior during bone healing. PLoS Comput Biol 2022; 18:e1009839. [PMID: 35559958 PMCID: PMC9106165 DOI: 10.1371/journal.pcbi.1009839] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/17/2022] [Indexed: 11/24/2022] Open
Abstract
Myeloid-derived monocyte and macrophages are key cells in the bone that contribute to remodeling and injury repair. However, their temporal polarization status and control of bone-resorbing osteoclasts and bone-forming osteoblasts responses is largely unknown. In this study, we focused on two aspects of monocyte/macrophage dynamics and polarization states over time: 1) the injury-triggered pro- and anti-inflammatory monocytes/macrophages temporal profiles, 2) the contributions of pro- versus anti-inflammatory monocytes/macrophages in coordinating healing response. Bone healing is a complex multicellular dynamic process. While traditional in vitro and in vivo experimentation may capture the behavior of select populations with high resolution, they cannot simultaneously track the behavior of multiple populations. To address this, we have used an integrated coupled ordinary differential equations (ODEs)-based framework describing multiple cellular species to in vivo bone injury data in order to identify and test various hypotheses regarding bone cell populations dynamics. Our approach allowed us to infer several biological insights including, but not limited to,: 1) anti-inflammatory macrophages are key for early osteoclast inhibition and pro-inflammatory macrophage suppression, 2) pro-inflammatory macrophages are involved in osteoclast bone resorptive activity, whereas osteoblasts promote osteoclast differentiation, 3) Pro-inflammatory monocytes/macrophages rise during two expansion waves, which can be explained by the anti-inflammatory macrophages-mediated inhibition phase between the two waves. In addition, we further tested the robustness of the mathematical model by comparing simulation results to an independent experimental dataset. Taken together, this novel comprehensive mathematical framework allowed us to identify biological mechanisms that best recapitulate bone injury data and that explain the coupled cellular population dynamics involved in the process. Furthermore, our hypothesis testing methodology could be used in other contexts to decipher mechanisms in complex multicellular processes. Myeloid-derived monocytes/macrophages are key cells for bone remodeling and injury repair. However, their temporal polarization status and control of bone-resorbing osteoclasts and bone-forming osteoblasts responses is largely unknown. In this study, we focused on two aspects of monocyte/macrophage population dynamics: 1) the injury-triggered pro- and anti-inflammatory monocytes/macrophages temporal profiles, 2) the contributions of pro- versus anti-inflammatory monocytes/macrophages in coordinating healing response. In order to test various hypotheses regarding bone cell populations dynamics, we have integrated a coupled ordinary differential equations-based framework describing multiple cellular species to in vivo bone injury data. Our approach allowed us to infer several biological insights including: 1) anti-inflammatory macrophages are key for early osteoclast inhibition and pro-inflammatory macrophage suppression, 2) pro-inflammatory macrophages are involved in osteoclast bone resorptive activity, whereas osteoblasts promote osteoclast differentiation, 3) Pro-inflammatory monocytes/macrophages rise during two expansion waves, which can be explained by the anti-inflammatory macrophages-mediated inhibition phase between the two waves. Taken together, this mathematical framework allowed us to identify biological mechanisms that recapitulate bone injury data and that explain the coupled cellular population dynamics involved in the process.
Collapse
Affiliation(s)
- Etienne Baratchart
- Integrated Mathematical Oncology Department, SRB4, Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
| | - Chen Hao Lo
- Cancer Biology Ph.D. Program, Department of Cell Biology Microbiology and Molecular Biology, University of South Florida, Tampa, Florida, United States of America
- Tumor Biology Department, SRB3, Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
| | - Conor C. Lynch
- Cancer Biology Ph.D. Program, Department of Cell Biology Microbiology and Molecular Biology, University of South Florida, Tampa, Florida, United States of America
- * E-mail: (CL); (DB)
| | - David Basanta
- Integrated Mathematical Oncology Department, SRB4, Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
- * E-mail: (CL); (DB)
| |
Collapse
|
14
|
Ma TL, Zhu P, Ke ZR, Chen JX, Hu YH, Xie J. Focusing on OB-OC-MΦ Axis and miR-23a to Explore the Pathogenesis and Treatment Strategy of Osteoporosis. Front Endocrinol (Lausanne) 2022; 13:891313. [PMID: 35909545 PMCID: PMC9329542 DOI: 10.3389/fendo.2022.891313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/20/2022] [Indexed: 11/27/2022] Open
Abstract
Osteoporosis is a bone metabolic disorder characterized by decreased bone density and deteriorated microstructure, which increases the risk of fractures. The imbalance between bone formation and bone resorption results in the occurrence and progression of osteoporosis. Osteoblast-mediated bone formation, osteoclast-mediated bone resorption and macrophage-regulated inflammatory response play a central role in the process of bone remodeling, which together maintain the balance of the osteoblast-osteoclast-macrophage (OB-OC-MΦ) axis under physiological conditions. Bone formation and bone resorption disorders caused by the imbalance of OB-OC-MΦ axis contribute to osteoporosis. Many microRNAs are involved in the regulation of OB-OC-MΦ axis homeostasis, with microRNA-23a (miR-23a) being particularly crucial. MiR-23a is highly expressed in the pathological process of osteoporosis, which eventually leads to the occurrence and further progression of osteoporosis by inhibiting osteogenesis, promoting bone resorption and inflammatory polarization of macrophages. This review focuses on the role and mechanism of miR-23a in regulating the OB-OC-MΦ axis to provide new clinical strategies for the prevention and treatment of osteoporosis.
Collapse
Affiliation(s)
- Tian-Liang Ma
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Xiangya Hospital, Central South University, Changsha, China
- XiangYa School of Medicine, Central South University, Changsha, China
| | - Peng Zhu
- XiangYa School of Medicine, Central South University, Changsha, China
| | - Zhuo-Ran Ke
- XiangYa School of Medicine, Central South University, Changsha, China
| | - Jing-Xian Chen
- XiangYa School of Medicine, Central South University, Changsha, China
| | - Yi-He Hu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Yi-He Hu, ; Jie Xie,
| | - Jie Xie
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Yi-He Hu, ; Jie Xie,
| |
Collapse
|
15
|
Chen R, Wang J, Dai X, Wu S, Huang Q, Jiang L, Kong X. Augmented PFKFB3-mediated glycolysis by interferon-γ promotes inflammatory M1 polarization through the JAK2/STAT1 pathway in local vascular inflammation in Takayasu arteritis. Arthritis Res Ther 2022; 24:266. [PMID: 36510278 PMCID: PMC9743547 DOI: 10.1186/s13075-022-02960-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 11/22/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Takayasu arteritis (TAK) is characterized by pro-inflammatory M1 macrophage infiltration and increased interferon (IFN)-γ expression in vascular lesions. IFN-γ is a key cytokine involved in M1 polarization. Macrophage polarization is accompanied by metabolic changes. However, the metabolic regulation mechanism of IFN-γ in M1 macrophage polarization in TAK remains unclear. METHODS Immunohistochemistry and immunofluorescence were employed to observe the expression of IFN-γ, PFKFB3 (6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3, the rate-limiting enzyme in glycolysis), and macrophage surface markers in the vascular tissue. Monocyte-derived macrophages from patients with TAK were cultured to examine the role of PFKFB3 in IFN-γ-induced M1 macrophage polarization. Seahorse analysis was used to detect the alterations in glucose metabolism during this process. Quantitative reverse transcription PCR, flow cytometry, and western blot were used to confirm the phenotypes of macrophages and related signaling pathways. RESULTS In the vascular adventitia of patients with TAK, an increase in PFKFB3 accompanied by IFN-γ expression was observed in M1 macrophages. In vitro, IFN-γ successfully induced macrophage differentiation into the M1 phenotype, which was manifested as an increase in CD80 and HLA-DR markers and the pro-inflammatory cytokines IL-6 and TNF-α. During this process, PFKFB3 expression and glycolysis levels were significantly increased. However, glycolysis and M1 polarization induced by IFN-γ were suppressed by a PFKFB3 inhibitor. In addition, JAK2/STAT1 phosphorylation was also enhanced in macrophages stimulated by IFN-γ. The effects of IFN-γ on macrophages, including the expression of PFKFB3, glycolysis, and M1 polarization, were also inhibited by the JAK inhibitor tofacitinib or STAT1 inhibitor fludarabine. CONCLUSION PFKFB3-mediated glycolysis promotes IFN-γ-induced M1 polarization through the JAK2/STAT1 signaling pathway, indicating that PFKFB3 plays an important role in M1 polarization mediated by IFN-γ; thus, PFKFB3 is a potential intervention target in TAK.
Collapse
Affiliation(s)
- Rongyi Chen
- grid.413087.90000 0004 1755 3939Department of Rheumatology, Zhongshan Hospital Fudan University, Shanghai, 200032 China ,grid.8547.e0000 0001 0125 2443Center of Evidence-Based Medicine, Fudan University, No.180, Fenglin Road, Xuhui District, Shanghai, 200032 China
| | - Jinghua Wang
- grid.413087.90000 0004 1755 3939Department of Rheumatology, Zhongshan Hospital Fudan University, Shanghai, 200032 China ,grid.8547.e0000 0001 0125 2443Center of Evidence-Based Medicine, Fudan University, No.180, Fenglin Road, Xuhui District, Shanghai, 200032 China
| | - Xiaojuan Dai
- grid.413087.90000 0004 1755 3939Department of Rheumatology, Zhongshan Hospital Fudan University, Shanghai, 200032 China ,grid.8547.e0000 0001 0125 2443Center of Evidence-Based Medicine, Fudan University, No.180, Fenglin Road, Xuhui District, Shanghai, 200032 China
| | - Sifan Wu
- grid.413087.90000 0004 1755 3939Department of Rheumatology, Zhongshan Hospital Fudan University, Shanghai, 200032 China ,grid.8547.e0000 0001 0125 2443Center of Evidence-Based Medicine, Fudan University, No.180, Fenglin Road, Xuhui District, Shanghai, 200032 China
| | - Qingrong Huang
- grid.413087.90000 0004 1755 3939Department of Rheumatology, Zhongshan Hospital Fudan University, Shanghai, 200032 China ,grid.8547.e0000 0001 0125 2443Center of Evidence-Based Medicine, Fudan University, No.180, Fenglin Road, Xuhui District, Shanghai, 200032 China
| | - Lindi Jiang
- grid.413087.90000 0004 1755 3939Department of Rheumatology, Zhongshan Hospital Fudan University, Shanghai, 200032 China ,grid.8547.e0000 0001 0125 2443Center of Evidence-Based Medicine, Fudan University, No.180, Fenglin Road, Xuhui District, Shanghai, 200032 China
| | - Xiufang Kong
- grid.413087.90000 0004 1755 3939Department of Rheumatology, Zhongshan Hospital Fudan University, Shanghai, 200032 China ,grid.8547.e0000 0001 0125 2443Center of Evidence-Based Medicine, Fudan University, No.180, Fenglin Road, Xuhui District, Shanghai, 200032 China
| |
Collapse
|
16
|
Regulation of TNF-Induced Osteoclast Differentiation. Cells 2021; 11:cells11010132. [PMID: 35011694 PMCID: PMC8750957 DOI: 10.3390/cells11010132] [Citation(s) in RCA: 142] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/24/2021] [Accepted: 12/28/2021] [Indexed: 12/27/2022] Open
Abstract
Increased osteoclast (OC) differentiation and activity is the critical event that results in bone loss and joint destruction in common pathological bone conditions, such as osteoporosis and rheumatoid arthritis (RA). RANKL and its decoy receptor, osteoprotegerin (OPG), control OC differentiation and activity. However, there is a specific concern of a rebound effect of denosumab discontinuation in treating osteoporosis. TNFα can induce OC differentiation that is independent of the RANKL/RANK system. In this review, we discuss the factors that negatively and positively regulate TNFα induction of OC formation, and the mechanisms involved to inform the design of new anti-resorptive agents for the treatment of bone conditions with enhanced OC formation. Similar to, and being independent of, RANKL, TNFα recruits TNF receptor-associated factors (TRAFs) to sequentially activate transcriptional factors NF-κB p50 and p52, followed by c-Fos, and then NFATc1 to induce OC differentiation. However, induction of OC formation by TNFα alone is very limited, since it also induces many inhibitory proteins, such as TRAF3, p100, IRF8, and RBP-j. TNFα induction of OC differentiation is, however, versatile, and Interleukin-1 or TGFβ1 can enhance TNFα-induced OC formation through a mechanism which is independent of RANKL, TRAF6, and/or NF-κB. However, TNFα polarized macrophages also produce anabolic factors, including insulin such as 6 peptide and Jagged1, to slow down bone loss in the pathological conditions. Thus, the development of novel approaches targeting TNFα signaling should focus on its downstream molecules that do not affect its anabolic effect.
