1
|
Gisch DL, Brennan M, Lake BB, Basta J, Keller MS, Melo Ferreira R, Akilesh S, Ghag R, Lu C, Cheng YH, Collins KS, Parikh SV, Rovin BH, Robbins L, Stout L, Conklin KY, Diep D, Zhang B, Knoten A, Barwinska D, Asghari M, Sabo AR, Ferkowicz MJ, Sutton TA, Kelly KJ, De Boer IH, Rosas SE, Kiryluk K, Hodgin JB, Alakwaa F, Winfree S, Jefferson N, Türkmen A, Gaut JP, Gehlenborg N, Phillips CL, El-Achkar TM, Dagher PC, Hato T, Zhang K, Himmelfarb J, Kretzler M, Mollah S, Jain S, Rauchman M, Eadon MT. The chromatin landscape of healthy and injured cell types in the human kidney. Nat Commun 2024; 15:433. [PMID: 38199997 PMCID: PMC10781985 DOI: 10.1038/s41467-023-44467-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 12/14/2023] [Indexed: 01/12/2024] Open
Abstract
There is a need to define regions of gene activation or repression that control human kidney cells in states of health, injury, and repair to understand the molecular pathogenesis of kidney disease and design therapeutic strategies. Comprehensive integration of gene expression with epigenetic features that define regulatory elements remains a significant challenge. We measure dual single nucleus RNA expression and chromatin accessibility, DNA methylation, and H3K27ac, H3K4me1, H3K4me3, and H3K27me3 histone modifications to decipher the chromatin landscape and gene regulation of the kidney in reference and adaptive injury states. We establish a spatially-anchored epigenomic atlas to define the kidney's active, silent, and regulatory accessible chromatin regions across the genome. Using this atlas, we note distinct control of adaptive injury in different epithelial cell types. A proximal tubule cell transcription factor network of ELF3, KLF6, and KLF10 regulates the transition between health and injury, while in thick ascending limb cells this transition is regulated by NR2F1. Further, combined perturbation of ELF3, KLF6, and KLF10 distinguishes two adaptive proximal tubular cell subtypes, one of which manifested a repair trajectory after knockout. This atlas will serve as a foundation to facilitate targeted cell-specific therapeutics by reprogramming gene regulatory networks.
Collapse
Affiliation(s)
- Debora L Gisch
- Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | | | - Blue B Lake
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
- San Diego Institute of Science, Altos Labs, San Diego, CA, USA
| | - Jeannine Basta
- Washington University in Saint Louis, St. Louis, MO, 63103, USA
| | | | | | | | - Reetika Ghag
- Washington University in Saint Louis, St. Louis, MO, 63103, USA
| | - Charles Lu
- Washington University in Saint Louis, St. Louis, MO, 63103, USA
| | - Ying-Hua Cheng
- Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | | | - Samir V Parikh
- Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Brad H Rovin
- Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Lynn Robbins
- St. Louis Veteran Affairs Medical Center, St. Louis, MO, 63106, USA
| | - Lisa Stout
- Washington University in Saint Louis, St. Louis, MO, 63103, USA
| | - Kimberly Y Conklin
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Dinh Diep
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Bo Zhang
- Washington University in Saint Louis, St. Louis, MO, 63103, USA
| | - Amanda Knoten
- Washington University in Saint Louis, St. Louis, MO, 63103, USA
| | - Daria Barwinska
- Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Mahla Asghari
- Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Angela R Sabo
- Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | | | - Timothy A Sutton
- Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | | | | | - Sylvia E Rosas
- Joslin Diabetes Center, Harvard Medical School, Boston, MA, 02215, USA
| | | | | | | | - Seth Winfree
- University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Nichole Jefferson
- Kidney Precision Medicine Project Community Engagement Committee, Dallas, TX, USA
| | - Aydın Türkmen
- Istanbul School of Medicine, Division of Nephrology, Istanbul, Turkey
| | - Joseph P Gaut
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | | | | | | | - Pierre C Dagher
- Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Takashi Hato
- Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Kun Zhang
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | | | | | - Shamim Mollah
- Washington University in Saint Louis, St. Louis, MO, 63103, USA
| | - Sanjay Jain
- Washington University in Saint Louis, St. Louis, MO, 63103, USA.
