1
|
Yu C, Wu H, Zhao D, Shi H. Echinocystic acid activates PPARγ to alleviate mannan-induced psoriasis and psoriatic arthritis in mice. Allergol Immunopathol (Madr) 2025; 53:52-58. [PMID: 40088022 DOI: 10.15586/aei.v53i2.1283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 01/30/2024] [Indexed: 03/17/2025]
Abstract
Previous studies have shown that echinocystic acid (EA) can reduce arthritis and skin damage, but the role of EA in psoriatic arthritis is unclear. This study aims to prove the role of EA in psoriatic arthritis, which was induced by intraperitoneal injection of mannan in C57BL/6J mice. The mice were divided into a control group, mannan group, mannan + EA (low-dose) group, and mannan + EA (high-dose) group. Joint tissue damage was scored, and pathological changes in joint tissue and ear skin damage were examined by HE staining. Pathway enrichment of EA drug targets was performed through the target enrichment website, and the mRNA and protein expression levels of pathway-related proteins in joint tissues and ears were verified using the PCR and western blot. The results show that injection of mannan into mice resulted in joint inflammatory infiltration and tissue damage, hyperkeratosis, and acanthosis of the ear skin, while these symptoms were alleviated after high-dose EA treatment. Pathway enrichment analysis showed that the EA drug treatment target is concentrated on the PPAR pathway. The mRNA and protein results showed that the mRNA and protein expression levels of peroxisome proliferator-activated receptor γ (PPARγ) in the joint tissues and ears of mice with psoriatic arthritis decreased, and the expression of PPARγ was activated after high-dose EA treatment. In conclusion, EA increases PPARγ expression and reduces joint and skin damage in mice with psoriatic arthritis.
Collapse
Affiliation(s)
- Chengwei Yu
- Department of Orthopedics, Wenzhou TCM Hospital of Zhejiang Chinese Medical University, Wenzhou, Zhejiang Province, China
| | - Huiming Wu
- Department of Orthopedics, Wenzhou TCM Hospital of Zhejiang Chinese Medical University, Wenzhou, Zhejiang Province, China
| | - Dongrui Zhao
- Department of Dermatology, Wenzhou TCM Hospital of Zhejiang Chinese Medical University, Wenzhou, Zhejiang Province, China
| | - Huajie Shi
- Department of Dermatology, Wenzhou TCM Hospital of Zhejiang Chinese Medical University, Wenzhou, Zhejiang Province, China;
| |
Collapse
|
2
|
Chen H, Zhou Y, Liu Y, Zhou W, Xu L, Shang D, Ni J, Song Z. Indoxyl sulfate exacerbates alveolar bone loss in chronic kidney disease through ferroptosis. Oral Dis 2025; 31:264-277. [PMID: 38934473 DOI: 10.1111/odi.15050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 06/04/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024]
Abstract
OBJECTIVES The purpose of this study was to determine whether indoxyl sulfate (IS) is involved in alveolar bone deterioration and to elucidate the mechanism underlying alveolar bone loss in chronic kidney disease (CKD) patients. MATERIALS AND METHODS Mice were divided into the control group, CP group (ligature-induced periodontitis), CKD group (5/6 nephrectomy), and CKD + CP group. The concentration of IS in the gingival crevicular fluid (GCF) was determined by HPLC. The bone microarchitecture was evaluated by micro-CT. MC3T3-E1 cells were stimulated with IS, and changes in mitochondrial morphology and ferroptosis-related factors were detected. RT-PCR, western blotting, alkaline phosphatase activity assays, and alizarin red S staining were utilized to assess how IS affects osteogenic differentiation. RESULTS Compared with that in the other groups, alveolar bone destruction in the CKD + CP group was more severe. IS accumulated in the GCF of mice with CKD. IS activated the aryl hydrocarbon receptor (AhR) in vitro, inhibited MC3T3-E1 cell osteogenic differentiation, caused changes in mitochondrial morphology, and activated the SLC7A11/GPX4 signaling pathway. An AhR inhibitor attenuated the aforementioned changes induced by IS. CONCLUSIONS IS activated the AhR/SLC7A11/GPX4 signaling pathway, inhibited osteogenesis in MC3T3-E1 cells, and participated in alveolar bone resorption in CKD model mice through ferroptosis.
Collapse
Affiliation(s)
- Huiwen Chen
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Yining Zhou
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Yingli Liu
- Department of Nephrology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Zhou
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lina Xu
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Dihua Shang
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Jing Ni
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Zhongchen Song
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| |
Collapse
|
3
|
Karimi SM, Bayat M, Rahimi R. Plant-derived natural medicines for the management of osteoporosis: A comprehensive review of clinical trials. J Tradit Complement Med 2024; 14:1-18. [PMID: 38223808 PMCID: PMC10785263 DOI: 10.1016/j.jtcme.2023.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 07/29/2023] [Accepted: 08/01/2023] [Indexed: 01/16/2024] Open
Abstract
Background Osteoporosis is a chronic and systemic skeletal disease that is defined by low bone mineral density (BMD) along with an increase in bone fragility and susceptibility to fracture. This study aimed to overview clinical evidence on the use of herbal medicine for management of osteoporosis. Methods Electronic databases including Pubmed, Medline, Cochrane library, and Scopus were searched until November 2022 for any clinical studies on the efficacy and/or safety of plant-derived medicines in the management of osteoporosis. Results The search yielded 57 results: 19 on single herbs, 16 on multi-component herbal preparations, and 22 on plant-derived secondary metabolites. Risk of fracture, bone alkaline phosphatase, BMD, and specific bone biomarkers are investigated outcomes in these studies. Medicinal plants including Acanthopanax senticosus, Actaea racemosa, Allium cepa, Asparagus racemosus, Camellia sinensis, Cissus quadrangularis, Cornus mas, Nigella sativa, Olea europaea, Opuntia ficus-indica, Pinus pinaster, Trifolium pretense and phytochemicals including isoflavones, ginsenoside, Epimedium prenyl flavonoids, tocotrienols are among plant-derived medicines clinically investigated on osteoporosis. It seems that multi-component herbal preparations were more effective than single-component ones; because of the synergistic effects of their constituents. The investigated herbal medicines demonstrated their promising results in osteoporosis via targeting different pathways in bone metabolism, including balancing osteoblasts and osteoclasts, anti-inflammatory, immunomodulatory, antioxidant, and estrogen-like functions. Conclusion It seems that plant-derived medicines have beneficial effects on bone and may manage osteoporosis by affecting different targets and pathways involved in osteoporosis; However, Future studies are needed to confirm the effectiveness and safety of these preparations.