Collapse
|
17
|
Sun Y, Li J, Xie X, Gu F, Sui Z, Zhang K, Yu T. Macrophage-Osteoclast Associations: Origin, Polarization, and Subgroups. Front Immunol 2021; 12:778078. [PMID: 34925351 PMCID: PMC8672114 DOI: 10.3389/fimmu.2021.778078] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/15/2021] [Indexed: 12/31/2022] Open
Abstract
Cellular associations in the bone microenvironment are involved in modulating the balance between bone remodeling and resorption, which is necessary for maintaining a normal bone morphology. Macrophages and osteoclasts are both vital components of the bone marrow. Macrophages can interact with osteoclasts and regulate bone metabolism by secreting a variety of cytokines, which make a significant contribution to the associations. Although, recent studies have fully explored either macrophages or osteoclasts, indicating the significance of these two types of cells. However, it is of high importance to report the latest discoveries on the relationships between these two myeloid-derived cells in the field of osteoimmunology. Therefore, this paper reviews this topic from three novel aspects of the origin, polarization, and subgroups based on the previous work, to provide a reference for future research and treatment of bone-related diseases.
Collapse
Affiliation(s)
- Yang Sun
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, China
| | - Jiangbi Li
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, China
| | - Xiaoping Xie
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, China
| | - Feng Gu
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, China
| | - Zhenjiang Sui
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, China
| | - Ke Zhang
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, China
| | - Tiecheng Yu
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
18
|
Yi X, Liu X, Kenney HM, Duan R, Lin X, Schwarz E, Yao Z. TNF-Polarized Macrophages Produce Insulin-like 6 Peptide to Stimulate Bone Formation in Rheumatoid Arthritis in Mice. J Bone Miner Res 2021; 36:2426-2439. [PMID: 34585777 PMCID: PMC8688308 DOI: 10.1002/jbmr.4447] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 09/01/2021] [Accepted: 09/22/2021] [Indexed: 01/05/2023]
Abstract
The risk of osteoporosis is increased in rheumatoid arthritis (RA). Anti-tumor necrosis factor (TNF) therapy has markedly improved the outcomes of RA patients but does not improve osteoporosis in some reports. This could be a combined result of disease severity and other therapeutic agents, such as glucocorticoids that accelerate osteoporosis progression. We evaluated the effects of anti-TNF therapy on osteoporosis in an animal model of RA and explored the possible mechanisms involved. Six-week-old TNF transgenic (TNF-Tg) mice with early stage erosive arthritis were treated with TNF antibody (Ab) or control immunoglobulin (IgG) weekly for 4 weeks. We found that TNF Ab completely blocked the development of erosive arthritis in TNF-Tg mice, but only slightly increased vertebral bone mass, associated with reduction in parameters of both bone resorption and formation. Similarly, TNF Ab slightly increased trabecular bone mass in tibias of 8-month-old TNF-Tg mice with advanced erosive arthritis. Interestingly, TNFα increased osteoblast differentiation from mouse bone marrow stromal cells (BMSCs) containing large number of macrophages but not from pure mesenchymal progenitor cells (MPCs). TNFα-polarized macrophages (TPMs) did not express iNos and Arginase 1, typical markers of inflammatory and resident macrophages. Interestingly, TPMs stimulated osteoblast differentiation, unlike resident and inflammatory macrophages polarized by IL-4 and interferon-λ, respectively. RNA-seq analysis indicated that TPMs produced several anabolic factors, including Jagged1 and insulin like 6 (INSL6). Importantly, inhibition of either Jagged1 or INSL6 blocked TNFα-induced osteoblast differentiation. Furthermore, INSL6 Ab significantly decreased the expansion of TNF-induced MPCs in BMSCs, and anti-TNF Ab reduced INSL6 expression by macrophages in vitro and in TNF-Tg mice in vivo. We conclude that TPMs produce INSL6 to stimulate bone formation and anti-TNF Ab blocks not only enhanced bone resorption but also the anabolic effect of TPMs on bone, limiting its effect to increase bone mass in this model of RA. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Xiangjiao Yi
- Department of Pathology and Laboratory Medicine, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Xin Liu
- Department of Pathology and Laboratory Medicine, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - H Mark Kenney
- Department of Pathology and Laboratory Medicine, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Rong Duan
- Department of Pathology and Laboratory Medicine, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Xi Lin
- Department of Pathology and Laboratory Medicine, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Edward Schwarz
- Department of Pathology and Laboratory Medicine, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.,Department of Orthopedic Surgery, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Zhenqiang Yao
- Department of Pathology and Laboratory Medicine, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
19
|
Saxena Y, Routh S, Mukhopadhaya A. Immunoporosis: Role of Innate Immune Cells in Osteoporosis. Front Immunol 2021; 12:687037. [PMID: 34421899 PMCID: PMC8374941 DOI: 10.3389/fimmu.2021.687037] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 07/22/2021] [Indexed: 12/11/2022] Open
Abstract
Osteoporosis or porous bone disorder is the result of an imbalance in an otherwise highly balanced physiological process known as 'bone remodeling'. The immune system is intricately involved in bone physiology as well as pathologies. Inflammatory diseases are often correlated with osteoporosis. Inflammatory mediators such as reactive oxygen species (ROS), and pro-inflammatory cytokines and chemokines directly or indirectly act on the bone cells and play a role in the pathogenesis of osteoporosis. Recently, Srivastava et al. (Srivastava RK, Dar HY, Mishra PK. Immunoporosis: Immunology of Osteoporosis-Role of T Cells. Frontiers in immunology. 2018;9:657) have coined the term "immunoporosis" to emphasize the role of immune cells in the pathology of osteoporosis. Accumulated pieces of evidence suggest both innate and adaptive immune cells contribute to osteoporosis. However, innate cells are the major effectors of inflammation. They sense various triggers to inflammation such as pathogen-associated molecular patterns (PAMPs), damage-associated molecular patterns (DAMPs), cellular stress, etc., thus producing pro-inflammatory mediators that play a critical role in the pathogenesis of osteoporosis. In this review, we have discussed the role of the innate immune cells in great detail and divided these cells into different sections in a systemic manner. In the beginning, we talked about cells of the myeloid lineage, including macrophages, monocytes, and dendritic cells. This group of cells explicitly influences the skeletal system by the action of production of pro-inflammatory cytokines and can transdifferentiate into osteoclast. Other cells of the myeloid lineage, such as neutrophils, eosinophils, and mast cells, largely impact osteoporosis via the production of pro-inflammatory cytokines. Further, we talked about the cells of the lymphoid lineage, including natural killer cells and innate lymphoid cells, which share innate-like properties and play a role in osteoporosis. In addition to various innate immune cells, we also discussed the impact of classical pro-inflammatory cytokines on osteoporosis. We also highlighted the studies regarding the impact of physiological and metabolic changes in the body, which results in chronic inflammatory conditions such as ageing, ultimately triggering osteoporosis.
Collapse
Affiliation(s)
- Yogesh Saxena
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, India
| | - Sanjeev Routh
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, India
| | - Arunika Mukhopadhaya
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, India
| |
Collapse
|
20
|
Ansalone C, Cole J, Chilaka S, Sunzini F, Sood S, Robertson J, Siebert S, McInnes IB, Goodyear CS. TNF is a homoeostatic regulator of distinct epigenetically primed human osteoclast precursors. Ann Rheum Dis 2021; 80:748-757. [PMID: 33692019 PMCID: PMC8142443 DOI: 10.1136/annrheumdis-2020-219262] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/31/2020] [Accepted: 01/25/2021] [Indexed: 12/21/2022]
Abstract
OBJECTIVES Circulating myeloid precursors are responsible for post-natal osteoclast (OC) differentiation and skeletal health, although the exact human precursors have not been defined. Enhanced osteoclastogenesis contributes to joint destruction in rheumatoid arthritis (RA) and tumour necrosis factor (TNF) is a well-known pro-osteoclastogenic factor. Herein, we investigated the interplay between receptor activator of nuclear factor kappa-Β ligand (RANK-L), indispensable for fusion of myeloid precursors and the normal development of OCs, and TNF in directing the differentiation of diverse pre-OC populations derived from human peripheral blood. METHODS Flow cytometric cell sorting and analysis was used to assess the potential of myeloid populations to differentiate into OCs. Transcriptomic, epigenetic analysis, receptor expression and inhibitor experiments were used to unravel RANK-L and TNF signalling hierarchy. RESULTS TNF can act as a critical homoeostatic regulator of CD14+ monocyte (MO) differentiation into OCs by inhibiting osteoclastogenesis to favour macrophage development. In contrast, a distinct previously unidentified CD14-CD16-CD11c+ myeloid pre-OC population was exempt from this negative regulation. In healthy CD14+ MOs, TNF drove epigenetic modification of the RANK promoter via a TNFR1-IKKβ-dependent pathway and halted osteoclastogenesis. In a subset of patients with RA, CD14+ MOs exhibited an altered epigenetic state that resulted in dysregulated TNF-mediated OC homoeostasis. CONCLUSIONS These findings fundamentally re-define the relationship between RANK-L and TNF. Moreover, they have identified a novel pool of human circulating non-MO OC precursors that unlike MOs are epigenetically preconditioned to ignore TNF-mediated signalling. In RA, this epigenetic preconditioning occurs in the MO compartment providing a pathological consequence of failure of this pathway.
