1
|
Pochat‐Cottilloux Y, Perrichon G, Hautier L, Rinder N, Amiot R, Raselli I, Adrien J, Lachambre J, Fernandez V, Martin JE. Size, not phylogeny, explains the morphology of the endosseous labyrinth in the crown clade Crocodylia. J Anat 2025; 246:558-574. [PMID: 39707154 PMCID: PMC11911125 DOI: 10.1111/joa.14170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 10/17/2024] [Accepted: 10/21/2024] [Indexed: 12/23/2024] Open
Abstract
The endosseous labyrinths are associated with several functions, including hearing and spatial orientation. Throughout their evolutionary history, crocodylomorphs have thrived in diverse environments, and the morphology of their endosseous labyrinths has been suggested as a proxy for inferring their lifestyle. However, the relationships between the shape of their endosseous labyrinths and ontogenetic and phylogenetic factors are difficult to interpret and have rarely been investigated in depth previously, particularly in terms of dataset size. Here, we present the most complete dataset to date on the endosseous labyrinths of extant crocodylians, including 111 specimens covering 22 species of different ontogenetic status (from hatchlings to adults). Using 3D geometric morphometrics, we show that allometry constitutes a major contributor of the shape variation of the crocodylian endosseous labyrinths and that the development of this structure is likely linked to the braincase conformation, in all extant genera. We also find a moderate phylogenetic signal, but only without considering the size effect, so it could not be translated into relevant discrete morphological characters. Based on these results, we discuss several remaining problems that prevent the inclusion of fossil forms with highly divergent lifestyles to study how ecological differences shaped the endosseous labyrinths of crocodylomorphs.
Collapse
Affiliation(s)
- Yohan Pochat‐Cottilloux
- Univ Lyon, Univ Lyon 1, ENSL, CNRS, LGL‐TPEVilleurbanneFrance
- Faculty of Biology, Institute of Evolutionary Biology, University of WarsawWarsawPoland
| | | | - Lionel Hautier
- Institut des Sciences de l’Evolution de Montpellier (ISEM), Univ. Montpellier, CNRS, IRDPlace E. BataillonMontpellier Cedex 05France
- Natural History Museum of London, Mammal Section, Department of Life SciencesLondonUK
| | - Nicolas Rinder
- Univ Lyon, Univ Lyon 1, ENSL, CNRS, LGL‐TPEVilleurbanneFrance
| | - Romain Amiot
- Univ Lyon, Univ Lyon 1, ENSL, CNRS, LGL‐TPEVilleurbanneFrance
| | - Irena Raselli
- Jurassica MuseumPorrentruySwitzerland
- Geoscience DepartmentUniversity of FribourgFribourgSwitzerland
| | - Jérôme Adrien
- INSA‐Lyon, MATEIS UMR CNRS 5510, University of LyonVilleurbanneFrance
| | - Joël Lachambre
- INSA‐Lyon, MATEIS UMR CNRS 5510, University of LyonVilleurbanneFrance
| | - Vincent Fernandez
- European Synchrotron Radiation FacilityGrenobleFrance
- Imaging and Analysis CentreThe Natural History MuseumLondonUK
| | | |
Collapse
|
2
|
Burke PMJ, Boerman SA, Perrichon G, Martin JE, Smith T, Vellekoop J, Mannion PD. Endocranial anatomy and phylogenetic position of the crocodylian Eosuchus lerichei from the late Paleocene of northwestern Europe and potential adaptations for transoceanic dispersal in gavialoids. Anat Rec (Hoboken) 2025; 308:636-670. [PMID: 39228104 PMCID: PMC11725715 DOI: 10.1002/ar.25569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/19/2024] [Accepted: 07/03/2024] [Indexed: 09/05/2024]
Abstract
Eosuchus lerichei is a gavialoid crocodylian from late Paleocene marine deposits of northwestern Europe, known from a skull and lower jaws, as well as postcrania. Its sister taxon relationship with the approximately contemporaneous species Eosuchus minor from the east coast of the USA has been explained through transoceanic dispersal, indicating a capability for salt excretion that is absent in extant gavialoids. However, there is currently no anatomical evidence to support marine adaptation in extinct gavialoids. Furthermore, the placement of Eosuchus within Gavialoidea is labile, with some analyses supporting affinities with the Late Cretaceous to early Paleogene "thoracosaurs." Here we present novel data on the internal and external anatomy of the skull of E. lerichei that enables a revised diagnosis, with 6 autapormorphies identified for the genus and 10 features that enable differentiation of the species from Eosuchus minor. Our phylogenetic analyses recover Eosuchus as an early diverging gavialid gavialoid that is not part of the "thoracosaur" group. In addition to thickened semi-circular canal walls of the endosseous labyrinth and paratympanic sinus reduction, we identify potential osteological correlates for salt glands in the internal surface of the prefrontal and lacrimal bones of E. lerichei. These salt glands potentially provide anatomical evidence for the capability of transoceanic dispersal within Eosuchus, and we also identify them in the Late Cretaceous "thoracosaur" Portugalosuchus. Given that the earliest diverging and stratigraphically oldest gavialoids either have evidence for a nasal salt gland and/or have been recovered from marine deposits, this suggests the capacity for salt excretion might be ancestral for Gavialoidea. Mapping osteological and geological evidence for marine adaptation onto a phylogeny indicates that there was probably more than one independent loss/reduction in the capacity for salt excretion in gavialoids.
Collapse
Affiliation(s)
| | - Sophie A. Boerman
- Department of Earth and Environmental SciencesKU LeuvenLeuvenBelgium
- Directorate Earth and History of LifeRoyal Belgian Institute of Natural SciencesBrusselsBelgium
| | | | | | - Thierry Smith
- Directorate Earth and History of LifeRoyal Belgian Institute of Natural SciencesBrusselsBelgium
| | - Johan Vellekoop
- Department of Earth and Environmental SciencesKU LeuvenLeuvenBelgium
- Directorate Earth and History of LifeRoyal Belgian Institute of Natural SciencesBrusselsBelgium
| | | |
Collapse
|
3
|
Pochat-Cottilloux Y. A review of the non-semiaquatic adaptations of extinct crocodylomorphs throughout their fossil record. Anat Rec (Hoboken) 2025; 308:266-314. [PMID: 39587416 DOI: 10.1002/ar.25586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/28/2024] [Accepted: 09/16/2024] [Indexed: 11/27/2024]
Abstract
Crocodylomorphs constitute a clade of archosaurs that have thrived since the Mesozoic until today and have survived numerous major biological crises. Contrary to historic belief, their semiaquatic extant representatives (crocodylians) are not living fossils, and, during their evolutionary history, crocodylomorphs have evolved to live in a variety of environments. This review aims to summarize the non-semiaquatic adaptations (i.e., either terrestrial or fully aquatic) of different groups from different periods, highlighting how exactly those different lifestyles are inferred for those animals, with regard to their geographic and temporal distribution and phylogenetic relationships. The ancestral condition for Crocodylomorpha seems to have been a terrestrial lifestyle, linked with several morphological adaptations such as an altirostral skull, long limbs allowing a fully erect posture and a specialized dentition for diets based on land. However, some members of this clade, such as thalattosuchians and dyrosaurids display adaptations for an opposite, aquatic lifestyle, interestingly inferred from the same type of morphological observations. Finally, new techniques for inferring the paleobiology of those extinct animals have been put forward in the last decade, appearing as a complementary approach to traditional morphological descriptions and comparisons. Such is the case of paleoneuroanatomical (CT scan data), histological, and geochemical studies.
Collapse
Affiliation(s)
- Yohan Pochat-Cottilloux
- Univ Lyon, Univ Lyon 1, ENSL, CNRS, LGL-TPE, Villeurbanne, France
- Institute of Evolutionary Biology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
4
|
Melkersson KG, Li H, Rask-Andersen H. First photon-counting detector computed tomography in the living crocodile: a 3D-Imaging study with special reference to amphibious hearing. Front Cell Dev Biol 2024; 12:1471983. [PMID: 39507420 PMCID: PMC11538886 DOI: 10.3389/fcell.2024.1471983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 10/09/2024] [Indexed: 11/08/2024] Open
Abstract
Background Crocodiles are semi-aquatic animals well adapted to hear both on land and under water. Currently, there is limited information on how their amphibious hearing is accomplished. Here, we describe, for the first time, the ear anatomy in the living crocodile using photon-counting detector computed tomography (PCD-CT) and 3D rendering. We speculate on how crocodiles, despite their closed ear canals, can use tympanic hearing in water that also provides directional hearing. Material and Methods A Cuban crocodile (Crocodylus rhombifer) underwent photon-counting detector computed tomography (PCD-CT), under anesthesia and spontaneous respiration. In addition two seven-month-old C. rhombifer and a juvenile Morelet´s crocodile (Crocodylus moreletii) underwent micro-computed tomography (µCT) and endoscopy. One adult Cuviérs dwarf caiman (Paleosuchus palpebrosus) was micro-dissected and video-recorded. Aeration, earflap, and middle ear morphology were evaluated and compared after 3D modeling. Results and Discussion PCD-CT and µCT with 3D rendering and segmentation demonstrated the anatomy of the external and middle ears with high resolution in both living and expired crocodiles. Based on the findings and comparative examinations, we suggest that the superior earflap, by modulating the meatal recess together with local bone conduction, may implement tympanic hearing in submerged crocodiles, including directional hearing.
Collapse
Affiliation(s)
| | - Hao Li
- Department of Surgical Sciences, Otorhinolaryngology and Head and Neck Surgery, Uppsala University, Uppsala, Sweden
| | - Helge Rask-Andersen
- Department of Surgical Sciences, Otorhinolaryngology and Head and Neck Surgery, Uppsala University, Uppsala, Sweden
| |
Collapse
|
5
|
Young MT, Schwab JA, Dufeau D, Racicot RA, Cowgill T, Bowman CIW, Witmer LM, Herrera Y, Higgins R, Zanno L, Xing X, Clark J, Brusatte SL. Skull sinuses precluded extinct crocodile relatives from cetacean-style deep diving as they transitioned from land to sea. ROYAL SOCIETY OPEN SCIENCE 2024; 11:241272. [PMID: 39479241 PMCID: PMC11523105 DOI: 10.1098/rsos.241272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 11/02/2024]
Abstract
During major evolutionary transitions, groups develop radically new body plans and radiate into new habitats. A classic example is cetaceans which evolved from terrestrial ancestors to become pelagic swimmers. In doing so, they altered their air-filled sinuses, transitioning some of these spaces to allow for fluctuations in air capacity and storage via soft tissue borders. Other tetrapods independently underwent land-to-sea transitions, but it is unclear if they similarly changed their sinuses. We use computed tomography to study sinus changes in thalattosuchian crocodylomorphs that transformed from land-bound ancestors to become the only known aquatic swimming archosaurs. We find that thalattosuchian braincase sinuses reduced over their transition, similar to cetaceans, but their snout sinuses counterintuitively expanded, distinct from cetaceans, and that both trends were underpinned by high evolutionary rates. We hypothesize that aquatic thalattosuchians were ill suited to deep diving by their snout sinuses, which seem to have remained large to help drain their unusual salt glands. Thus, although convergent in general terms, thalattosuchians and cetaceans were subject to different constraints that shaped their transitions to water. Thalattosuchians attained a stage similar to less pelagic transitional forms in the cetacean lineage (late protocetid-basilosaurid) but did not become further specialized for ocean life.
Collapse
Affiliation(s)
- Mark T. Young
- School of GeoSciences, Grant Institute, University of Edinburgh, EdinburghEH9 3FE, UK
- LWL-Museum für Naturkunde, Sentruper Straße 285, Münster48161, Germany
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK
| | - Julia A. Schwab
- School of GeoSciences, Grant Institute, University of Edinburgh, EdinburghEH9 3FE, UK
- Department of Earth and Environmental Sciences, University of Manchester, Williamson Building, Oxford Road, ManchesterM13 9PL, UK
| | - David Dufeau
- College of Osteopathic Medicine, Marian University, Indianapolis, IN, USA
| | - Rachel A. Racicot
- Department of Messel Research and Mammalogy, Senckenberg Research Institute and Natural History Museum, Senckenberganlage 25, Frankfurt am Main60325, Germany
| | - Thomas Cowgill
- School of GeoSciences, Grant Institute, University of Edinburgh, EdinburghEH9 3FE, UK
| | | | - Lawrence M. Witmer
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Yanina Herrera
- CONICET, División Paleontología Vertebrados, Unidades de Investigación Anexo Museo, Facultad de Ciencias Naturales y Museo, UNLP, La Plata, Argentina
| | - Robert Higgins
- School of GeoSciences, Grant Institute, University of Edinburgh, EdinburghEH9 3FE, UK
| | - Lindsay Zanno
- Paleontology, North Carolina Museum of Natural Sciences, Raleigh, NC, USA
- Department of Biological Sciences, North Carolina State University, 100 Brooks Avenue, Raleigh, NC27607, USA
| | - Xu Xing
- Centre for Vertebrate Evolutionary Biology, Yunnan University, Kunming650031, People’s Republic of China
- Institute of Vertebrate Paleontology & Paleoanthropology, Chinese Academy of Sciences, Beijing100044, People’s Republic of China
| | - James Clark
- Department of Biological Sciences, George Washington University, Washington, DC, USA
| | - Stephen L. Brusatte
- School of GeoSciences, Grant Institute, University of Edinburgh, EdinburghEH9 3FE, UK
- Department of Natural Sciences, National Museums Scotland, Chambers Street, Edinburgh, UK
| |
Collapse
|
6
|
Ma Z, Chen MH. A Bayesian model-based reduced major axis regression. Biom J 2024; 66:e2300279. [PMID: 38576312 DOI: 10.1002/bimj.202300279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/04/2024] [Accepted: 02/16/2024] [Indexed: 04/06/2024]
Abstract
Reduced major axis (RMA) regression, widely used in the fields of zoology, botany, ecology, biology, spectroscopy, and among others, outweighs the ordinary least square regression by relaxing the assumption that the covariates are without measurement errors. A Bayesian implementation of the RMA regression is presented in this paper, and the equivalence of the estimates of the parameters under the Bayesian and the frequentist frameworks is proved. This model-based Bayesian RMA method is advantageous since the posterior estimates, the standard deviations, as well as the credible intervals of the estimates can be obtained through Markov chain Monte Carlo methods directly. In addition, it is straightforward to extend to the multivariate RMA case. The performance of the Bayesian RMA approach is evaluated in the simulation study, and, finally, the proposed method is applied to analyze a dataset in the plantation.