Collapse
Affiliation(s)
- Seyedeh Mahnaz Karimi
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Bayat
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Roja Rahimi
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Geng D, Li Y, Zheng R, Wang R, Yang B, Zhang H, Zhang Y, Zhang F. Modulation of Kv7 Channel Currents by Echinocystic Acid. Mol Pharmacol 2023; 104:42-50. [PMID: 37280100 DOI: 10.1124/molpharm.122.000640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 05/13/2023] [Accepted: 05/24/2023] [Indexed: 06/08/2023] Open
Abstract
Modulation of KCNQ-encoded voltage-gated potassium Kv7/M channel function represents an attractive strategy to treat neuronal excitability disorders such as epilepsy, pain, and depression. The Kv7 channel group includes five subfamily members (Kv7.1-Kv7.5). Pentacyclic triterpenes display extensive pharmacological activities including antitumor, anti-inflammatory, and antidepression effects. In this study, we investigated the effects of pentacyclic triterpenes on Kv7 channels. Our results show that echinocystic acid, ursonic acid, oleanonic acid, demethylzeylasteral, corosolic acid, betulinaldehyde, acetylursolic acid, and α-boswellic acid gradually exert decreasing degrees of Kv7.2/Kv7.3 channel current inhibition. Echinocystic acid was the most potent inhibitor, with a half-maximal inhibitory concentration (IC50) of 2.5 µM. It significantly shifted the voltage-dependent activation curve in a positive direction and slowed the time constant of activation for Kv7.2/Kv7.3 channel currents. Furthermore, echinocystic acid nonselectively inhibited Kv7.1-Kv7.5 channels. Taken together, our findings indicate that echinocystic acid is a novel and potent inhibitor that could be used as a tool to further understand the pharmacological functions of neuronal Kv7 channels. SIGNIFICANCE STATEMENT: Pentacyclic triterpenes reportedly have multiple potential therapeutic uses such as anticancer, anti-inflammatory, antioxidant, and antidepression effects. In the present study, we show that echinocystic acid, ursonic acid, oleanonic acid, and demethylzeylasteral inhibit Kv7.2/Kv7.3 channels to varying degrees. Of these, echinocystic acid was the most potent Kv7.2/Kv7.3 current inhibitor and inhibited Kv7.1-Kv7.5 currents in a nonselective manner.
Collapse
Affiliation(s)
- DanDan Geng
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education (D.D.G., Y.L., R.Z., B.Y., F.Z.), Department of Biochemistry and Molecular Biology (D.D.G., Y.L., R.Z., B.Y., F.Z.), The Core Facilities and Centers (H.Z.), and School of Pharmacy (Y.Z.), Hebei Medical University, Shijiazhuang, China
| | - Yaning Li
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education (D.D.G., Y.L., R.Z., B.Y., F.Z.), Department of Biochemistry and Molecular Biology (D.D.G., Y.L., R.Z., B.Y., F.Z.), The Core Facilities and Centers (H.Z.), and School of Pharmacy (Y.Z.), Hebei Medical University, Shijiazhuang, China
| | - Rong Zheng
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education (D.D.G., Y.L., R.Z., B.Y., F.Z.), Department of Biochemistry and Molecular Biology (D.D.G., Y.L., R.Z., B.Y., F.Z.), The Core Facilities and Centers (H.Z.), and School of Pharmacy (Y.Z.), Hebei Medical University, Shijiazhuang, China
| | - Runmeng Wang
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education (D.D.G., Y.L., R.Z., B.Y., F.Z.), Department of Biochemistry and Molecular Biology (D.D.G., Y.L., R.Z., B.Y., F.Z.), The Core Facilities and Centers (H.Z.), and School of Pharmacy (Y.Z.), Hebei Medical University, Shijiazhuang, China
| | - Bo Yang
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education (D.D.G., Y.L., R.Z., B.Y., F.Z.), Department of Biochemistry and Molecular Biology (D.D.G., Y.L., R.Z., B.Y., F.Z.), The Core Facilities and Centers (H.Z.), and School of Pharmacy (Y.Z.), Hebei Medical University, Shijiazhuang, China
| | - Huaxing Zhang
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education (D.D.G., Y.L., R.Z., B.Y., F.Z.), Department of Biochemistry and Molecular Biology (D.D.G., Y.L., R.Z., B.Y., F.Z.), The Core Facilities and Centers (H.Z.), and School of Pharmacy (Y.Z.), Hebei Medical University, Shijiazhuang, China
| | - Yang Zhang
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education (D.D.G., Y.L., R.Z., B.Y., F.Z.), Department of Biochemistry and Molecular Biology (D.D.G., Y.L., R.Z., B.Y., F.Z.), The Core Facilities and Centers (H.Z.), and School of Pharmacy (Y.Z.), Hebei Medical University, Shijiazhuang, China
| | - Fan Zhang
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education (D.D.G., Y.L., R.Z., B.Y., F.Z.), Department of Biochemistry and Molecular Biology (D.D.G., Y.L., R.Z., B.Y., F.Z.), The Core Facilities and Centers (H.Z.), and School of Pharmacy (Y.Z.), Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
5
|
Chatterjee A, Walters R, Shafi Z, Ahmed OS, Sebek M, Gysi D, Yu R, Eliassi-Rad T, Barabási AL, Menichetti G. Improving the generalizability of protein-ligand binding predictions with AI-Bind. Nat Commun 2023; 14:1989. [PMID: 37031187 PMCID: PMC10082765 DOI: 10.1038/s41467-023-37572-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 03/23/2023] [Indexed: 04/10/2023] Open
Abstract
Identifying novel drug-target interactions is a critical and rate-limiting step in drug discovery. While deep learning models have been proposed to accelerate the identification process, here we show that state-of-the-art models fail to generalize to novel (i.e., never-before-seen) structures. We unveil the mechanisms responsible for this shortcoming, demonstrating how models rely on shortcuts that leverage the topology of the protein-ligand bipartite network, rather than learning the node features. Here we introduce AI-Bind, a pipeline that combines network-based sampling strategies with unsupervised pre-training to improve binding predictions for novel proteins and ligands. We validate AI-Bind predictions via docking simulations and comparison with recent experimental evidence, and step up the process of interpreting machine learning prediction of protein-ligand binding by identifying potential active binding sites on the amino acid sequence. AI-Bind is a high-throughput approach to identify drug-target combinations with the potential of becoming a powerful tool in drug discovery.