Collapse
Affiliation(s)
- Cecilia Ansalone
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - John Cole
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Sabarinadh Chilaka
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Flavia Sunzini
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Shatakshi Sood
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Jamie Robertson
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Stefan Siebert
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Iain B McInnes
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Carl S Goodyear
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| |
Collapse
|
21
|
Computational modeling reveals a key role for polarized myeloid cells in controlling osteoclast activity during bone injury repair. Sci Rep 2021; 11:6055. [PMID: 33723343 PMCID: PMC7961065 DOI: 10.1038/s41598-021-84888-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 02/11/2021] [Indexed: 01/12/2023] Open
Abstract
Bone-forming osteoblasts and -resorbing osteoclasts control bone injury repair, and myeloid-derived cells such as monocytes and macrophages are known to influence their behavior. However, precisely how these multiple cell types coordinate and regulate each other over time within the bone marrow to restore bone is difficult to dissect using biological approaches. Conversely, mathematical modeling lends itself well to this challenge. Therefore, we generated an ordinary differential equation (ODE) model powered by experimental data (osteoblast, osteoclast, bone volume, pro- and anti-inflammatory myeloid cells) obtained from intra-tibially injured mice. Initial ODE results using only osteoblast/osteoclast populations demonstrated that bone homeostasis could not be recovered after injury, but this issue was resolved upon integration of pro- and anti-inflammatory myeloid population dynamics. Surprisingly, the ODE revealed temporal disconnects between the peak of total bone mineralization/resorption, and osteoblast/osteoclast numbers. Specifically, the model indicated that osteoclast activity must vary greatly (> 17-fold) to return the bone volume to baseline after injury and suggest that osteoblast/osteoclast number alone is insufficient to predict bone the trajectory of bone repair. Importantly, the values of osteoclast activity fall within those published previously. These data underscore the value of mathematical modeling approaches to understand and reveal new insights into complex biological processes.
Collapse
|
22
|
Effects of melatonin in wound healing of dental pulp and periodontium: Evidence from in vitro, in vivo and clinical studies. Arch Oral Biol 2021; 123:105037. [PMID: 33440268 DOI: 10.1016/j.archoralbio.2020.105037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 12/15/2020] [Accepted: 12/24/2020] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Database research has revealed that melatonin has beneficial effects in pulpal and periodontal regeneration. Several studies reported protective effects of melatonin against inflammation in several organs including the heart, brain, and teeth. In addition to inflammation reduction, melatonin has been involved in tissue regeneration and wound healing. The aim of this review is to summarize the evidence from in vitro, in vivo and clinical studies on the effects of melatonin in wound healing of dental pulp and periodontium. This review gives a thorough summary of the possible role of melatonin in wound healing of dental pulp and periodontium in connection with anti-inflammatory and antioxidant effects, cell proliferation, and cell differentiation. Any contradictory evidence is also assessed. METHODS The PubMed database was searched for all research articles published before April 2020 with the search terms "melatonin" and "dental pulp". Articles with the search terms "melatonin", "periodontal disease" and "bone" published before October 2019 were also included. Non-English articles were excluded. RESULTS Melatonin has been shown to reduce inflammation, inhibit cell proliferation and regulate differentiation of pulp cells. Melatonin increased odontoblast activities, resulting in the differentiation in the dental pulp. However, melatonin did not initiate differentiation in undifferentiated pulp cells but seemed to have beneficial effects in periodontitis by promoting periodontium's wound healing. CONCLUSION Those findings suggest that melatonin could have beneficial effects on pulpal and periodontal cells under inflammatory conditions. However, discrepancies remain between in vitro and in vivo findings regarding the effect of melatonin on dental pulp and periodontium.
Collapse
|
23
|
Das A, Wang X, Kang J, Coulter A, Shetty AC, Bachu M, Brooks SR, Dell'Orso S, Foster BL, Fan X, Ozato K, Somerman MJ, Thumbigere-Math V. Monocyte Subsets With High Osteoclastogenic Potential and Their Epigenetic Regulation Orchestrated by IRF8. J Bone Miner Res 2021; 36:199-214. [PMID: 32804442 PMCID: PMC8168257 DOI: 10.1002/jbmr.4165] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/21/2020] [Accepted: 08/05/2020] [Indexed: 12/24/2022]
Abstract
Osteoclasts (OCs) are bone-resorbing cells formed by the serial fusion of monocytes. In mice and humans, three distinct subsets of monocytes exist; however, it is unclear if all of them exhibit osteoclastogenic potential. Here we show that in wild-type (WT) mice, Ly6Chi and Ly6Cint monocytes are the primary source of OC formation when compared to Ly6C- monocytes. Their osteoclastogenic potential is dictated by increased expression of signaling receptors and activation of preestablished transcripts, as well as de novo gain in enhancer activity and promoter changes. In the absence of interferon regulatory factor 8 (IRF8), a transcription factor important for myelopoiesis and osteoclastogenesis, all three monocyte subsets are programmed to display higher osteoclastogenic potential. Enhanced NFATc1 nuclear translocation and amplified transcriptomic and epigenetic changes initiated at early developmental stages direct the increased osteoclastogenesis in Irf8-deficient mice. Collectively, our study provides novel insights into the transcription factors and active cis-regulatory elements that regulate OC differentiation. © 2020 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Amitabh Das
- Division of Periodontology, University of Maryland School of Dentistry, Baltimore, MD, USA.,Laboratory of Oral and Connective Tissue Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), Bethesda, MD, USA
| | - Xiaobei Wang
- Division of Periodontology, University of Maryland School of Dentistry, Baltimore, MD, USA.,Laboratory of Oral and Connective Tissue Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), Bethesda, MD, USA
| | - Jessica Kang
- Division of Periodontology, University of Maryland School of Dentistry, Baltimore, MD, USA
| | - Alyssa Coulter
- Laboratory of Oral and Connective Tissue Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), Bethesda, MD, USA
| | - Amol C Shetty
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Mahesh Bachu
- Molecular Genetics of Immunity Section, Division of Developmental Biology, National Institute of Child Health and Human Development (NICHD), Bethesda, MD, USA.,Arthritis and Tissue Degeneration Program and the David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, USA
| | - Stephen R Brooks
- Biodata Mining and Discovery Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), Bethesda, MD, USA
| | - Stefania Dell'Orso
- Biodata Mining and Discovery Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), Bethesda, MD, USA
| | - Brian L Foster
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - Xiaoxuan Fan
- Flow Cytometry Shared Service, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Keiko Ozato
- Molecular Genetics of Immunity Section, Division of Developmental Biology, National Institute of Child Health and Human Development (NICHD), Bethesda, MD, USA
| | - Martha J Somerman
- Laboratory of Oral and Connective Tissue Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), Bethesda, MD, USA
| | - Vivek Thumbigere-Math
- Division of Periodontology, University of Maryland School of Dentistry, Baltimore, MD, USA.,Laboratory of Oral and Connective Tissue Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), Bethesda, MD, USA
| |
Collapse
|
24
|
Hu W, Zhang L, Dong Y, Tian Z, Chen Y, Dong S. Tumour dormancy in inflammatory microenvironment: A promising therapeutic strategy for cancer-related bone metastasis. Cell Mol Life Sci 2020; 77:5149-5169. [PMID: 32556373 PMCID: PMC11104789 DOI: 10.1007/s00018-020-03572-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 05/22/2020] [Accepted: 06/12/2020] [Indexed: 02/06/2023]
Abstract
Cancer metastasis is a unique feature of malignant tumours. Even bone can become a common colonization site due to the tendency of solid tumours, including breast cancer (BCa) and prostate cancer (PCa), to metastasize to bone. Currently, a previous concept in tumour metabolism called tumour dormancy may be a promising target for antitumour treatment. When disseminated tumour cells (DTCs) metastasize to the bone microenvironment, they form a flexible regulatory network called the "bone-tumour-inflammation network". In this network, bone turnover as well as metabolism, tumour progression, angiogenesis and inflammatory responses are highly unified and coordinated, and a slight shift in this balance can result in the disruption of the microenvironment, uncontrolled inflammatory responses and excessive tumour growth. The purpose of this review is to highlight the regulatory effect of the "bone-tumour-inflammation network" in tumour dormancy. Osteoblast-secreted factors, bone turnover and macrophages are emphasized and occupy in the main part of the review. In addition, the prospective clinical application of tumour dormancy is also discussed, which shows the direction of future research.
Collapse
Affiliation(s)
- Wenhui Hu
- Department of Biomedical Materials Science, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Lincheng Zhang
- Department of Biomedical Materials Science, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yutong Dong
- Department of Biomedical Materials Science, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Zhansong Tian
- Department of Biomedical Materials Science, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yueqi Chen
- Department of Biomedical Materials Science, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| | - Shiwu Dong
- Department of Biomedical Materials Science, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
- State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| |
Collapse
|
25
|
Jung S, Singh K, Del Sol A. FunRes: resolving tissue-specific functional cell states based on a cell-cell communication network model. Brief Bioinform 2020; 22:5974949. [PMID: 33179736 PMCID: PMC8293827 DOI: 10.1093/bib/bbaa283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/24/2020] [Accepted: 09/25/2020] [Indexed: 01/08/2023] Open
Abstract
The functional specialization of cell types arises during development and is shaped by cell-cell communication networks determining a distribution of functional cell states that are collectively important for tissue functioning. However, the identification of these tissue-specific functional cell states remains challenging. Although a plethora of computational approaches have been successful in detecting cell types and subtypes, they fail in resolving tissue-specific functional cell states. To address this issue, we present FunRes, a computational method designed for the identification of functional cell states. FunRes relies on scRNA-seq data of a tissue to initially reconstruct the functional cell-cell communication network, which is leveraged for partitioning each cell type into functional cell states. We applied FunRes to 177 cell types in 10 different tissues and demonstrated that the detected states correspond to known functional cell states of various cell types, which cannot be recapitulated by existing computational tools. Finally, we characterize emerging and vanishing functional cell states in aging and disease, and demonstrate their involvement in key tissue functions. Thus, we believe that FunRes will be of great utility in the characterization of the functional landscape of cell types and the identification of dysfunctional cell states in aging and disease.
