1
|
Jurić I, Kelam N, Racetin A, Filipović N, Čarić D, Rošin M, Vukojević K. WNT Signaling Factors as Potential Synovial Inflammation Moderators in Patients with Hip Osteoarthritis. Biomedicines 2025; 13:995. [PMID: 40299569 PMCID: PMC12025112 DOI: 10.3390/biomedicines13040995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 04/17/2025] [Accepted: 04/18/2025] [Indexed: 05/01/2025] Open
Abstract
Background: The main feature of osteoarthritis (OA) is the deterioration of articular cartilage, but numerous studies have demonstrated the role of synovial inflammation in the early stages of the disease, leading to further progression of OA. The WNT signaling pathway is involved in numerous activities in joint tissue, but there is a lack of evidence considering the role of WNT in OA synovitis. Our research aims to investigate the expression of WNT Family Member 5A/B (WNT5A/B), β-catenin, acetyl-α-tubulin, Dishevelled-1 (DVL-1), and Inversin (INV) in the synovial membrane of osteoarthritis (OA) hips. Methods: The immunohistochemical expressions of the aforementioned proteins in the synovial membrane were analyzed and compared with samples of control group participants with fractured femoral necks. Results: The immunoexpression of acetyl-α-tubulin was significantly increased in the intima (p < 0.0001) and subintima (p < 0.0001) of the group with OA compared with the intima and subintima of the control group. At the same time, acetyl-α-tubulin was also more highly expressed in the intima of the OA group than in the subintima of the OA group (p < 0.05); we found the same expression pattern in the control group (p < 0.0001). The differential analysis of the GEO dataset did not show significant differences between the osteoarthritis (OA) and control groups in the expression of TUBA1A. β-catenin was significantly increased in the subintima (p < 0.01) of the group with OA compared to the subintima of the control group. WNT expression has significantly higher positivity in the subintima than in the intima, especially in the control group (p < 0.01). WNT5A and WNT5B were significantly down-regulated in OA compared to the control in the differential analysis of the GEO dataset. The expression of INV and DVL-1 in our study and the differential analysis of the GEO dataset did not differ significantly between the osteoarthritis (OA) and control groups. Conclusions: Based on our results, we suggest that acetyl-α-tubulin and β-catenin might be involved in synovial membrane inflammation in OA and serve as potential therapeutic targets.
Collapse
Affiliation(s)
- Ivana Jurić
- Department of Emergency Medicine, University Hospital of Split, Spinciceva 1, 21000 Split, Croatia;
| | - Nela Kelam
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, Soltanska 2, 21000 Split, Croatia; (N.K.); (A.R.); (N.F.)
| | - Anita Racetin
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, Soltanska 2, 21000 Split, Croatia; (N.K.); (A.R.); (N.F.)
| | - Natalija Filipović
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, Soltanska 2, 21000 Split, Croatia; (N.K.); (A.R.); (N.F.)
| | - Davor Čarić
- Surgery Department, Orthopaedics and Traumatology Division, University Hospital of Split, Spinciceva 1, 21000 Split, Croatia; (D.Č.); (M.R.)
| | - Matko Rošin
- Surgery Department, Orthopaedics and Traumatology Division, University Hospital of Split, Spinciceva 1, 21000 Split, Croatia; (D.Č.); (M.R.)
| | - Katarina Vukojević
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, Soltanska 2, 21000 Split, Croatia; (N.K.); (A.R.); (N.F.)
- Center for Translational Research in Biomedicine, University of Split School of Medicine, Soltanska 2, 21000 Split, Croatia
- Mediterranean Institute for Life Sciences, University of Split, Meštrovićevo Šetalište 45, 21000 Split, Croatia
| |
Collapse
|
2
|
Fan X, Ong LJY, Sun AR, Prasadam I. From polarity to pathology: Decoding the role of cell orientation in osteoarthritis. J Orthop Translat 2024; 49:62-73. [PMID: 39430130 PMCID: PMC11488446 DOI: 10.1016/j.jot.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 09/10/2024] [Accepted: 09/14/2024] [Indexed: 10/22/2024] Open
Abstract
UNLABELLED Cell polarity refers to the orientation of tissue and organelles within a cell and the direction of its function. It is one of the most critical characteristics of metazoans. The development, growth, and functional tissue distribution are closely related to holistic tissue or organ homeostasis. However, the connection between cell polarity and osteoarthritis (OA) is less well-known. In OA, multiple chondrocyte clusters and tissue disorganisation can be observed in the degraded cartilage tissue. The excessive upregulation of the planar cell polarity (PCP) signalling pathway leads to the loss of cell polarity and organisation in OA progression and aetiology. Recent research has become increasingly aware of the importance of cell polarity and its correlation with OA. Several cell polarity-related treatments have shed light on OA. A thorough understanding of cell polarity and OA would provide more insights for future investigations to treat this worldwide disease. THE TRANSLATIONAL POTENTIAL OF THIS ARTICLE Understanding cell polarity, associated signalling pathways, organelle changes, and cell movement in the development of OA could lead to advances in precision medicine and enhanced treatment strategies for OA patients.
Collapse
Affiliation(s)
- Xiwei Fan
- Department of Orthopaedic Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
- School of Mechanical, Medical & Process Engineering, Queensland University of Technology, Brisbane, Australia
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Australia
| | - Louis Jun Ye Ong
- School of Mechanical, Medical & Process Engineering, Queensland University of Technology, Brisbane, Australia
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Australia
- Max Planck Queensland Centre (MPQC) for the Materials Science of Extracellular Matrices, Queensland University of Technology, Brisbane, Australia
| | - Antonia RuJia Sun
- School of Mechanical, Medical & Process Engineering, Queensland University of Technology, Brisbane, Australia
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Australia
| | - Indira Prasadam
- School of Mechanical, Medical & Process Engineering, Queensland University of Technology, Brisbane, Australia
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
3
|
González-Guede I, López-Ramos M, Rodríguez-Rodríguez L, Abasolo L, Mucientes A, Fernández-Gutiérrez B. Dysregulation of Glypicans and Notum in Osteoarthritis: Plasma Levels, Bone Marrow Mesenchymal Stromal Cells and Osteoblasts. Cells 2024; 13:852. [PMID: 38786073 PMCID: PMC11119733 DOI: 10.3390/cells13100852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024] Open
Abstract
In this study of the alterations of Glypicans 1 to 6 (GPCs) and Notum in plasma, bone marrow mesenchymal stromal cells (BM-MSCs) and osteoblasts in Osteoarthritis (OA), the levels of GPCs and Notum in the plasma of 25 patients and 24 healthy subjects were measured. In addition, BM-MSCs from eight OA patients and eight healthy donors were cultured over a period of 21 days using both a culture medium and an osteogenic medium. Protein and gene expression levels of GPCs and Notum were determined using ELISA and qPCR at 0, 7, 14 and 21 days. GPC5 and Notum levels decreased in the plasma of OA patients, while the BM-MSCs of OA patients showed downexpression of GPC6 and upregulation of Notum. A decrease in GPC5 and Notum proteins and an increase in GPC3 were found. During osteogenic differentiation, elevated GPCs 2, 4, 5, 6 and Notum mRNA levels and decreased GPC3 were observed in patients with OA. Furthermore, the protein levels of GPC2, GPC5 and Notum decreased, while the levels of GPC3 increased. Glypicans and Notum were altered in BM-MSCs and during osteogenic differentiation from patients with OA. The alterations found point to GPC5 and Notum as new candidate biomarkers of OA pathology.
Collapse
Affiliation(s)
- Irene González-Guede
- UGC de Reumatología, Hospital Clínico San Carlos, IdISSC, 28040 Madrid, Spain; (I.G.-G.); (M.L.-R.); (L.R.-R.); (L.A.); (A.M.)
| | - María López-Ramos
- UGC de Reumatología, Hospital Clínico San Carlos, IdISSC, 28040 Madrid, Spain; (I.G.-G.); (M.L.-R.); (L.R.-R.); (L.A.); (A.M.)
| | - Luis Rodríguez-Rodríguez
- UGC de Reumatología, Hospital Clínico San Carlos, IdISSC, 28040 Madrid, Spain; (I.G.-G.); (M.L.-R.); (L.R.-R.); (L.A.); (A.M.)
| | - Lydia Abasolo
- UGC de Reumatología, Hospital Clínico San Carlos, IdISSC, 28040 Madrid, Spain; (I.G.-G.); (M.L.-R.); (L.R.-R.); (L.A.); (A.M.)
| | - Arkaitz Mucientes
- UGC de Reumatología, Hospital Clínico San Carlos, IdISSC, 28040 Madrid, Spain; (I.G.-G.); (M.L.-R.); (L.R.-R.); (L.A.); (A.M.)
| | - Benjamín Fernández-Gutiérrez
- UGC de Reumatología, Hospital Clínico San Carlos, IdISSC, 28040 Madrid, Spain; (I.G.-G.); (M.L.-R.); (L.R.-R.); (L.A.); (A.M.)
- Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain
| |
Collapse
|
4
|
Fonseca LN, Bolívar-Moná S, Agudelo T, Beltrán LD, Camargo D, Correa N, Del Castillo MA, Fernández de Castro S, Fula V, García G, Guarnizo N, Lugo V, Martínez LM, Melgar V, Peña MC, Pérez WA, Rodríguez N, Pinzón A, Albarracín SL, Olaya M, Gutiérrez-Gómez ML. Cell surface markers for mesenchymal stem cells related to the skeletal system: A scoping review. Heliyon 2023; 9:e13464. [PMID: 36865479 PMCID: PMC9970931 DOI: 10.1016/j.heliyon.2023.e13464] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/26/2023] [Accepted: 01/31/2023] [Indexed: 02/12/2023] Open
Abstract
Multipotent mesenchymal stromal cells (MSCs) have been described as bone marrow stromal cells, which can form cartilage, bone or hematopoietic supportive stroma. In 2006, the International Society for Cell Therapy (ISCT) established a set of minimal characteristics to define MSCs. According to their criteria, these cells must express CD73, CD90 and CD105 surface markers; however, it is now known they do not represent true stemness epitopes. The objective of the present work was to determine the surface markers for human MSCs associated with skeletal tissue reported in the literature (1994-2021). To this end, we performed a scoping review for hMSCs in axial and appendicular skeleton. Our findings determined the most widely used markers were CD105 (82.9%), CD90 (75.0%) and CD73 (52.0%) for studies performed in vitro as proposed by the ISCT, followed by CD44 (42.1%), CD166 (30.9%), CD29 (27.6%), STRO-1 (17.7%), CD146 (15.1%) and CD271 (7.9%) in bone marrow and cartilage. On the other hand, only 4% of the articles evaluated in situ cell surface markers. Even though most studies use the ISCT criteria, most publications in adult tissues don't evaluate the characteristics that establish a stem cell (self-renewal and differentiation), which will be necessary to distinguish between a stem cell and progenitor populations. Collectively, MSCs require further understanding of their characteristics if they are intended for clinical use.
Collapse
Affiliation(s)
- Luisa Nathalia Fonseca
- Master Student in Biological Sciences - School of Science, Pontificia Universidad Javeriana. Bogotá, Colombia
| | - Santiago Bolívar-Moná
- Medical Student - Stem Cell Research Group – School of Medicine, Pontificia Universidad Javeriana. Bogotá, Colombia
| | - Tatiana Agudelo
- Medical Student - Stem Cell Research Group – School of Medicine, Pontificia Universidad Javeriana. Bogotá, Colombia
| | - Liz Daniela Beltrán
- Medical Student - Stem Cell Research Group – School of Medicine, Pontificia Universidad Javeriana. Bogotá, Colombia
| | - Daniel Camargo
- Medical Student - Stem Cell Research Group – School of Medicine, Pontificia Universidad Javeriana. Bogotá, Colombia
| | - Nestor Correa
- Medical Student - Stem Cell Research Group – School of Medicine, Pontificia Universidad Javeriana. Bogotá, Colombia
| | - María Alexandra Del Castillo
- Medical Student - Stem Cell Research Group – School of Medicine, Pontificia Universidad Javeriana. Bogotá, Colombia
| | | | - Valeria Fula
- Medical Student - Stem Cell Research Group – School of Medicine, Pontificia Universidad Javeriana. Bogotá, Colombia
| | - Gabriela García
- Medical Student - Stem Cell Research Group – School of Medicine, Pontificia Universidad Javeriana. Bogotá, Colombia
| | - Natalia Guarnizo
- Medical Student - Stem Cell Research Group – School of Medicine, Pontificia Universidad Javeriana. Bogotá, Colombia
| | - Valentina Lugo
- Medical Student - Stem Cell Research Group – School of Medicine, Pontificia Universidad Javeriana. Bogotá, Colombia
| | - Liz Mariana Martínez
- Medical Student - Stem Cell Research Group – School of Medicine, Pontificia Universidad Javeriana. Bogotá, Colombia
| | - Verónica Melgar
- Medical Student - Stem Cell Research Group – School of Medicine, Pontificia Universidad Javeriana. Bogotá, Colombia
| | - María Clara Peña
- Medical Student - Stem Cell Research Group – School of Medicine, Pontificia Universidad Javeriana. Bogotá, Colombia
| | - Wilfran Arbey Pérez
- Medical Student - Stem Cell Research Group – School of Medicine, Pontificia Universidad Javeriana. Bogotá, Colombia
| | - Nicolás Rodríguez
- Medical Student - Stem Cell Research Group – School of Medicine, Pontificia Universidad Javeriana. Bogotá, Colombia
| | - Andrés Pinzón
- Department of Orthopedics and Traumatology - School of Medicine, Pontificia Universidad Javeriana. Bogotá, Colombia
| | - Sonia Luz Albarracín
- Department of Nutrition and Biochemistry -School of Science, Pontificia Universidad Javeriana. Bogotá, Colombia
| | - Mercedes Olaya
- Department of Pathology - School of Medicine, Pontificia Universidad Javeriana. Bogotá, Colombia
| | - María Lucía Gutiérrez-Gómez
- Department of Morphology - School of Medicine, Pontificia Universidad Javeriana. Bogotá, Colombia
- Institute of Human Genetics - School of Medicine, Pontificia Universidad Javeriana. Bogotá, Colombia
| |
Collapse
|
5
|
Fu S, Yan M, Fan Q, Xu J. Salidroside promotes osteoblast proliferation and differentiation via the activation of AMPK to inhibit bone resorption of knee osteoarthritis mice. Tissue Cell 2022; 79:101917. [DOI: 10.1016/j.tice.2022.101917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 08/31/2022] [Accepted: 08/31/2022] [Indexed: 11/26/2022]
|
6
|
López-Delgado L, Del Real A, Sañudo C, Garcia-Ibarbia C, Laguna E, Menendez G, Garcia-Montesinos B, Santurtun A, Merino J, Pérez-Núñez MI, Riancho JA. Osteogenic capacity of mesenchymal stem cells from patients with osteoporotic hip fractures in vivo. Connect Tissue Res 2022; 63:243-255. [PMID: 33618587 DOI: 10.1080/03008207.2021.1894140] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE Human mesenchymal stem cells (MSCs) have the ability to differentiate into bone-forming osteoblasts. The aim of this study was to elucidate if MSCs from patients with OP show a senescent phenotype and explore their bone-forming ability in vivo. MATERIALS AND METHODS MSCs from patients with OP and controls with osteoarthritis (OA) were implanted into the subcutaneous tissue of immunodeficient mice for histological analysis and expression of human genes by RT-PCR. The expression of senescence-associated phenotype (SASP) genes, as well as p16, p21, and galactosidase, was studied in cultures of MSCs. RESULTS In vivo bone formation was evaluated in 103 implants (47 OP, 56 OA). New bone was observed in 45% of the implants with OP cells and 46% of those with OA cells (p = 0.99). The expression of several bone-related genes (collagen, osteocalcin, alkaline phosphatase, sialoprotein) was also similar in both groups. There were no differences between groups in SASP gene expression, p16, and p21 expression, or in senescence-associated galactosidase activity. CONCLUSION Senescence markers and the osteogenic capacity in vivo of MSCs from patients with OP are not inferior to that of cells from controls of similar age with OA. This supports the interest of future studies to evaluate the potential use of autologous MSCs from OP patients in bone regeneration procedures.