Collapse
Affiliation(s)
- Ayan Chatterjee
- Network Science Institute, Northeastern University, Boston, MA, USA
| | - Robin Walters
- Khoury College of Computer Sciences, Northeastern University, Boston, MA, USA
| | - Zohair Shafi
- Khoury College of Computer Sciences, Northeastern University, Boston, MA, USA
| | - Omair Shafi Ahmed
- Khoury College of Computer Sciences, Northeastern University, Boston, MA, USA
| | - Michael Sebek
- Network Science Institute, Northeastern University, Boston, MA, USA
- Department of Physics, Northeastern University, Boston, MA, USA
| | - Deisy Gysi
- Network Science Institute, Northeastern University, Boston, MA, USA
- Department of Physics, Northeastern University, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Rose Yu
- Department of Computer Science and Engineering, University of California, San Diego, CA, USA
| | - Tina Eliassi-Rad
- Network Science Institute, Northeastern University, Boston, MA, USA
- Khoury College of Computer Sciences, Northeastern University, Boston, MA, USA
- Santa Fe Institute, Santa Fe, NM, USA
- The Institute for Experiential AI, Northeastern University, Boston, MA, USA
| | - Albert-László Barabási
- Network Science Institute, Northeastern University, Boston, MA, USA
- Department of Physics, Northeastern University, Boston, MA, USA
- Department of Network and Data Science, Central European University, Budapest, Hungary
| | - Giulia Menichetti
- Network Science Institute, Northeastern University, Boston, MA, USA.
- Department of Physics, Northeastern University, Boston, MA, USA.
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
6
|
Oh KK. Network pharmacology-based analysis of signaling pathways of an anti-osteoporotic triterpenoid from Acyranthes bidentata Blume root. 3 Biotech 2022; 12:312. [PMID: 36276446 PMCID: PMC9537396 DOI: 10.1007/s13205-022-03362-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/12/2022] [Indexed: 11/01/2022] Open
Abstract
In Korea folk remedies, Acyranthes bidentata Blume is a functional food plant to treat bone diseases; especially, its roots have been used to alleviate osteoporosis (OP), but its key chemical compound(s) and mechanism of action against osteoporosis have not reported yet. This study suggests that Acyranthes bidentata Blume root (ABBR) has promising compound(s) against OP. We utilized network pharmacology to evaluate the therapeutic value. The chemical compounds from Acyranthes bidentata Blume root (ABBR) were identified by gas chromatography-mass spectrum (GC-MS); their physicochemical properties have been evaluated by SwissADME. Next, the target(s) related to a triterpenoid or OP-related targets were investigated by public databases. The signaling pathways from final targets were visualized, constructed, and analyzed by RPackage. Finally, we performed a molecular docking (MD) to explore key target(s) and compound(s) by employing AutoDockVina tools; the residues of amino acids interacted with ligands were identified by LigPlot + v.22. A total of 24 chemicals were accepted by the Lipinski's rules. We found a sole triterpenoid from ABBR via GC-MS, suggesting that might be a potent ligand to alleviate OP. Thereby, the 42 targets were associated with the triterpenoid; the 19 targets among them were connected to OP-targets (1426). The final 19 targets were related directly to 8 signaling pathways on STRING database. On Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment, and a key signaling pathway (PPAR signaling pathway), four key targets (PPARA, PPARD, FABP3, and FABP4) and a key compound (Methyl 3β-hydroxyolean-18-en-28-oate) were selected via MD. Collectively, the triterpenoid from ABBR might have potent anti-osteoporotic efficacy by activating PPARA, PPARD, FABP3, and FABP4 on PPAR signaling pathway. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03362-5.
Collapse
Affiliation(s)
- Ki Kwang Oh
- Department of Bio-Health Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, 24341 South Korea
| |
Collapse
|
7
|
Okagu IU, Ezeorba TPC, Aguchem RN, Ohanenye IC, Aham EC, Okafor SN, Bollati C, Lammi C. A Review on the Molecular Mechanisms of Action of Natural Products in Preventing Bone Diseases. Int J Mol Sci 2022; 23:ijms23158468. [PMID: 35955603 PMCID: PMC9368769 DOI: 10.3390/ijms23158468] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/23/2022] [Accepted: 07/25/2022] [Indexed: 12/10/2022] Open
Abstract
The drugs used for treating bone diseases (BDs), at present, elicit hazardous side effects that include certain types of cancers and strokes, hence the ongoing quest for the discovery of alternatives with little or no side effects. Natural products (NPs), mainly of plant origin, have shown compelling promise in the treatments of BDs, with little or no side effects. However, the paucity in knowledge of the mechanisms behind their activities on bone remodeling has remained a hindrance to NPs’ adoption. This review discusses the pathological development of some BDs, the NP-targeted components, and the actions exerted on bone remodeling signaling pathways (e.g., Receptor Activator of Nuclear Factor κ B-ligand (RANKL)/monocyte/macrophage colony-stimulating factor (M-CSF)/osteoprotegerin (OPG), mitogen-activated protein kinase (MAPK)s/c-Jun N-terminal kinase (JNK)/nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), Kelch-like ECH-associated protein 1 (Keap-1)/nuclear factor erythroid 2–related factor 2 (Nrf2)/Heme Oxygenase-1 (HO-1), Bone Morphogenetic Protein 2 (BMP2)-Wnt/β-catenin, PhosphatidylInositol 3-Kinase (PI3K)/protein kinase B (Akt)/Glycogen Synthase Kinase 3 Beta (GSK3β), and other signaling pathways). Although majority of the studies on the osteoprotective properties of NPs against BDs were conducted ex vivo and mostly on animals, the use of NPs for treating human BDs and the prospects for future development remain promising.
Collapse
Affiliation(s)
- Innocent U. Okagu
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka 410001, Nigeria; (I.U.O.); (T.P.C.E.); (R.N.A.); (E.C.A.)
| | - Timothy P. C. Ezeorba
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka 410001, Nigeria; (I.U.O.); (T.P.C.E.); (R.N.A.); (E.C.A.)
| | - Rita N. Aguchem
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka 410001, Nigeria; (I.U.O.); (T.P.C.E.); (R.N.A.); (E.C.A.)
| | - Ikenna C. Ohanenye
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1H 8M5, Canada;
| | - Emmanuel C. Aham
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka 410001, Nigeria; (I.U.O.); (T.P.C.E.); (R.N.A.); (E.C.A.)