Collapse
Affiliation(s)
- Sascha Jung
- Computational Biology Group, CIC bioGUNE-BRTA (Basque Research and Technology Alliance), Derio, Bizkaia, 48160, Spain
| | - Kartikeya Singh
- Computational Biology Group, Luxembourg Centre for Systems Biomedicine (LCSB), Esch-sur-Alzette, L-4362, Luxembourg
| | - Antonio Del Sol
- Computational Biology Group, Luxembourg Centre for Systems Biomedicine (LCSB), Esch-sur-Alzette, L-4362, Luxembourg.,Computational Biology Group, CIC bioGUNE-BRTA (Basque Research and Technology Alliance), Derio, Bizkaia, 48160, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Bizkaia, 48013, Spain
| |
Collapse
|
26
|
Hausmann A, Russo G, Grossmann J, Zünd M, Schwank G, Aebersold R, Liu Y, Sellin ME, Hardt W. Germ-free and microbiota-associated mice yield small intestinal epithelial organoids with equivalent and robust transcriptome/proteome expression phenotypes. Cell Microbiol 2020; 22:e13191. [PMID: 32068945 PMCID: PMC7317401 DOI: 10.1111/cmi.13191] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/09/2020] [Accepted: 01/13/2020] [Indexed: 12/12/2022]
Abstract
Intestinal epithelial organoids established from gut tissue have become a widely used research tool. However, it remains unclear how environmental cues, divergent microbiota composition and other sources of variation before, during and after establishment confound organoid properties, and how these properties relate to the original tissue. While environmental influences cannot be easily addressed in human organoids, mice offer a controlled assay-system. Here, we probed the effect of donor microbiota differences, previously identified as a confounding factor in murine in vivo studies, on organoids. We analysed the proteomes and transcriptomes of primary organoid cultures established from two colonised and one germ-free mouse colony of C57BL/6J genetic background, and compared them to their tissue of origin and commonly used cell lines. While an imprint of microbiota-exposure was observed on the proteome of epithelial samples, the long-term global impact of donor microbiota on organoid expression patterns was negligible. Instead, stochastic culture-to-culture differences accounted for a moderate variability between independently established organoids. Integration of transcriptome and proteome datasets revealed an organoid-typic expression signature comprising 14 transcripts and 10 proteins that distinguished organoids across all donors from murine epithelial cell lines and fibroblasts and closely mimicked expression patterns in the gut epithelium. This included the inflammasome components ASC, Naip1-6, Nlrc4 and Caspase-1, which were highly expressed in all organoids compared to the reference cell line m-ICc12 or mouse embryonic fibroblasts. Taken together, these results reveal that the donor microbiota has little effect on the organoid phenotype and suggest that organoids represent a more suitable culture model than immortalised cell lines, in particular for studies of intestinal epithelial inflammasomes.
Collapse
Affiliation(s)
- Annika Hausmann
- Institute of Microbiology, Department of BiologyETH ZurichZurichSwitzerland
| | - Giancarlo Russo
- Functional Genomics Center ZurichUniversity of ZurichZurichSwitzerland
| | - Jonas Grossmann
- Functional Genomics Center ZurichUniversity of ZurichZurichSwitzerland
| | - Mirjam Zünd
- Institute of Microbiology, Department of BiologyETH ZurichZurichSwitzerland
| | - Gerald Schwank
- Institute of Pharmacology and ToxicologyUniversity of ZurichZurichSwitzerland
| | - Ruedi Aebersold
- Institute of Systems Biology, Department of BiologyETH ZurichZurichSwitzerland
| | - Yansheng Liu
- Institute of Systems Biology, Department of BiologyETH ZurichZurichSwitzerland
- Department of Pharmacology, Cancer Biology InstituteYale University School of MedicineWest HavenConnecticutUSA
| | - Mikael E. Sellin
- Institute of Microbiology, Department of BiologyETH ZurichZurichSwitzerland
- Science for Life Laboratory, Department of Medical Biochemistry and MicrobiologyUppsala UniversityUppsalaSweden
| | | |
Collapse
|
27
|
Al-Waeli H, Nicolau B, Stone L, Abu Nada L, Gao Q, Abdallah MN, Abdulkader E, Suzuki M, Mansour A, Al Subaie A, Tamimi F. Chronotherapy of Non-Steroidal Anti-Inflammatory Drugs May Enhance Postoperative Recovery. Sci Rep 2020; 10:468. [PMID: 31949183 PMCID: PMC6965200 DOI: 10.1038/s41598-019-57215-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 12/19/2019] [Indexed: 02/06/2023] Open
Abstract
Postoperative pain relief is crucial for full recovery. With the ongoing opioid epidemic and the insufficient effect of acetaminophen on severe pain; non-steroidal anti-inflammatory drugs (NSAIDs) are heavily used to alleviate this pain. However, NSAIDs are known to inhibit postoperative healing of connective tissues by inhibiting prostaglandin signaling. Pain intensity, inflammatory mediators associated with wound healing and the pharmacological action of NSAIDs vary throughout the day due to the circadian rhythm regulated by the clock genes. According to this rhythm, most of wound healing mediators and connective tissue formation occurs during the resting phase, while pain, inflammation and tissue resorption occur during the active period of the day. Here we show, in a murine tibia fracture surgical model, that NSAIDs are most effective in managing postoperative pain, healing and recovery when drug administration is limited to the active phase of the circadian rhythm. Limiting NSAID treatment to the active phase of the circadian rhythm resulted in overexpression of circadian clock genes, such as Period 2 (Per2) at the healing callus, and increased serum levels of anti-inflammatory cytokines interleukin-13 (IL-13), interleukin-4 (IL-4) and vascular endothelial growth factor. By contrast, NSAID administration during the resting phase resulted in severe bone healing impairment.
Collapse
Affiliation(s)
- H Al-Waeli
- Faculty of Dentistry, McGill University, 2001 Avenue McGill College Suite 500, Montréal, QC, H3A 1G1, Canada
| | - B Nicolau
- Faculty of Dentistry, McGill University, 2001 Avenue McGill College Suite 500, Montréal, QC, H3A 1G1, Canada
| | - L Stone
- Faculty of Dentistry, McGill University, Strathcona Anatomy and Dentistry Building, Montreal, QC, H3A 0C7, Canada
| | - L Abu Nada
- Faculty of Dentistry, McGill University, Strathcona Anatomy and Dentistry Building, Montreal, QC, H3A 0C7, Canada
| | - Q Gao
- Faculty of Dentistry, McGill University, Strathcona Anatomy and Dentistry Building, Montreal, QC, H3A 0C7, Canada
| | - M N Abdallah
- Faculty of Dentistry, University of Toronto, 124 Edward St, Toronto, Ontario, M5G 1G, Canada
| | - E Abdulkader
- Faculty of Dentistry, McGill University, 2001 Avenue McGill College Suite 500, Montréal, QC, H3A 1G1, Canada
| | - M Suzuki
- Faculty of Dentistry, McGill University, Strathcona Anatomy and Dentistry Building, Montreal, QC, H3A 0C7, Canada
| | - A Mansour
- Faculty of Dentistry, McGill University, Strathcona Anatomy and Dentistry Building, Montreal, QC, H3A 0C7, Canada
| | - A Al Subaie
- Faculty of Dentistry, McGill University, Strathcona Anatomy and Dentistry Building, Montreal, QC, H3A 0C7, Canada
| | - F Tamimi
- Faculty of Dentistry, McGill University, Strathcona Anatomy and Dentistry Building, Montreal, QC, H3A 0C7, Canada.
| |
Collapse
|
28
|
Yang MG, Sun L, Han J, Zheng C, Liang H, Zhu J, Jin T. Biological characteristics of transcription factor RelB in different immune cell types: implications for the treatment of multiple sclerosis. Mol Brain 2019; 12:115. [PMID: 31881915 PMCID: PMC6935142 DOI: 10.1186/s13041-019-0532-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 12/04/2019] [Indexed: 12/22/2022] Open
Abstract
Transcription factor RelB is a member of the nuclear factror-kappa B (NF-κB) family, which plays a crucial role in mediating immune responses. Plenty of studies have demonstrated that RelB actively contributes to lymphoid organ development, dendritic cells maturation and function and T cells differentiation, as well as B cell development and survival. RelB deficiency may cause a variety of immunological disorders in both mice and humans. Multiple sclerosis (MS) is an inflammatory and demyelinating disease of the central nervous system which involves a board of immune cell populations. Thereby, RelB may exert an impact on MS by modulating the functions of dendritic cells and the differentiation of T cells and B cells. Despite intensive research, the role of RelB in MS and its animal model, experimental autoimmune encephalomyelitis, is still unclear. Herein, we give an overview of the biological characters of RelB, summarize the updated knowledge regarding the role of RelB in different cell types that contribute to MS pathogenesis and discuss the potential RelB-targeted therapeutic implications for MS.
Collapse
Affiliation(s)
- Meng-Ge Yang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin Street 71#, Changchun, 130021, China
| | - Li Sun
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin Street 71#, Changchun, 130021, China
| | - Jinming Han
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin Street 71#, Changchun, 130021, China
- Present address: Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Chao Zheng
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin Street 71#, Changchun, 130021, China
| | - Hudong Liang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin Street 71#, Changchun, 130021, China
| | - Jie Zhu
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin Street 71#, Changchun, 130021, China
- Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Tao Jin
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin Street 71#, Changchun, 130021, China.
| |
Collapse
|
29
|
Seet LF, Toh LZ, Chu SWL, Wong TT. RelB regulates basal and proinflammatory induction of conjunctival CCL2. Ocul Immunol Inflamm 2019; 29:29-42. [PMID: 31618101 DOI: 10.1080/09273948.2019.1662060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Purpose: This study investigated the involvement of NF-kB in regulating postoperative conjunctival inflammation.Methods: Experimental surgery was performed as described for the mouse model of conjunctival scarring. Expression of NF-κB in postoperative conjunctival tissues or conjunctival fibroblasts were assessed by real-time PCR, immunoblotting and immunofluorescence analyses. Downregulation of RelB was achieved using small interfering RNA. Cellular cytokine secretion was determined using multiplex cytokine assay.Results: RelB was the most highly induced member of the NF-kB family on day 2 post-surgery. Elevated RelB may be found associated with vimentin-positive cells and fibroblasts in vivo and in vitro. In conjunctival fibroblasts, RelB may be induced by TNF-α but not TGF-β2 while its silencing caused selective induction of CCL2 secretion by both basal and TNF-α-stimulated fibroblasts.Conclusions: High RelB induction in the inflammatory phase and the selective modulation of CCL2 suggest a specific anti-inflammatory role for RelB in the postoperative conjunctiva.
Collapse
Affiliation(s)
- Li-Fong Seet
- Ocular Therapeutics and Drug Delivery, Singapore Eye Research Institute, Singapore.,Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Duke-NUS Medical School, Singapore
| | - Li Zhen Toh
- Ocular Therapeutics and Drug Delivery, Singapore Eye Research Institute, Singapore
| | - Stephanie W L Chu
- Ocular Therapeutics and Drug Delivery, Singapore Eye Research Institute, Singapore
| | - Tina T Wong
- Ocular Therapeutics and Drug Delivery, Singapore Eye Research Institute, Singapore.,Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Duke-NUS Medical School, Singapore.,Glaucoma Service, Singapore National Eye Center, Singapore.,School of Materials Science and Engineering, Nanyang Technological University, Singapore
| |
Collapse
|
30
|
Cytokine Effects on the Entry of Filovirus Envelope Pseudotyped Virus-Like Particles into Primary Human Macrophages. Viruses 2019; 11:v11100889. [PMID: 31547585 PMCID: PMC6832363 DOI: 10.3390/v11100889] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/09/2019] [Accepted: 09/18/2019] [Indexed: 12/25/2022] Open
Abstract
Macrophages are one of the first and also a major site of filovirus replication and, in addition, are a source of multiple cytokines, presumed to play a critical role in the pathogenesis of the viral infection. Some of these cytokines are known to induce macrophage phenotypic changes in vitro, but how macrophage polarization may affect the cell susceptibility to filovirus entry remains largely unstudied. We generated different macrophage subsets using cytokine pre-treatment and subsequently tested their ability to fuse with beta-lactamase containing virus-like particles (VLP), pseudotyped with the surface glycoprotein of Ebola virus (EBOV) or the glycoproteins of other clinically relevant filovirus species. We found that pre-incubation of primary human monocyte-derived macrophages (MDM) with interleukin-10 (IL-10) significantly enhanced filovirus entry into cells obtained from multiple healthy donors, and the IL-10 effect was preserved in the presence of pro-inflammatory cytokines found to be elevated during EBOV disease. In contrast, fusion of IL-10-treated macrophages with influenza hemagglutinin/neuraminidase pseudotyped VLPs was unchanged or slightly reduced. Importantly, our in vitro data showing enhanced virus entry are consistent with the correlation established between elevated serum IL-10 and increased mortality in filovirus infected patients and also reveal a novel mechanism that may account for the IL-10-mediated increase in filovirus pathogenicity.