Collapse
Affiliation(s)
- Zhihua Ma
- Department of Statistics, Shenzhen University, Shenzhen, China
| | - Ming-Hui Chen
- Department of Statistics, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
7
|
Roese-Miron L, Jones MEH, Ferreira JD, Hsiou AS. Virtual endocasts of Clevosaurus brasiliensis and the tuatara: Rhynchocephalian neuroanatomy and the oldest endocranial record for Lepidosauria. Anat Rec (Hoboken) 2024; 307:1366-1389. [PMID: 36951279 DOI: 10.1002/ar.25212] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/02/2023] [Accepted: 03/07/2023] [Indexed: 03/24/2023]
Abstract
Understanding the origins of the vertebrate brain is fundamental for uncovering evolutionary patterns in neuroanatomy. Regarding extinct species, the anatomy of the brain and other soft tissues housed in endocranial spaces can be approximated by casts of these cavities (endocasts). The neuroanatomical knowledge of Rhynchocephalia, a reptilian clade exceptionally diverse in the early Mesozoic, is restricted to the brain of its only living relative, Sphenodon punctatus, and unknown for fossil species. Here, we describe the endocast and the reptilian encephalization quotient (REQ) of the Triassic rhynchocephalian Clevosaurus brasiliensis and compare it with an ontogenetic series of S. punctatus. To better understand the informative potential of endocasts in Rhynchocephalia, we also examine the brain-endocast relationship in S. punctatus. We found that the brain occupies 30% of its cavity, but the latter recovers the general shape and length of the brain. The REQ of C. brasiliensis (0.27) is much lower than S. punctatus (0.84-1.16), with the tuatara being close to the mean for non-avian reptiles. The endocast of S. punctatus is dorsoventrally flexed and becomes more elongated throughout ontogeny. The endocast of C. brasiliensis is mostly unflexed and tubular, possibly representing a more plesiomorphic anatomy in relation to S. punctatus. Given the small size of C. brasiliensis, the main differences may result from allometric and heterochronic phenomena, consistent with suggestions that S. punctatus shows peramorphic anatomy compared to Mesozoic rhynchocephalians. Our results highlight a previously undocumented anatomical diversity among rhynchocephalians and provide a framework for future neuroanatomical comparisons among lepidosaurs.
Collapse
Affiliation(s)
- Lívia Roese-Miron
- Programa de Pós-Graduação em Biodiversidade Animal, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Marc Emyr Huw Jones
- Science Group: Fossil Reptiles, Amphibians and Birds Section, Natural History Museum, London, UK
- Research Department of Cell and Developmental Biology, University College London, London, UK
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - José Darival Ferreira
- Programa de Pós-Graduação em Biodiversidade Animal, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Annie Schmaltz Hsiou
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
8
|
Young BA, Cramberg M. The anatomical basis of amphibious hearing in the American alligator (Alligator mississippiensis). Anat Rec (Hoboken) 2024; 307:198-207. [PMID: 37259899 DOI: 10.1002/ar.25272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 04/27/2023] [Accepted: 05/21/2023] [Indexed: 06/02/2023]
Abstract
The different velocities of sound (pressure waves) in air and water make auditory source localization a challenge for amphibious animals. The American alligator (Alligator mississippiensis) has an extracolumellar cartilage that abuts the deep surface of the tympanic membrane, and then expands in size beyond the caudal margin of the tympanum. This extracolumellar expansion is the insertion site for two antagonistic skeletal muscles, the tensor tympani, and the depressor tympani. These muscles function to modulate the tension in the tympanic membrane, presumably as part of the well-developed submergence reflex of Alligator. All crocodilians, including Alligator, have internally coupled ears in which paratympanic sinuses connect the contralateral middle ear cavities. The temporal performance of internally coupled ears is determined, in part, by the tension of the tympanic membrane. Switching between a "tensed" and "relaxed" tympanic membrane may allow Alligator to compensate for the increased velocity of sound underwater and, in this way, use a single auditory map for sound localization in two very different physical environments.
Collapse
Affiliation(s)
- Bruce A Young
- Department of Anatomy, Kirksville College of Osteopathic Medicine, Kirksville, Missouri, USA
| | - Michael Cramberg
- Department of Anatomy, Kirksville College of Osteopathic Medicine, Kirksville, Missouri, USA
| |
Collapse
|
9
|
Pochat‐Cottilloux Y, Rinder N, Perrichon G, Adrien J, Amiot R, Hua S, Martin JE. The neuroanatomy and pneumaticity of Hamadasuchus (Crocodylomorpha, Peirosauridae) from the Cretaceous of Morocco and its paleoecological significance for altirostral forms. J Anat 2023; 243:374-393. [PMID: 37309776 PMCID: PMC10439374 DOI: 10.1111/joa.13887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 05/03/2023] [Accepted: 05/03/2023] [Indexed: 06/14/2023] Open
Abstract
We describe the endocranial structures of Hamadasuchus, a peirosaurid crocodylomorph from the late Albian-Cenomanian Kem Kem group of Morocco. The cranial endocast, associated nerves and arteries, endosseous labyrinths, and cranial pneumatization, as well as the bones of the braincase of a new specimen, are reconstructed and compared with extant and fossil crocodylomorphs, which represent different lifestyles. Cranial bones of this specimen are identified as belonging to Hamadasuchus, with close affinities with Rukwasuchus yajabalijekundu, another peirosaurid from the 'middle' Cretaceous of Tanzania. The endocranial structures are comparable to those of R. yajabalijekundu but also to baurusuchids and sebecids (sebecosuchians). Paleobiological traits of Hamadasuchus, such as alert head posture, ecology, and behavior are explored for the first time, using quantitative metrics. The expanded but narrow semi-circular canals and enlarged pneumatization of the skull of Hamadasuchus are linked to a terrestrial lifestyle. Continuing work on the neuroanatomy of supposedly terrestrial crocodylomorphs needs to be broadened to other groups and will allow to characterize whether some internal structures are affected by the lifestyle of these organisms.
Collapse
Affiliation(s)
| | - Nicolas Rinder
- Univ Lyon, Univ Lyon 1, ENSL, CNRS, LGL‐TPEVilleurbanneFrance
| | | | - Jérôme Adrien
- Laboratoire MatériauxIngénierie et Science, Institut National des Sciences Appliquées de LyonVilleurbanneFrance
| | - Romain Amiot
- Univ Lyon, Univ Lyon 1, ENSL, CNRS, LGL‐TPEVilleurbanneFrance
| | | | | |
Collapse
|
10
|
Fernandez Blanco MV, Cassini GH, Bona P. A three-dimensional geometric morphometric analysis of the morphological transformation of Caiman lower jaw during post-hatching ontogeny. PeerJ 2023; 11:e15548. [PMID: 37456902 PMCID: PMC10349558 DOI: 10.7717/peerj.15548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/22/2023] [Indexed: 07/18/2023] Open
Abstract
Shape ontogenetic changes of the lower jaw in crocodylians are poorly understood. In order to answer some questions related to the inter- and intraspecific morphological variation of the mandible of two extant Caiman species, we performed a three-dimensional geometric morphometric approach. For this purpose, we used landmarks and semilandmarks on two ontogenetic mandibular series of 48 and 15 post-hatching specimens of C. yacare and C. latirostris, respectively. We have also examined the relationship between these anatomical transformations and ontogenetic shifts in diet. We performed a principal component analysis (PCA) for the two species, and regression and partial least squares (PLS) analyses for each species, separately. As a result, species were segregated along the PC1 with specimens of C. yacare showing more gracile mandibles, and specimens of C. latirostris more robust ones. The PC2 and regression analyses showed an age gradient and represented ontogenetic shape changes. Adult caiman mandibles are higher and wider than juvenile ones, and shape changes are more conspicuous in C. latirostris. The PLS analyses showed a significant relationship between shape and diet. Morphological changes of the PLS1 of block-1 match with those of the regression analysis for both species. We have detected morphological transformations in areas where the musculature in charge of mandibular movements is attached. Common morphological changes occurring during ontogeny seem to reflect the same mechanical properties required for crushing and killing in both species, driven by an ontogenetic shift in the diet from invertebrates to vertebrates. Additionally, interspecific differences were also found to be correlated to ontogenetic changes in diet and could be related to dissimilar feeding mechanical requirements (e.g., stiffness and toughness of the item consumed), and to different habitat preferences. Robust mandibles would be more suitable for shallow and fully vegetated environments, as it can be seen in C. latirostris, whereas slender jaws seem to be more suitable for more aquatic species such as C. yacare.
Collapse
Affiliation(s)
- María Victoria Fernandez Blanco
- División Paleontología Vertebrados, Museo de La Plata, Unidades de Investigación Anexo II Museo, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Guillermo Hernán Cassini
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
- División Mastozoología, Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”, Ciudad Autónoma de Buenos Aires, Argentina
- Departamento de Ciencias Básicas, Universidad Nacional de Luján, Luján, Buenos Aires, Argentina
| | - Paula Bona
- División Paleontología Vertebrados, Museo de La Plata, Unidades de Investigación Anexo II Museo, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
11
|
Burke PMJ, Mannion PD. Neuroanatomy of the crocodylian Tomistoma dowsoni from the Miocene of North Africa provides insights into the evolutionary history of gavialoids. J Anat 2023; 243:1-22. [PMID: 36929596 PMCID: PMC10273334 DOI: 10.1111/joa.13846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/24/2023] [Accepted: 01/24/2023] [Indexed: 03/18/2023] Open
Abstract
The interrelationships of the extant crocodylians Gavialis gangeticus and Tomistoma schlegelii have been historically disputed. Whereas molecular analyses indicate a sister taxon relationship between these two gavialoid species, morphological datasets typically place Gavialis as the outgroup to all other extant crocodylians. Recent morphological-based phylogenetic analyses have begun to resolve this discrepancy, recovering Gavialis as the closest living relative of Tomistoma; however, several stratigraphically early fossil taxa are recovered as closer to Gavialis than Tomistoma, resulting in anomalously early divergence timings. As such, additional morphological data might be required to resolve these remaining discrepancies. 'Tomistoma' dowsoni is an extinct species of gavialoid from the Miocene of North Africa. Utilising CT scans of a near-complete, referred skull, we reconstruct the neuroanatomy and neurosensory apparatus of 'Tomistoma' dowsoni. Based on qualitative and quantitative morphometric comparisons with other crocodyliforms, the neuroanatomy of 'Tomistoma' dowsoni is characterised by an intermediate morphology between the two extant gavialoids, more closely resembling Gavialis. This mirrors the results of recent studies based on the external anatomy of these three species and other fossil gavialoids. Several neuroanatomical features of these species appear to reflect ecological and/or phylogenetic signals. For example, the 'simple' morphology of their neurosensory apparatus is broadly similar to that of other long and narrow-snouted (longirostrine), aquatic crocodyliforms. A dorsoventrally short, anteroposteriorly long endosseous labyrinth is also associated with longirostry. These features indicate that snout and skull morphology, which are themselves partly constrained by ecology, exert an influence on neuroanatomical morphology, as has also been recognised in birds and turtles. Conversely, the presence of a pterygoid bulla in Gavialis and several extinct gavialoids, and its absence in Tomistoma schlegelii, could be interpreted as a phylogenetic signal of crocodylians more closely related to Gavialis than to Tomistoma. Evaluation of additional fossil gavialoids will be needed to further test whether these and other neuroanatomical features primarily reflect a phylogenetic or ecological signal. By incorporating such previously inaccessible information of extinct and extant gavialoids into phylogenetic and macroecological studies, we can potentially further constrain the clade's interrelationships, as well as evaluate the timing and ecological association of the evolution of these neuroanatomical features. Finally, our study supports recent phylogenetic analyses that place 'Tomistoma' dowsoni as being phylogenetically closer to Gavialis gangeticus than to Tomistoma schlegelii, indicating the necessity of a taxonomic revision of this fossil species.
Collapse
|
12
|
Puértolas-Pascual E, Kuzmin IT, Serrano-Martínez A, Mateus O. Neuroanatomy of the crocodylomorph Portugalosuchus azenhae from the late cretaceous of Portugal. J Anat 2023; 242:1146-1171. [PMID: 36732084 PMCID: PMC10184551 DOI: 10.1111/joa.13836] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/14/2023] [Accepted: 01/17/2023] [Indexed: 02/04/2023] Open
Abstract
We present the first detailed braincase anatomical description and neuroanatomical study of Portugalosuchus azenhae, from the Cenomanian (Late Cretaceous) of Portugal. This eusuchian crocodylomorph was originally described as a putative Crocodylia and one of the oldest representatives of this clade; however, its phylogenetic position remains controversial. Based on new data obtained from high resolution Computed Tomography images (by micro-CT scan), this study aims to improve the original description of this taxon and also update the scarce neuroanatomical knowledge of Eusuchia and Crocodylia from this time interval, a key period to understand the origin and evolution of these clades. The resulting three-dimensional models from the CT data allowed a detailed description of its well-preserved neurocranium and internal cavities. Therefore, it was possible to reconstruct the cavities of the olfactory region, nasopharyngeal ducts, brain, nerves, carotid arteries, blood vessels, paratympanic sinus system and inner ear, which allowed to estimate some neurosensorial capabilities. By comparison with other crocodylomorphs, these analyses showed that Portugalosuchus, back in the Cenomanian, already displayed an olfactive acuity, sight, hearing and cognitive skills within the range of that observed in other basal eusuchians and crocodylians, including extant species. In addition, and in order to test its disputed phylogenetic position, these new anatomical data, which helped to correct and complete some of the original observations, were included in one of the most recent morphology-based phylogenies. The position of Portugalosuchus differs slightly from the original publication since it is now located as a "thoracosaurid" within Gavialoidea, but still as a crocodylian. Despite all this, to better contrast these results, additional phylogenetic analyses including this new morphological character coding together with DNA data should be performed.