- Natural Science Unit, School of General Studies, University of Nigeria, Nsukka 410001, Nigeria
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Sunday N. Okafor
- Department of Pharmaceutical and Medicinal Chemistry, University of Nigeria, Nsukka 410001, Nigeria;
| | - Carlotta Bollati
- Department of Pharmaceutical Sciences, University of Milan, via Mangiagalli 25, 20133 Milano, Italy;
| | - Carmen Lammi
- Department of Pharmaceutical Sciences, University of Milan, via Mangiagalli 25, 20133 Milano, Italy;
- Correspondence: ; Tel.: +39-02-5031-9372
| |
Collapse
|
8
|
Kang YM, Kim HM, Lee H, Lee DS, An HJ. Anti-inflammatory effects of Eclipta prostrata Linné on house dust mite-induced atopic dermatitis in vivo and in vitro. JOURNAL OF ETHNOPHARMACOLOGY 2022; 292:115233. [PMID: 35346812 DOI: 10.1016/j.jep.2022.115233] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Atopic dermatitis (AD) is a kind of inflammation on the skin following with swollen, itchy, dryness and cracked skin. Though the exact cause of AD is unknown, there are evidence that people with AD have a compromised skin barrier along with inflammation. Eclipta prostrata Linné is a traditional herbal medicinal plant, has been used for the diabetes, obesity, jaundice, and inflammation. We supposed E. prostrata L. has an anti-inflammatory effect on the skin. AIM OF THE STUDY We aimed to assess the effect of E. prostrata L. EtOH extract (EP) and elucidate the associated molecular mechanisms. MATERIALS AND METHODS The effect of EP and the molecular mechanisms were eluciated in house dust mite (HDM)-induced AD mice model and TNF-α/IFN-γ-stimulated HaCaT keratinocytes by histological analysis, enzyme-linked immunosorbent assay, quantitative real time polymerase chain reaction, and Western blot. RESULTS The results revealed that EP improved the progression of AD symptoms, decreasing epidermis/dermis thickness, infiltrated immune cells, and restored the skin barrier dysfunction and imbalanced immune response. EP suppressed the expressions of T helper (Th)1, Th2, Th17 cytokines, phosphorylation of extracellular signal-regulated kinase/signal transducer and activator of transcription 1 in skin of HDM-induced AD mice as well as inhibition the translocation of nuclear factor-κB in HaCaT keratinocytes. CONCLUSIONS Collectively, EP improved the allergic inflammation of the skin through recovery the skin barrier, and regulation the immune balance. These results suggest EP may have therapeutic potential as an anti-atopic agent.
Collapse
Affiliation(s)
- Yun-Mi Kang
- Department of Pharmacology, College of Korean Medicine, Sangji University, Wonju, Gangwon-do, 26339, Republic of Korea.
| | - Hye-Min Kim
- Department of Pharmacology, College of Korean Medicine, Sangji University, Wonju, Gangwon-do, 26339, Republic of Korea.
| | - Hwan Lee
- Department of Pharmacy, College of Pharmacy, Chosun University, Dong-gu, Gwangju, 61452, Republic of Korea.
| | - Dong-Sung Lee
- Department of Pharmacy, College of Pharmacy, Chosun University, Dong-gu, Gwangju, 61452, Republic of Korea.
| | - Hyo-Jin An
- Department of Pharmacology, College of Korean Medicine, Sangji University, Wonju, Gangwon-do, 26339, Republic of Korea.
| |
Collapse
|
9
|
Timalsina D, Devkota HP. Eclipta prostrata (L.) L. (Asteraceae): Ethnomedicinal Uses, Chemical Constituents, and Biological Activities. Biomolecules 2021; 11:1738. [PMID: 34827736 PMCID: PMC8615741 DOI: 10.3390/biom11111738] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/05/2021] [Accepted: 11/09/2021] [Indexed: 11/16/2022] Open
Abstract
Eclipta prostrata (L.) L. (Syn.: Eclipta alba (L.) Hassak, Family: Asteraceae) is an important medicinal plant in the tropical and subtropical regions. It is widely used in treating various diseases of skin, liver and stomach in India, Nepal, Bangladesh, and other countries. The main aim of this review was to collect and analyze the available information on traditional uses, phytoconstituents, and biological activities of E. prostrata. The scientific information was collected from the online bibliographic databases such as Scopus, MEDLINE/PubMed, Google Scholar, SciFinder, etc. and books and proceedings. The active phytochemicals were coumestan derivatives, phenolic acid derivatives, flavonoids, triterpenoid and steroid saponins, substituted thiophenes, etc. Various extracts and isolated compounds of E. prostrata showed a wide range of biological activities such as antimicrobial, anticancer, hepatoprotective, neuroprotective and hair growth promoting activities. Relatively a few studies have been performed to reveal the exact phytoconstituents responsible for their corresponding pharmacological activities. Future studies should focus on detailed mechanism based studies using animal models and clinical studies.
Collapse
Affiliation(s)
- Deepak Timalsina
- Central Department of Chemistry, Tribhuvan University, Kathmandu 44618, Nepal;
| | - Hari Prasad Devkota
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-Ku, Kumamoto 862-0973, Japan
- Headquarters for Admissions and Education, Kumamoto University, 2-40-1 Kurokami, Chuo-Ku, Kumamoto 860-8555, Japan
| |
Collapse
|
10
|
Kang EY, Kim HK, Jung JY, Kim JH, Woo TK, Choi JI, Kim JH, Ahn C, Lee HG, Go GW. Combined Extract of Leonurus japonicus Houtt, Eclipta prostrata L., and Pueraria lobata Ohwi Improved Hot Flashes and Depression in an Ovariectomized Rat Model of Menopause. Foods 2021; 10:foods10010180. [PMID: 33477405 PMCID: PMC7829883 DOI: 10.3390/foods10010180] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/13/2021] [Accepted: 01/13/2021] [Indexed: 12/14/2022] Open
Abstract
Menopause leads to ovarian hormone loss, which causes symptoms such as weight gain, hot flashes, and depression. Exploring nutraceuticals is important for treating menopausal symptoms that extensively impact women's quality of life. We hypothesized that a combination of Leonurus japonicus Houtt, Eclipta prostrata L., and Pueraria lobata Ohwi (LEPE) would alleviate menopausal symptoms in an ovariectomized menopausal rat model. Bilateral ovariectomy was performed and animals were assigned to five groups: (1) Sham, (2) Vehicle, (-) Control, (3) LEPE (100 mg/kg bw), (4) LEPE (200 mg/kg bw), and (5) Estradiol (3 μg/kg bw). LEPE was orally administered daily for 12 weeks. LEPE supplementation did not affect growth performance (body weight and feed intake) or body composition (lean mass and fat in tissue). LEPE did not cause deviations in aspartate aminotransferase, alanine aminotransferase, estradiol, and follicle-stimulating hormone levels, indicating no hepatotoxicity or endocrine disturbance. LEPE decreased type I collagen (CTX-1) but did not affect bone mineral density or osteocalcin. LEPE decreased tail temperature and increased rectal temperature, improving menopause-related vasomotor symptoms. Furthermore, LEPE ameliorated depression-related behavior, including in forced swimming and tail suspension tests. Thus, LEPE may improve menopausal symptoms by enhancing vasomotor symptoms and depression in an ovariectomized rat menopause model.