Collapse
|
31
|
Li J, Ayoub A, Xiu Y, Yin X, Sanders JO, Mesfin A, Xing L, Yao Z, Boyce BF. TGFβ-induced degradation of TRAF3 in mesenchymal progenitor cells causes age-related osteoporosis. Nat Commun 2019; 10:2795. [PMID: 31243287 PMCID: PMC6595054 DOI: 10.1038/s41467-019-10677-0] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 05/22/2019] [Indexed: 01/08/2023] Open
Abstract
Inflammaging induces osteoporosis by promoting bone destruction and inhibiting bone formation. TRAF3 limits bone destruction by inhibiting RANKL-induced NF-κB signaling in osteoclast precursors. However, the role of TRAF3 in mesenchymal progenitor cells (MPCs) is unknown. Mice with TRAF3 deleted in MPCs develop early onset osteoporosis due to reduced bone formation and enhanced bone destruction. In young mice TRAF3 prevents β-catenin degradation in MPCs and maintains osteoblast formation. However, TRAF3 protein levels decrease in murine and human bone samples during aging when TGFβ1 is released from resorbing bone. TGFβ1 induces degradation of TRAF3 in murine MPCs and inhibits osteoblast formation through GSK-3β-mediated degradation of β-catenin. Thus, TRAF3 positively regulates MPC differentiation into osteoblasts. TRAF3 deletion in MPCs activated NF-κB RelA and RelB to promote RANKL expression and enhance bone destruction. We conclude that pharmacologic stabilization of TRAF3 during aging could treat/prevent age-related osteoporosis by inhibiting bone destruction and promoting bone formation.
Collapse
Affiliation(s)
- Jinbo Li
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Akram Ayoub
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Yan Xiu
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
- Department of Pathology, University of Iowa, Iowa City, IA, 52242, USA
| | - Xiaoxiang Yin
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
- Department of Medical Imaging, Henan University First Affiliated Hospital, 357 Ximen Street, Kaifeng, 475001, Henan, P.R. China
| | - James O Sanders
- Department of Orthopaedics and Rehabilitation Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
- Department of Orthopaedics, University of North Carolina, Chapel Hill, NC, 27514, USA
| | - Addisu Mesfin
- Department of Orthopaedics and Rehabilitation Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Lianping Xing
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Zhenqiang Yao
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA.
| | - Brendan F Boyce
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA.
| |
Collapse
|
32
|
Madel MB, Ibáñez L, Wakkach A, de Vries TJ, Teti A, Apparailly F, Blin-Wakkach C. Immune Function and Diversity of Osteoclasts in Normal and Pathological Conditions. Front Immunol 2019; 10:1408. [PMID: 31275328 PMCID: PMC6594198 DOI: 10.3389/fimmu.2019.01408] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 06/04/2019] [Indexed: 12/31/2022] Open
Abstract
Osteoclasts (OCLs) are key players in controlling bone remodeling. Modifications in their differentiation or bone resorbing activity are associated with a number of pathologies ranging from osteopetrosis to osteoporosis, chronic inflammation and cancer, that are all characterized by immunological alterations. Therefore, the 2000s were marked by the emergence of osteoimmunology and by a growing number of studies focused on the control of OCL differentiation and function by the immune system. At the same time, it was discovered that OCLs are much more than bone resorbing cells. As monocytic lineage-derived cells, they belong to a family of cells that displays a wide heterogeneity and plasticity and that is involved in phagocytosis and innate immune responses. However, while OCLs have been extensively studied for their bone resorption capacity, their implication as immune cells was neglected for a long time. In recent years, new evidence pointed out that OCLs play important roles in the modulation of immune responses toward immune suppression or inflammation. They unlocked their capacity to modulate T cell activation, to efficiently process and present antigens as well as their ability to activate T cell responses in an antigen-dependent manner. Moreover, similar to other monocytic lineage cells such as macrophages, monocytes and dendritic cells, OCLs display a phenotypic and functional plasticity participating to their anti-inflammatory or pro-inflammatory effect depending on their cell origin and environment. This review will address this novel vision of the OCL, not only as a phagocyte specialized in bone resorption, but also as innate immune cell participating in the control of immune responses.
Collapse
Affiliation(s)
- Maria-Bernadette Madel
- CNRS, Laboratoire de PhysioMédecine Moléculaire, Faculté de Médecine, UMR7370, Nice, France.,Faculé de Médecine, Université Côte d'Azur, Nice, France
| | - Lidia Ibáñez
- Department of Pharmacy, Cardenal Herrera-CEU University, València, Spain
| | - Abdelilah Wakkach
- CNRS, Laboratoire de PhysioMédecine Moléculaire, Faculté de Médecine, UMR7370, Nice, France.,Faculé de Médecine, Université Côte d'Azur, Nice, France
| | - Teun J de Vries
- Department of Periodontology, Academic Centre of Dentistry Amsterdam, University of Amsterdam and Vrije Univeristeit, Amsterdam, Netherlands
| | - Anna Teti
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | | | - Claudine Blin-Wakkach
- CNRS, Laboratoire de PhysioMédecine Moléculaire, Faculté de Médecine, UMR7370, Nice, France.,Faculé de Médecine, Université Côte d'Azur, Nice, France
| |
Collapse
|
33
|
Chatterjee B, Roy P, Sarkar UA, Zhao M, Ratra Y, Singh A, Chawla M, De S, Gomes J, Sen R, Basak S. Immune Differentiation Regulator p100 Tunes NF-κB Responses to TNF. Front Immunol 2019; 10:997. [PMID: 31134075 PMCID: PMC6514058 DOI: 10.3389/fimmu.2019.00997] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 04/18/2019] [Indexed: 11/14/2022] Open
Abstract
Tumor necrosis factor (TNF) is a pleiotropic cytokine whose primary physiological function involves coordinating inflammatory and adaptive immune responses. However, uncontrolled TNF signaling causes aberrant inflammation and has been implicated in several human ailments. Therefore, an understanding of the molecular mechanisms underlying dynamical and gene controls of TNF signaling bear significance for human health. As such, TNF engages the canonical nuclear factor kappa B (NF-κB) pathway to activate RelA:p50 heterodimers, which induce expression of specific immune response genes. Brief and chronic TNF stimulation produces transient and long-lasting NF-κB activities, respectively. Negative feedback regulators of the canonical pathway, including IκBα, are thought to ensure transient RelA:p50 responses to short-lived TNF signals. The non-canonical NF-κB pathway mediates RelB activity during immune differentiation involving p100. We uncovered an unexpected role of p100 in TNF signaling. Brief TNF stimulation of p100-deficient cells triggered an additional late NF-κB activity consisting of RelB:p50 heterodimers, which modified the TNF-induced gene-expression program. In p100-deficient cells subjected to brief TNF stimulation, RelB:p50 not only sustained the expression of a subset of RelA-target immune response genes but also activated additional genes that were not normally induced by TNF in WT mouse embryonic fibroblasts (MEFs) and were related to immune differentiation and metabolic processes. Despite this RelB-mediated distinct gene control, however, RelA and RelB bound to mostly overlapping chromatin sites in p100-deficient cells. Repeated TNF pulses strengthened this RelB:p50 activity, which was supported by NF-κB-driven RelB synthesis. Finally, brief TNF stimulation elicited late-acting expressions of NF-κB target pro-survival genes in p100-deficient myeloma cells. In sum, our study suggests that the immune-differentiation regulator p100 enforces specificity of TNF signaling and that varied p100 levels may provide for modifying TNF responses in diverse physiological and pathological settings.