| | - Michael Rauchman
- Washington University in Saint Louis, St. Louis, MO, 63103, USA.
| | - Michael T Eadon
- Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
2
|
Ma S, Qiu Y, Zhang C. Cytoskeleton Rearrangement in Podocytopathies: An Update. Int J Mol Sci 2024; 25:647. [PMID: 38203817 PMCID: PMC10779434 DOI: 10.3390/ijms25010647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/14/2023] [Accepted: 01/01/2024] [Indexed: 01/12/2024] Open
Abstract
Podocyte injury can disrupt the glomerular filtration barrier (GFB), leading to podocytopathies that emphasize podocytes as the glomerulus's key organizer. The coordinated cytoskeleton is essential for supporting the elegant structure and complete functions of podocytes. Therefore, cytoskeleton rearrangement is closely related to the pathogenesis of podocytopathies. In podocytopathies, the rearrangement of the cytoskeleton refers to significant alterations in a string of slit diaphragm (SD) and focal adhesion proteins such as the signaling node nephrin, calcium influx via transient receptor potential channel 6 (TRPC6), and regulation of the Rho family, eventually leading to the disorganization of the original cytoskeletal architecture. Thus, it is imperative to focus on these proteins and signaling pathways to probe the cytoskeleton rearrangement in podocytopathies. In this review, we describe podocytopathies and the podocyte cytoskeleton, then discuss the molecular mechanisms involved in cytoskeleton rearrangement in podocytopathies and summarize the effects of currently existing drugs on regulating the podocyte cytoskeleton.
Collapse
Affiliation(s)
| | | | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (S.M.); (Y.Q.)
| |
Collapse
|
3
|
Gisch DL, Brennan M, Lake BB, Basta J, Keller M, Ferreira RM, Akilesh S, Ghag R, Lu C, Cheng YH, Collins KS, Parikh SV, Rovin BH, Robbins L, Conklin KY, Diep D, Zhang B, Knoten A, Barwinska D, Asghari M, Sabo AR, Ferkowicz MJ, Sutton TA, Kelly KJ, Boer IHD, Rosas SE, Kiryluk K, Hodgin JB, Alakwaa F, Jefferson N, Gaut JP, Gehlenborg N, Phillips CL, El-Achkar TM, Dagher PC, Hato T, Zhang K, Himmelfarb J, Kretzler M, Mollah S, Jain S, Rauchman M, Eadon MT. The chromatin landscape of healthy and injured cell types in the human kidney. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.07.543965. [PMID: 37333123 PMCID: PMC10274789 DOI: 10.1101/2023.06.07.543965] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
There is a need to define regions of gene activation or repression that control human kidney cells in states of health, injury, and repair to understand the molecular pathogenesis of kidney disease and design therapeutic strategies. However, comprehensive integration of gene expression with epigenetic features that define regulatory elements remains a significant challenge. We measured dual single nucleus RNA expression and chromatin accessibility, DNA methylation, and H3K27ac, H3K4me1, H3K4me3, and H3K27me3 histone modifications to decipher the chromatin landscape and gene regulation of the kidney in reference and adaptive injury states. We established a comprehensive and spatially-anchored epigenomic atlas to define the kidney's active, silent, and regulatory accessible chromatin regions across the genome. Using this atlas, we noted distinct control of adaptive injury in different epithelial cell types. A proximal tubule cell transcription factor network of ELF3 , KLF6 , and KLF10 regulated the transition between health and injury, while in thick ascending limb cells this transition was regulated by NR2F1 . Further, combined perturbation of ELF3 , KLF6 , and KLF10 distinguished two adaptive proximal tubular cell subtypes, one of which manifested a repair trajectory after knockout. This atlas will serve as a foundation to facilitate targeted cell-specific therapeutics by reprogramming gene regulatory networks.