Collapse
Affiliation(s)
- Eun Young Kang
- Department of Food and Nutrition, Hanyang University, Seoul 04763, Korea; (E.Y.K.); (H.K.K.); (J.Y.J.); (J.H.K.); (T.K.W.)
| | - Hyun Kyung Kim
- Department of Food and Nutrition, Hanyang University, Seoul 04763, Korea; (E.Y.K.); (H.K.K.); (J.Y.J.); (J.H.K.); (T.K.W.)
| | - Ji Yeon Jung
- Department of Food and Nutrition, Hanyang University, Seoul 04763, Korea; (E.Y.K.); (H.K.K.); (J.Y.J.); (J.H.K.); (T.K.W.)
| | - Ji Hyun Kim
- Department of Food and Nutrition, Hanyang University, Seoul 04763, Korea; (E.Y.K.); (H.K.K.); (J.Y.J.); (J.H.K.); (T.K.W.)
| | - Tan Kyung Woo
- Department of Food and Nutrition, Hanyang University, Seoul 04763, Korea; (E.Y.K.); (H.K.K.); (J.Y.J.); (J.H.K.); (T.K.W.)
| | - Jeong In Choi
- Research and Development Center, Nong Shim Co., Ltd., Seoul 07057, Korea; (J.I.C.); (J.H.K.); (C.A.)
| | - Jong Hoon Kim
- Research and Development Center, Nong Shim Co., Ltd., Seoul 07057, Korea; (J.I.C.); (J.H.K.); (C.A.)
| | - Changwon Ahn
- Research and Development Center, Nong Shim Co., Ltd., Seoul 07057, Korea; (J.I.C.); (J.H.K.); (C.A.)
| | - Hyeon Gyu Lee
- Korean Living Science Research Center, Hanyang University, Seoul 04763, Korea
- Correspondence: (H.G.L.); (G.-W.G.); Tel.: +82-2-2220-1201 (H.G.L.); +82-2-2220-1206 (G.-W.G.)
| | - Gwang-Woong Go
- Department of Food and Nutrition, Hanyang University, Seoul 04763, Korea; (E.Y.K.); (H.K.K.); (J.Y.J.); (J.H.K.); (T.K.W.)
- Correspondence: (H.G.L.); (G.-W.G.); Tel.: +82-2-2220-1201 (H.G.L.); +82-2-2220-1206 (G.-W.G.)
| |
Collapse
|
11
|
Al-Dhubiab BE, Patel SS, Morsy MA, Duvva H, Nair AB, Deb PK, Shah J. The Beneficial Effect of Boswellic Acid on Bone Metabolism and Possible Mechanisms of Action in Experimental Osteoporosis. Nutrients 2020; 12:nu12103186. [PMID: 33081068 PMCID: PMC7603128 DOI: 10.3390/nu12103186] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/04/2020] [Accepted: 10/13/2020] [Indexed: 02/06/2023] Open
Abstract
Estrogen is instrumental in the pathological process of osteoporosis because a deficiency of this hormone increases the release of bone-resorbing cytokines. Acetyl-11-keto-β-boswellic acid (AKBA), a constituent from Boswellia serrata, has an anti-inflammatory effect by inhibiting tumor necrosis factor-α (TNF-α) expression, which leads to a decline in receptor activator of nuclear factor-kappa B (NF-κB) ligand, and consequently, a reduction in osteoclast activity. Hence, AKBA may be beneficial against bone loss during osteoporosis. Therefore, the current study intended to evaluate the beneficial effects of AKBA in ovariectomy-induced osteoporosis and to investigate its mechanism of action. Sham-operation or ovariectomy female Sprague Dawley rats were used for evaluating the antiosteoporotic effect of AKBA in this study. AKBA (35 mg/kg, p.o.) and estradiol (0.05 mg/kg, i.m.) were administered for 42 days. At the end of the experiment, body and uterus weights, serum and urine calcium and phosphorus, serum alkaline phosphatase, and urinary creatinine levels, besides serum levels of NF-κB and TNF-α were determined. Weight, length, thickness, hardness, calcium content, as well as the bone mineral density of femur bone and lumbar vertebra were measured. A histopathological examination was also carried out. AKBA ameliorated all tested parameters and restored a normal histological structure. Thus, AKBA showed good antiosteoporotic activity, which may be mediated through its suppression of the NF-κB-induced TNF-α signaling pathway.
Collapse
Affiliation(s)
- Bandar E. Al-Dhubiab
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (M.A.M.); (A.B.N.)
- Correspondence: ; Tel.: +966-505-845-758
| | - Snehal S. Patel
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujarat, India; (S.S.P.); (H.D.)
| | - Mohamed A. Morsy
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (M.A.M.); (A.B.N.)
- Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia 61511, Egypt
| | - Harika Duvva
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujarat, India; (S.S.P.); (H.D.)
| | - Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (M.A.M.); (A.B.N.)
| | - Pran Kishore Deb
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Philadelphia University, Amman 19392, Jordan;
| | - Jigar Shah
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujarat, India;
| |
Collapse
|
12
|
Ma Y, Zeng R, Hu QQ, Yan HX, Yang LX, Dong Y, Qu Y. Preventive effects of Polygonum orientale L. on ovariectomy-induced osteoporosis in rats. Climacteric 2020; 23:279-287. [DOI: 10.1080/13697137.2020.1717462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Y. Ma
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - R. Zeng
- College of Pharmacy, Southwest Minzu University, Chengdu, China
| | - Q.-Q. Hu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - H.-X. Yan
- College of Pharmacy, Southwest Minzu University, Chengdu, China
| | - L.-X. Yang
- College of Pharmacy, Southwest Minzu University, Chengdu, China
| | - Y. Dong
- Department of Respiration, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Y. Qu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- National Center for Miao Medicine Engineering and Technology, Guizhou Yibai Pharmaceutical Co., Ltd, Guizhou, China
| |
Collapse
|
13
|
Mohamad NV, Ima-Nirwana S, Chin KY. Are Oxidative Stress and Inflammation Mediators of Bone Loss Due to Estrogen Deficiency? A Review of Current Evidence. Endocr Metab Immune Disord Drug Targets 2020; 20:1478-1487. [PMID: 32496996 PMCID: PMC8383467 DOI: 10.2174/1871530320666200604160614] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/15/2020] [Accepted: 03/30/2020] [Indexed: 12/16/2022]
Abstract
Osteoporosis is one of the major health issues associated with menopause-related estrogen deficiency. Various reports suggest that the hormonal changes related to menopausal transition may lead to the derangement of redox homeostasis and ultimately oxidative stress. Estrogen deficiency and oxidative stress may enhance the expression of genes involved in inflammation. All these factors may contribute, in synergy, to the development of postmenopausal osteoporosis. Previous studies suggest that estrogen may act as an antioxidant to protect the bone against oxidative stress, and as an antiinflammatory agent in suppressing pro-inflammatory and pro-osteoclastic cytokines. Thus, the focus of the current review is to examine the relationship between estrogen deficiency, oxidative stress and inflammation, and the impacts of these phenomena on skeletal health in postmenopausal women.