Collapse
Affiliation(s)
- Budhaditya Chatterjee
- Systems Immunology Laboratory, National Institute of Immunology, New Delhi, India.,Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, India
| | - Payel Roy
- Systems Immunology Laboratory, National Institute of Immunology, New Delhi, India
| | - Uday Aditya Sarkar
- Systems Immunology Laboratory, National Institute of Immunology, New Delhi, India
| | - Mingming Zhao
- Gene Regulation Section, Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, MD, United States
| | - Yashika Ratra
- Systems Immunology Laboratory, National Institute of Immunology, New Delhi, India
| | - Amit Singh
- Gene Regulation Section, Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, MD, United States
| | - Meenakshi Chawla
- Systems Immunology Laboratory, National Institute of Immunology, New Delhi, India
| | - Supriyo De
- Laboratory of Genetics and Genomics, National Institute on Aging, Baltimore, MD, United States
| | - James Gomes
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, India
| | - Ranjan Sen
- Gene Regulation Section, Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, MD, United States
| | - Soumen Basak
- Systems Immunology Laboratory, National Institute of Immunology, New Delhi, India
| |
Collapse
|
34
|
Dou C, Ding N, Zhao C, Hou T, Kang F, Cao Z, Liu C, Bai Y, Dai Q, Ma Q, Luo F, Xu J, Dong S. Estrogen Deficiency-Mediated M2 Macrophage Osteoclastogenesis Contributes to M1/M2 Ratio Alteration in Ovariectomized Osteoporotic Mice. J Bone Miner Res 2018; 33:899-908. [PMID: 29281118 DOI: 10.1002/jbmr.3364] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 12/06/2017] [Accepted: 12/12/2017] [Indexed: 12/28/2022]
Abstract
In this study, for the first time we discovered that the M1/M2 macrophage phenotype ratio is increased in bone marrow of ovariectomized (OVX) osteoporotic C57BL/6 mice. Considering estrogen is the main variable, we assumed that estrogen participated in this alteration. To determine whether and how estrogen contributes to the change of the M1/M2 ratio, we first isolated bone marrow macrophages (BMMs) from mice femur and stimulated the cells with lipopolysaccharide (LPS)/interferon γ (IFN-γ) for M1 polarization and interleukin 4 (IL-4)/IL-13 for M2 polarization. M1 and M2 macrophages were then exposed to RANKL stimulation, we found that M2 macrophage but not M1 macrophage differentiated into functional osteoclast leading to increased M1/M2 ratio. Intriguingly, 17β-estradiol (E2) pretreatment prevented osteoclastogenesis from M2 macrophages. By constructing shRNA lentivirus interfering the expression of different estrogen receptors in M2 macrophages, we found that estrogen protects M2 macrophage from receptor activator of nuclear factor κB ligand (RANKL) stimulation selectively through estrogen receptor α (ERα) and the downstream blockage of NF-κB p65 nuclear translocation. Animal studies showed that ERα selective agonist 4,4',4″-(4-propyl-[1H]-pyrazole-1,3,5-triyl) trisphenol (PPT) was able to replicate the therapeutic effects of E2 in treating osteoporotic OVX mice. Together, our findings reveal that estrogen deficiency-mediated M2 macrophage osteoclastogenesis leads to increased M1/M2 ratio in OVX mice. Reducing the M1/M2 ratio is a potential therapeutic target in treating postmenopausal osteoporosis. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Ce Dou
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing, China
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Ning Ding
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing, China
| | - Chunrong Zhao
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing, China
| | - Tianyong Hou
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Fei Kang
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing, China
| | - Zhen Cao
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing, China
| | - Chuan Liu
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing, China
| | - Yun Bai
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing, China
| | - Qijie Dai
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Qinyu Ma
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing, China
| | - Fei Luo
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jianzhong Xu
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Shiwu Dong
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, China
| |
Collapse
|
35
|
Cao F, Zhou W, Liu G, Xia T, Liu M, Mi B, Liu Y. Staphylococcus aureus peptidoglycan promotes osteoclastogenesis via TLR2-mediated activation of the NF-κB/NFATc1 signaling pathway. Am J Transl Res 2017; 9:5022-5030. [PMID: 29218100 PMCID: PMC5714786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 09/30/2017] [Indexed: 06/07/2023]
Abstract
Staphylococcus aureus (S. aureus) peptidoglycan (PGN-sa), the major cell wall component of S. aureus, has been demonstrated to be an important virulence factor in the pathogenesis of S. aureus-induced osteomyelitis. However, the exact role of PGN-sa in osteoclastogenesis during S. aureus-induced osteomyelitis and its underlying molecular mechanisms remain unclear. In this study, we found that PGN-sa promoted receptor activator of nuclear factor-κB (NF-κB) ligand (RANKL)-induced osteoclast formation. Quantitative real-time polymerase chain reaction results showed that the mRNA expression of osteoclast-specific marker genes, including tartrate-resistant acid phosphatase, cathepsin K, matrix metalloproteinase-9, and calcitonin receptor was upregulated by PGN-sa treatment. The results of enzyme linked immunosorbent assay showed that PGN-sa promoted the production of proinflammatory cytokines in mouse bone marrow macrophages (mBMMs) treated with RANKL. PGN-sa enhanced RANKL-stimulated protein expression of Toll-like receptor 2 (TLR2), p-IκBα, and nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1). Luciferase reporter assay showed that PGN-sa increased the transcriptional activity of TLR2 and NF-κB in mBMMs treated with RANKL. In addition, we found that downregulation of TLR2 attenuated the effect of PGA-sa on RANKL-induced osteoclastogenesis and activation of the NF-κB/NFATc1 signaling pathway. Taken together, this study revealed that PGN-sa promotes osteoclast formation via TLR2-mediated activation of the NF-κB/NFATc1 signaling pathway, revealing a potential effect of PGN-sa on osteomyelitis. These findings provide new insights into the pathogenic role of PGN-sa in S. aureus-induced osteomyelitis and may help to develop new therapeutic strategies for osteomyelitis.
Collapse
Affiliation(s)
- Faqi Cao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022, Hubei, P.R. China
| | - Wu Zhou
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022, Hubei, P.R. China
| | - Guohui Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022, Hubei, P.R. China
| | - Tian Xia
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022, Hubei, P.R. China
| | - Mengfei Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022, Hubei, P.R. China
| | - Bobin Mi
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022, Hubei, P.R. China
| | - Yi Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022, Hubei, P.R. China
| |
Collapse
|
36
|
Yao Z, Lei W, Duan R, Li Y, Luo L, Boyce BF. RANKL cytokine enhances TNF-induced osteoclastogenesis independently of TNF receptor associated factor (TRAF) 6 by degrading TRAF3 in osteoclast precursors. J Biol Chem 2017; 292:10169-10179. [PMID: 28438834 DOI: 10.1074/jbc.m116.771816] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 04/21/2017] [Indexed: 12/27/2022] Open
Abstract
Cytokines, including receptor activator of nuclear factor κB ligand (RANKL) and TNF, induce increased osteoclast (OC) formation and bone loss in postmenopausal osteoporosis and inflammatory arthritides. RANKL and TNF can independently induce OC formation in vitro from WT OC precursors via TNF receptor-associated factor (TRAF) adaptor proteins, which bind to their receptors. Of these, only TRAF6 is required for RANKL-induced osteoclastogenesis in vitro However, the molecular mechanisms involved remain incompletely understood. Here we report that RANKL induced the formation of bone-resorbing OCs from TRAF6-/- OC precursors when cultured on bone slices but not on plastic. The mechanisms involved increased TNF production by TRAF6-/- OC precursors resulting from their interaction with bone matrix and release of active TGFβ from the resorbed bone, coupled with RANKL-induced autophagolysosomal degradation of TRAF3, a known inhibitor of OC formation. Consistent with these findings, RANKL enhanced TNF-induced OC formation from TRAF6-/- OC precursors. Moreover, TNF induced significantly more OCs from mice with TRAF3 conditionally deleted in myeloid lineage cells, and it did not inhibit RANKL-induced OC formation from these cells. TRAF6-/- OC precursors that overexpressed TRAF3 or were treated with the autophagolysosome inhibitor chloroquine formed significantly fewer OCs in response to TNF alone or in combination with RANKL. We conclude that RANKL can enhance TNF-induced OC formation independently of TRAF6 by degrading TRAF3. These findings suggest that preventing TRAF3 degradation with drugs like chloroquine could reduce excessive OC formation in diseases in which bone resorption is increased in response to elevated production of these cytokines.
Collapse
Affiliation(s)
- Zhenqiang Yao
- From the Department of Pathology and Laboratory Medicine and .,the Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York 14642 and
| | - Wei Lei
- From the Department of Pathology and Laboratory Medicine and.,the Department of Medical Imaging, Henan University First Affiliated Hospital, 357 Ximen Street, Kaifeng, Henan 475001, China
| | - Rong Duan
- From the Department of Pathology and Laboratory Medicine and
| | - Yanyun Li
- From the Department of Pathology and Laboratory Medicine and
| | - Lu Luo
- From the Department of Pathology and Laboratory Medicine and
| | - Brendan F Boyce
- From the Department of Pathology and Laboratory Medicine and .,the Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York 14642 and
| |
Collapse
|
37
|
Li H, Sun J, Li J, Yang H, Luo X, Chen J, Xie L, Huo F, Zhu T, Guo W, Tian W. Xenogeneic Bio-Root Prompts the Constructive Process Characterized by Macrophage Phenotype Polarization in Rodents and Nonhuman Primates. Adv Healthc Mater 2017; 6. [PMID: 28081294 DOI: 10.1002/adhm.201601112] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 11/24/2016] [Indexed: 02/05/2023]
Abstract
Tissue or organ regeneration using xenogeneic matrices is a promising approach to address the shortage of donor matrices for allotransplantation. Success of such approach has been demonstrated to correlate with macrophage-mediated fibrotic homeostasis and tissue remodeling. The previous studies have demonstrated that treated dentin matrix (TDM) could be a suitable bioactive substrate for allogeneic tooth root regeneration. This study constructed xenogeneic bioengineered tooth root (bio-root) via a combination of porcine TDM (pTDM) with allogeneic dental follicle cells (DFCs). Macrophage phenotypes are used to evaluate the remodeling process of xenogeneic bio-roots in vitro and in vivo. pTDM can facilitate odontoblast differentiation of human derived DFCs. Xenogeneic bio-roots in rat subcutaneous tissue prompt constructive response via M1 macrophage infiltration during early postimplantation stages and increase restorative M2 phenotype at later stages. After implantation of bio-roots into jaws of rhesus monkeys for six months, periodontal ligament-like fibers accompanied by macrophage polarization are observed, which are positive for COL-1, Periostin, βIII-tubulin and display such structures as fibroblasts and blood vessels. The reconstructed bio-root possesses biomechanical properties for the dissipation of masticatory forces. These results support that xenogeneic bio-root could maintain fibrotic homeostasis during remodeling process and highlight the potential application of xenogeneic matrices in regenerative medicine.
Collapse
Affiliation(s)
- Hui Li
- National Engineering Laboratory for Oral Regenerative Medicine; West China Hospital of Stomatology; Sichuan University; Chengdu 610041 China
- State Key Laboratory of Oral Diseases; West China Hospital of Stomatology; Sichuan University; Chengdu 610041 China
- Department of Oral and Maxillofacial Surgery; West China School of Stomatology; Sichuan University; Chengdu 610041 China
| | - Jingjing Sun
- National Engineering Laboratory for Oral Regenerative Medicine; West China Hospital of Stomatology; Sichuan University; Chengdu 610041 China
- State Key Laboratory of Oral Diseases; West China Hospital of Stomatology; Sichuan University; Chengdu 610041 China
- Department of Oral and Maxillofacial Surgery; West China School of Stomatology; Sichuan University; Chengdu 610041 China
| | - Jie Li
- National Engineering Laboratory for Oral Regenerative Medicine; West China Hospital of Stomatology; Sichuan University; Chengdu 610041 China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences; College of Stomatology; Chongqing Medical University; Chongqing 401147 China
| | - Hefeng Yang
- Department of Dental Research; The Affiliated Stomatological Hospital of Kunming Medical University; Kunming 650031 China
| | - Xiangyou Luo
- National Engineering Laboratory for Oral Regenerative Medicine; West China Hospital of Stomatology; Sichuan University; Chengdu 610041 China
- State Key Laboratory of Oral Diseases; West China Hospital of Stomatology; Sichuan University; Chengdu 610041 China
- Department of Oral and Maxillofacial Surgery; West China School of Stomatology; Sichuan University; Chengdu 610041 China
| | - Jinlong Chen
- National Engineering Laboratory for Oral Regenerative Medicine; West China Hospital of Stomatology; Sichuan University; Chengdu 610041 China
- State Key Laboratory of Oral Diseases; West China Hospital of Stomatology; Sichuan University; Chengdu 610041 China
- Department of Oral and Maxillofacial Surgery; West China School of Stomatology; Sichuan University; Chengdu 610041 China
| | - Li Xie
- National Engineering Laboratory for Oral Regenerative Medicine; West China Hospital of Stomatology; Sichuan University; Chengdu 610041 China
| | - Fangjun Huo
- National Engineering Laboratory for Oral Regenerative Medicine; West China Hospital of Stomatology; Sichuan University; Chengdu 610041 China
| | - Tian Zhu
- National Engineering Laboratory for Oral Regenerative Medicine; West China Hospital of Stomatology; Sichuan University; Chengdu 610041 China
- State Key Laboratory of Oral Diseases; West China Hospital of Stomatology; Sichuan University; Chengdu 610041 China
- Department of Pediatric Dentistry; West China School of Stomatology; Sichuan University; Chengdu 610041 China
| | - Weihua Guo
- National Engineering Laboratory for Oral Regenerative Medicine; West China Hospital of Stomatology; Sichuan University; Chengdu 610041 China
- State Key Laboratory of Oral Diseases; West China Hospital of Stomatology; Sichuan University; Chengdu 610041 China
- Department of Pediatric Dentistry; West China School of Stomatology; Sichuan University; Chengdu 610041 China
| | - Weidong Tian
- National Engineering Laboratory for Oral Regenerative Medicine; West China Hospital of Stomatology; Sichuan University; Chengdu 610041 China
- State Key Laboratory of Oral Diseases; West China Hospital of Stomatology; Sichuan University; Chengdu 610041 China
- Department of Oral and Maxillofacial Surgery; West China School of Stomatology; Sichuan University; Chengdu 610041 China
| |
Collapse
|
38
|
Abstract
The contribution of inflammation to bone loss is well documented in arthritis and other diseases with an emphasis on how inflammatory cytokines promote osteoclastogenesis. Macrophages are the major producers of cytokines in inflammation, and the factors they produce depend upon their activation state or polarization. In recent years, it has become apparent that macrophages are also capable of interacting with osteoblasts and their mesenchymal precursors. This interaction provides growth and differentiation factors from one cell that act on the other and visa versa-a concept akin to the requirement for a feeder layer to grow hemopoietic cells or the coupling that occurs between osteoblasts and osteoclasts to maintain bone homeostasis. Alternatively, activated macrophages are the most likely candidates to promote bone formation and have also been implicated in the tissue repair process in other tissues. In bone, a number of factors, including oncostatin M, have been shown to promote osteoblast formation both in vitro and in vivo. This review discusses the different cell types involved, cellular mediators, and how this can be used to direct new bone anabolic approaches.