Collapse
Affiliation(s)
- Eduardo Puértolas-Pascual
- Aragosaurus-IUCA, Departamento de Ciencias de la Tierra, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain.,GeoBioTec, Departamento de Ciências da Terra FCT, Universidade Nova de Lisboa, Caparica, Portugal.,Museu da Lourinhã, Lourinhã, Portugal
| | - Ivan T Kuzmin
- Department of Vertebrate Zoology, Saint Petersburg State University, St. Petersburg, Russian Federation
| | | | - Octávio Mateus
- GeoBioTec, Departamento de Ciências da Terra FCT, Universidade Nova de Lisboa, Caparica, Portugal.,Museu da Lourinhã, Lourinhã, Portugal
| |
Collapse
|
13
|
Ristevski J, Weisbecker V, Scanlon JD, Price GJ, Salisbury SW. Cranial anatomy of the mekosuchine crocodylian Trilophosuchus rackhami Willis, 1993. Anat Rec (Hoboken) 2023; 306:239-297. [PMID: 36054424 PMCID: PMC10086963 DOI: 10.1002/ar.25050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/09/2022] [Accepted: 07/11/2022] [Indexed: 01/25/2023]
Abstract
One of the best-preserved crocodylian fossil specimens from the Cenozoic of Australia is the holotype of the mekosuchine Trilophosuchus rackhami, from the middle Miocene (13.56 ± 0.67 Ma) Ringtail Site at Riversleigh, northwestern Queensland. Although lacking most of the snout, the holotype skull of T. rackhami (QMF16856) has an exceptionally well-preserved cranium. Micro-CT scanning of the holotype has allowed for all the preserved cranial bones to be digitally disarticulated, facilitating an unprecedented insight into the cranial anatomy of not just T. rackhami, but any mekosuchine. Trilophosuchus rackhami was a small-bodied crocodylian and one of the most morphologically distinct mekosuchines, characterized by a unique combination of cranial characteristics several of which are exclusive to the species. Fossil material that is definitively referrable to the species T. rackhami is currently known solely from the middle Miocene Ringtail Site. However, an isolated parietal from Hiatus Site at Riversleigh demonstrates that Trilophosuchus also occurred during the late Oligocene (~25 Ma), extending the range of the genus by more than 10 million years. The new description of T. rackhami also allowed for a reevaluation of its phylogenetic relationships. Our results reaffirm the placement of T. rackhami as a member of Mekosuchinae within the subclade Mekosuchini. In all analyses, Mekosuchinae was consistently found to be monophyletic and part of the larger crocodylian clade Longirostres. However, the assignment of Mekosuchinae as a subset of Crocodylidae is brought into question, suggesting that the status of Mekosuchinae as a subfamily should be reconsidered.
Collapse
Affiliation(s)
- Jorgo Ristevski
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Vera Weisbecker
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland, Australia.,College of Science and Engineering, Flinders University, Bedford Park, South Australia, Australia
| | - John D Scanlon
- Phoenix Environmental Sciences, Osborne Park, Western Australia, Australia
| | - Gilbert J Price
- School of Earth and Environmental Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Steven W Salisbury
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
14
|
Perrichon G, Hautier L, Pochat-Cottilloux Y, Raselli I, Salaviale C, Dailh B, Rinder N, Fernandez V, Adrien J, Lachambre J, Martin JE. Ontogenetic variability of the intertympanic sinus distinguishes lineages within Crocodylia. J Anat 2023; 242:1096-1123. [PMID: 36709416 PMCID: PMC10184552 DOI: 10.1111/joa.13830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 01/10/2023] [Accepted: 01/10/2023] [Indexed: 01/30/2023] Open
Abstract
The phylogenetic relationships within crown Crocodylia remain contentious due to conflicts between molecular and morphological hypotheses. However, morphology-based datasets are mostly constructed on external characters, overlooking internal structures. Here, we use 3D geometric morphometrics to study the shape of the intertympanic sinus system in crown crocodylians during ontogeny, in order to assess its significance in a taxonomic context. Intertympanic sinus shape was found to be highly correlated with size and modulated by cranial shape during development. Still, adult sinus morphology distinguishes specimens at the family, genus and species level. We observe a clear distinction between Alligatoridae and Longirostres, a separation of different Crocodylus species and the subfossil Malagasy genus Voay, and a distinction between the Tomistoma and Gavialis lineages. Our approach is independent of molecular methods but concurs with the molecular topologies. Therefore, sinus characters could add significantly to morphological datasets, offering an alternative viewpoint to resolve problems in crocodylian relationships.
Collapse
Affiliation(s)
- Gwendal Perrichon
- CNRS UMR 5276, Université Claude Bernard Lyon 1, ENS de Lyon, Laboratoire de Géologie de Lyon: Terre, Planètes, Environnement, Villeurbanne, France
| | - Lionel Hautier
- Institut des Sciences de l'Évolution, Université Montpellier, CNRS, IRD, EPHE, Montpellier, France.,Mammal Section, Life Sciences, Vertebrate Division, The Natural History Museum, London, UK
| | - Yohan Pochat-Cottilloux
- CNRS UMR 5276, Université Claude Bernard Lyon 1, ENS de Lyon, Laboratoire de Géologie de Lyon: Terre, Planètes, Environnement, Villeurbanne, France
| | - Irena Raselli
- Geoscience Department, Chemin de Musée 6, University of Fribourg, Jurassica Museum, Porrentruy, Switzerland
| | - Céline Salaviale
- CNRS UMR 5276, Université Claude Bernard Lyon 1, ENS de Lyon, Laboratoire de Géologie de Lyon: Terre, Planètes, Environnement, Villeurbanne, France
| | - Benjamin Dailh
- CNRS UMR 5276, Université Claude Bernard Lyon 1, ENS de Lyon, Laboratoire de Géologie de Lyon: Terre, Planètes, Environnement, Villeurbanne, France
| | - Nicolas Rinder
- CNRS UMR 5276, Université Claude Bernard Lyon 1, ENS de Lyon, Laboratoire de Géologie de Lyon: Terre, Planètes, Environnement, Villeurbanne, France
| | | | - Jérôme Adrien
- Laboratoire Matériaux, Ingénierie et Science, Institut National des Sciences Appliquées de Lyon, Villeurbanne, France
| | - Joël Lachambre
- Laboratoire Matériaux, Ingénierie et Science, Institut National des Sciences Appliquées de Lyon, Villeurbanne, France
| | - Jeremy E Martin
- CNRS UMR 5276, Université Claude Bernard Lyon 1, ENS de Lyon, Laboratoire de Géologie de Lyon: Terre, Planètes, Environnement, Villeurbanne, France
| |
Collapse
|
15
|
Ruebenstahl AA, Klein MD, Yi H, Xu X, Clark JM. Anatomy and relationships of the early diverging Crocodylomorphs Junggarsuchus sloani and Dibothrosuchus elaphros. Anat Rec (Hoboken) 2022; 305:2463-2556. [PMID: 35699105 PMCID: PMC9541040 DOI: 10.1002/ar.24949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 02/17/2022] [Accepted: 03/21/2022] [Indexed: 12/27/2022]
Abstract
The holotype of Junggarsuchus sloani, from the Shishugou Formation (early Late Jurassic) of Xinjiang, China, consists of a nearly complete skull and the anterior half of an articulated skeleton, including the pectoral girdles, nearly complete forelimbs, vertebral column, and ribs. Here, we describe its anatomy and compare it to other early diverging crocodylomorphs, based in part on CT scans of its skull and that of Dibothrosuchus elaphros from the Early Jurassic of China. Junggarsuchus shares many features with a cursorial assemblage of crocodylomorphs, informally known as "sphenosuchians," whose relationships are poorly understood. However, it also displays several derived crocodyliform features that are not found among most "sphenosuchians." Our phylogenetic analysis corroborates the hypothesis that Junggarsuchus is closer to Crocodyliformes, including living crocodylians, than are Dibothrosuchus and Sphenosuchus, but not as close to crocodyliforms as Almadasuchus and Macelognathus, and that the "Sphenosuchia" are a paraphyletic assemblage. D. elaphros and Sphenosuchus acutus are hypothesized to be more closely related to Crocodyliformes than are the remaining non-crocodyliform crocodylomorphs, which form several smaller groups but are largely unresolved.
Collapse
Affiliation(s)
- Alexander A. Ruebenstahl
- Department of Biological SciencesGeorge Washington UniversityWashingtonDistrict of ColumbiaUSA,Department of Earth and Planetary SciencesYale UniversityNew HavenConnecticutUSA
| | | | - Hongyu Yi
- Key Laboratory for the Evolutionary Systematics of Vertebrates of the Chinese Academy of SciencesInstitute of Vertebrate Paleontology and PaleoanthropologyBeijingChina,CAS Center of Excellence in Life and PaleoenvironmentBeijingChina
| | - Xing Xu
- Key Laboratory for the Evolutionary Systematics of Vertebrates of the Chinese Academy of SciencesInstitute of Vertebrate Paleontology and PaleoanthropologyBeijingChina,CAS Center of Excellence in Life and PaleoenvironmentBeijingChina
| | - James M. Clark
- Department of Biological SciencesGeorge Washington UniversityWashingtonDistrict of ColumbiaUSA
| |
Collapse
|
16
|
Boerman SA, Perrichon G, Yang J, Li CS, Martin JE, Speijer RP, Smith T. A juvenile skull from the early Palaeocene of China extends the appearance of crocodyloids in Asia back by 15–20 million years. Zool J Linn Soc 2022. [DOI: 10.1093/zoolinnean/zlac067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
The earliest Crocodylia from Asia have been represented so far only by alligatoroids and planocraniids. Although definitive crocodyloids are not known until the late Eocene, it has been hypothesized that Asiatosuchus-like basal crocodyloids originated in Asia before the late Palaeocene. In this paper, we describe a new fossil crocodyloid from the lower Palaeocene of Qianshan Basin, Anhui Province, China. The skull and lower jaw fragment exhibit several characteristics typical of juvenile crocodylians. They also display a combination of features not seen in any other taxon, warranting the erection of a new species and genus, Qianshanosuchus youngi gen. & sp. nov. Its affinities are tested in phylogenetic analyses based on two recent character matrices of Eusuchia. To assess the effect of juvenile characteristics on the outcome of the phylogenetic analyses, juvenile specimens of extant crocodylian taxa are analysed in the same way, showing that the effect of their ontogenetic stage on their placement in the tree is minimal. Our analyses point to a basal crocodyloid position for Q. youngi. With these findings, the presence of Crocodyloidea in Asia is extended to the early Palaeocene, 15–20 Myr earlier than formerly thought. Furthermore, our results corroborate previous hypotheses of a Palaeocene dispersal route of Asiatosuchus-like crocodyloids from Asia into Europe.
Collapse
Affiliation(s)
- Sophie A Boerman
- Department of Earth and Environmental Sciences, KU Leuven , 3001 Leuven , Belgium
- Directorate Earth and History of Life, Royal Belgian Institute of Natural Sciences , 29 Rue Vautier, B-1000 Brussels , Belgium
| | - Gwendal Perrichon
- Laboratoire de Géologie de Lyon: Terre, Planètes, et Environnement, UMR 5276, CNRS, ENS de Lyon, Université Claude Bernard Lyon 1, Université de Lyon , 46 Allée d’Italie, F-69342 Lyon , France
| | - Jian Yang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences , Xiangshan, Beijing 100093 , China
| | - Cheng-Sen Li
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences , Xiangshan, Beijing 100093 , China
| | - Jeremy E Martin
- Laboratoire de Géologie de Lyon: Terre, Planètes, et Environnement, UMR 5276, CNRS, ENS de Lyon, Université Claude Bernard Lyon 1, Université de Lyon , 46 Allée d’Italie, F-69342 Lyon , France
| | - Robert P Speijer
- Department of Earth and Environmental Sciences, KU Leuven , 3001 Leuven , Belgium
| | - Thierry Smith
- Directorate Earth and History of Life, Royal Belgian Institute of Natural Sciences , 29 Rue Vautier, B-1000 Brussels , Belgium
| |
Collapse
|
17
|
Ristevski J. Neuroanatomy of the mekosuchine crocodylian Trilophosuchus rackhami Willis, 1993. J Anat 2022; 241:981-1013. [PMID: 36037801 PMCID: PMC9482699 DOI: 10.1111/joa.13732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 07/15/2022] [Accepted: 07/17/2022] [Indexed: 12/03/2022] Open
Abstract
Although our knowledge on crocodylomorph palaeoneurology has experienced considerable growth in recent years, the neuroanatomy of many crocodylomorph taxa has yet to be studied. This is true for Australian taxa, where thus far only two crocodylian crocodylomorphs have had aspects of their neuroanatomy explored. Here, the neuroanatomy of the Australian mekosuchine crocodylian Trilophosuchus rackhami is described for the first time, which significantly increases our understanding on the palaeoneurology of Australian crocodylians. The palaeoneurological description is based on the taxon's holotype specimen (QMF16856), which was subjected to a μCT scan. Because of the exceptional preservation of QMF16856, most neuroanatomical elements could be digitally reconstructed and described in detail. Therefore, the palaeoneurological assessment presented here is hitherto the most in‐depth study of this kind for an extinct Australian crocodylomorph. Trilophosuchus rackhami has a brain endocast with a distinctive morphology that is characterized by an acute dural peak over the hindbrain region. While the overall morphology of the brain endocast is unique to T. rackhami, it does share certain similarities with the notosuchian crocodyliforms Araripesuchus wegeneri and Sebecus icaeorhinus. The endosseous labyrinth displays a morphology that is typical for crocodylians, although a stand‐out feature is the unusually tall common crus. Indeed, the common crus of T. rackhami has one of the greatest height ratios among crocodylomorphs with currently known endosseous labyrinths. The paratympanic pneumatic system of T. rackhami is greatly developed and most similar to those of the extant crocodylians Osteolaemus tetraspis and Paleosuchus palpebrosus. The observations on the neuroanatomy of T. rackhami are also discussed in the context of Crocodylomorpha. The comparative palaeoneurology reinforces previous evaluations that the neuroanatomy of crocodylomorphs is complex and diverse among species, and T. rackhami has a peculiar neuromorphology, particularly among eusuchian crocodyliforms.