Collapse
Affiliation(s)
- Nur-Vaizura Mohamad
- Department of Pharmacology, Faculty of Medicine, The National University of Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Soelaiman Ima-Nirwana
- Department of Pharmacology, Faculty of Medicine, The National University of Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, The National University of Malaysia Medical Centre, Kuala Lumpur, Malaysia
| |
Collapse
|
14
|
Feng L, Zhai YY, Xu J, Yao WF, Cao YD, Cheng FF, Bao BH, Zhang L. A review on traditional uses, phytochemistry and pharmacology of Eclipta prostrata (L.) L. JOURNAL OF ETHNOPHARMACOLOGY 2019; 245:112109. [PMID: 31395303 DOI: 10.1016/j.jep.2019.112109] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 05/28/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Eclipta prostrata, a traditional herbal medicine, has long been used in Asia and South America for the therapy of hemorrhagic diseases (e.g. hemoptysis, hematemesis, hematuria, epistaxis and uterine bleeding), skin diseases, respiratory disorders, coronary heart disease, hair loss, vitiligo, snake bite and those caused by the deficiency of liver and kidney. AIM OF THE REVIEW In this review, we highlight relatively comprehensive and up-to-date information of E. prostrata on traditional uses, phytochemistry, pharmacology and toxicity, along with featuring the gaps in current knowledge, aiming to provide references for future research and possible opportunities for well applications of this medicinal plant. MATERIALS AND METHODS Information on E. prostrata was gathered from scientific databases (Google Scholar, Web of Science, Scifinder, Baidu Scholar, PubMed and CNKI). Information was also obtained from local books, Ph.D. theses and M.Sc. dissertations and Chinese Pharmacopoeia. The plant taxonomy was validated by the database "The Plant List". RESULTS Various phytochemical classes has been identified and isolated from the plant covering triterpenes, flavonoids, thiopenes, coumestans, steroids and others. Among these, coumestans are reported as the most common ingredients. The isolated crude extracts and individual compounds have been reported to exhibit promising pharmacological properties, such as hepatoprotective, osteoprotective, cytotoxic, hypoglycaemic, anti-inflammatory, anti-microbial, hypolipidemic, promoting hair growth, rejuvenative and neuroprotective effects. CONCLUSIONS Until now, significant progress has been witnessed in phytochemistry and pharmacology of E. prostrata. Thus, some traditional uses has been well supported and clarified by modern pharmacological studies. Moreover, E. prostrata also showed therapeutic potential in some refractory diseases such as cancer, dementia and diabetes. But, present findings are still insufficient that cannot satisfactorily explain some mechanisms of action. More well-designed studies in vitro especially in vivo are required to establish links between the traditional uses and bioactivities, discover new skeletons and activity molecules, as well as ensure safety before clinical use.
Collapse
Affiliation(s)
- Li Feng
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Yuan-Yuan Zhai
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Jia Xu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Wei-Feng Yao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Yu-Dan Cao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Fang-Fang Cheng
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Bei-Hua Bao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Li Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
15
|
Zhao X, Ai J, Mao H, Gao X. Effects of Eclipta prostrata on gut microbiota of SAMP6 mice with osteoporosis. J Med Microbiol 2019; 68:402-416. [DOI: 10.1099/jmm.0.000936] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- Xin Zhao
- 1 Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Beihua South Road, Jing Hai District, Tianjin 301617, PR China
| | - Juqing Ai
- 1 Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Beihua South Road, Jing Hai District, Tianjin 301617, PR China
| | - Haoping Mao
- 1 Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Beihua South Road, Jing Hai District, Tianjin 301617, PR China
| | - Xiumei Gao
- 1 Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Beihua South Road, Jing Hai District, Tianjin 301617, PR China
| |
Collapse
|
16
|
Li N, Shi S, Yang F, Wang H, Su J, Huang F, Wu H, Wu X, Wang S. A polysaccharide from Eclipta prostrata alleviates experimental autoimmune encephalomyelitis through inhibiting Th17 cells. Carbohydr Polym 2018; 201:608-614. [PMID: 30241860 DOI: 10.1016/j.carbpol.2018.08.113] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/24/2018] [Accepted: 08/26/2018] [Indexed: 10/28/2022]
Abstract
Eclipta prostrata has long been used as a medicinal herb in China. EAP20-1, a homogeneous polysaccharide with anti-complementary activity had been obtained from E. prostrate by using anion-exchange and size-exclusion chromatography. In this study, we found that EAP20-1 could inhibit in vitro lymphocyte proliferation stimulated by concanavalin-A or anti-CD3/anti-CD28 antibodies. Furthermore, in experimental autoimmune encephalomyelitis (EAE) mice, EAP20-1 treatment relieved the clinical symptoms, accompanied by reduced neuroinflammation and demyelination in spinal cords. Mechanistically, EAP20-1 reduced the mRNA expression of interleukin (IL)-17, IL-22, and RAR-related orphan receptor gamma t (RORγt) in the spleen; inhibited auto-reactive T cell proliferation and decreased the percentage of Th17 cells in response to myelin oligodendrocyte glycoprotein (MOG35-55) ex vivo. Moreover, EAP20-1 directly inhibited naïve CD4 + T cells differentiate into Th17 cells in vitro. These results indicating EAP20-1 could benefit EAE through inhibiting Th17 cell differentiation and suggesting a therapeutic potential of EAP20-1 in MS.