Collapse
Affiliation(s)
- Laura López-Delgado
- Department of Internal Medicine, Hospital Universitario Marqués De Valdecilla, University of Cantabria, IDIVAL, Santander, Spain
| | - Alvaro Del Real
- Department of Internal Medicine, Hospital Universitario Marqués De Valdecilla, University of Cantabria, IDIVAL, Santander, Spain
| | - Carolina Sañudo
- Department of Internal Medicine, Hospital Universitario Marqués De Valdecilla, University of Cantabria, IDIVAL, Santander, Spain
| | - Carmen Garcia-Ibarbia
- Department of Internal Medicine, Hospital Universitario Marqués De Valdecilla, University of Cantabria, IDIVAL, Santander, Spain
| | - Esther Laguna
- Department of Traumatology and Orthopedic Surgery, Hospital Universitario Marqués De Valdecilla, University of Cantabria, IDIVAL, Santander, Spain
| | - Guillermo Menendez
- Department of Traumatology and Orthopedic Surgery, Hospital Universitario Marqués De Valdecilla, University of Cantabria, IDIVAL, Santander, Spain
| | | | - Ana Santurtun
- Unit of Legal Medicine, University of Cantabria, IDIVAL, Santander, Spain
| | - Jesus Merino
- Department of Molecular Biology, University of Cantabria, IDIVAL, Santander, Spain
| | - María I Pérez-Núñez
- Department of Traumatology and Orthopedic Surgery, Hospital Universitario Marqués De Valdecilla, University of Cantabria, IDIVAL, Santander, Spain
| | - Jose A Riancho
- Department of Internal Medicine, Hospital Universitario Marqués De Valdecilla, University of Cantabria, IDIVAL, Santander, Spain
| |
Collapse
|
7
|
Wang X, Guan Y, Xiang S, Clark KL, Alexander PG, Simonian LE, Deng Y, Lin H. Role of Canonical Wnt/β-Catenin Pathway in Regulating Chondrocytic Hypertrophy in Mesenchymal Stem Cell-Based Cartilage Tissue Engineering. Front Cell Dev Biol 2022; 10:812081. [PMID: 35141220 PMCID: PMC8820467 DOI: 10.3389/fcell.2022.812081] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/06/2022] [Indexed: 01/14/2023] Open
Abstract
In the past 3 decades, the cartilage repair potential of mesenchymal stromal cells, or mesenchymal stem cells (MSCs), has been widely examined in animal studies. Unfortunately, the phenotype and physical properties of MSC-derived cartilage tissue are not comparable to native hyaline cartilage. In particular, chondrocytic hypertrophy, a phenotype that is not observed in healthy hyaline cartilage, is concomitant with MSC chondrogenesis. Given that hypertrophic chondrocytes potentially undergo apoptosis or convert into osteoblasts, this undesired phenotype needs to be prevented or minimized before MSCs can be used to repair cartilage injuries in the clinic. In this review, we first provide an overview of chondrocytic hypertrophy and briefly summarize current methods for suppressing hypertrophy in MSC-derived cartilage. We then highlight recent progress on modulating the canonical Wnt/β-catenin pathway for inhibiting hypertrophy. Specially, we discuss the potential crosstalk between Wnt/β-catenin with other pathways in regulating hypertrophy. Lastly, we explore future perspectives to further understand the role of Wnt/β-catenin in chondrocytic hypertrophy.
Collapse
Affiliation(s)
- Xueqi Wang
- Department of Nephrology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yiming Guan
- Department of Nephrology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Shiyu Xiang
- Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Karen L. Clark
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Peter G. Alexander
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Lauren E. Simonian
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Yuhao Deng
- Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital, Shanghai Jiaotong University, Shanghai, China
- *Correspondence: Hang Lin, ; Yuhao Deng,
| | - Hang Lin
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- *Correspondence: Hang Lin, ; Yuhao Deng,
| |
Collapse
|
8
|
Abstract
Knee osteoarthritis is a degenerative condition characterized by progressive cartilage degradation, subchondral damage, and bone remodelling. Among the approaches implemented to achieve symptomatic and functional improvements, injection treatments have gained increasing attention due to the possibility of intra-articular delivery with reduced side effects compared to systemic therapies. In addition to well-established treatment options such as hyaluronic acid (HA), cortico-steroids (CS) and oxygen-ozone therapy, many other promising products have been employed in the last decades such as polydeoxyribonucleotide (PDRN) and biologic agents such as platelet-rich plasma (PRP) and mesenchymal stem cells (MSCs). Moreover, ultrasound-guided intra-meniscal injection and X-ray-guided subchondral injection techniques have been introduced into clinical practice. Even when not supported by high evidence consensus, intra-articular CS and HA injections have gained precise indications for symptomatic relief and clinical improvement in OA. Biological products are strongly supported by in vitro evidence but there is still a lack of robust clinical evidence. PRP and MSCs seem to relieve OA symptoms through a regulation of the joint homeostasis, even if their capability to restore articular cartilage is still to be proved in vivo. Due to increasing interest in the subchondral bone pathology, subchondral injections have been developed with promising results in delaying joint replacement. Nevertheless, due to their recent development and the heterogeneity of the injected products (biologic agents or calcium phosphate), this approach still lacks strong enough evidence to be fully endorsed. Combined biological treatments, nano-molecular approaches, monoclonal antibodies and ‘personalized’ target therapies are currently under development or under investigation with the aim of expanding our armamentarium against knee OA.
Cite this article: EFORT Open Rev 2021;6:501-509. DOI: 10.1302/2058-5241.6.210026
Collapse
Affiliation(s)
- Gerardo Fusco
- Humanitas University, Department of Biomedical Sciences, Milan, Italy.,IRCCS Humanitas Research Hospital, Milan, Italy.,These authors contributed equally to the article and should both be considered first authors
| | - Francesco M Gambaro
- Humanitas University, Department of Biomedical Sciences, Milan, Italy.,IRCCS Humanitas Research Hospital, Milan, Italy.,These authors contributed equally to the article and should both be considered first authors
| | - Berardo Di Matteo
- Humanitas University, Department of Biomedical Sciences, Milan, Italy.,First Moscow State Medical University - Sechenov University, Moscow, Russia
| | - Elizaveta Kon
- Humanitas University, Department of Biomedical Sciences, Milan, Italy.,IRCCS Humanitas Research Hospital, Milan, Italy
| |
Collapse
|
9
|
Equine Mesenchymal Stem/Stromal Cells Freeze-Dried Secretome (Lyosecretome) for the Treatment of Musculoskeletal Diseases: Production Process Validation and Batch Release Test for Clinical Use. Pharmaceuticals (Basel) 2021; 14:ph14060553. [PMID: 34200627 PMCID: PMC8226765 DOI: 10.3390/ph14060553] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/31/2021] [Accepted: 06/08/2021] [Indexed: 02/07/2023] Open
Abstract
In the last decades, it has been demonstrated that the regenerative therapeutic efficacy of mesenchymal stromal cells is primarily due to the secretion of soluble factors and extracellular vesicles, collectively known as secretome. In this context, our work described the preparation and characterization of a freeze-dried secretome (Lyosecretome) from adipose tissue-derived mesenchymal stromal cells for the therapy of equine musculoskeletal disorder. An intraarticular injectable pharmaceutical powder has been formulated, and the technological process has been validated in an authorized facility for veterinary clinical-use medicinal production. Critical parameters for quality control and batch release have been identified regarding (i) physicochemical properties; (ii) extracellular vesicle morphology, size distribution, and surface biomarker; (iii) protein and lipid content; (iv) requirements for injectable pharmaceutical dosage forms such as sterility, bacterial endotoxin, and Mycoplasma; and (v) in vitro potency tests, as anti-elastase activity and proliferative activity on musculoskeletal cell lines (tenocytes and chondrocytes) and mesenchymal stromal cells. Finally, proteins putatively responsible for the biological effects have been identified by Lyosecretome proteomic investigation: IL10RA, MXRA5, RARRES2, and ANXA1 modulate the inflammatory process RARRES2, NOD1, SERPINE1, and SERPINB9 with antibacterial activity. The work provides a proof-of-concept for the manufacturing of clinical-grade equine freeze-dried secretome, and prototypes are now available for safety and efficacy clinical trials in the treatment of equine musculoskeletal diseases
Collapse
|
10
|
Song D, Wu ZS, Xu Q, Wang K, Xu MT, Ha CZ, Zhang C, Wang DW. LRRC17 regulates the bone metabolism of human bone marrow mesenchymal stem cells from patients with idiopathic necrosis of femoral head through Wnt signaling pathways: A preliminary report. Exp Ther Med 2021; 22:666. [PMID: 33986831 PMCID: PMC8112125 DOI: 10.3892/etm.2021.10098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 03/19/2021] [Indexed: 11/06/2022] Open
Abstract
Idiopathic necrosis of the femoral head (INFH) is a common disease with unknown cause. Its successful treatment relies on the repair of the necrotic bone. The application of autologous mesenchymal stem cells (MSCs) has shown great promise in saving the patients from undergoing total hip arthroplasty. Leucine-rich repeat-containing 17 (LRRC17) is less expressed in patients with femoral head necrosis and LRRC17 can inhibit bone degradation. However, it remains unknown whether LRRC17 plays a role in the pathogenesis of INFH. The present study aimed to investigate the potential role and mechanism of LRRC17 in the pathogenesis and treatment of INFH. It was found that despite the similar cell morphology and MSC surface marker expressions of human bone marrow MSCs (BMSCs) isolated from patients with INFH (INFH-hBMSC) and femoral neck fracture (FNF) (FNF-hBMSC), INFH-hBMSC had higher percentage of apoptosis (P<0.05), as well as lower osteogenic potential and higher adipogenic potential (both P<0.05). However, there was no difference in cell proliferation between FNF-hBMSC and INFH-hBMSC (P>0.05). It was also confirmed that the expression of LRRC17 was lower in the bone tissue and hBMSCs from patients with INFH compared with patients with FNF (P<0.05). Overexpression of LRRC17 promoted osteogenesis and inhibited the adipogenesis in hBMSCs, accompanied with the increase of Wnt3a and β-catenin expressions, and the decrease of Wnt5a and receptor activator of nuclear factor κ-B ligand (Rankl) expressions (all, P<0.05). Furthermore, knockout of LRRC17 in hBMSCs inhibited the expression levels of osteogenic and promoted adipogenic markers, while decreasing Wnt3a and β-catenin expressions, and increasing Wnt5a and Rankl expressions (all, P<0.05). The present preliminary study suggested that imbalanced bone metabolism may be involved in the pathogenesis of INFH. The modulation of the LRRC17 gene may delay or even restore the balance of osteogenic and adipogenic differentiation in autologous BMSCs derived from patients with INFH, providing a new target for the treatment of INFH.