Collapse
|
4
|
Protective effects of rituximab on puromycin-induced apoptosis, loss of adhesion and cytoskeletal alterations in human podocytes. Sci Rep 2022; 12:12297. [PMID: 35853959 PMCID: PMC9296604 DOI: 10.1038/s41598-022-16333-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/08/2022] [Indexed: 11/08/2022] Open
Abstract
Podocytes are highly specialized cells playing a key role in the filtration function of the kidney. A damaged podocyte ultrastructure is associated with a reorganization of the actin cytoskeleton and accompanied with a loss of adhesion to the glomerular basement membrane leading to proteinuria in many forms of glomerular diseases, e.g. nephrotic syndrome. If the first-line therapy with glucocorticoids fails, alternative immunosuppressive agents are used, which are known to have the potential to stabilize the actin cytoskeleton. A new option for preventing relapses in steroid dependent nephrotic syndrome is the monoclonal antibody rituximab, which, in addition to its B-cell depleting effect, is assumed to have direct effects on podocytes. We here provide data on the non-immunological off-target effects of the immunosuppressant rituximab on podocyte structure and dynamics in an in vitro puromycin aminonucleoside model of podocyte injury. A conditionally immortalized human podocyte cell line was used. Differentiated podocytes were treated with puromycin aminonucleoside and rituximab. Our studies focussed on analyzing the structure of the actin cytoskeleton, cellular adhesion and apoptosis using immunofluorescence staining and protein biochemistry methods. Treatment with rituximab resulted in a stabilization of podocyte actin stress fibers in the puromycin aminonucleoside model, leading to an improvement in cell adhesion. A lower apoptosis rate was observed after parallel treatment with puromycin aminonucleoside and rituximab visualized by reduced nuclear fragmentation. Consistent with this data, Western-blot analyses demonstrated that rituximab directly affects the caspase pathways by inhibiting the activation of Caspases-8, -9 and -3, suggesting that rituximab may inhibit apoptosis. In conclusion, our results indicate an important role of the immunosuppressant rituximab in terms of stability and morphogenesis of podocytes, involving apoptosis pathways. This could help to improve therapeutical concepts for patients with proteinuria mediated by diseased podocytes.
Collapse
|
5
|
Pei D, Xu C, Wang D, Shi X, Zhang Y, Liu Y, Guo J, Liu N, Zhu H. A Novel Prognostic Signature Associated With the Tumor Microenvironment in Kidney Renal Clear Cell Carcinoma. Front Oncol 2022; 12:912155. [PMID: 35860566 PMCID: PMC9290677 DOI: 10.3389/fonc.2022.912155] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/06/2022] [Indexed: 01/05/2023] Open
Abstract
Background The tumor microenvironment (TME) is a complex and evolving environment, and the tumor immune microenvironment in kidney renal clear cell carcinoma (KIRC) has a strong suppressive profile. This study investigates the potential prognostic role and value of genes of the tumor microenvironment in KIRC. Methods The transcriptome sequencing data of 530 cases and 39 cases of KIRC and the corresponding clinical prognosis information were downloaded from TCGA data and GEO data, respectively, and TME-related gene expression profiles were extracted. A prognostic signature was constructed and evaluated using univariate Cox regression analysis and LASSO regression analysis. Gene set enrichment analysis (GSEA) was used to obtain the biological process of gene enrichment in patients with high and low-risk groups. Results A prognostic signature consisting of eight TME-related genes (LRFN1, CSF1, UCN, TUBB2B, SERPINF1, ADAM8, ABCB4, CCL22) was constructed. Kaplan-Meier survival analysis yielded significantly lower survival times for patients in the high-risk group than in the low-risk group, and the AUC values for the ROC curves of this prognostic signature were essentially greater than 0.7, and univariate and multifactorial Cox regression analyses indicated that the risk score was independent risk factors for KIRC prognosis. GSEA analysis showed that immune-related biological processes were enriched in the high-risk group and that risk values were strongly associated with multiple immune cell scores and immune checkpoint-related genes (PDCD1, CTLA4). Conclusions The prognostic signature can accurately predict the prognosis of KIRC patients, which may provide new ideas for future precision immunotherapy of KIRC.