Collapse
Affiliation(s)
- Jorgo Ristevski
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
18
|
Tahara R, Larsson HCE. Paratympanic sinuses in juvenile Alligator. Anat Rec (Hoboken) 2022; 305:2926-2979. [PMID: 35591791 DOI: 10.1002/ar.24932] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 02/14/2022] [Accepted: 03/09/2022] [Indexed: 11/12/2022]
Abstract
Crocodylia has an extensive epithelial pneumatic space in the middle ear, paratympanic sinus system. Although fossil and extant crocodylian paratympanic sinus systems have been studied recently using the computed tomography (CT) and three-dimensional (3D) reconstruction data, due to the soft tissue nature of the pneumatic system and presence of its surrounding soft tissue structures, some boundaries, and definitions of each extension remain ambiguous. We describe the comprehensive paratympanic sinus system in posthatched alligator using soft tissue enhanced CT data with 3D reconstructions. The data are compared to the available data to discuss the ontogenetic pattern in alligator. We introduce further divided entities of the pneumatic system based on their associated bony and soft tissue structures and epithelial membrane and clarify the pneumatic terminologies. We then re-visit the potential homology of the paratympanic sinus in Archosauria. Epithelial boundaries of the ventral portion of the pneumatic system from the histological data suggest that the dual origin of the basioccipital diverticulum derived from the tympanic sinus and basicranial diverticulum medially. The presence of the epithelial boundary and pneumatic changes in ontogeny suggests that the middle ear may function differently in developmental stages. Lastly, a morphogenetic tree is constructed to help future work of comparative developmental studies of the paratympanic sinus system between crocodiles and birds.
Collapse
Affiliation(s)
- Rui Tahara
- Redpath Museum, McGill University, Montreal, Quebec, Canada
| | | |
Collapse
|
19
|
Schwab JA, Young MT, Walsh SA, Witmer LM, Herrera Y, Brochu CA, Butler IB, Brusatte SL. Ontogenetic variation in the crocodylian vestibular system. J Anat 2022; 240:821-832. [PMID: 34841534 PMCID: PMC9005688 DOI: 10.1111/joa.13601] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/29/2021] [Accepted: 11/19/2021] [Indexed: 01/20/2023] Open
Abstract
Crocodylians today live in tropical to subtropical environments, occupying mostly shallow waters. Their body size changes drastically during ontogeny, as do their skull dimensions and bite forces, which are associated with changes in prey preferences. Endocranial neurosensory structures have also shown to change ontogenetically, but less is known about the vestibular system of the inner ear. Here we use 30 high-resolution computed tomography (CT) scans and three-dimensional geometric morphometrics to investigate the size and shape changes of crocodylian endosseous labyrinths throughout ontogeny, across four stages (hatchling, juvenile, subadult and adult). We find two major patterns of ontogenetic change. First, the labyrinth increases in size during ontogeny, with negative allometry in relation to skull size. Second, labyrinth shape changes significantly, with hatchlings having shorter semicircular canal radii, with thicker diameters and an overall dorsoventrally shorter labyrinth than those of more mature individuals. We argue that the modification of the labyrinth during crocodylian ontogeny is related to constraints imposed by skull growth, due to fundamental changes in the crocodylian braincase during ontogeny (e.g. verticalisation of the basicranium), rather than changes in locomotion, diet, or other biological functions or behaviours.
Collapse
Affiliation(s)
- Julia A. Schwab
- School of GeoSciencesGrant InstituteUniversity of EdinburghEdinburghUK
| | - Mark T. Young
- School of GeoSciencesGrant InstituteUniversity of EdinburghEdinburghUK
| | - Stig A. Walsh
- School of GeoSciencesGrant InstituteUniversity of EdinburghEdinburghUK
- National Museum of ScotlandEdinburghUK
| | - Lawrence M. Witmer
- Department of Biomedical SciencesHeritage College of Osteopathic MedicineOhio Center for Ecology and Evolutionary StudiesOhio UniversityAthensOhioUSA
| | - Yanina Herrera
- CONICET. División Paleontología VertebradosMuseo de La Plata, FCNyMUNLPLa PlataArgentina
| | | | - Ian B. Butler
- School of GeoSciencesGrant InstituteUniversity of EdinburghEdinburghUK
| | | |
Collapse
|
20
|
Pochat-Cottilloux Y, Martin JE, Jouve S, Perrichon G, Adrien J, Salaviale C, de Muizon C, Cespedes R, Amiot R. The neuroanatomy of Zulmasuchus querejazus (Crocodylomorpha, Sebecidae) and its implications for the paleoecology of sebecosuchians. Anat Rec (Hoboken) 2021; 305:2708-2728. [PMID: 34825786 DOI: 10.1002/ar.24826] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/07/2021] [Accepted: 09/29/2021] [Indexed: 01/14/2023]
Abstract
The endocranial structures of the sebecid crocodylomorph Zulmasuchus querejazus (MHNC 6672) from the Lower Paleocene of Bolivia are described in this article. Using computed tomography scanning, the cranial endocast, associated nerves and arteries, endosseous labyrinths, and cranial pneumatization are reconstructed and compared with those of extant and fossil crocodylomorphs, representative of different ecomorphological adaptations. Z. querejazus exhibits an unusual flexure of the brain, pericerebral spines, semicircular canals with a narrow diameter, as well as enlarged pharyngotympanic sinuses. First, those structures allow to estimate the alert head posture and hearing capabilities of Zulmasuchus. Then, functional comparisons are proposed between this purportedly terrestrial taxon, semi-aquatic, and aquatic forms (extant crocodylians, thalattosuchians, and dyrosaurids). The narrow diameter of the semicircular canals but expanded morphology of the endosseous labyrinths and the enlarged pneumatization of the skull compared to other forms indeed tend to indicate a terrestrial lifestyle for Zulmasuchus. Our results highlight the need to gather new data, especially from altirostral forms in order to further our understanding of the evolution of endocranial structures in crocodylomorphs with different ecomorphological adaptations.
Collapse
Affiliation(s)
| | - Jeremy E Martin
- Univ Lyon, Univ Lyon 1, ENSL, CNRS, LGL-TPE, Villeurbanne, France
| | - Stéphane Jouve
- Centre de Recherche en Paléontologie - Paris (CR2P), Sorbonne Université, Paris, France
| | | | - Jérome Adrien
- Laboratoire Matériaux, Ingénierie et Science, Institut National des Sciences Appliquées de Lyon, Villeurbanne, France
| | - Céline Salaviale
- Univ Lyon, Univ Lyon 1, ENSL, CNRS, LGL-TPE, Villeurbanne, France
| | - Christian de Muizon
- Centre de Recherche en Paléontologie - Paris (CR2P), Muséum National d'Histoire Naturelle, CNRS/MNHN/Sorbonne Université, Paris, France
| | - Ricardo Cespedes
- Museo de Historia Natural 'Alcide D'Orbigny', Cochabamba, Bolivia
| | - Romain Amiot
- Univ Lyon, Univ Lyon 1, ENSL, CNRS, LGL-TPE, Villeurbanne, France
| |
Collapse
|
21
|
Kuzmin IT, Boitsova EA, Gombolevskiy VA, Mazur EV, Morozov SP, Sennikov AG, Skutschas PP, Sues H. Braincase anatomy of extant Crocodylia, with new insights into the development and evolution of the neurocranium in crocodylomorphs. J Anat 2021; 239:983-1038. [PMID: 34176132 PMCID: PMC8546529 DOI: 10.1111/joa.13490] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 12/30/2022] Open
Abstract
Present-day crocodylians exhibit a remarkably akinetic skull with a highly modified braincase. We present a comprehensive description of the neurocranial osteology of extant crocodylians, with notes on the development of individual skeletal elements and a discussion of the terminology used for this project. The quadrate is rigidly fixed by multiple contacts with most braincase elements. The parabasisphenoid is sutured to the pterygoids (palate) and the quadrate (suspensorium); as a result, the basipterygoid joint is completely immobilized. The prootic is reduced and externally concealed by the quadrate. It has a verticalized buttress that participates in the canal for the temporal vasculature. The ventrolateral processes of the otoccipitals completely cover the posteroventral region of the braincase, enclose the occipital nerves and blood vessels in narrow bony canals and also provide additional sutural contacts between the braincase elements and further consolidate the posterior portion of the crocodylian skull. The otic capsule of crocodylians has a characteristic cochlear prominence that corresponds to the lateral route of the perilymphatic sac. Complex internal structures of the otoccipital (extracapsular buttress) additionally arrange the neurovascular structures of the periotic space of the cranium. Most of the braincase elements of crocodylians are excavated by the paratympanic pneumatic sinuses. The braincase in various extant crocodylians has an overall similar structure with some consistent variation between taxa. Several newly observed features of the braincase are present in Gavialis gangeticus and extant members of Crocodylidae to the exclusion of alligatorids: the reduced exposure of the prootic buttress on the floor of the temporal canal, the sagittal nuchal crest of the supraoccipital projecting posteriorly beyond the postoccipital processes and the reduced paratympanic pneumaticity. The most distinctive features of the crocodylian braincase (fixed quadrate and basipterygoid joint, consolidated occiput) evolved relatively rapidly at the base of Crocodylomorpha and accompanied the initial diversification of this clade during the Late Triassic and Early Jurassic. We hypothesize that profound rearrangements in the individual development of the braincases of basal crocodylomorphs underlie these rapid evolutionary modifications. These rearrangements are likely reflected in the embryonic development of extant crocodylians and include the involvement of neomorphic dermal anlagen in different portions of the developing chondrocranium, the extensive ossification of the palatoquadrate cartilage as a single expanded quadrate and the anteromedial inclination of the quadrate.
Collapse
Affiliation(s)
- Ivan T. Kuzmin
- Department of Vertebrate ZoologySaint Petersburg State UniversitySt. PetersburgRussian Federation
| | - Elizaveta A. Boitsova
- Department of Vertebrate ZoologySaint Petersburg State UniversitySt. PetersburgRussian Federation
| | - Victor A. Gombolevskiy
- Research and Practical Clinical Center of Diagnostics and Telemedicine TechnologiesMoscowRussian Federation
| | - Evgeniia V. Mazur
- Department of Vertebrate ZoologySaint Petersburg State UniversitySt. PetersburgRussian Federation
| | - Sergey P. Morozov
- Research and Practical Clinical Center of Diagnostics and Telemedicine TechnologiesMoscowRussian Federation
| | | | - Pavel P. Skutschas
- Department of Vertebrate ZoologySaint Petersburg State UniversitySt. PetersburgRussian Federation
| | - Hans‐Dieter Sues
- Department of PaleobiologyNational Museum of Natural HistorySmithsonian InstitutionWashingtonDCUSA
| |
Collapse
|
22
|
Melstrom KM, Turner AH, Irmis RB. Reevaluation of the cranial osteology and phylogenetic position of the early crocodyliform Eopneumatosuchus colberti, with an emphasis on its endocranial anatomy. Anat Rec (Hoboken) 2021; 305:2557-2582. [PMID: 34679248 DOI: 10.1002/ar.24777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 07/30/2021] [Accepted: 08/09/2021] [Indexed: 01/21/2023]
Abstract
Eopneumatosuchus colberti Crompton and Smith, 1980, known from a single partial skull, is an enigmatic crocodylomorph from the Lower Jurassic Kayenta Formation. In spite of its unique morphology, an exceptionally pneumatic braincase, and presence during a critical time period of crocodylomorph evolution, relatively little is known about this taxon. Here, we redescribe the external cranial morphology of E. colberti, present novel information on its endocranial anatomy, evaluate its phylogenetic position among early crocodylomorphs, and seek to better characterize its ecology. Our examination clarifies key aspects of cranial suture paths and braincase anatomy. Comparisons with related taxa (e.g., Protosuchus haughtoni) demonstrate that extreme pneumaticity of the braincase may be more widespread in protosuchids than previously appreciated. Computed tomography scans reveal an endocranial morphology that resembles that of other early crocodylomorphs, in particular the noncrocodyliform crocodylomorph Almadasuchus figarii. There are, however, key differences in olfactory bulb and cerebral hemisphere morphology, which demonstrate the endocranium of crocodylomorphs is not as conserved as previously hypothesized. Our phylogenetic analysis recovers E. colberti as a close relative of Protosuchus richardsoni and Edentosuchus tienshanensis, contrasting with previous hypotheses of a sister group relationship with Thalattosuchia. Previous work suggested the inner ear has some similarities to semi-aquatic crocodyliforms, but the phylogenetic placement of E. colberti among protosuchids with a terrestrial postcranial skeletal morphology complicates paleoecological interpretation.