Collapse
Affiliation(s)
- Da Song
- Department of Orthopedics, Liaocheng People's Hospital, Cheeloo College of Medicine, Shandong University, Liaocheng, Shandong 252000, P.R. China.,Department of Orthopedics, Liaocheng People's Hospital, Liaocheng, Shandong 252000, P.R. China
| | - Zhen-Song Wu
- Department of Joint Surgery, Zaozhuang Municipal Hospital, Zaozhuang, Shandong 277100, P.R. China
| | - Qi Xu
- Department of Orthopedics, Liaocheng People's Hospital, Liaocheng, Shandong 252000, P.R. China
| | - Kai Wang
- Department of Orthopedics, Liaocheng People's Hospital, Liaocheng, Shandong 252000, P.R. China
| | - Ming-Tao Xu
- Department of Orthopedics, Liaocheng People's Hospital, Liaocheng, Shandong 252000, P.R. China
| | - Cheng-Zhi Ha
- Department of Orthopedics, Liaocheng People's Hospital, Liaocheng, Shandong 252000, P.R. China
| | - Chao Zhang
- Department of Orthopedics, Liaocheng People's Hospital, Liaocheng, Shandong 252000, P.R. China
| | - Da-Wei Wang
- Department of Orthopedics, Liaocheng People's Hospital, Liaocheng, Shandong 252000, P.R. China
| |
Collapse
|
11
|
Influence of Mesenchymal Stem Cell Sources on Their Regenerative Capacities on Different Surfaces. Cells 2021; 10:cells10020481. [PMID: 33672328 PMCID: PMC7927066 DOI: 10.3390/cells10020481] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/17/2021] [Accepted: 02/19/2021] [Indexed: 12/23/2022] Open
Abstract
Current gold-standard strategies for bone regeneration do not achieve the optimal recovery of bone biomechanical properties. To bypass these limitations, tissue engineering techniques based on hybrid materials made up of osteoprogenitor cells-such as mesenchymal stem cells (MSCs)-and bioactive ceramic scaffolds-such as calcium phosphate-based (CaPs) bioceramics-seem promising. The biological properties of MSCs are influenced by the tissue source. This study aims to define the optimal MSC source and construct (i.e., the MSC-CaP combination) for clinical application in bone regeneration. A previous iTRAQ analysis generated the hypothesis that anatomical proximity to bone has a direct effect on MSC phenotype. MSCs were isolated from adipose tissue, bone marrow, and dental pulp, then cultured both on a plastic surface and on CaPs (hydroxyapatite and β-tricalcium phosphate), to compare their biological features. On plastic, MSCs isolated from dental pulp (DPSCs) presented the highest proliferation capacity and the greatest osteogenic potential. On both CaPs, DPSCs demonstrated the greatest capacity to colonise the bioceramics. Furthermore, the results demonstrated a trend that DPSCs had the most robust increase in ALP activity. Regarding CaPs, β-tricalcium phosphate obtained the best viability results, while hydroxyapatite had the highest ALP activity values. Therefore, we propose DPSCs as suitable MSCs for cell-based bone regeneration strategies.
Collapse
|
12
|
Cui Q, Li N, Nie F, Yang F, Li H, Zhang J. Vitamin K2 promotes the osteogenic differentiation of periodontal ligament stem cells via the Wnt/β-catenin signaling pathway. Arch Oral Biol 2021; 124:105057. [PMID: 33517171 DOI: 10.1016/j.archoralbio.2021.105057] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/30/2020] [Accepted: 01/05/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Vitamin K2 (MK-4, menaquinone 4) plays an important role in osteoprotection. The present study aimed to examine the effect of MK-4 on the osteogenic differentiation of periodontal ligament stem cells (PDLSCs) in vitro and probed the potential signaling pathway. DESIGN PDLSCs were isolated from extracted premolars by tissue block culture method and were identified by flow cytometry. Cell Counting Kit-8 (CCK-8) and colony formation assays were used to determine the effect of MK-4 on the proliferation of PDLSCs. Alkaline phosphatase (ALP) activity was analyzed quantitatively, and extracellular matrix mineralization was examined by Alizarin Red S staining. The mRNA and protein expression levels of ALP, Runx Family Transcription Factor 2 (Runx2), osteocalcin (OCN), and Sp7 Transcription Factor (SP7; Osterix) were measured by qRT-PCR and Western blot. In addition, after adding the inhibitor XAV-939, Western blot was used to assess the correlation with the Wnt/β-catenin signaling pathway. The above results were obtained by observing at least three fields randomly, and each experiment was repeated at least three times. RESULTS This study found that 10-5 M MK-4 significantly promoted the osteogenic differentiation of PDLSCs. Gene and protein expression levels of ALP, Runx2, OCN, and Osterix were all upregulated compared with control. Remarkably, after blocking the Wnt/β-catenin signaling pathway with XAV-939, the effect of MK-4 was apparently reversed. CONCLUSION These results demonstrate that MK-4 can promote the osteogenic differentiation of PDLSCs, which is likely related to the activation of the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Qun Cui
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No. 44-1 Wenhua Road West, 250012, Jinan, Shandong, China.
| | - Na Li
- Stomatology Department of The First Affiliated Hospital of Shandong First Medical University, No. 16766, Jingshi Road, 250012, Jinan, Shandong, China.
| | - Fujiao Nie
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No. 44-1 Wenhua Road West, 250012, Jinan, Shandong, China.
| | - Fan Yang
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No. 44-1 Wenhua Road West, 250012, Jinan, Shandong, China.
| | - Hongkun Li
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No. 44-1 Wenhua Road West, 250012, Jinan, Shandong, China.
| | - Jun Zhang
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No. 44-1 Wenhua Road West, 250012, Jinan, Shandong, China.