Collapse
MESH Headings
- Animals
- Cell Differentiation/drug effects
- Cell Differentiation/immunology
- Cell Proliferation/drug effects
- Eclipta/chemistry
- Encephalomyelitis, Autoimmune, Experimental/chemically induced
- Encephalomyelitis, Autoimmune, Experimental/drug therapy
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Female
- Interleukin-17/immunology
- Interleukins/immunology
- Mice
- Mice, Inbred BALB C
- Nuclear Receptor Subfamily 1, Group F, Member 3/immunology
- Polysaccharides/chemistry
- Polysaccharides/pharmacology
- Th17 Cells/immunology
- Th17 Cells/pathology
- Interleukin-22
Collapse
Affiliation(s)
- Ning Li
- The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Shanghai Key Laboratory of Complex Prescriptions, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Songshan Shi
- The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Shanghai Key Laboratory of Complex Prescriptions, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Feifei Yang
- The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Shanghai Key Laboratory of Complex Prescriptions, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Hongwei Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Shanghai Key Laboratory of Complex Prescriptions, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Juan Su
- The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Shanghai Key Laboratory of Complex Prescriptions, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Fei Huang
- The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Shanghai Key Laboratory of Complex Prescriptions, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Hui Wu
- The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Shanghai Key Laboratory of Complex Prescriptions, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Xiaojun Wu
- The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Shanghai Key Laboratory of Complex Prescriptions, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China.
| | - Shunchun Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Shanghai Key Laboratory of Complex Prescriptions, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China.
| |
Collapse
|
17
|
The Antiosteoporosis Effects of Zhuanggu Guanjie Pill In Vitro and In Vivo. BIOMED RESEARCH INTERNATIONAL 2018; 2018:9075318. [PMID: 30345311 PMCID: PMC6174756 DOI: 10.1155/2018/9075318] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 07/16/2018] [Accepted: 08/28/2018] [Indexed: 01/03/2023]
Abstract
We investigated the beneficial effects and underlying mechanisms of Zhuanggu Guanjie (ZGGJ) pill in osteoporosis in vitro and in vivo. Bone marrow macrophages from 4–6-week-old mice were cultured in the presence of macrophage colony-stimulating factor (15 ng/mL) and receptor activator of nuclear factor-κB ligand (30 ng/mL). Osteoclast differentiation was determined by quantification of tartrate-resistant acid phosphatase activity. Gelatin zymography was used to detect the activity of matrix metalloproteinases in osteoclasts. Ovariectomized rats were administered orally with estradiol valerate or ZGGJ for 8 weeks. Blood was collected to measure serum indices. Tibiae were harvested to carry out bone microcomputed tomography scanning, histomorphological analysis, and bone strength determination. ZGGJ inhibited tartrate-resistant acid phosphatase activity, matrix metalloproteinase 9 expression, and bone resorption in vitro. At doses of 0.55, 1.1, and 2.2 g/kg, ZGGJ exerted significant osteoprotective effects including inhibition of bone turnover markers and improved tibia bone strength in ovariectomized rats. Microcomputed tomographic analysis showed that ZGGJ improved the trabecular architecture with increased connectivity density and trabecular thickness and decreased trabecular spacing. These results revealed that ZGGJ prevents bone loss induced by ovariectomy in rats and that inhibition of bone resorption is involved in the bone-protective effects of ZGGJ.
Collapse
|
18
|
Du G, Fu L, Jia J, Pang X, Yu H, Zhang Y, Fan G, Gao X, Han L. Validated UPLC-MS/MS method for quantification of seven compounds in rat plasma and tissues: Application to pharmacokinetic and tissue distribution studies in rats after oral administration of extract of Eclipta prostrata L. Biomed Chromatogr 2018; 32:e4191. [PMID: 29349861 DOI: 10.1002/bmc.4191] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 12/12/2017] [Accepted: 01/09/2018] [Indexed: 12/17/2022]
Abstract
A rapid, sensitive and specific ultra-high-performance liquid chromatography coupled with tandem mass spectrometry (UPLC-MS/MS) method was developed to investigate the pharmacokinetics and tissue distribution of Eclipta prostrata extract. Rats were orally administrated the 70% ethanol extract of E. prostrata, and their plasma as well as various organs were collected. The concentrations of seven main compounds, ecliptasaponin IV, ecliptasaponin A, apigenin, 3'-hydroxybiochanin A, luteolin, luteolin-7-O-glucoside and wedelolactone, were quantified by UPLC-MS/MS through multiple reactions monitoring method. The precisions (RSD) of the analytes were all <15.00%. The extraction recoveries ranged from 74.65 to 107.45% with RSD ≤ 15.36%. The matrix effects ranged from 78.00 to 118.06% with RSD ≤ 15.04%. To conclude, the present pharmacokinetic and tissue distribution studies provided useful information for the clinical usage of Eclipta prostrata L.
Collapse
Affiliation(s)
- Guangyan Du
- Tianjin State Key Laboratory of Modern Chinese Medicine, Nankai District, Tianjin, People's Republic of China
| | - Lingling Fu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Nankai District, Tianjin, People's Republic of China
| | - Jun Jia
- Department of Surgery of Foot and Ankle, Tianjin Hospital, Hexi District, Tianjin, People's Republic of China
| | - Xu Pang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Nankai District, Tianjin, People's Republic of China
| | - Haiyang Yu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Nankai District, Tianjin, People's Republic of China
| | - Youcai Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, Nankai District, Tianjin, People's Republic of China
| | - Guanwei Fan
- Tianjin State Key Laboratory of Modern Chinese Medicine, Nankai District, Tianjin, People's Republic of China.,First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Nankai District, Tianjin, People's Republic of China
| | - Xiumei Gao
- Tianjin State Key Laboratory of Modern Chinese Medicine, Nankai District, Tianjin, People's Republic of China
| | - Lifeng Han
- Tianjin State Key Laboratory of Modern Chinese Medicine, Nankai District, Tianjin, People's Republic of China
| |
Collapse
|
19
|
New insights into the tonifying kidney-yin herbs and formulas for the treatment of osteoporosis. Arch Osteoporos 2017; 12:14. [PMID: 28127706 DOI: 10.1007/s11657-016-0301-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 12/11/2016] [Indexed: 02/03/2023]
Abstract
Osteoporosis is characterized by an increasing osseous fragility and fracture resulting from the low mass and deteriorated microarchitecture in the bone tissue. The hormone replacement therapy and alendronate were frequently used to treat osteoporosis as the primary therapeutic strategy, but their adverse effects have severely limited their extensive clinical application, therefore, it is urgent to develop alternative or complementary therapeutic agents for anti-osteoporosis. Interestingly, with more people focusing on the complementary and alternative medicine, traditional Chinese herbs and formulas are being gradually recognized as safe and effective agents in the treatment of osteoporosis. In particular, a notable trend is that increasing studies are making efforts to clarify the anti-osteoporotic effects and mechanism of the tonifying kidney-yin herbs and formulas, a category of agents identified as effective therapy. Therefore, the purpose of this study is to comprehensively review the tonifying kidney-yin herbs and formulas that have been reported in the treatment of osteoporosis as well as how the agents play their roles in detail. This current study not only will advance our understanding of the actions of tonifying kidney-yin herbs and formulas, but also provide new evidence for the clinic use of the tonifying kidney-yin herbs and formulas in the treatment of osteoporosis.