Collapse
|
6
|
A seven-gene signature model predicts overall survival in kidney renal clear cell carcinoma. Hereditas 2020; 157:38. [PMID: 32883362 PMCID: PMC7470605 DOI: 10.1186/s41065-020-00152-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 08/26/2020] [Indexed: 12/11/2022] Open
Abstract
Background Kidney renal clear cell carcinoma (KIRC) is a potentially fatal urogenital disease. It is a major cause of renal cell carcinoma and is often associated with late diagnosis and poor treatment outcomes. More evidence is emerging that genetic models can be used to predict the prognosis of KIRC. This study aimed to develop a model for predicting the overall survival of KIRC patients. Results We identified 333 differentially expressed genes (DEGs) between KIRC and normal tissues from the Gene Expression Omnibus (GEO) database. We randomly divided 591 cases from The Cancer Genome Atlas (TCGA) into training and internal testing sets. In the training set, we used univariate Cox regression analysis to retrieve the survival-related DEGs and futher used multivariate Cox regression with the LASSO penalty to identify potential prognostic genes. A seven-gene signature was identified that included APOLD1, C9orf66, G6PC, PPP1R1A, CNN1G, TIMP1, and TUBB2B. The seven-gene signature was evaluated in the training set, internal testing set, and external validation using data from the ICGC database. The Kaplan-Meier analysis showed that the high risk group had a significantly shorter overall survival time than the low risk group in the training, testing, and ICGC datasets. ROC analysis showed that the model had a high performance with an AUC of 0.738 in the training set, 0.706 in the internal testing set, and 0.656 in the ICGC external validation set. Conclusion Our findings show that a seven-gene signature can serve as an independent biomarker for predicting prognosis in KIRC patients.
Collapse
|
7
|
Hosawi SB, Humphries JD, Coward RJ, Knight D, Humphries MJ, Lennon R. Global proteomic analysis of insulin receptor interactors in glomerular podocytes. Wellcome Open Res 2020; 5:202. [PMID: 33458251 PMCID: PMC7788524 DOI: 10.12688/wellcomeopenres.16072.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2020] [Indexed: 12/16/2022] Open
Abstract
Background: Insulin signalling contributes to diverse cellular activities including protein synthesis, proliferation and cell survival. Insulin resistance describes the inability of cells to activate the insulin signalling pathway effectively; leading to pathological effects in multiple organ systems including the kidney. In diabetic kidney disease, there is progressive glomerular dysfunction and recent studies have demonstrated that the kidney podocyte is a direct target for insulin action. In this study we defined the literature-based insulin receptor (INSR) interactome and utilised an unbiased proteomic approach to examine INSR interactors in podocytes. Methods: Human podocytes expressing the INSR were characterised under basal and insulin resistant conditions. The INSR was isolated by whole cell immunoprecipitation following a time course stimulation of 2, 7, and 15 minutes with of 100nM insulin. The resulting INSR complexes were analysed by label-free mass spectrometry (MS) to detect protein interactors. Results: We identified 27 known, direct INSR interactors in addition to novel interactors including doublecortin domain-containing protein 2 (DCDC2). The interaction of DCDC2 with the INSR was confirmed by immunoprecipitation and immunofluorescence, and under insulin resistant conditions, DCDC2 had increased association with the INSR. siRNA knockdown of DCDC2 in podocytes resulted in cell morphological change and altered INSR localisation. Conclusion: This study provides insight into the complexity of INSR interactors in podocytes and highlights DCDC2 as a novel INSR binding protein. Involvement of this novel interactor in insulin signalling and podocyte biology may explain how insulin resistance alters morphology and integrity of the glomerular filtration barrier.