| |
Collapse
|
13
|
Khodabandehloo F, Taleahmad S, Aflatoonian R, Rajaei F, Zandieh Z, Nassiri-Asl M, Eslaminejad MB. Microarray analysis identification of key pathways and interaction network of differential gene expressions during osteogenic differentiation. Hum Genomics 2020; 14:43. [PMID: 33234152 PMCID: PMC7687700 DOI: 10.1186/s40246-020-00293-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 11/13/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Adult bone marrow-derived mesenchymal stem cells (BM-MSCs) are multipotent stem cells that can differentiate into three lineages. They are suitable sources for cell-based therapy and regenerative medicine applications. This study aims to evaluate the hub genes and key pathways of differentially expressed genes (DEGs) related to osteogenesis by bioinformatics analysis in three different days. The DEGs were derived from the three different days compared with day 0. RESULTS Gene expression profiles of GSE37558 were obtained from the Gene Expression Omnibus (GEO) database. A total of 4076 DEGs were acquired on days 8, 12, and 25. Gene ontology (GO) enrichment analysis showed that the non-canonical Wnt signaling pathway and lipopolysaccharide (LPS)-mediated signaling pathway were commonly upregulated DEGs for all 3 days. KEGG pathway analysis indicated that the PI3K-Akt and focal adhesion were also commonly upregulated DEGs for all 3 days. Ten hub genes were identified by CytoHubba on days 8, 12, and 25. Then, we focused on the association of these hub genes with the Wnt pathways that had been enriched from the protein-protein interaction (PPI) by the Cytoscape plugin MCODE. CONCLUSIONS These findings suggested further insights into the roles of the PI3K/AKT and Wnt pathways and their association with osteogenesis. In addition, the stem cell microenvironment via growth factors, extracellular matrix (ECM), IGF1, IGF2, LPS, and Wnt most likely affect osteogenesis by PI3K/AKT.
Collapse
Affiliation(s)
| | - Sara Taleahmad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Reza Aflatoonian
- Department of Endocrinology and Female Infertility, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Farzad Rajaei
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Disease, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Zahra Zandieh
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Marjan Nassiri-Asl
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Disease, Qazvin University of Medical Sciences, Qazvin, Iran.
| | - Mohamadreza Baghaban Eslaminejad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
14
|
Murata Y, Uchida S, Utsunomiya H, Hatakeyama A, Nakashima H, Mori T, Yamanaka Y, Tsukamoto M, Sekiya I, Huard J, Philippon MJ, Sakai A. Differentiation Potential of Synovial Mesenchymal Stem Cells Isolated From Hip Joints Affected by Femoroacetabular Impingement Syndrome Versus Osteoarthritis. Arthroscopy 2020; 36:2122-2133. [PMID: 32259644 DOI: 10.1016/j.arthro.2020.03.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 02/06/2020] [Accepted: 03/03/2020] [Indexed: 02/08/2023]
Abstract
PURPOSE To establish the characteristics of synovium-derived mesenchymal stem cells (MSCs) from the hip joints of patients with femoroacetabular impingement syndrome (FAIS) and osteoarthritis (OA), particularly their proliferation and differentiation potentials. We further investigated their functional differences. METHODS Synovium samples were harvested from 21 patients with FAIS who underwent hip arthroscopic surgery and from 14 patients with OA who underwent total hip arthroplasty. The MSC number, colony-forming units, cell viability, and differentiation potential were compared. Real-time polymerase chain reaction assessed the differentiation potential into adipose, bone, and cartilage tissues. RESULTS The number of colonies at a density of 104 at passage 0 from OA synovium was significantly greater than that from FAIS synovium (P < .01). However, their proliferation and viability were significantly lower than those of FAIS synovium cells (P = .0495). The expression of lipoprotein lipase mRNA in OA synovium cells was greater than that in FAIS synovium cells (P < .01). Meanwhile, the fraction of colonies positive for von Kossa and alkaline phosphatase staining, as well as the level of bone gamma-carboxyglutamate protein expression in OA synovium cells, were greater than those in FAIS synovium cells (P < .01). In chondrogenic pellet culture experiments, the expression of COL10A1 mRNA was lower in OA synovium than in FAIS synovium (P < .01). CONCLUSIONS Synovial MSCs from patients with OA had greater colony numbers but less viability and proliferative potential. They also showed greater osteogenic and adipogenic potentials, whereas those from patients with FAIS showed greater chondrogenic potential. CLINICAL RELEVANCE MSCs from patients with FAIS exhibited good potential as cell sources for stem cell therapy in case of cartilage damage in the hip joint.
Collapse
Affiliation(s)
- Yoichi Murata
- Department of Orthopaedic Surgery, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Soshi Uchida
- Department of Orthopaedic Surgery and Sports Medicine, Wakamatsu Hospital of University of Occupational and Environmental Health, Kitakyushu, Japan.
| | - Hajime Utsunomiya
- Department of Orthopaedic Surgery and Sports Medicine, Wakamatsu Hospital of University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Akihisa Hatakeyama
- Department of Orthopaedic Surgery and Sports Medicine, Wakamatsu Hospital of University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Hirotaka Nakashima
- Department of Orthopaedic Surgery, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Toshiharu Mori
- Department of Orthopaedic Surgery, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Yoshiaki Yamanaka
- Department of Orthopaedic Surgery, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Manabu Tsukamoto
- Department of Orthopaedic Surgery, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Ichiro Sekiya
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Johnny Huard
- The Steadman Philippon Research Institute and the Steadman Clinic, Vail, Colorado, U.S.A
| | - Marc J Philippon
- The Steadman Philippon Research Institute and the Steadman Clinic, Vail, Colorado, U.S.A
| | - Akinori Sakai
- Department of Orthopaedic Surgery, University of Occupational and Environmental Health, Kitakyushu, Japan
| |
Collapse
|
15
|
M Dunn C, Nevitt MC, Lynch JA, Jeffries MA. A pilot study of peripheral blood DNA methylation models as predictors of knee osteoarthritis radiographic progression: data from the Osteoarthritis Initiative (OAI). Sci Rep 2019; 9:16880. [PMID: 31727952 PMCID: PMC6856188 DOI: 10.1038/s41598-019-53298-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 10/30/2019] [Indexed: 12/20/2022] Open
Abstract
Knee osteoarthritis (OA) is a leading cause of chronic disability worldwide, but no diagnostic or prognostic biomarkers are available. Increasing evidence supports epigenetic dysregulation as a contributor to OA pathogenesis. In this pilot study, we investigated epigenetic patterns in peripheral blood mononuclear cells (PBMCs) as models to predict future radiographic progression in OA patients enrolled in the longitudinal Osteoarthritis Initiative (OAI) study. PBMC DNA was analyzed from baseline OAI visits in 58 future radiographic progressors (joint space narrowing at 24 months, sustained at 48 months) compared to 58 non-progressors. DNA methylation was quantified via Illumina microarrays and beta- and M-values were used to generate linear classification models. Data were randomly split into a 60% development and 40% validation subsets, models developed and tested, and cross-validated in a total of 40 cycles. M-value based models outperformed beta-value based models (ROC-AUC 0.81 ± 0.01 vs. 0.73 ± 0.02, mean ± SEM, comparison p = 0.002), with a mean classification accuracy of 73 ± 1% (mean ± SEM) for M- and 69 ± 1% for beta-based models. Adjusting for covariates did not significantly alter model performance. Our findings suggest that PBMC DNA methylation-based models may be useful as biomarkers of OA progression and warrant additional evaluation in larger patient cohorts.
Collapse
Affiliation(s)
- Christopher M Dunn
- University of Oklahoma Health Sciences Center, Department of Internal Medicine, Division of Rheumatology, Immunology, and Allergy, Oklahoma City, OK, USA
- Oklahoma Medical Research Foundation, Arthritis and Clinical Immunology Program, Oklahoma City, OK, USA
| | | | - John A Lynch
- University of California San Francisco, San Francisco, CA, USA
| | - Matlock A Jeffries
- University of Oklahoma Health Sciences Center, Department of Internal Medicine, Division of Rheumatology, Immunology, and Allergy, Oklahoma City, OK, USA.
- Oklahoma Medical Research Foundation, Arthritis and Clinical Immunology Program, Oklahoma City, OK, USA.
| |
Collapse
|
16
|
Gorabi AM, Kiaie N, Hajighasemi S, Jamialahmadi T, Majeed M, Sahebkar A. The Effect of Curcumin on the Differentiation of Mesenchymal Stem Cells into Mesodermal Lineage. Molecules 2019; 24:4029. [PMID: 31703322 PMCID: PMC6891787 DOI: 10.3390/molecules24224029] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/04/2019] [Accepted: 11/06/2019] [Indexed: 01/21/2023] Open
Abstract
Curcumin has been placed at the forefront of the researcher's attention due to its pleiotropic pharmacological effects and health benefits. A considerable volume of articles has pointed out curcumin's effects on the fate of stem cell differentiation. In this review, a descriptive mechanism of how curcumin affects the outcome of the differentiation of mesenchymal stem cells (MSCs) into the mesodermal lineage-i.e., adipocyte, osteocyte, and chondrocyte differentiation-is compiled from the literature. The sections include the mechanism of inhibition or induction of MSCs differentiation to each lineage, their governing molecular mechanisms, and their signal transduction pathways. The effect of different curcumin doses and its structural modifications on the MSCs differentiation is also discussed.