Collapse
Affiliation(s)
- Keegan M Melstrom
- Dinosaur Institute, Natural History Museum of Los Angeles County, Los Angeles, California, USA
| | - Alan H Turner
- Department of Anatomical Sciences, Stony Brook University, Stony Brook, New York, USA
| | - Randall B Irmis
- Natural History Museum of Utah, University of Utah, Salt Lake City, Utah, USA.,Department of Geology and Geophysics, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
23
|
Darlim G, Montefeltro FC, Langer MC. 3D skull modelling and description of a new baurusuchid (Crocodyliformes, Mesoeucrocodylia) from the Late Cretaceous (Bauru Basin) of Brazil. J Anat 2021; 239:622-662. [PMID: 33870512 PMCID: PMC8349455 DOI: 10.1111/joa.13442] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 03/18/2021] [Accepted: 03/24/2021] [Indexed: 12/27/2022] Open
Abstract
Baurusuchidae is one of the most diverse groups of South American notosuchians, unambiguously recorded in Late Cretaceous deposits of Brazil and Argentina. The group is characterized by a reduced tooth formula, a lateromedially compressed rostrum, and a verticalized quadrate, representing one of the top predators of their faunas. Historically, skull morphology is the most employed tool to investigate the relationships of baurusuchids, as most of the species have been primarily based on cranial remains. The present study describes a new baurusuchid species from the Bauru Basin of Brazil, based on the first tridimensional digital reconstruction of individualized skull bones for Notosuchia, and discusses its phylogenetic position within the group. The new species differs from all the other known baurusuchids by a depression on the posterior portion of the nasal bearing a crest, an infraorbital crest of the jugal that extends until the anterior margin of the lacrimal, the dorsal surface of the frontal lacking a longitudinal crest or depression, and the lateral convexity of the squamosal prongs participating in the occipital wall. The new taxon is consistently positioned as sister to the remaining baurusuchines, with Aplestosuchus sordidus and Stratiotosuchus maxhechti, as successive sister-taxa to a monophyletic Baurusuchus (Ba. albertoi, Ba. Salgadoensis, and Ba. pachecoi). Our updated phylogenetic analysis helps to differentiate the two major Baurusuchidae lineages, Baurusuchinae and Pissarrachampsinae. Yet, the new species shares morphological features with both groups, suggesting the occurrence of "Zones of Variability" in the radiation of Baurusuchidae.
Collapse
Affiliation(s)
- Gustavo Darlim
- Laboratório de Paleontologia de Ribeirão PretoFFCLRPUniversidade de São PauloRibeirão PretoBrazil
| | | | - Max C. Langer
- Laboratório de Paleontologia de Ribeirão PretoFFCLRPUniversidade de São PauloRibeirão PretoBrazil
| |
Collapse
|
24
|
New transitional fossil from late Jurassic of Chile sheds light on the origin of modern crocodiles. Sci Rep 2021; 11:14960. [PMID: 34294766 PMCID: PMC8298593 DOI: 10.1038/s41598-021-93994-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 06/09/2021] [Indexed: 11/08/2022] Open
Abstract
We describe the basal mesoeucrocodylian Burkesuchus mallingrandensis nov. gen. et sp., from the Upper Jurassic (Tithonian) Toqui Formation of southern Chile. The new taxon constitutes one of the few records of non-pelagic Jurassic crocodyliforms for the entire South American continent. Burkesuchus was found on the same levels that yielded titanosauriform and diplodocoid sauropods and the herbivore theropod Chilesaurus diegosuarezi, thus expanding the taxonomic composition of currently poorly known Jurassic reptilian faunas from Patagonia. Burkesuchus was a small-sized crocodyliform (estimated length 70 cm), with a cranium that is dorsoventrally depressed and transversely wide posteriorly and distinguished by a posteroventrally flexed wing-like squamosal. A well-defined longitudinal groove runs along the lateral edge of the postorbital and squamosal, indicative of a anteroposteriorly extensive upper earlid. Phylogenetic analysis supports Burkesuchus as a basal member of Mesoeucrocodylia. This new discovery expands the meagre record of non-pelagic representatives of this clade for the Jurassic Period, and together with Batrachomimus, from Upper Jurassic beds of Brazil, supports the idea that South America represented a cradle for the evolution of derived crocodyliforms during the Late Jurassic.
Collapse
|
25
|
Wilberg EW, Beyl AR, Pierce SE, Turner AH. Cranial and endocranial anatomy of a three-dimensionally preserved teleosauroid thalattosuchian skull. Anat Rec (Hoboken) 2021; 305:2620-2653. [PMID: 34259385 DOI: 10.1002/ar.24704] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/14/2021] [Accepted: 06/02/2021] [Indexed: 01/14/2023]
Abstract
Thalattosuchians represent one of the several independent transitions into the marine realm among crocodylomorphs. The extent of their aquatic adaptations ranges from the semiaquatic teleosauroids, superficially resembling extant gharials, to the almost cetacean-like pelagic metriorhynchids. Understanding the suite of osteological, physiological, and sensory changes that accompanied this major transition has received increased attention, but is somewhat hindered by a dearth of complete three-dimensionally preserved crania. Here, we describe the cranial and endocranial anatomy of a well-preserved three-dimensional specimen of Macrospondylus bollensis from the Toarcian of Yorkshire, UK. The trigeminal fossa contains two similar-sized openings separated by a thin lamina of prootic, a configuration that appears unique to a subset of teleosauroids. Macrospondylus bollensis resembles other thalattosuchians in having pyramidal semicircular canals with elongate cochlear ducts, enlarged carotid canals leading to an enlarged pituitary fossa, enlarged orbital arteries, enlarged endocranial venous sinuses, reduced pharyngotympanic sinuses, and a relatively straight brain with a hemispherical cerebral expansion. We describe for the first time the olfactory region and paranasal sinuses of a teleosauroid. A relatively large olfactory region suggests greater capacity for airborne olfaction in teleosauroids than in the more aquatically adapted metriorhynchoids. Additionally, slight swellings in the olfactory region suggest the presence of small salt glands of lower secretory capacity than those of metriorhynchoids. The presence of osteological correlates for salt glands in a teleosauroid corroborates previous hypotheses that these glands originated in the common ancestor of Thalattosuchia, facilitating their rapid radiation into the marine realm.
Collapse
Affiliation(s)
- Eric W Wilberg
- Department of Anatomical Sciences, Stony Brook University, Stony Brook, New York, USA
| | - Alexander R Beyl
- Department of Anatomical Sciences, Stony Brook University, Stony Brook, New York, USA
| | - Stephanie E Pierce
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Alan H Turner
- Department of Anatomical Sciences, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
26
|
Erb A, Turner AH. Braincase anatomy of the Paleocene crocodyliform Rhabdognathus revealed through high resolution computed tomography. PeerJ 2021; 9:e11253. [PMID: 33986990 PMCID: PMC8103917 DOI: 10.7717/peerj.11253] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 03/20/2021] [Indexed: 11/20/2022] Open
Abstract
Dyrosaurids were highly specialized, largely marine, relatives of living crocodylians, and one of the few archosaur lineages to survive the K-Pg extinction. Dyrosaurids lived during the Cretaceous to the Eocene and represent a unique combination of morphology and ecology not seen in living crocodylians. Little is known about their endocranial anatomy, leaving many questions about their neurosensory adaptations unaddressed. Recently, µCT (micro-computed tomography) scans were made of a well-preserved skull of Rhabdognathus, a Paleocene dyrosaurid from Mali. This marks the first time the braincase and neurosensory features of a dyrosaurid have been examined using CT. We focus our attention to three specific internal structures: the cranial endocast; the inner ear; and the paratympanic sinuses. The cranial endocast of Rhabdognathus revealed novel features including a unique conformation of its paratympanic system, a prominent dorsal venous system that communicates with the external skull table, extremely enlarged tympanic vestibules that meet at the midline of the endocranium, a prominent spherical cerebrum, and elongate olfactory tracts accounting for half the total endocast length. The bizarre laterally facing lateral Eustachian foramen of dyrosaurids is now understood to be a complex fossa including both a ventrally directed lateral Eustachian foramen and a laterally directed foramen for the basioccipital diverticulum. A novel median pterygopharyngeal canal was discovered connecting the pharynx to the adductor chamber. These revelations require a reinterpretation of the associated external foramina visible on the posterior of the skull in dyrosaurids and potentially their close relatives the pholidosaurids. The olfactory tract terminates in an enlarged olfactory region possessing complex bony projections—a unique morphology perhaps serving to increase surface area for olfaction. The inner ear of Rhabdognathus exhibits characteristics seen in both Pelagosaurus and Gavialis. The vestibule is spherical, as in Gavialis, but is significantly expanded. The semicircular canals are enlarged but pyramidal in shape as in the thalattosuchian Pelagosaurus. The proportion of the cochlear length to total endosseous labyrinth height is roughly 0.5 in Rhabdognathus implying that the hearing capabilities resemble that of thalattosuchians. A suite of expanded sense organs (e.g., bony olfactory lamina; hypertrophied vestibule of the inner ear), and the clear expansion of the cerebrum to a more symmetrical and spherical shape suggest that dyrosaurids possess neuroanatomical modifications facilitating an agile predatory near-shore ecology.
Collapse
Affiliation(s)
- Arthur Erb
- Department of Anatomical Sciences, Stony Brook University, Stony Brook, NY, United States of America
| | - Alan H Turner
- Department of Anatomical Sciences, Stony Brook University, Stony Brook, NY, United States of America
| |
Collapse
|
27
|
Ristevski J, Yates AM, Price GJ, Molnar RE, Weisbecker V, Salisbury SW. Australia's prehistoric 'swamp king': revision of the Plio-Pleistocene crocodylian genus Pallimnarchus de Vis, 1886. PeerJ 2020; 8:e10466. [PMID: 33391869 PMCID: PMC7759136 DOI: 10.7717/peerj.10466] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/10/2020] [Indexed: 12/16/2022] Open
Abstract
The crocodylian fossil record from the Cenozoic of Australasia is notable for its rich taxonomic diversity, and is primarily represented by members of the clade Mekosuchinae. Reports of crocodylian fossils from Australia date back to the late nineteenth century. In 1886, Charles Walter de Vis proposed the name Pallimnarchus pollens for crocodylian fossils from southeast Queensland-the first binomen given to an extinct crocodylian taxon from Australia. Pallimnarchus has come to be regarded as a large, broad-snouted crocodylian from Australia's Plio-Pleistocene, and numerous specimens, few of which are sufficiently complete, have been assigned to it by several authors throughout the twentieth century. In the late 1990s, the genus was expanded to include a second species, Pallimnarchus gracilis. Unfortunately, the original syntype series described as Pallimnarchus pollens is very fragmentary and derives from more than one taxon, while a large part of the subsequently selected lectotype specimen is missing. Because descriptions and illustrations of the complete lectotype do not reveal any autapomorphic features, we propose that Pallimnarchus pollens should be regarded as a nomen dubium. Following this decision, the fossil material previously referred to Pallimnarchus is of uncertain taxonomic placement. A partial skull, formerly assigned to Pallimnarchus pollens and known as 'Geoff Vincent's specimen', possesses many features of diagnostic value and is therefore used as basis to erect a new genus and species-Paludirex vincenti gen. et sp. nov. A comprehensive description is given for the osteology of 'Geoff Vincent's specimen' as well as aspects of its palaeoneurology, the latter being a first for an extinct Australian crocodyliform. The newly named genus is characterized by a unique combination of premaxillary features such as a distinctive arching of the anterior alveolar processes of the premaxillae, a peculiar arrangement of the first two premaxillary alveoli and a large size disparity between the 3rd and 4th premaxillary alveoli. These features presently allow formal recognition of two species within the genus, Paludirex vincenti and Paludirex gracilis comb. nov., with the former having comparatively more robust rostral proportions than the latter. The Paludirex vincenti holotype comes from the Pliocene Chinchilla Sand of the Darling Downs, south-eastern Queensland, whereas the material assigned to Paludirex gracilis is from the Pleistocene of Terrace Site Local Fauna, Riversleigh, northwest Queensland. Phylogenetic analyses recover Paludirex vincenti as a mekosuchine, although further cladistic assessments are needed to better understand the relationships within the clade.
Collapse
Affiliation(s)
- Jorgo Ristevski
- School of Biological Sciences, The Univeristy of Queensland, Brisbane, QLD, Australia
| | - Adam M. Yates
- Museum of Central Australia, Museum and Art Gallery of the Northern Territory, Alice Springs, NT, Australia
| | - Gilbert J. Price
- School of Earth and Environmental Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Ralph E. Molnar
- University of California Museum of Paleontology, Berkeley, CA, USA
| | - Vera Weisbecker
- School of Biological Sciences, The Univeristy of Queensland, Brisbane, QLD, Australia
- College of Science and Engineering, Flinders University, Adelaide, SA, Australia
| | - Steven W. Salisbury
- School of Biological Sciences, The Univeristy of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
28
|
Hu K, King JL, Romick CA, Dufeau DL, Witmer LM, Stubbs TL, Rayfield EJ, Benton MJ. Ontogenetic endocranial shape change in alligators and ostriches and implications for the development of the non-avian dinosaur endocranium. Anat Rec (Hoboken) 2020; 304:1759-1775. [PMID: 33314780 DOI: 10.1002/ar.24579] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 11/20/2020] [Accepted: 11/27/2020] [Indexed: 01/20/2023]
Abstract
Birds and crocodiles show radically different patterns of brain development, and it is of interest to compare these to determine the pattern of brain growth expected in dinosaurs. Here we provide atlases of 3D brain (endocast) reconstructions for Alligator mississippiensis (alligator) and Struthio camelus (ostrich) through ontogeny, prepared as digital restorations from CT scans of stained head and dry skull specimens. Our morphometric analysis confirms that ostrich brains do not change significantly in shape during postnatal growth, whereas alligator brains unfold from a cramped bird-like shape in the hatchling to an elongate, straight structure in the adult. We confirm that birds exhibit paedomorphic dinosaur endocranial traits such as retaining an enlarged and compact brain shape in the adult, whereas crocodiles show peramorphic traits where the brain elongates with growth as the skull elongates. These atlases of ontogenetic stages of modern bird and crocodilian endocrania provide a basis for comparison of non-avian dinosaur endocasts and consideration of the divergence of the "avian" and "crocodilian" modes of brain development and heterochronic change on phylogenies.