Collapse
|
20
|
Huang CF, Wang WN, Sun CC, Wang YQ, Li L, Li Y, Li DJ. Echinocystic acid ameliorates hyperhomocysteinemia-induced vascular endothelial cell injury through regulating NF-κB and CYP1A1. Exp Ther Med 2017; 14:4174-4180. [PMID: 29104633 PMCID: PMC5658691 DOI: 10.3892/etm.2017.5097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 04/28/2017] [Indexed: 12/30/2022] Open
Abstract
The present study investigated the role of echinocystic acid (EA) on the expression of nuclear factor (NF)-κB and cytochrome P450 1A1 (CYP1A1), and aortic morphology, in a rat model of hyperhomocysteinemia (Hhcy). A total of 50 Sprague Dawley rats were randomly divided into five groups as follows: Normal control (NC), model control (MC), vitamin control (VC; folic acid 1 mg/kg + vitamin B2 2 mg/kg + vitamin B12 10u g/kg), EA1 (20 mg/kg EA) and EA2 (40 mg/kg EA). Plasma homocysteine (Hcy) levels were determined via high performance liquid chromatography, and the morphology of the aorta was investigated using hematoxylin and eosin staining. Furthermore, aortic mRNA and protein levels of NF-κB and CYP1A1 were measured using reverse transcription-quantitative polymerase chain reaction analysis and western blotting, respectively. Plasma Hcy levels, and aortic mRNA and protein levels of NF-κB and CYP1A1, were significantly lower in the EA-treated group compared with the MC group (all P<0.05). However, the aortic morphology remained normal, including the endothelial cells of the inner layer, and smooth muscle cells of the media layer and adventitia. In conclusion, the results of the present study indicate that EA has a protective role on vascular endothelial cells in Hhcy through decreasing plasma Hcy, and thus NF-κB and CYP1A1 expression.
Collapse
Affiliation(s)
- Chuan-Feng Huang
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, Hubei 430071, P.R. China.,Department of Pharmacology, Basic Medical School, Nanyang Medical College, Nanyang, Henan 473003, P.R. China
| | - Wei-Na Wang
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, Hubei 430071, P.R. China.,Department of Pharmacology, Basic Medical School, Nanyang Medical College, Nanyang, Henan 473003, P.R. China
| | - Cheng-Cao Sun
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Yu-Qing Wang
- Department of Pharmacology, Basic Medical School, Nanyang Medical College, Nanyang, Henan 473003, P.R. China
| | - Ling Li
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, Hubei 430071, P.R. China.,Department of Pharmacology, Basic Medical School, Nanyang Medical College, Nanyang, Henan 473003, P.R. China
| | - Yin Li
- Department of Pharmacology, Basic Medical School, Nanyang Medical College, Nanyang, Henan 473003, P.R. China
| | - De-Jia Li
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|
21
|
Georgatza D, Gorgogietas VA, Kylindri P, Charalambous MC, Papadopoulou KK, Hayes JM, Psarra AMG. The triterpene echinocystic acid and its 3-O-glucoside derivative are revealed as potent and selective glucocorticoid receptor agonists. Int J Biochem Cell Biol 2016; 79:277-287. [DOI: 10.1016/j.biocel.2016.08.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 07/19/2016] [Accepted: 08/29/2016] [Indexed: 12/20/2022]
|
22
|
Echinocystic acid inhibits RANKL-induced osteoclastogenesis by regulating NF-κB and ERK signaling pathways. Biochem Biophys Res Commun 2016; 477:673-677. [PMID: 27349866 DOI: 10.1016/j.bbrc.2016.06.118] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 06/23/2016] [Indexed: 01/11/2023]
Abstract
Receptor activator of nuclear factor-κB ligand (RANKL) is a key factor in the differentiation and activation of osteoclasts. Echinocystic acid (EA), a pentacyclic triterpene isolated from the fruits of Gleditsia sinensis Lam, was reported to prevent reduction of bone mass and strength and improve the cancellous bone structure and biochemical properties in ovariectomy rats. However, the molecular mechanism of EA on the osteoclast formation has not been reported. The purpose of this study was to investigate the effects and mechanism of EA on RANKL-induced osteoclastogenesis. Our results showed that EA inhibited the formation of osteoclast, as well as the expression of osteoclastogenesis-related marker proteins in bone marrow macrophages (BMMs). At molecular levels, EA inhibited RANKL-induced NF-κB activation and ERK phosphorylation in BMMs. In conclusion, the present study demonstrated that EA can suppress osteoclastogenesis in vitro. Moreover, we clarified that these inhibitory effects of EA occur through suppression of NF-κB and ERK activation. Therefore, EA may be a potential agent in the treatment of osteoclast-related diseases such as osteoporosis.
Collapse
|
23
|
Che CT, Wong MS, Lam CWK. Natural Products from Chinese Medicines with Potential Benefits to Bone Health. Molecules 2016; 21:239. [PMID: 26927052 PMCID: PMC6274145 DOI: 10.3390/molecules21030239] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 02/03/2016] [Accepted: 02/12/2016] [Indexed: 01/23/2023] Open
Abstract
Osteoporosis is a progressive, systemic bone disorder characterized by loss of bone mass and microstructure, leading to reduced bone strength and increased risk of fracture. It is often associated with reduced quality of life and other medical complications. The disease is common in the aging population, particularly among postmenopausal women and patients who receive long-term steroidal therapy. Given the rapid growth of the aging population, increasing life expectancy, the prevalence of bone loss, and financial burden to the healthcare system and individuals, demand for new therapeutic agents and nutritional supplements for the management and promotion of bone health is pressing. With the advent of global interest in complementary and alternative medicine and natural products, Chinese medicine serves as a viable source to offer benefits for the improvement and maintenance of bone health. This review summarizes the scientific information obtained from recent literatures on the chemical ingredients of Chinese medicinal plants that have been reported to possess osteoprotective and related properties in cell-based and/or animal models. Some of these natural products (or their derivatives) may become promising leads for development into dietary supplements or therapeutic drugs.
Collapse
Affiliation(s)
- Chun-Tao Che
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The University of Illinois at Chicago, Chicago, IL 60612, USA.
| | - Man Sau Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China.
| | - Christopher Wai Kei Lam
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China.
| |
Collapse
|