Collapse
Affiliation(s)
- Armita Mahdavi Gorabi
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center, Tehran University of Medical Sciences, Tehran 1411713138, Iran; (A.M.G.); (N.K.)
| | - Nasim Kiaie
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center, Tehran University of Medical Sciences, Tehran 1411713138, Iran; (A.M.G.); (N.K.)
| | - Saeideh Hajighasemi
- Department of Medical Biotechnology, Faculty of Paramedicine, Qazvin University of Medical Sciences, Qazvin 15315-34199, Iran;
| | - Tannaz Jamialahmadi
- Halal Research Center of IRI, FDA, Tehran, Iran;
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- University of Western Australia, Perth 6009, Australia
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
17
|
Kovács B, Vajda E, Nagy EE. Regulatory Effects and Interactions of the Wnt and OPG-RANKL-RANK Signaling at the Bone-Cartilage Interface in Osteoarthritis. Int J Mol Sci 2019; 20:ijms20184653. [PMID: 31546898 PMCID: PMC6769977 DOI: 10.3390/ijms20184653] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/12/2019] [Accepted: 09/18/2019] [Indexed: 01/05/2023] Open
Abstract
Cartilage and the bordering subchondral bone form a functionally active regulatory interface with a prominent role in osteoarthritis pathways. The Wnt and the OPG-RANKL-RANK signaling systems, as key mediators, interact in subchondral bone remodeling. Osteoarthritic osteoblasts polarize into two distinct phenotypes: a low secretory and an activated, pro-inflammatory and anti-resorptive subclass producing high quantities of IL-6, PGE2, and osteoprotegerin, but low levels of RANKL, thus acting as putative effectors of subchondral bone sclerosis. Wnt agonists, Wnt5a, Wisp-1 initiate excessive bone remodeling, while Wnt3a and 5a simultaneously cause loss of proteoglycans and phenotype shift in chondrocytes, with decreased expression of COL2A, aggrecan, and Sox-9. Sclerostin, a Wnt antagonist possesses a protective effect for the cartilage, while DKK-1 inhibits VEGF, suspending neoangiogenesis in the subchondral bone. Experimental conditions mimicking abnormal mechanical load, the pro-inflammatory milieu, but also a decreased OPG/RANKL ratio in the cartilage, trigger chondrocyte apoptosis and loss of the matrix via degradative matrix metalloproteinases, like MMP-13 or MMP-9. Hypoxia, an important cofactor exerts a dual role, promoting matrix synthesis via HIF-1α, a Wnt silencer, but turning on HIF-2α that enhances VEGF and MMP-13, along with aberrant collagen expression and extracellular matrix deterioration in the presence of pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Béla Kovács
- Department of Biochemistry and Environmental Chemistry, University of Medicine, Pharmacy, Sciences and Technology, Tîrgu Mureș, Romania.
| | - Enikő Vajda
- Department of Biochemistry and Environmental Chemistry, University of Medicine, Pharmacy, Sciences and Technology, Tîrgu Mureș, Romania.
| | - Előd Ernő Nagy
- Department of Biochemistry and Environmental Chemistry, University of Medicine, Pharmacy, Sciences and Technology, Tîrgu Mureș, Romania.
| |
Collapse
|
18
|
Dihydroartemisinin Promotes the Osteogenesis of Human Mesenchymal Stem Cells via the ERK and Wnt/ β-Catenin Signaling Pathways. BIOMED RESEARCH INTERNATIONAL 2019; 2019:3456719. [PMID: 31534957 PMCID: PMC6732601 DOI: 10.1155/2019/3456719] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 03/26/2019] [Accepted: 07/25/2019] [Indexed: 12/14/2022]
Abstract
Dihydroartemisinin (DHA), which is considered to be one of the active compounds within Artemisia annua, has extensively been used in recent years as the most effective drug against malaria, having many biological functions including anticancer, antifungal, and immunomodulatory activities. However, DHA plays a role in the regulation of the proliferation and human mesenchymal stem cells (hMSCs) osteogenic differentiation that remains unknown. We explored DHA's effect on hMSCs' proliferation as well as the osteogenic differentiation, together with its underlying mechanisms of action. We showed that DHA enhanced osteogenic differentiation but had no significant effect on hMSCs' proliferation. It probably exerted its functions through the signaling pathways of ERK1/2 as well as Wnt/β. Because DHA has low toxicity and costs, it might be regarded as an important drug for fracture treatment and tissue engineering.
Collapse
|
19
|
Xu W, Gao P, Zhang Y, Piao L, Dong D. microRNA-138 induces cell survival and reduces WNT/β-catenin signaling of osteoarthritis chondrocytes through NEK2. IUBMB Life 2019; 71:1355-1366. [PMID: 31034758 DOI: 10.1002/iub.2050] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/27/2019] [Accepted: 04/02/2019] [Indexed: 12/24/2022]
Abstract
Osteoarthritis (OA) is a degenerative joint disease characterized by joint pain, stiffness, and function degeneration with high incidence. Recent studies have been inspired based on the association between microRNAs (miRs) and therapeutic research of OA. Hence, the present study evaluates the effects of miR-138 on chondrocyte proliferation, differentiation, and apoptosis through the WNT/β-catenin signaling pathway in mice with OA by binding to NIMA-related kinase 2 (NEK2). Appropriate dataset was selected from the Gene Expression Omnibus database, and differentially expressed genes and potential miRNAs that could regulate NEK2 were explored. A mouse model of OA was established. The expressions of miR-138, NEK2, β-catenin, GSK3β, Bcl-2, Bcl-2-associated X protein (Bax), p53, MMP-13, Col2, and Aggrecan and the phosphorylation levels of β-catenin were determined by the reverse transcription quantitative polymerase chain reaction and Western blot analysis. The 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay and flow cytometry were employed to detect cell proliferation and apoptosis, respectively. The potential functional role of NEK2 was revealed to be related to the WNT/β-catenin signaling pathway, and miR-138 was the putative regulator of NEK2. miR-138 expression was downregulated while expressions of NEK2 and β-catenin as well as the phosphorylation levels of β-catenin were upregulated in mice with OA. The chondrocytes treated with miR-138 mimic and siRNA-NEK2 exhibited reduced expressions of NEK2, β-catenin, MMP-13, Bax, and p53 and elevated expressions of Col2, Aggrecan, and Bcl-2 as well as phosphorylation levels of β-catenin along with enhanced chondrocytes' proliferation and suppressed cell apoptosis. Overexpression of miR-138 induces cell survival and reduces WNT/β-catenin signaling of OA chondrocytes through NEK2. © 2019 IUBMB Life, 71(9):1355-1366, 2019.
Collapse
Affiliation(s)
- Weiling Xu
- Department of Radiology, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Peihong Gao
- Department of Radiology, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Yan Zhang
- Jilin Province Population Life Science and Technology Research Institute, Changchun, People's Republic of China
| | - Li Piao
- Department of Gynaecology and Obstetrics, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Dong Dong
- Department of Radiology, The First Hospital of Jilin University, Changchun, People's Republic of China
| |
Collapse
|
20
|
The Role of Wnt Pathway in the Pathogenesis of OA and Its Potential Therapeutic Implications in the Field of Regenerative Medicine. BIOMED RESEARCH INTERNATIONAL 2018; 2018:7402947. [PMID: 30410938 PMCID: PMC6205317 DOI: 10.1155/2018/7402947] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 09/25/2018] [Indexed: 01/20/2023]
Abstract
Introduction Osteoarthritis (OA) is a degenerative joint disease characterized by articular cartilage degradation, subchondral damage, and bone remodelling, affecting most commonly weight-bearing joints, such as the knee and hip. The loss of cartilage leads to joint space narrowing, pain, and loss of function which could ultimately require total joint replacement. The Wnt/β catenin pathway is involved in the pathophysiology of OA and has been proposed as a therapeutic target. Endogenous and pharmacological inhibitors of this pathway were recently investigated within innovative therapies including the use of platelet-rich plasma (PRP) and mesenchymal stem cells (MSCs). Methods A review of the literature was performed on the PubMed database based on the following inclusion criteria: article written in English language in the last 20 years and dealing with (1) the role of Wnt-β catenin pathway in the pathogenesis of osteoarthritis and (2) pharmacologic or biologic strategies modulating the Wnt-β catenin pathway in the OA setting. Results Evidences support that Wnt signalling pathway is likely linked to OA progression and severity. Its inhibition through natural antagonists and new synthetic or biological drugs shares the potential to improve the clinical condition of the patients by affecting the pathological activity of Wnt/β-catenin signalling. Conclusions While further research is needed to better understand the mechanisms regulating the molecular interaction between OA regenerative therapies and Wnt, it seems that biologic therapies for OA exert modulation on Wnt/β catenin pathway that might be relevant in achieving the beneficial clinical effect of those therapeutic strategies.