Collapse
Affiliation(s)
- Krishna Hu
- School of Earth Sciences, University of Bristol, Bristol, UK
| | - J Logan King
- School of Earth Sciences, University of Bristol, Bristol, UK
| | - Cheyenne A Romick
- Department of Biological Sciences, Ohio University, Athens, Ohio, USA
| | - David L Dufeau
- Department of Biomedical Science, Marian University, Indianapolis, Indiana, USA
| | - Lawrence M Witmer
- Department of Biomedical Science, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, USA
| | - Thomas L Stubbs
- School of Earth Sciences, University of Bristol, Bristol, UK
| | | | | |
Collapse
|
29
|
Dumont MV, Santucci RM, de Andrade MB, de Oliveira CEM. Paleoneurology of Baurusuchus (Crocodyliformes: Baurusuchidae), ontogenetic variation, brain size, and sensorial implications. Anat Rec (Hoboken) 2020; 305:2670-2694. [PMID: 33211405 DOI: 10.1002/ar.24567] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 09/18/2020] [Accepted: 10/18/2020] [Indexed: 12/23/2022]
Abstract
Knowledge on crocodyliform paleoneurology has significantly improved with development of computed tomography. However, studies so far have been able to reconstruct brain endocasts based only on single specimens for each taxon. Here for the first time, we reconstructed brain endocasts for multiple fossil specimens of the same crocodyliform taxon (Baurusuchus), consisting of complete skulls of two medium sized specimens, one large adult, and a late juvenile. In addition, we were able to reconstruct the inner ear anatomy of a fragmentary skull using microtomography. We present estimates of brain size using simple models, based on modern Crocodylia, able to adapt brain to endocranial cavity ratios to expected ontogenetic variation instead of using fixed ratios. We also analyzed relative brain sizes, olfactory ratios, facial sensation, alert head posture, best hearing frequencies, and hearing range. The calculated endocranial volumes showed that they can be greatly altered by taphonomic processes, altering both total and partial endocranial volumes. Reconstructed endocasts are compatible with different degrees of occupation along the endocranial cavity and some of their characteristics might be useful as phylogenetic characters. The relative brain size of Baurusuchus seems to be small in comparison to modern crocodilians. Sensorial abilities were somewhat similar to modern crocodilians and hearing ranges and best mean frequencies remarkably similar to modern taxa, whereas olfactory ratio values are a little higher. Differing from its modern relatives, Baurusuchus hypothesized alert head posture is compatible with a terrestrial habit.
Collapse
Affiliation(s)
- Marcos V Dumont
- Federal Institute of Brasília, Brasília, Brazil.,University of Brasília, Brasília, Brazil
| | | | - Marco Brandalise de Andrade
- Pontifical Catholic University of Rio Grande do Sul, PUCRS, School of Health and Life Sciences, Porto Alegre, Brazil
| | | |
Collapse
|
30
|
Lessner EJ, Holliday CM. A 3D ontogenetic atlas of Alligator mississippiensis cranial nerves and their significance for comparative neurology of reptiles. Anat Rec (Hoboken) 2020; 305:2854-2882. [PMID: 33099878 DOI: 10.1002/ar.24550] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/08/2020] [Accepted: 09/12/2020] [Indexed: 11/10/2022]
Abstract
Cranial nerves are key features of the nervous system and vertebrate body plan. However, little is known about the anatomical relationships and ontogeny of cranial nerves in crocodylians and other reptiles, hampering understanding of adaptations, evolution, and development of special senses, somatosensation, and motor control of cranial organs. Here we share three dimensional (3D) models an of the cranial nerves and cranial nerve targets of embryonic, juvenile, and adult American Alligators (Alligator mississippiensis) derived from iodine-contrast CT imaging, for the first time, exploring anatomical patterns of cranial nerves across ontogeny. These data reveal the tradeoffs of using contrast-enhanced CT data as well as patterns in growth and development of the alligator cranial nervous system. Though contrast-enhanced CT scanning allows for reconstruction of numerous tissue types in a nondestructive manner, it is still limited by size and resolution. The position of alligator cranial nerves varies little with respect to other cranial structures yet grow at different rates as the skull elongates. These data constrain timing of trigeminal and sympathetic ganglion fusion and reveal morphometric differences in nerve size and path during growth. As demonstrated by these data, alligator cranial nerve morphology is useful in understanding patterns of neurological diversity and distribution, evolution of sensory and muscular innervation, and developmental homology of cranial regions, which in turn, lead to inferences of physiology and behavior.
Collapse
Affiliation(s)
- Emily J Lessner
- Program in Integrative Anatomy, Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Casey M Holliday
- Program in Integrative Anatomy, Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, Missouri, USA
| |
Collapse
|
31
|
Leardi JM, Pol D, Clark JM. Braincase anatomy of Almadasuchus figarii (Archosauria, Crocodylomorpha) and a review of the cranial pneumaticity in the origins of Crocodylomorpha. J Anat 2020; 237:48-73. [PMID: 32227598 DOI: 10.1111/joa.13171] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/08/2020] [Accepted: 01/24/2020] [Indexed: 12/11/2022] Open
Abstract
Almadasuchus figarii is a basal crocodylomorph recovered from the Upper Jurassic levels of the Cañadón Calcáreo Formation (Oxfordian-Tithonian) of Chubut, Argentina. This taxon is represented by cranial remains, which consist of partial snout and palatal remains; an excellently preserved posterior region of the skull; and isolated postcranial remains. The skull of the only specimen of the monotypic Almadasuchus was restudied using high-resolution computed micro tomography. Almadasuchus has an apomorphic condition in its skull shared with the closest relatives of crocodyliforms (i.e. hallopodids) where the quadrates are sutured to the laterosphenoids and the otoccipital contacts the quadrate posterolaterally, reorganizing the exit of several cranial nerves (e.g. vagus foramen) and the entry of blood vessels (e.g. internal carotids) on the occipital surface of the skull. The endocast is tubular, as previously reported in thalattosuchians, but has a marked posterior step, and a strongly projected floccular recess as in other basal crocodylomorphs. Internally, the skull of Almadasuchus is heavily pneumatized, where different air cavities invade the bones of the suspensorium and braincase, both on its dorsal or ventral parts. Almadasuchus has a large basioccipital recess, which is formed by cavities that excavate the basioccipital and the posterior surface of the basisphenoid, and unlike other crocodylomorphs is connected with the basisphenoid pneumatizations. Ventral to the otic capsule, a pneumatic cavity surrounded by the otoccipital and basisphenoid is identified as the rhomboidal recess. The quadrate of Almadasuchus is highly pneumatized, being completely hollow, and the dorsal pneumatizations of the braincase are formed by the mastoid and facial antra, and a laterosphenoid cavity (trigeminal diverticulum). To better understand the origins of pneumatic features in living crocodylomorphs we studied cranial pneumaticity in the basal members of Crocodylomorpha and found that: (a) prootic pneumaticity may be a synapomorphy for the whole clade; (b) basisphenoid pneumaticity (pre-, postcarotid and rostral recesses) is a derived feature among basal crocodylomorphs; (c) quadrate pneumatization is acquired later in the history of the group; and (d) the rhomboidal sinus is a shared derived trait of hallopodids and crocodyliforms. The marine thallatosuchians exhibit a reduction of the pneumaticity of the braincase and this reduction is evaluated considering the two phylogenetic positions proposed for the clade.
Collapse
Affiliation(s)
- Juan Martín Leardi
- Instituto de Estudios Andinos 'Don Pablo Groeber' (IDEAN), Departamento de Ciencias Geológicas, Facultad de Ciencias Exactas y Naturales, CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina.,Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Diego Pol
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,Museo Paleontológico Egidio Feruglio, CONICET, Chubut, Argentina
| | - James Matthew Clark
- Department of Biological Sciences, George Washington University, Washington, DC, USA
| |
Collapse
|
32
|
Scheyer TM, Spiekman SNF, Sues HD, Ezcurra MD, Butler RJ, Jones MEH. Colobops: a juvenile rhynchocephalian reptile (Lepidosauromorpha), not a diminutive archosauromorph with an unusually strong bite. ROYAL SOCIETY OPEN SCIENCE 2020; 7:192179. [PMID: 32269817 PMCID: PMC7137947 DOI: 10.1098/rsos.192179] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 02/27/2020] [Indexed: 05/08/2023]
Abstract
Correctly identifying taxa at the root of major clades or the oldest clade-representatives is critical for meaningful interpretations of evolution. A small, partially crushed skull from the Late Triassic (Norian) of Connecticut, USA, originally described as an indeterminate rhynchocephalian saurian, was recently named Colobops noviportensis and reinterpreted as sister to all remaining Rhynchosauria, one of the earliest and globally distributed groups of herbivorous reptiles. It was also interpreted as having an exceptionally reinforced snout and powerful bite based on an especially large supratemporal fenestra. Here, after a re-analysis of the original scan data, we show that the skull was strongly dorsoventrally compressed post-mortem, with most bones out of life position. The cranial anatomy is consistent with that of other rhynchocephalian lepidosauromorphs, not rhynchosaurs. The 'reinforced snout' region and the 'exceptionally enlarged temporal region' are preservational artefacts and not exceptional among clevosaurid rhynchocephalians. Colobops is thus not a key taxon for understanding diapsid feeding apparatus evolution.
Collapse
Affiliation(s)
- Torsten M. Scheyer
- Universität Zürich, Paläontologisches Institut und Museum, Karl Schmid-Strasse 4, Zurich CH-8006, Switzerland
| | - Stephan N. F. Spiekman
- Universität Zürich, Paläontologisches Institut und Museum, Karl Schmid-Strasse 4, Zurich CH-8006, Switzerland
| | - Hans-Dieter Sues
- Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, MRC 121, Washington, DC 20560, USA
| | - Martín D. Ezcurra
- Sección Paleontología de Vertebrados, CONICET-Museo Argentino de Ciencias Naturales, Ángel Gallardo 470, C1405DJR, Buenos Aires, Argentina
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Richard J. Butler
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Marc E. H. Jones
- Research Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
33
|
Arribas I, Buscalioni AD, Royo Torres R, Espílez E, Mampel L, Alcalá L. A new goniopholidid crocodyliform, Hulkepholis rori sp. nov. from the Camarillas Formation (early Barremian) in Galve, Spain). PeerJ 2019; 7:e7911. [PMID: 31687271 PMCID: PMC6825746 DOI: 10.7717/peerj.7911] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 09/17/2019] [Indexed: 12/27/2022] Open
Abstract
Background The neosuchian crocodyliform genus Hulkepholis constitutes the longirostral lineage of the European Goniopholididae. It comprises two species ranging from the Valanginian of southern England to the lower Albian of the northern Teruel (Spain). A new species of Hulkepholis is described based on a partially complete skull from the lower Barremian Camarillas Formation. We investigate its phylogenetic position and the palatal patterns among members of Goniopholididae and the closely related Thalattosuchia and Tethysuchia. Methods Phylogenetic relationships were investigated with two matrices using a previously published dataset as the basis: the first differed only by the addition of the new species, the second had newly discovered states for 11 characters, the new species plus several additional specimens of Hulkepholis and Anteophthalmosuchus. Both matrices were processed using TNT v. 1.1, in a heuristic analysis of maximum parsimony, with tree bisection and reconnection 1,000 random addition replicates and saving the 10 most parsimonious trees per replicate, and up to 10 suboptimal trees to calculate Bremer supports. The skull geometry of nine species from Thalattosuchia, Tethysuchia and Goniopholididae was explored to test shape variation between the rostral and postrostral modules, and to visualize the differences on the secondary palate. A set of 18 landmarks was used to delimit significant anatomical features, and the skulls were isotropically scaled using Adobe Illustrator, with the longest skull (Sarcosuchus imperator) as the baseline for comparison. Results The European lineages of goniopholidids are two clades (Nannosuchus + Goniopholis) plus (Hulkepholis + Anteophthalmosuchus). The new species, Hulkepholis rori sp. nov, shares with the latter clade the following apormorphies: a long anterolateral postorbital process, postorbital process almost reaching the anterior jugal ramus, and basioccipital tubera with lateral edges turned posteriorly. Anteophthalmosuchus was found to be monophyletic, and Hulkepholis paraphyletic due to the poor preservation of H. willetti. Hulkepholis rori is distinguished by having vascular fossae and a mid-protuberance on the ventral surface of the basioccipital, and wide internal fossae in the quadrate. Among Goniopholididae differences on the secondary palate are the presence of a palatal cleft, the narrowness of the secondary choana, and a wide foramen of the median pharyngeal tube. Conclusions The new species is the earliest Hulkepholis from the Iberian Peninsula. New characters have been recognized in the organization of the palate and in the occipital region raising unexpected questions on the evolution of Goniopholididae. The set of palatal characters is discussed as part of a singular palatogenesis in Goniopholididae. The protruding occipital areas suggest that the longirostral Hulkepholis would have had an aquatic lifestyle with particular neck and skull movements.