Collapse
Affiliation(s)
- Salman B. Hosawi
- Wellcome Centre for Cell-Matrix Research, University of Manchester, Manchester, M13 9PT, UK
- Department of Biochemistry, King AbdulAziz University, Jeddah, Saudi Arabia
| | - Jonathan D. Humphries
- Wellcome Centre for Cell-Matrix Research, University of Manchester, Manchester, M13 9PT, UK
| | | | - David Knight
- Biomolecular Analysis Core Facility, University of Manchester, Manchester, M13 9PT, UK
| | - Martin J. Humphries
- Wellcome Centre for Cell-Matrix Research, University of Manchester, Manchester, M13 9PT, UK
| | - Rachel Lennon
- Wellcome Centre for Cell-Matrix Research, University of Manchester, Manchester, M13 9PT, UK
- Department of Paediatric Nephrology, Royal Manchester Children’s Hospital, Manchester, UK
| |
Collapse
|
8
|
Hagmann H, Brinkkoetter PT. Experimental Models to Study Podocyte Biology: Stock-Taking the Toolbox of Glomerular Research. Front Pediatr 2018; 6:193. [PMID: 30057894 PMCID: PMC6053518 DOI: 10.3389/fped.2018.00193] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 06/11/2018] [Indexed: 01/17/2023] Open
Abstract
Diseases affecting the glomeruli of the kidney, the renal filtration units, are a leading cause of chronic kidney disease and end-stage renal failure. Despite recent advances in the understanding of glomerular biology, treatment of these disorders has remained extraordinarily challenging in many cases. The use of experimental models has proven invaluable to study renal, and in particular, glomerular biology and disease. Over the past 15 years, studies identified different and very distinct pathogenic mechanisms that result in damage, loss of glomerular visceral epithelial cells (podocytes) and progressive renal disease. However, animal studies and, in particular, mouse studies are often protracted and cumbersome due to the long reproductive cycle and high keeping costs. Transgenic and heterologous expression models have been speeded-up by novel gene editing techniques, yet they still take months. In addition, given the complex cellular biology of the filtration barrier, certain questions may not be directly addressed using mouse models due to the limited accessibility of podocytes for analysis and imaging. In this review, we will describe alternative models to study podocyte biology experimentally. We specifically discuss current podocyte cell culture models, their role in experimental strategies to analyze pathophysiologic mechanisms as well as limitations with regard to transferability of results. We introduce current models in Caenorhabditis elegans, Drosophila melanogaster, and Danio rerio that allow for analysis of protein interactions, and principle signaling pathways in functional biological structures, and enable high-throughput transgenic expression or compound screens in multicellular organisms.
Collapse
Affiliation(s)
| | - Paul T. Brinkkoetter
- Department II of Internal Medicine, Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
9
|
Schroeter CB, Koehler S, Kann M, Schermer B, Benzing T, Brinkkoetter PT, Rinschen MM. Protein half-life determines expression of proteostatic networks in podocyte differentiation. FASEB J 2018; 32:4696-4713. [PMID: 29694247 DOI: 10.1096/fj.201701307r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Podocytes are highly specialized, epithelial, postmitotic cells, which maintain the renal filtration barrier. When adapting to considerable metabolic and mechanical stress, podocytes need to accurately maintain their proteome. Immortalized podocyte cell lines are a widely used model for studying podocyte biology in health and disease in vitro. In this study, we performed a comprehensive proteomic analysis of the cultured human podocyte proteome in both proliferative and differentiated conditions at a depth of >7000 proteins. Similar to mouse podocytes, human podocyte differentiation involved a shift in proteostasis: undifferentiated podocytes have high expression of proteasomal proteins, whereas differentiated podocytes have high expression of lysosomal proteins. Additional analyses with pulsed stable-isotope labeling by amino acids in cell culture and protein degradation assays determined protein dynamics and half-lives. These studies unraveled a globally increased stability of proteins in differentiated podocytes. Mitochondrial, cytoskeletal, and membrane proteins were stabilized, particularly in differentiated podocytes. Importantly, protein half-lives strongly contributed to protein abundance in each state. These data suggest that regulation of protein turnover of particular cellular functions determines podocyte differentiation, a paradigm involving mitophagy and, potentially, of importance in conditions of increased podocyte stress and damage.-Schroeter, C. B., Koehler, S., Kann, M., Schermer, B., Benzing, T., Brinkkoetter, P. T., Rinschen, M. M. Protein half-life determines expression of proteostatic networks in podocyte differentiation.