Collapse
|
39
|
Li X, Sun W, Li J, Wang M, Zhang H, Pei L, Boyce BF, Wang Z, Xing L. Clomipramine causes osteoporosis by promoting osteoclastogenesis via E3 ligase Itch, which is prevented by Zoledronic acid. Sci Rep 2017; 7:41358. [PMID: 28145497 PMCID: PMC5286409 DOI: 10.1038/srep41358] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 12/20/2016] [Indexed: 02/06/2023] Open
Abstract
Patients taking antidepressants, including Clomipramine (CLP), have an increased risk of osteoporotic fracture. However, the effects of CLP on bone metabolism are unknown. Here, we demonstrate that WT mice treated with CLP for 2 weeks had significantly reduced trabecular bone volume and cortical bone thickness, associated with increased osteoclast (OC) numbers, but had no change in osteoblast numbers or bone formation rate. Bone marrow cells from CLP-treated mice had normal OC precursor frequency, but formed significantly more OCs when they were cultured with RANKL and M-CSF. CLP promoted OC formation and bone resorption and expression of OC-associated genes. CLP-induced bone loss was prevented by Zoledronic acid. At the molecular level, CLP inhibited the activity of the ubiquitin E3 ligase Itch. CLP did not promote OC formation from bone marrow cells of Itch-/- mice in vitro nor induce bone loss in Itch-/- mice. Our findings indicate that CLP causes bone loss by enhancing Itch-mediated osteoclastogenesis, which was prevented by Zoledronic acid. Thus, anti-resorptive therapy could be used to prevent bone loss in patients taking antidepressants, such as CLP.
Collapse
Affiliation(s)
- Xing Li
- Department of Immuno-oncology, Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, China.,Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Wen Sun
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Jinbo Li
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Mengmeng Wang
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA.,Institute of Chinese Minority Traditional Medicine, MINZU University of China, Beijing 100081, China
| | - Hengwei Zhang
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Lingpeng Pei
- Institute of Chinese Minority Traditional Medicine, MINZU University of China, Beijing 100081, China
| | - Brendan F Boyce
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA.,Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Zhiyu Wang
- Department of Immuno-oncology, Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, China
| | - Lianping Xing
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA.,Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
40
|
McEvoy C, de Gaetano M, Giffney HE, Bahar B, Cummins EP, Brennan EP, Barry M, Belton O, Godson CG, Murphy EP, Crean D. NR4A Receptors Differentially Regulate NF-κB Signaling in Myeloid Cells. Front Immunol 2017; 8:7. [PMID: 28167941 PMCID: PMC5256039 DOI: 10.3389/fimmu.2017.00007] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 01/03/2017] [Indexed: 12/19/2022] Open
Abstract
Dysregulation of inflammatory responses is a hallmark of multiple diseases such as atherosclerosis and rheumatoid arthritis. As constitutively active transcription factors, NR4A nuclear receptors function to control the magnitude of inflammatory responses and in chronic inflammatory disease can be protective or pathogenic. Within this study, we demonstrate that TLR4 stimulation using the endotoxin lipopolysaccharide (LPS) rapidly enhances NR4A1–3 expression in human and murine, primary and immortalized myeloid cells with concomitant gene transcription and protein secretion of MIP-3α, a central chemokine implicated in numerous pathologies. Deficiency of NR4A2 and NR4A3 in human and murine myeloid cells reveals that both receptors function as positive regulators of enhanced MIP-3α expression. In contrast, within the same cell types and conditions, altered NR4A activity leads to suppression of LPS-induced MCP-1 gene and protein expression. An equivalent pattern of inflammatory gene regulation is replicated in TNFα-treated myeloid cells. We show that NF-κB is the critical regulator of NR4A1–3, MIP-3α, and MCP-1 during TLR4 stimulation in myeloid cells and highlight a parallel mechanism whereby NR4A activity can repress or enhance NF-κB target gene expression simultaneously. Mechanistic insight reveals that NR4A2 does not require DNA-binding capacity in order to enhance or repress NF-κB target gene expression simultaneously and establishes a role for NF-κB family member Relb as a novel NR4A target gene involved in the positive regulation of MIP-3α. Thus, our data reveal a dynamic role for NR4A receptors concurrently enhancing and repressing NF-κB activity in myeloid cells leading to altered transcription of key inflammatory mediators.
Collapse
Affiliation(s)
- Caitriona McEvoy
- School of Medicine, University College Dublin, Dublin, Ireland; Conway Institute for Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland; Diabetes and Complications Research Centre, Conway Institute for Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Monica de Gaetano
- School of Medicine, University College Dublin, Dublin, Ireland; Conway Institute for Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland; Diabetes and Complications Research Centre, Conway Institute for Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Hugh E Giffney
- Conway Institute for Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland; School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Bojlul Bahar
- International Institute of Nutritional Sciences and Applied Food Safety Studies, University of Central Lancashire , Preston , UK
| | - Eoin P Cummins
- School of Medicine, University College Dublin, Dublin, Ireland; Conway Institute for Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Eoin P Brennan
- School of Medicine, University College Dublin, Dublin, Ireland; Conway Institute for Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland; Diabetes and Complications Research Centre, Conway Institute for Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Mary Barry
- St. Vincent's University Hospital , Dublin , Ireland
| | - Orina Belton
- Diabetes and Complications Research Centre, Conway Institute for Biomolecular and Biomedical Science, University College Dublin , Dublin , Ireland
| | - Catherine G Godson
- School of Medicine, University College Dublin, Dublin, Ireland; Conway Institute for Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland; Diabetes and Complications Research Centre, Conway Institute for Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Evelyn P Murphy
- Conway Institute for Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland; School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Daniel Crean
- Conway Institute for Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland; Diabetes and Complications Research Centre, Conway Institute for Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland; School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| |
Collapse
|
41
|
Lin TH, Pajarinen J, Lu L, Nabeshima A, Cordova LA, Yao Z, Goodman SB. NF-κB as a Therapeutic Target in Inflammatory-Associated Bone Diseases. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2016; 107:117-154. [PMID: 28215222 DOI: 10.1016/bs.apcsb.2016.11.002] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Inflammation is a defensive mechanism for pathogen clearance and maintaining tissue homeostasis. In the skeletal system, inflammation is closely associated with many bone disorders including fractures, nonunions, periprosthetic osteolysis (bone loss around orthopedic implants), and osteoporosis. Acute inflammation is a critical step for proper bone-healing and bone-remodeling processes. On the other hand, chronic inflammation with excessive proinflammatory cytokines disrupts the balance of skeletal homeostasis involving osteoblastic (bone formation) and osteoclastic (bone resorption) activities. NF-κB is a transcriptional factor that regulates the inflammatory response and bone-remodeling processes in both bone-forming and bone-resorption cells. In vitro and in vivo evidences suggest that NF-κB is an important potential therapeutic target for inflammation-associated bone disorders by modulating inflammation and bone-remodeling process simultaneously. The challenges of NF-κB-targeting therapy in bone disorders include: (1) the complexity of canonical and noncanonical NF-κB pathways; (2) the fundamental roles of NF-κB-mediated signaling for bone regeneration at earlier phases of tissue damage and acute inflammation; and (3) the potential toxic effects on nontargeted cells such as lymphocytes. Recent developments of novel inhibitors with differential approaches to modulate NF-κB activity, and the controlled release (local) or bone-targeting drug delivery (systemic) strategies, have largely increased the translational application of NF-κB therapy in bone disorders. Taken together, temporal modulation of NF-κB pathways with the combination of recent advanced bone-targeting drug delivery techniques is a highly translational strategy to reestablish homeostasis in the skeletal system.