Collapse
|
21
|
Bertacchini J, Magarò MS, Potì F, Palumbo C. Osteocytes Specific GSK3 Inhibition Affects In Vitro Osteogenic Differentiation. Biomedicines 2018; 6:biomedicines6020061. [PMID: 29883388 PMCID: PMC6027076 DOI: 10.3390/biomedicines6020061] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 04/24/2018] [Accepted: 05/13/2018] [Indexed: 01/01/2023] Open
Abstract
Osteocytes, the most important regulators of bone processes, are producers of molecules (usually proteins) that act as signals in order to communicate with nearby cells. These factors control cell division (proliferation), differentiation, and survival. Substantial evidence showed different signaling pathways activated by osteocytes and involved in osteoblast differentiation, in particular in the last decade, when the Wingless-related integration site (WNT) pathway assumed a critical large importance. WNT activation by inhibiting glycogen synthase kinase 3 (GSK-3) causes bone anabolism, making GSK3 a potential therapeutic target for bone diseases. In our study, we hypothesized an important role of the osteocyte MLO-Y4 conditioned medium in controlling the differentiation process of osteoblast cell line 2T3. We found an effect of diminished differentiation capability of 2T3 upon conditioning with medium from murine long bone osteocyte-Y4 cells (MLO-Y4) pre-treated with GSK3 inhibitor CHIR2201. The novel observations of this study provide knowledge about the inhibition of GSK3 in MLO-Y4 cells. This strategy could be used as a plausible target in osteocytes in order to regulate bone resorption mediated by a loss of osteoblasts activity through a paracrine loop.
Collapse
Affiliation(s)
- Jessika Bertacchini
- Department of Biomedical, Metabolic Science and Neuroscience, University of Modena and Reggio Emilia, Via Largo del Pozzo 71, 41124 Modena, Italy.
| | - Maria Sara Magarò
- Department of Biomedical, Metabolic Science and Neuroscience, University of Modena and Reggio Emilia, Via Largo del Pozzo 71, 41124 Modena, Italy.
| | - Francesco Potì
- Unit of Neurosciences, Department of Medicine and Surgery, University of Parma, via Volturno 39/F, 43125 Parma, Italy.
| | - Carla Palumbo
- Department of Biomedical, Metabolic Science and Neuroscience, University of Modena and Reggio Emilia, Via Largo del Pozzo 71, 41124 Modena, Italy.
| |
Collapse
|
22
|
Tang Q, Tong M, Zheng G, Shen L, Shang P, Liu H. Masquelet's induced membrane promotes the osteogenic differentiation of bone marrow mesenchymal stem cells by activating the Smad and MAPK pathways. Am J Transl Res 2018; 10:1211-1219. [PMID: 29736214 PMCID: PMC5934580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 02/12/2018] [Indexed: 06/08/2023]
Abstract
The Masquelet's induced membrane (IM) technique is widely used to treat large segmental bone defects due to its physical priority and biological function. However, the underlying molecular mechanism of the IM on bone formation remains unknown. In the present study, rat bone marrow-derived mesenchymal stem cells (BMSCs) were used as an in vitro model and bone morphogenetic protein 2 (BMP-2) was used as a positive control to evaluate the effects of the IM on the osteogenic differentiation of BMSCs. Although the IM group did not exhibit a significant increase in the expression of Runt-related transcription factor 2 (Runx2), Collagen I (Col I), osteocalcin (OCN) and alkaline phosphatase (ALP) relative to the BMP-2 administration, the IM was considerably effective compared with the untreated group. Mechanistically, we found that the IM activated the Smad and mitogen-activated protein kinase (MAPK) pathways, which was further confirmed by application of specific inhibitors of Smad1/5/8 (LDN-193189) and ERK1/2 (U0126). After the combined treatment of the IM and LDN-193189 as well as U0126, the IM-induced increase in Runx2, Col I, and OCN expression was significantly inhibited. These results suggest that IM promotes the osteogenic differentiation of rat BMSCs by activating the Smad1/5/8 and MAPK pathways.
Collapse
Affiliation(s)
- Qian Tang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University109, Xueyuanxi Road, Wenzhou 325027, China
| | - Minji Tong
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University109, Xueyuanxi Road, Wenzhou 325027, China
| | - Gang Zheng
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University109, Xueyuanxi Road, Wenzhou 325027, China
| | - Liyan Shen
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University109, Xueyuanxi Road, Wenzhou 325027, China
| | - Ping Shang
- Department of Rehabilitation, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University109, Xueyuanxi Road, Wenzhou 325027, China
| | - Haixiao Liu
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University109, Xueyuanxi Road, Wenzhou 325027, China
| |
Collapse
|
23
|
Abstract
Osteoarthritis (OA) is the most prevalent joint disease characterized by pain and degenerative lesions of the cartilage, subchondral bone, and other joint tissues. The causes of OA remain incompletely understood. Over the years, it has become recognized that OA is a multifactorial disease. In particular, aging and trauma are the main risk factors identified for the development of OA; however, other factors such as genetic predisposition, obesity, inflammation, gender and hormones, or metabolic syndrome contribute to OA development and lead to a more severe outcome. While this disease mainly affects people older than 60 years, OA developed after joint trauma affects all range ages and has a particular impact on young individuals and people who have highest levels of physical activity such as athletes. Traumatic injury to the joint often results in joint instability or intra-articular fractures which lead to posttraumatic osteoarthritis (PTOA). In response to injury, several molecular mechanisms are activated, increasing the production and activation of different factors that contribute to the progression of OA.In this chapter, we have focused on the interactions and contribution of the multiple factors involved in joint destruction and progression of OA. In addition, we overview the main changes and molecular mechanisms related to OA pathogenesis.
Collapse
|
24
|
Xue D, Chen E, Zhang W, Gao X, Wang S, Zheng Q, Pan Z, Li H, Liu L. The role of hesperetin on osteogenesis of human mesenchymal stem cells and its function in bone regeneration. Oncotarget 2017; 8:21031-21043. [PMID: 28423500 PMCID: PMC5400563 DOI: 10.18632/oncotarget.15473] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 02/08/2017] [Indexed: 11/28/2022] Open
Abstract
Hesperetin has been suggested to be involved in bone strength. We aimed to investigate the effects of hesperetin on the osteogenic differentiation of human mesenchymal stem cells and its related mechanisms. We showed that hesperetin promoted osteogenic differentiation of human mesenchymal stem cells in vitro. It potentially exerts its effects via the ERK and Smad signaling pathways. Using a rat osteotomy model, we showed that human mesenchymal stem cells combined with a hesperetin/gelatin sponge scaffold resulted in accelerated fracture healing in vivo. Due to the low cost of hesperetin, it could be used as a growth factor for bone tissue engineering or surgical fracture treatment.