Collapse
Affiliation(s)
- Ignacio Arribas
- Departamento de Biología, Paleontología, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| | - Angela D Buscalioni
- Departamento de Biología, Paleontología, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| | - Rafael Royo Torres
- Museo Aragonés de Paleontología, Fundación Conjunto Paleontológico de Teruel-Dinopolis, Teruel, Aragón, Spain
| | - Eduardo Espílez
- Museo Aragonés de Paleontología, Fundación Conjunto Paleontológico de Teruel-Dinopolis, Teruel, Aragón, Spain
| | - Luis Mampel
- Museo Aragonés de Paleontología, Fundación Conjunto Paleontológico de Teruel-Dinopolis, Teruel, Aragón, Spain
| | - Luis Alcalá
- Museo Aragonés de Paleontología, Fundación Conjunto Paleontológico de Teruel-Dinopolis, Teruel, Aragón, Spain
| |
Collapse
|
34
|
Bullar CM, Zhao Q, Benton MJ, Ryan MJ. Ontogenetic braincase development in Psittacosaurus lujiatunensis (Dinosauria: Ceratopsia) using micro-computed tomography. PeerJ 2019; 7:e7217. [PMID: 31428535 PMCID: PMC6698140 DOI: 10.7717/peerj.7217] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 05/31/2019] [Indexed: 11/20/2022] Open
Abstract
Ontogenetic sequences are relatively rare among dinosaurs, with Ceratopsia being one of the better represented clades, and especially among geologically earlier forms, such as Psittacosaurus. Psittacosaurus is a small, bipedal basal ceratopsian abundant in the Lower Cretaceous deposits of Asia, whose cranial and endocranial morphology has been well studied, but only cursory details have been published on the bones surrounding the brain. Using reconstructions created from micro-computed tomography scans of well-preserved skulls from the Barremian–Aptian Yixian Formation, China, we document morphological changes in the braincase of Psittacosaurus lujiatunensis through three growth stages, hatchling, juvenile, and adult, thus providing the first detailed study of ceratopsian braincase morphology through ontogeny. Notable ontogenetic changes in the braincase of P. lujiatunensis include a dramatic relative reduction in size of the supraoccipital, an increase in the lateral expansion of the paroccipital processes and a decrease in the angle between the lateral semicircular canal and the palatal plane. These ontogenetic morphological changes in the braincase relate to expansion of the cranium and brain through growth, as well as reflecting the switch from quadrupedal juveniles to bipedal adults as documented in the changing orientation of the horizontal semicircular canal through ontogeny. Recognition of these patterns in a basal ceratopsian has implications for understanding key events in later ceratopsian evolution, such as the development of the parieto-squamosal frill in derived neoceratopsians.
Collapse
Affiliation(s)
- Claire M Bullar
- School of Earth Sciences, University of Bristol, Bristol, UK
| | - Qi Zhao
- School of Earth Sciences, University of Bristol, Bristol, UK.,Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China
| | | | - Michael J Ryan
- Department of Earth Sciences, Carleton University, Ottawa, ON, Canada
| |
Collapse
|
35
|
Tahara R, Larsson HCE. Development of the paratympanic pneumatic system of Japanese quail. J Morphol 2019; 280:1492-1529. [DOI: 10.1002/jmor.21045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/28/2019] [Accepted: 07/05/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Rui Tahara
- Redpath MuseumMcGill University Montreal Quebec Canada
| | | |
Collapse
|
36
|
Sobral G, Müller J. The braincase of Mesosuchus browni (Reptilia, Archosauromorpha) with information on the inner ear and description of a pneumatic sinus. PeerJ 2019; 7:e6798. [PMID: 31198620 PMCID: PMC6535042 DOI: 10.7717/peerj.6798] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 03/17/2019] [Indexed: 12/21/2022] Open
Abstract
Rhynchosauria is a group of archosauromorph reptiles abundant in terrestrial ecosystems of the Middle Triassic. Mesosuchus is one of the earliest and basalmost rhynchosaurs, playing an important role not only for the understanding of the evolution of the group as a whole, but also of archosauromorphs in general. The braincase of Mesosuchus has been previously described, albeit not in detail, and the middle and inner ears were missing. Here, we provide new information based on micro-computed tomography scanning of the best-preserved specimen of Mesosuchus, SAM-PK-6536. Contrary to what has been stated previously, the braincase of Mesosuchus is dorso-ventrally tall. The trigeminal foramen lies in a deep recess on the prootic whose flat ventral rim could indicate the articulation surface to the laterosphenoid, although no such element was found. The middle ear of Mesosuchus shows a small and deeply recessed fenestra ovalis, with the right stapes preserved in situ. It has a rather stout, imperforated and posteriorly directed shaft with a small footplate. These features suggest that the ear of Mesosuchus was well-suited for the detection of low-frequency sounds. The semicircular canals are slender and elongate and the floccular fossa is well-developed. This is indicative of a refined mechanism for gaze stabilization, which is usually related to non-sprawling postures. The most striking feature of the Mesosuchus braincase is, however, the presence of a pneumatic sinus in the basal tubera. The sinus is identified as originating from the pharyngotympanic system, implying ossified Eustachian tubes. Braincase pneumatization has not yet been a recognized feature of stem-archosaurs, but the potential presence of pneumatic foramina in an array of taxa, recognized here as such for the first time, suggests braincase sinuses could be present in many other archosauromorphs.
Collapse
Affiliation(s)
- Gabriela Sobral
- Staatliches Museum für Naturkunde Stuttgart, Stuttgart, Germany
| | - Johannes Müller
- Museum für Naturkunde Berlin, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Berlin, Germany
| |
Collapse
|
37
|
Kettler L, Carr CE. Neural Maps of Interaural Time Difference in the American Alligator: A Stable Feature in Modern Archosaurs. J Neurosci 2019; 39:3882-3896. [PMID: 30886018 PMCID: PMC6520516 DOI: 10.1523/jneurosci.2989-18.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 02/20/2019] [Accepted: 02/23/2019] [Indexed: 11/21/2022] Open
Abstract
Detection of interaural time differences (ITDs) is crucial for sound localization in most vertebrates. The current view is that optimal computational strategies of ITD detection depend mainly on head size and available frequencies, although evolutionary history should also be taken into consideration. In archosaurs, which include birds and crocodiles, the brainstem nucleus laminaris (NL) developed into the critical structure for ITD detection. In birds, ITDs are mapped in an orderly array or place code, whereas in the mammalian medial superior olive, the analog of NL, maps are not found. As yet, in crocodilians, topographical representations have not been identified. However, nontopographic representations of ITD cannot be excluded due to different anatomical and ethological features of birds and crocodiles. Therefore, we measured ITD-dependent responses in the NL of anesthetized American alligators of either sex and identified the location of the recording sites by lesions made after recording. The measured extracellular field potentials, or neurophonics, were strongly ITD tuned, and their preferred ITDs correlated with the position in NL. As in birds, delay lines, which compensate for external time differences, formed maps of ITD. The broad distributions of best ITDs within narrow frequency bands were not consistent with an optimal coding model. We conclude that the available acoustic cues and the architecture of the acoustic system in early archosaurs led to a stable and similar organization in today's birds and crocodiles, although physical features, such as internally coupled ears, head size, or shape, and audible frequency range, vary among the two groups.SIGNIFICANCE STATEMENT Interaural time difference (ITD) is an important cue for sound localization, and the optimal strategies for encoding ITD in neuronal populations are the subject of ongoing debate. We show that alligators form maps of ITD very similar to birds, suggesting that their common archosaur ancestor reached a stable coding solution different from mammals. Mammals and diapsids evolved tympanic hearing independently, and local optima can be reached in evolution that are not considered by global optimal coding models. Thus, the presence of ITD maps in the brainstem may reflect a local optimum in evolutionary development. Our results underline the importance of comparative animal studies and show that optimal models must be viewed in the light of evolutionary processes.
Collapse
Affiliation(s)
- Lutz Kettler
- Lehrstuhl für Zoologie, Technische Universität München, 85354 Freising, Germany, and
| | - Catherine E Carr
- Department of Biology, University of Maryland, College Park, Maryland 20742
| |
Collapse
|
38
|
Affiliation(s)
- Rui Tahara
- Redpath Museum, McGill University, Montreal, Quebec, Canada
| | | |
Collapse
|
39
|
Herrera Y, Leardi JM, Fernández MS. Braincase and endocranial anatomy of two thalattosuchian crocodylomorphs and their relevance in understanding their adaptations to the marine environment. PeerJ 2018; 6:e5686. [PMID: 30515353 PMCID: PMC6263203 DOI: 10.7717/peerj.5686] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/30/2018] [Indexed: 11/29/2022] Open
Abstract
Thalattosuchians are a group of Mesozoic crocodylomorphs known from aquatic deposits of the Early Jurassic–Early Cretaceous that comprises two main lineages of almost exclusively marine forms, Teleosauridae and Metriorhynchoidea. Teleosaurids were found in shallow marine, brackish and freshwater deposits, and have been characterized as semiaquatic near-shore forms, whereas metriorhynchids are a lineage of fully pelagic forms, supported by a large set of morphological characters of the skull and postcranial anatomy. Recent contributions on Thalattosuchia have been focused on the study of the endocranial anatomy. This newly available information provides novel evidence to suggest adaptations on the neuroanatomy, senses organs, vasculature, and behavioral evolution of these crocodylomorphs. However, is still not clear if the major morphological differences between teleosaurids and metriorhynchids were also mirrored by changes in the braincase and endocranial anatomy. Based on X-ray CT scanning and digital endocast reconstructions we describe the braincase and endocranial anatomy of two well-preserved specimens of Thalattosuchia, the semiaquatic teleosaurid Steneosaurus bollensis and the pelagic metriorhynchid Cricosaurus araucanensis. We propose that some morphological traits, such as: an enlarged foramen for the internal carotid artery, a carotid foramen ventral to the occipital condyle, a single CN XII foramen, absence of brain flexures, well-developed cephalic vascular system, lack of subtympanic foramina and the reduction of the paratympanic sinus system, are distinctive features of Thalattosuchia. It has been previously suggested that the enlarged foramen for the internal carotid artery, the absence of brain flexures, and the hypertrophied cephalic vascular system were synapomorphies of Metriorhynchidae; however, new information revealed that all of these features were already established at the base of Thalattosuchia and might have been exapted later on their evolutionary history. Also, we recognized some differences within Thalattosuchia that previously have not been received attention or even were overlooked (e.g., circular/bilobate trigeminal foramen, single/double CN XII foramen, separation of the cranioquadrate canal from the external otic aperture, absence/presence of lateral pharyngeal foramen). The functional significances of these traits are still unclear. Extending the sampling to other Thalattosuchia will help to test the timing of acquisition and distribution of these morphological modifications among the whole lineage. Also comparison with extant marine tetrapods (including physiological information) will be crucial to understand if some (and/or which) of the morphological peculiarities of thalattosuchian braincases are products of directional natural selection resulting in a fully adaptation to a nektonic life style.
Collapse
Affiliation(s)
- Yanina Herrera
- CONICET. División Paleontología Vertebrados, Museo de La Plata, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Juan Martín Leardi
- CONICET. Instituto de Estudios Andinos "Don Pablo Groeber" (IDEAN), Facultad de Ciencias Exactas y Naturales, Departamento de Ciencias Geológicas, Universidad de Buenos Aires, Buenos Aires, Argentina.,Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Universidad de Buenos Aires, Argentina
| | - Marta S Fernández
- CONICET. División Paleontología Vertebrados, Museo de La Plata, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| |
Collapse
|
40
|
Kuzmin IT, Skutschas PP, Boitsova EA, Sues HD. Revision of the large crocodyliformKansajsuchus(Neosuchia) from the Late Cretaceous of Central Asia. Zool J Linn Soc 2018. [DOI: 10.1093/zoolinnean/zly027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Ivan T Kuzmin
- Vertebrate Zoology Department, Saint Petersburg State University, Saint Petersburg, Russia
| | - Pavel P Skutschas
- Vertebrate Zoology Department, Saint Petersburg State University, Saint Petersburg, Russia
| | - Elizaveta A Boitsova
- Vertebrate Zoology Department, Saint Petersburg State University, Saint Petersburg, Russia
| | - Hans-Dieter Sues
- Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| |
Collapse
|
41
|
Bailleul AM, Holliday CM. Joint histology in Alligator mississippiensis challenges the identification of synovial joints in fossil archosaurs and inferences of cranial kinesis. Proc Biol Sci 2018; 284:rspb.2017.0038. [PMID: 28330922 DOI: 10.1098/rspb.2017.0038] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 02/14/2017] [Indexed: 11/12/2022] Open
Abstract
Archosaurs, like all vertebrates, have different types of joints that allow or restrict cranial kinesis, such as synovial joints and fibrous joints. In general, synovial joints are more kinetic than fibrous joints, because the former possess a fluid-filled cavity and articular cartilage that facilitate movement. Even though there is a considerable lack of data on the microstructure and the structure-function relationships in the joints of extant archosaurs, many functional inferences of cranial kinesis in fossil archosaurs have hinged on the assumption that elongated condylar joints are (i) synovial and/or (ii) kinetic. Cranial joint microstructure was investigated in an ontogenetic series of American alligators, Alligator mississippiensis All the presumably synovial, condylar joints found within the head of the American alligator (the jaw joint, otic joint and laterosphenoid-postorbital (LS-PO) joint) were studied by means of paraffin histology and undecalcified histology paired with micro-computed tomography data to better visualize three-dimensional morphology. Results show that among the three condylar joints of A. mississippiensis, the jaw joint was synovial as expected, but the otherwise immobile otic and LS-PO joints lacked a synovial cavity. Therefore, condylar morphology does not always imply the presence of a synovial articulation nor mobility. These findings reveal an undocumented diversity in the joint structure of alligators and show that crocodylians and birds build novel, kinetic cranial joints differently. This complicates accurate identification of synovial joints and functional inferences of cranial kinesis in fossil archosaurs and tetrapods in general.