Collapse
Affiliation(s)
- Christina B Schroeter
- Department II of Internal Medicine, University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Sybille Koehler
- Department II of Internal Medicine, University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Martin Kann
- Department II of Internal Medicine, University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Bernhard Schermer
- Department II of Internal Medicine, University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Systems Biology of Ageing Cologne (SybaCol), Cologne, Germany
| | - Thomas Benzing
- Department II of Internal Medicine, University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Systems Biology of Ageing Cologne (SybaCol), Cologne, Germany
| | - Paul T Brinkkoetter
- Department II of Internal Medicine, University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Markus M Rinschen
- Department II of Internal Medicine, University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Systems Biology of Ageing Cologne (SybaCol), Cologne, Germany
| |
Collapse
|
10
|
Muraleedharan S, Sam A, Skaer H, Inamdar MS. Networks that link cytoskeletal regulators and diaphragm proteins underpin filtration function in Drosophila nephrocytes. Exp Cell Res 2018; 364:234-242. [PMID: 29458174 PMCID: PMC5883325 DOI: 10.1016/j.yexcr.2018.02.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 02/06/2018] [Accepted: 02/15/2018] [Indexed: 11/25/2022]
Abstract
Insect nephrocytes provide a valuable model for kidney disease, as they are structurally and functionally homologous to mammalian kidney podocytes. They possess an exceptional macromolecular assembly, the nephrocyte diaphragm (ND), which serves as a filtration barrier and helps maintain tissue homeostasis by filtering out wastes and toxic products. However, the elements that maintain nephrocyte architecture and the ND are not understood. We show that Drosophila nephrocytes have a unique cytoplasmic cluster of F-actin, which is maintained by the microtubule cytoskeleton and Rho-GTPases. A balance of Rac1 and Cdc42 activity as well as proper microtubule organization and endoplasmic reticulum structure, are required to position the actin cluster. Further, ND proteins Sns and Duf also localize to this cluster and regulate organization of the actin and microtubule cytoskeleton. Perturbation of any of these inter-dependent components impairs nephrocyte ultrafiltration. Thus cytoskeletal components, Rho-GTPases and ND proteins work in concert to maintain the specialized nephrocyte architecture and function. Drosophila nephrocytes have a unique cytoplasmic cluster of F-actin. Microtubules, Rho-GTPases and endoplasmic reticulum position the actin cluster. Nephrocyte diaphragm proteins localize to and regulate actin cluster organization. Perturbation of any of these inter-dependent components impairs ultrafiltration.
Collapse
Affiliation(s)
- Simi Muraleedharan
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Aksah Sam
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Helen Skaer
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Maneesha S Inamdar
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India; Institute for Stem Cell Biology and Regenerative Medicine, GKVK, Bellary Road, Bangalore 560065, India.