Collapse
Affiliation(s)
- T-H Lin
- Stanford University, Stanford, CA, United States
| | - J Pajarinen
- Stanford University, Stanford, CA, United States
| | - L Lu
- Stanford University, Stanford, CA, United States
| | - A Nabeshima
- Stanford University, Stanford, CA, United States
| | - L A Cordova
- Stanford University, Stanford, CA, United States; Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Z Yao
- Stanford University, Stanford, CA, United States
| | - S B Goodman
- Stanford University, Stanford, CA, United States.
| |
Collapse
|
42
|
Bandara N, Gurusinghe S, Lim SY, Chen H, Chen S, Wang D, Hilbert B, Wang LX, Strappe P. Molecular control of nitric oxide synthesis through eNOS and caveolin-1 interaction regulates osteogenic differentiation of adipose-derived stem cells by modulation of Wnt/β-catenin signaling. Stem Cell Res Ther 2016; 7:182. [PMID: 27927230 PMCID: PMC5142348 DOI: 10.1186/s13287-016-0442-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 11/11/2016] [Accepted: 11/16/2016] [Indexed: 01/12/2023] Open
Abstract
Background Nitric oxide (NO) plays a role in a number of physiological processes including stem cell differentiation and osteogenesis. Endothelial nitric oxide synthase (eNOS), one of three NO-producing enzymes, is located in a close conformation with the caveolin-1 (CAV-1WT) membrane protein which is inhibitory to NO production. Modification of this interaction through mutation of the caveolin scaffold domain can increase NO release. In this study, we genetically modified equine adipose-derived stem cells (eASCs) with eNOS, CAV-1WT, and a CAV-1F92A (CAV-1WT mutant) and assessed NO-mediated osteogenic differentiation and the relationship with the Wnt signaling pathway. Methods NO production was enhanced by lentiviral vector co-delivery of eNOS and CAV-1F92A to eASCs, and osteogenesis and Wnt signaling was assessed by gene expression analysis and activity of a novel Runx2-GFP reporter. Cells were also exposed to a NO donor (NONOate) and the eNOS inhibitor, l-NAME. Results NO production as measured by nitrite was significantly increased in eNOS and CAV-1F92A transduced eASCs +(5.59 ± 0.22 μM) compared to eNOS alone (4.81 ± 0.59 μM) and un-transduced control cells (0.91 ± 0.23 μM) (p < 0.05). During osteogenic differentiation, higher NO correlated with increased calcium deposition, Runx2, and alkaline phosphatase (ALP) gene expression and the activity of a Runx2-eGFP reporter. Co-expression of eNOS and CAV-1WT transgenes resulted in lower NO production. Canonical Wnt signaling pathway-associated Wnt3a and Wnt8a gene expressions were increased in eNOS-CAV-1F92A cells undergoing osteogenesis whilst non-canonical Wnt5a was decreased and similar results were seen with NONOate treatment. Treatment of osteogenic cultures with 2 mM l-NAME resulted in reduced Runx2, ALP, and Wnt3a expressions, whilst Wnt5a expression was increased in eNOS-delivered cells. Co-transduction of eASCs with a Wnt pathway responsive lenti-TCF/LEF-dGFP reporter only showed activity in osteogenic cultures co-transduced with a doxycycline inducible eNOS. Lentiviral vector expression of canonical Wnt3a and non-canonical Wnt5a in eASCs was associated with induced and suppressed osteogenic differentiation, respectively, whilst treatment of eNOS-osteogenic cells with the Wnt inhibitor Dkk-1 significantly reduced expressions of Runx2 and ALP. Conclusions This study identifies NO as a regulator of canonical Wnt/β-catenin signaling to promote osteogenesis in eASCs which may contribute to novel bone regeneration strategies. Electronic supplementary material The online version of this article (doi:10.1186/s13287-016-0442-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nadeeka Bandara
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, 2650, Australia.,O'Brien Institute Department, St. Vincent's Institute of Medical Research, Fitzroy, VIC, 3065, Australia
| | - Saliya Gurusinghe
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, 2650, Australia.,School of Animal and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW, 2650, Australia
| | - Shiang Yong Lim
- O'Brien Institute Department, St. Vincent's Institute of Medical Research, Fitzroy, VIC, 3065, Australia.,Department of Surgery, St. Vincent's Hospital, University of Melbourne, Melbourne, VIC, 3002, Australia
| | - Haying Chen
- Department of Cardiology, Liaocheng People's Hospital and Affiliated Liaocheng People's Hospital of Shandong University, Liaocheng, Shandong, 252000, China
| | - Shuangfeng Chen
- Department of Cardiology, Liaocheng People's Hospital and Affiliated Liaocheng People's Hospital of Shandong University, Liaocheng, Shandong, 252000, China
| | - Dawei Wang
- Department of Cardiology, Liaocheng People's Hospital and Affiliated Liaocheng People's Hospital of Shandong University, Liaocheng, Shandong, 252000, China
| | - Bryan Hilbert
- School of Animal and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW, 2650, Australia
| | - Le-Xin Wang
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, 2650, Australia.,Department of Cardiology, Liaocheng People's Hospital and Affiliated Liaocheng People's Hospital of Shandong University, Liaocheng, Shandong, 252000, China
| | - Padraig Strappe
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, 2650, Australia.
| |
Collapse
|
43
|
Wood MB, Rios D, Williams IR. TNF-α augments RANKL-dependent intestinal M cell differentiation in enteroid cultures. Am J Physiol Cell Physiol 2016; 311:C498-507. [PMID: 27413168 PMCID: PMC5129760 DOI: 10.1152/ajpcell.00108.2016] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 07/12/2016] [Indexed: 01/13/2023]
Abstract
Microfold (M) cells are phagocytic intestinal epithelial cells in the follicle-associated epithelium of Peyer's patches that transport particulate antigens from the gut lumen into the subepithelial dome. Differentiation of M cells from epithelial stem cells in intestinal crypts requires the cytokine receptor activator of NF-κB ligand (RANKL) and the transcription factor Spi-B. We used three-dimensional enteroid cultures established with small intestinal crypts from mice as a model system to investigate signaling pathways involved in M cell differentiation and the influence of other cytokines on RANKL-induced M cell differentiation. Addition of RANKL to enteroids induced expression of multiple M cell-associated genes, including Spib, Ccl9 [chemokine (C-C motif) ligand 9], Tnfaip2 (TNF-α-induced protein 2), Anxa5 (annexin A5), and Marcksl1 (myristoylated alanine-rich protein kinase C substrate) in 1 day. The mature M cell marker glycoprotein 2 (Gp2) was strongly induced by 3 days and expressed by 11% of cells in enteroids. The noncanonical NF-κB pathway was required for RANKL-induced M cell differentiation in enteroids, as addition of RANKL to enteroids from mice with a null mutation in the mitogen-activated protein kinase kinase kinase 14 (Map3k14) gene encoding NF-κB-inducing kinase failed to induce M cell-associated genes. While the cytokine TNF-α alone had little, if any, effect on expression of M cell-associated genes, addition of TNF-α to RANKL consistently resulted in three- to sixfold higher levels of multiple M cell-associated genes than RANKL alone. One contributing mechanism is the rapid induction by TNF-α of Relb and Nfkb2 (NF-κB subunit 2), genes encoding the two subunits of the noncanonical NF-κB heterodimer. We conclude that endogenous activators of canonical NF-κB signaling present in the gut-associated lymphoid tissue microenvironment, including TNF-α, can play a supportive role in the RANKL-dependent differentiation of M cells in the follicle-associated epithelium.
Collapse
Affiliation(s)
- Megan B Wood
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Daniel Rios
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Ifor R Williams
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
44
|
Teresa Pinto A, Laranjeiro Pinto M, Patrícia Cardoso A, Monteiro C, Teixeira Pinto M, Filipe Maia A, Castro P, Figueira R, Monteiro A, Marques M, Mareel M, Dos Santos SG, Seruca R, Adolfo Barbosa M, Rocha S, José Oliveira M. Ionizing radiation modulates human macrophages towards a pro-inflammatory phenotype preserving their pro-invasive and pro-angiogenic capacities. Sci Rep 2016; 6:18765. [PMID: 26735768 PMCID: PMC4702523 DOI: 10.1038/srep18765] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 11/25/2015] [Indexed: 02/07/2023] Open
Abstract
In order to improve the efficacy of conventional radiotherapy, attention has been paid to immune cells, which not only modulate cancer cell response to therapy but are also highly recruited to tumours after irradiation. Particularly, the effect of ionizing radiation on macrophages, using therapeutically relevant doses, is not well understood. To evaluate how radiotherapy affects macrophage behaviour and macrophage-mediated cancer cell activity, human monocyte derived-macrophages were subjected, for a week, to cumulative ionizing radiation doses, as used during cancer treatment (2 Gy/fraction/day). Irradiated macrophages remained viable and metabolically active, despite DNA damage. NF-kappaB transcription activation and increased Bcl-xL expression evidenced the promotion of pro-survival activity. A significant increase of pro-inflammatory macrophage markers CD80, CD86 and HLA-DR, but not CCR7, TNF and IL1B was observed after 10 Gy cumulative doses, while anti-inflammatory markers CD163, MRC1, VCAN and IL-10 expression decreased, suggesting the modulation towards a more pro-inflammatory phenotype. Moreover, ionizing radiation induced macrophage morphological alterations and increased their phagocytic rate, without affecting matrix metalloproteases (MMP)2 and MMP9 activity. Importantly, irradiated macrophages promoted cancer cell-invasion and cancer cell-induced angiogenesis. Our work highlights macrophage ability to sustain cancer cell activities as a major concern that needs to be addressed to improve radiotherapy efficacy.
Collapse
Affiliation(s)
- Ana Teresa Pinto
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, 4200-135, Portugal.,INEB-Institute of Biomedical Engineering, University of Porto, Porto, 4200-465, Portugal.,FEUP-Faculty of Engineering, University of Porto, Porto, 4200-465, Portugal
| | - Marta Laranjeiro Pinto
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, 4200-135, Portugal.,INEB-Institute of Biomedical Engineering, University of Porto, Porto, 4200-465, Portugal.,ICBAS-Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, 4050-313, Portugal
| | - Ana Patrícia Cardoso
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, 4200-135, Portugal.,INEB-Institute of Biomedical Engineering, University of Porto, Porto, 4200-465, Portugal.,FEUP-Faculty of Engineering, University of Porto, Porto, 4200-465, Portugal
| | - Cátia Monteiro
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, 4200-135, Portugal.,INEB-Institute of Biomedical Engineering, University of Porto, Porto, 4200-465, Portugal
| | - Marta Teixeira Pinto
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, 4200-135, Portugal.,IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Porto, 4200-465, Portugal
| | - André Filipe Maia
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, 4200-135, Portugal.,IBMC-Institute for Molecular and Cell Biology, University of Porto, Porto, 4200-465, Portugal
| | - Patrícia Castro
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, 4200-135, Portugal.,IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Porto, 4200-465, Portugal
| | - Rita Figueira
- Radiotherapy Service, Centro Hospitalar S. João, EPE, Porto, 4200-319, Portugal
| | - Armanda Monteiro
- Radiotherapy Service, Centro Hospitalar S. João, EPE, Porto, 4200-319, Portugal
| | - Margarida Marques
- Radiotherapy Service, Centro Hospitalar S. João, EPE, Porto, 4200-319, Portugal
| | - Marc Mareel
- Department of Radiation Oncology and Experimental Cancer Research, Ghent University Hospital, Ghent, B-9000, Belgium
| | - Susana Gomes Dos Santos
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, 4200-135, Portugal.,INEB-Institute of Biomedical Engineering, University of Porto, Porto, 4200-465, Portugal.,ICBAS-Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, 4050-313, Portugal
| | - Raquel Seruca
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, 4200-135, Portugal.,IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Porto, 4200-465, Portugal.,Department of Pathology and Oncology, Faculty of Medicine, University of Porto, Porto, 4200-319, Portugal
| | - Mário Adolfo Barbosa
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, 4200-135, Portugal.,INEB-Institute of Biomedical Engineering, University of Porto, Porto, 4200-465, Portugal.,ICBAS-Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, 4050-313, Portugal
| | - Sónia Rocha
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Maria José Oliveira
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, 4200-135, Portugal.,INEB-Institute of Biomedical Engineering, University of Porto, Porto, 4200-465, Portugal.,Department of Pathology and Oncology, Faculty of Medicine, University of Porto, Porto, 4200-319, Portugal
| |
Collapse
|