Collapse
Affiliation(s)
- Alida M Bailleul
- Department of Pathology and Anatomical Sciences, University of Missouri-School of Medicine, Columbia, MO, USA
| | - Casey M Holliday
- Department of Pathology and Anatomical Sciences, University of Missouri-School of Medicine, Columbia, MO, USA
| |
Collapse
|
42
|
Voeten DFAE, Reich T, Araújo R, Scheyer TM. Synchrotron microtomography of a Nothosaurus marchicus skull informs on nothosaurian physiology and neurosensory adaptations in early Sauropterygia. PLoS One 2018; 13:e0188509. [PMID: 29298295 PMCID: PMC5751976 DOI: 10.1371/journal.pone.0188509] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 11/08/2017] [Indexed: 02/06/2023] Open
Abstract
Nothosaurs form a subclade of the secondarily marine Sauropterygia that was well represented in late Early to early Late Triassic marine ecosystems. Here we present and discuss the internal skull anatomy of the small piscivorous nothosaur Nothosaurus marchicus from coastal to shallow marine Lower Muschelkalk deposits (Anisian) of Winterswijk, The Netherlands, which represents the oldest sauropterygian endocast visualized to date. The cranial endocast is only partially encapsulated by ossified braincase elements. Cranial flattening and lateral constriction by hypertrophied temporal musculature grant the brain a straight, tubular geometry that lacks particularly well-developed cerebral lobes but does potentially involve distinguishable optic lobes, suggesting vision may have represented an important sense during life. Despite large orbit size, the circuitous muscular pathway linking the basisphenoidal and orbital regions indicates poor oculomotor performance. This suggests a rather fixed ocular orientation, although eye placement and neck manoeuvrability could have enabled binocular if not stereoscopic vision. The proportionally large dorsal projection of the braincase endocast towards the well-developed pineal foramen advocates substantial dependence on the corresponding pineal system in vivo. Structures corroborating keen olfactory or acoustic senses were not identified. The likely atrophied vomeronasal organ argues against the presence of a forked tongue in Nothosaurus, and the relative positioning of external and internal nares contrasts respiratory configurations proposed for pistosauroid sauropterygians. The antorbital domain furthermore accommodates a putative rostral sensory plexus and pronounced lateral nasal glands that were likely exapted as salt glands. Previously proposed nothosaurian 'foramina eustachii' arose from architectural constraints on braincase development rather than representing functional foramina. Several modifications to brain shape and accessory organs were achieved through heterochronic development of the cranium, particularly the braincase. In summary, the cranium of Nothosaurus marchicus reflects important physiological and neurosensory adaptations that enabled the group's explosive invasion of shallow marine habitats in the late Early Triassic.
Collapse
Affiliation(s)
- Dennis F. A. E. Voeten
- European Synchrotron Radiation Facility, Grenoble, France
- Department of Zoology and Laboratory of Ornithology, Palacký University, Olomouc, Czech Republic
| | - Tobias Reich
- University of Zurich, Palaeontological Institute and Museum, Zurich, Switzerland
| | - Ricardo Araújo
- Institute for Plasma Research and Nuclear Fusion, Technical University of Lisbon, Lisbon, Portugal
- Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Berlin, Germany
- Institute of Evolutionary Sciences, University of Montpellier 2, Montpellier, France
| | - Torsten M. Scheyer
- University of Zurich, Palaeontological Institute and Museum, Zurich, Switzerland
| |
Collapse
|
43
|
Tucker AS. Major evolutionary transitions and innovations: the tympanic middle ear. Philos Trans R Soc Lond B Biol Sci 2017; 372:rstb.2015.0483. [PMID: 27994124 PMCID: PMC5182415 DOI: 10.1098/rstb.2015.0483] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2016] [Indexed: 01/08/2023] Open
Abstract
One of the most amazing transitions and innovations during the evolution of mammals was the formation of a novel jaw joint and the incorporation of the original jaw joint into the middle ear to create the unique mammalian three bone/ossicle ear. In this review, we look at the key steps that led to this change and other unusual features of the middle ear and how developmental biology has been providing an understanding of the mechanisms involved. This starts with an overview of the tympanic (air-filled) middle ear, and how the ear drum (tympanic membrane) and the cavity itself form during development in amniotes. This is followed by an investigation of how the ear is connected to the pharynx and the relationship of the ear to the bony bulla in which it sits. Finally, the novel mammalian jaw joint and versatile dentary bone will be discussed with respect to evolution of the mammalian middle ear.This article is part of the themed issue 'Evo-devo in the genomics era, and the origins of morphological diversity'.
Collapse
Affiliation(s)
- Abigail S Tucker
- Department of Craniofacial Development and Stem Cell Biology, King's College London, Floor 27 Guy's Hospital, London Bridge, London SE1 9RT, UK
| |
Collapse
|
44
|
Scherrer R, Hurtado A, Garcia Machado E, Debiais-Thibaud M. MicroCT survey of larval skeletal mineralization in the Cuban gar Atractosteus tristoechus (Actinopterygii; Lepisosteiformes). ACTA ACUST UNITED AC 2017. [DOI: 10.18563/m3.3.3.e3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
45
|
Pierce SE, Williams M, Benson RBJ. Virtual reconstruction of the endocranial anatomy of the early Jurassic marine crocodylomorph Pelagosaurus typus (Thalattosuchia). PeerJ 2017; 5:e3225. [PMID: 28462034 PMCID: PMC5407279 DOI: 10.7717/peerj.3225] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 03/24/2017] [Indexed: 12/11/2022] Open
Abstract
Thalattosuchians were highly specialised aquatic archosaurs of the Jurassic and Early Cretaceous, and represent a peak of aquatic adaptation among crocodylomorphs. Relatively little is known of their endocranial anatomy or its relevance for the evolution of sensory systems, physiology, and other aspects of biology. Nevertheless, such data have significance for two reasons: (1) thalattosuchians represent an important data point regarding adaptation to marine life in tetrapods; and (2) as early-diverging members of the crocodylian stem-lineage, thalattosuchians provide information on the evolutionary assembly of the brain and other endocranial structures in crocodylomorphs. Here we use µCT data to virtually reconstruct the endocranial anatomy of Pelagosaurus typus, an early thalattosuchian with plesiomorphic traits of relevance to the split between the two major subgroups: Teleosauroidea and Metriorhynchoidea. Interpretation of these data in a broad comparative context indicate that several key endocranial features may be unique to thalattosuchians, including: a pyramidal morphology of the semicircular canals, the presence of an elongate endosseous cochlear duct that may indicate enhanced hearing ability, the presence of large, paired canals extending anteriorly from an enlarged pituitary fossa, a relatively straight brain (possibly due to the presence of large, laterally placed orbits), and an enlarged venous sinus projecting dorsally from the endocast that is confluent with the paratympanic sinus system. Notably, we document a large expansion of the nasal cavity anterior to the orbits in Pelagosaurus as an osteological correlate of an enlarged salt gland previously only documented in Late Jurassic metriorhynchoids. This is the first anatomical evidence of this structure in early thalattosuchians. Pelagosaurus also shares the presence of paired olfactory bulbs with metriorhynchoids, and shows an enlarged cerebrum, which may also be present in teleosauroids. Taken together, our findings indicate that physiological and sensory adaptations to marine life occurred early in thalattosuchian evolution, predating the origins of flippers, tail flukes, and hydrodynamic body forms seen later in metriorhynchoids.
Collapse
Affiliation(s)
- Stephanie E Pierce
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, United States
| | - Megan Williams
- Department of Earth Sciences, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
46
|
Young BA. Anatomical influences on internally coupled ears in reptiles. BIOLOGICAL CYBERNETICS 2016; 110:255-261. [PMID: 27699482 DOI: 10.1007/s00422-016-0699-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 09/17/2016] [Indexed: 05/22/2023]
Abstract
Many reptiles, and other vertebrates, have internally coupled ears in which a patent anatomical connection allows pressure waves generated by the displacement of one tympanic membrane to propagate (internally) through the head and, ultimately, influence the displacement of the contralateral tympanic membrane. The pattern of tympanic displacement caused by this internal coupling can give rise to novel sensory cues. The auditory mechanics of reptiles exhibit more anatomical variation than in any other vertebrate group. This variation includes structural features such as diverticula and septa, as well as coverings of the tympanic membrane. Many of these anatomical features would likely influence the functional significance of the internal coupling between the tympanic membranes. Several of the anatomical components of the reptilian internally coupled ear are under active motor control, suggesting that in some reptiles the auditory system may be more dynamic than previously recognized.
Collapse
Affiliation(s)
- Bruce A Young
- Department of Anatomy, Kirksville College of Osteopathic Medicine, A.T. Still University, Kirksville, MO, 63501, USA.
| |
Collapse
|
47
|
Carr CE, Christensen-Dalsgaard J, Bierman H. Coupled ears in lizards and crocodilians. BIOLOGICAL CYBERNETICS 2016; 110:291-302. [PMID: 27734148 PMCID: PMC6003244 DOI: 10.1007/s00422-016-0698-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Accepted: 09/17/2016] [Indexed: 05/22/2023]
Abstract
Lizard ears are coupled across the pharynx, and are very directional. In consequence all auditory responses should be directional, without a requirement for computation of sound source location. Crocodilian ears are connected through sinuses, and thus less tightly coupled. Coupling may improve the processing of low-frequency directional signals, while higher frequency signals appear to be progressively uncoupled. In both lizards and crocodilians, the increased directionality of the coupled ears leads to an effectively larger head and larger physiological range of ITDs. This increased physiological range is reviewed in the light of current theories of sound localization.
Collapse
Affiliation(s)
- Catherine E Carr
- Department of Biology, University of Maryland College Park, College Park, MD, 20742, USA.
| | | | - Hilary Bierman
- Department of Biology, University of Maryland College Park, College Park, MD, 20742, USA
| |
Collapse
|
48
|
Brusatte SL, Muir A, Young MT, Walsh S, Steel L, Witmer LM. The Braincase and Neurosensory Anatomy of an Early Jurassic Marine Crocodylomorph: Implications for Crocodylian Sinus Evolution and Sensory Transitions. Anat Rec (Hoboken) 2016; 299:1511-1530. [DOI: 10.1002/ar.23462] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 05/28/2016] [Accepted: 06/07/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Stephen L. Brusatte
- School of GeoSciencesUniversity of Edinburgh, Grant InstituteJames Hutton RoadEdinburgh ScotlandEH9 3FE United Kingdom
- National Museums ScotlandChambers StreetEdinburgh ScotlandEH1 1JF United Kingdom
| | - Amy Muir
- School of GeoSciencesUniversity of Edinburgh, Grant InstituteJames Hutton RoadEdinburgh ScotlandEH9 3FE United Kingdom
| | - Mark T. Young
- School of GeoSciencesUniversity of Edinburgh, Grant InstituteJames Hutton RoadEdinburgh ScotlandEH9 3FE United Kingdom
| | - Stig Walsh
- School of GeoSciencesUniversity of Edinburgh, Grant InstituteJames Hutton RoadEdinburgh ScotlandEH9 3FE United Kingdom
- National Museums ScotlandChambers StreetEdinburgh ScotlandEH1 1JF United Kingdom
| | - Lorna Steel
- Department of Earth SciencesNatural History MuseumCromwell RoadLondon EnglandSW7 5BD United Kingdom
| | - Lawrence M. Witmer
- Department of Biomedical Sciences Heritage College of Osteopathic MedicineOhio UniversityAthens Ohio
| |
Collapse
|
49
|
Montefeltro FC, Andrade DV, Larsson HCE. The evolution of the meatal chamber in crocodyliforms. J Anat 2016; 228:838-63. [PMID: 26843096 DOI: 10.1111/joa.12439] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2015] [Indexed: 11/27/2022] Open
Abstract
The unique outer ear of crocodylians consists of a large meatal chamber (MC) concealed by a pair of muscular earlids that shape a large part of the animal's head. This chamber is limited medially by the enlarged tympanic membrane. Yet, the anatomy of this distinctive and complex region is underexplored and its evolutionary history untraced. The osteology and soft tissues of the MC in extant crocodylians was analysed to describe it and establish osteological correlates within this region. A broad survey of the osteological correlates was conducted in major clades of fossil crocodyliforms to estimate evolutionary trends of the MC. The reorganization of the MC at the origin of crocodyliforms includes characters also present in more basal taxa such as 'sphenosuchians' as well as unique traits of crocodyliforms. Three major patterns are recognized in the MC of basal mesoeucrocodylians. The distinct 'thalattosuchian pattern' indicates that extensive modifications occurred in this clade of aquatic fossil crocodyliforms, even when multiple alternative phylogenetic positions are taken into account. Some traits already established in putative closely related clades are absent or modified in this group. The 'basal notosuchian/sebecian pattern' is widespread among basal metasuchians, and establishes for the first time characters maintained later in neosuchians and extant forms. The 'advanced notosuchian pattern' includes modifications of the MC possibly related to a terrestrial lifestyle and potentially a structure analogous to the mammalian pinna. The main variation in the MC of neosuchians is associated with the homoplastic secondary opening of the cranioquadrate passage. The inferred phylogenetic trends in the crocodyliform MC suggest the great anatomical disparity in this region followed a complex evolutionary pattern, and tympanic hearing played an important role in the origin and diversification of Crocodyliformes.
Collapse
Affiliation(s)
- Felipe C Montefeltro
- Departamento de Biologia e Zootecnia, FEIS-UNESP, Ilha Solteira, São Paulo, Brazil
| | - Denis V Andrade
- Departamento de Zoologia, UNESP, Rio Claro, São Paulo, Brazil
| | | |
Collapse
|
50
|
Sobral G, Müller J. Archosaurs and Their Kin: The Ruling Reptiles. EVOLUTION OF THE VERTEBRATE EAR 2016. [DOI: 10.1007/978-3-319-46661-3_10] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|