| |
Collapse
|
11
|
|
12
|
Lee HW, Arif E, Altintas MM, Quick K, Maheshwari S, Plezia A, Mahmood A, Reiser J, Nihalani D, Gupta V. High-content screening assay-based discovery of paullones as novel podocyte-protective agents. Am J Physiol Renal Physiol 2017; 314:F280-F292. [PMID: 29046299 DOI: 10.1152/ajprenal.00338.2017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Podocyte dysfunction and loss is an early event and a hallmark of proteinuric kidney diseases. A podocyte's normal function is maintained via its unique cellular architecture that relies on an intracellular network of filaments, including filamentous actin (F-actin) and microtubules, that provides mechanical support. Damage to this filamentous network leads to changes in cellular morphology and results in podocyte injury, dysfunction, and death. Conversely, stabilization of this network protects podocytes and ameliorates proteinuria. This suggests that stabilization of podocyte architecture via its filamentous network could be a key therapeutic strategy for proteinuric kidney diseases. However, development of podocyte-directed therapeutics, especially those that target the cell's filamentous network, is still lacking, partly because of unavailability of appropriate cellular assays for use in a drug discovery environment. Here, we describe a new high-content screening-based methodology and its implementation on podocytes to identify paullone derivatives as a novel group of podocyte-protective compounds. We find that three compounds, i.e., kenpaullone, 1-azakenpaullone, and alsterpaullone, dose dependently protect podocytes from puromycin aminonucleoside (PAN)-mediated injury in vitro by reducing PAN-induced changes in both the filamentous actin and microtubules, with alsterpaullone providing maximal protection. Mechanistic studies further show that alsterpaullone suppressed PAN-induced activation of signaling downstream of GSK3β and p38 mitogen-activated protein kinase. In vivo it reduced ADR-induced glomerular injury in a zebrafish model. Together, these results identify paullone derivatives as novel podocyte-protective agents for future therapeutic development.
Collapse
Affiliation(s)
- Ha Won Lee
- Drug Discovery Center, Department of Internal Medicine, Rush University Medical Center , Chicago, Illinois
| | - Ehtesham Arif
- Department of Medicine, Nephrology Division, Medical University of South Carolina , Charleston, South Carolina
| | - Mehmet M Altintas
- Drug Discovery Center, Department of Internal Medicine, Rush University Medical Center , Chicago, Illinois
| | - Kevin Quick
- PerkinElmer Life Sciences, Waltham, Massachusetts
| | - Shrey Maheshwari
- Drug Discovery Center, Department of Internal Medicine, Rush University Medical Center , Chicago, Illinois
| | - Alexandra Plezia
- Drug Discovery Center, Department of Internal Medicine, Rush University Medical Center , Chicago, Illinois
| | - Aqsa Mahmood
- Drug Discovery Center, Department of Internal Medicine, Rush University Medical Center , Chicago, Illinois
| | - Jochen Reiser
- Drug Discovery Center, Department of Internal Medicine, Rush University Medical Center , Chicago, Illinois
| | - Deepak Nihalani
- Department of Medicine, Nephrology Division, Medical University of South Carolina , Charleston, South Carolina
| | - Vineet Gupta
- Drug Discovery Center, Department of Internal Medicine, Rush University Medical Center , Chicago, Illinois
| |
Collapse
|
13
|
Abstract
Podocytes exhibit a unique cytoskeletal architecture that is fundamentally linked to their function in maintaining the kidney filtration barrier. The cytoskeleton regulates podocyte shape, structure, stability, slit diaphragm insertion, adhesion, plasticity, and dynamic response to environmental stimuli. Genetic mutations demonstrate that even slight impairment of the podocyte cytoskeletal apparatus results in proteinuria and glomerular disease. Moreover, mechanisms underpinning all acquired glomerular pathologies converge on disruption of the cytoskeleton, suggesting that this subcellular structure could be targeted for therapeutic purposes. This review summarizes our current understanding of the function of the cytoskeleton in podocytes and the associated implications for pathophysiology.
Collapse
Affiliation(s)
- Christoph Schell
- Institute of Surgical Pathology and.,Department of Medicine IV, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Tobias B Huber
- Department of Medicine IV, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Germany; .,III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; and.,BIOSS Centre for Biological Signalling Studies and Center for Biological Systems Analysis (ZBSA), Albert-Ludwigs-University, Freiburg, Germany
| |
Collapse
|