Collapse
Affiliation(s)
- Deting Xue
- Department of Orthopaedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, P.R. China
| | - Erman Chen
- Department of Orthopaedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, P.R. China
| | - Wei Zhang
- Department of Orthopaedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, P.R. China
| | - Xiang Gao
- Department of Orthopaedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, P.R. China
| | - Shengdong Wang
- Department of Orthopaedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, P.R. China
| | - Qiang Zheng
- Department of Orthopaedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, P.R. China
| | - Zhijun Pan
- Department of Orthopaedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, P.R. China
| | - Hang Li
- Department of Orthopaedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, P.R. China
| | - Ling Liu
- Department of Nephrology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou 310007, P.R. China
| |
Collapse
|
25
|
Pei J, Fan L, Nan K, Li J, Shi Z, Dang X, Wang K. Excessive Activation of TLR4/NF-κB Interactively Suppresses the Canonical Wnt/β-catenin Pathway and Induces SANFH in SD Rats. Sci Rep 2017; 7:11928. [PMID: 28931847 PMCID: PMC5607349 DOI: 10.1038/s41598-017-12196-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 08/30/2017] [Indexed: 12/15/2022] Open
Abstract
Nuclear factor-kappa B (NF-κB) interactively affects the Wnt/β-catenin pathway and is closely related to different diseases. However, such crosstalk effect in steroid-associated necrosis of femoral head (SANFH) has not been fully explored and evaluated. In this study, early-stage SANFH was induced by two doses of lipopolysaccharide (LPS, 2 mg/kg/day) and three doses of methylprednisolone (MPS, 40 mg/kg/day). LPS and pyrrolidine dithiocarbamate (PDTC) were administered to activate the TLR4/NF-κB pathway and selectively block the activation of NF-κB, respectively. Results showed that PDTC treatment significantly reduced NF-κB expression, diminished inflammation, and effectively decreased bone resorption processes (osteoclastogenesis, adipogenesis, and apoptosis), which were evidently reinforced after osteonecrosis induction. Moreover, PDTC remarkably increased the interfered Wnt/β-catenin pathway and elevated bone formation processes (osteogenesis and angiogenesis). Ultimately, PDTC treatment effectively reduced the incidence of SANFH. Therefore, the excessive activation of TLR4/NF-κB may interactively suppress the Wnt/β-catenin pathway and induce SANFH. Hence, we propose NF-κB-targeted treatment as a novel therapeutic strategy for SANFH.
Collapse
Affiliation(s)
- Junpeng Pei
- Department of Orthopaedics, the Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwu Road, Xi'an710004, Shaanxi Province, People's Republic of China
| | - Lihong Fan
- Department of Orthopaedics, the Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwu Road, Xi'an710004, Shaanxi Province, People's Republic of China.
| | - Kai Nan
- Department of Orthopaedics, the Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwu Road, Xi'an710004, Shaanxi Province, People's Republic of China
| | - Jia Li
- Department of Orthopaedics, First Affiliated Hospital of Xi'an Jiaotong University, School of Medicine, No. 277 Yanta Road, Xian, 710061, China
| | - Zhibin Shi
- Department of Orthopaedics, the Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwu Road, Xi'an710004, Shaanxi Province, People's Republic of China
| | - Xiaoqian Dang
- Department of Orthopaedics, the Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwu Road, Xi'an710004, Shaanxi Province, People's Republic of China
| | - Kunzheng Wang
- Department of Orthopaedics, the Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwu Road, Xi'an710004, Shaanxi Province, People's Republic of China
| |
Collapse
|
26
|
Maruotti N, Corrado A, Cantatore FP. Osteoblast role in osteoarthritis pathogenesis. J Cell Physiol 2017; 232:2957-2963. [PMID: 28425564 PMCID: PMC5575507 DOI: 10.1002/jcp.25969] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 04/19/2017] [Indexed: 01/13/2023]
Abstract
Even if osteoarthritis pathogenesis is still poorly understood, numerous evidences suggest that osteoblasts dysregulation plays a key role in osteoarthritis pathogenesis. An abnormal expression of OPG and RANKL has been described in osteoarthritis osteoblasts, which is responsible for abnormal bone remodeling and decreased mineralization. Alterations in genes expression are involved in dysregulation of osteoblast function, bone remodeling, and mineralization, leading to osteoarthritis development. Moreover, osteoblasts produce numerous transcription factors, growth factors, and other proteic molecules which are involved in osteoarthritis pathogenesis.
Collapse
Affiliation(s)
- Nicola Maruotti
- Rheumatology Clinic, Department of Medical and Surgical Sciences, University of Foggia Medical School, Foggia, Italy
| | - Addolorata Corrado
- Rheumatology Clinic, Department of Medical and Surgical Sciences, University of Foggia Medical School, Foggia, Italy
| | - Francesco P Cantatore
- Rheumatology Clinic, Department of Medical and Surgical Sciences, University of Foggia Medical School, Foggia, Italy
| |
Collapse
|
27
|
Pflug T, Huynh-Do U, Rudloff S. Reduced β-catenin expression affects patterning of bone primordia, but not bone maturation. Biol Open 2017; 6:582-588. [PMID: 28347990 PMCID: PMC5450319 DOI: 10.1242/bio.023572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Wnt/β-catenin signaling is involved in patterning of bone primordia, but also plays an important role in the differentiation of chondrocytes and osteoblasts. During these processes the level of β-catenin must be tightly regulated. Excess β-catenin leads to conditions with increased bone mass, whereas loss of β-catenin is associated with osteoporosis or, in extreme cases, the absence of limbs. In this study, we examined skeletogenesis in mice, which retain only 25% of β-catenin. These embryos showed severe morphological abnormalities of which the lack of hindlimbs and misshaped front paws were the most striking. Surprisingly however, calcification of bone primordia occurred normally. Moreover, the Wnt-dependent regulatory network of transcription factors driving the differentiation of cartilage and bone, as well as the expression of extracellular matrix components, were preserved. These findings show that 25% β-catenin is insufficient for the correct patterning of bone primordia, but sufficient for their mineralization. Our approach helps to identify bone morphogenetic processes that can proceed normally even at low β-catenin levels, in contrast to those that require high β-catenin dosages. This information could be exploited to improve the treatment of bone diseases by fine-tuning the individual β-catenin dosage requirements. Summary: The correct allocation and patterning of skeletal elements during development requires a higher dosage of β-catenin than the maturation and mineralization of these primordia.
Collapse
Affiliation(s)
- Tobias Pflug
- Department of Clinical Research, Department of Nephrology and Hypertension, Bern University Hospital, University of Bern, Freiburgstrasse 15, Bern CH-3010, Switzerland
| | - Uyen Huynh-Do
- Department of Clinical Research, Department of Nephrology and Hypertension, Bern University Hospital, University of Bern, Freiburgstrasse 15, Bern CH-3010, Switzerland
| | - Stefan Rudloff
- Department of Clinical Research, Department of Nephrology and Hypertension, Bern University Hospital, University of Bern, Freiburgstrasse 15, Bern CH-3010, Switzerland
| |
Collapse
|
28
|
Sisakhtnezhad S, Alimoradi E, Akrami H. External factors influencing mesenchymal stem cell fate in vitro. Eur J Cell Biol 2016; 96:13-33. [PMID: 27988106 DOI: 10.1016/j.ejcb.2016.11.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 11/30/2016] [Accepted: 11/30/2016] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have extensive potentials, which make them attractive candidates for the developmental biology, drug discovery and regenerative medicine. However, the use of MSCs is limited by their scarceness in tissues and in culture conditions. They also exhibit various degrees of potency which subsequently influencing their applications. Nowadays, questions remain about how self-renewal and differentiation of MSCs can be controlled in vitro and in vivo, how they will behave and migrate to the right place and how they modulate the immune system. Therefore, identification of factors and culture conditions to affect the fate and function of MSCs may be effective to enhance their applications in clinical situations. Studies have indicated that the fate of MSCs in culture is influenced by various external factors, including the specific cell source, donor age, plating density, passage number and plastic surface quality. Some other factors such as cell culture media and their supplementary factors, O2 concentration, mechano-/electro-stimuli and three-dimensional scaffolds are also shown to be influential. This review addresses the current state of MSC research for describing and discussing the findings about external factors that influence the fate and function of MSCs. Additionally, the new discoveries and suggestions regarding their molecular mechanisms will be explained.
Collapse
Affiliation(s)
| | - Elham Alimoradi
- Department of biology, Faculty of Science, Razi University, Kermanshah, Iran
| | - Hassan Akrami
- Department of biology, Faculty of Science, Razi University, Kermanshah, Iran
| |
Collapse
|
29
|
Roy B, Curtis ME, Fears LS, Nahashon SN, Fentress HM. Molecular Mechanisms of Obesity-Induced Osteoporosis and Muscle Atrophy. Front Physiol 2016; 7:439. [PMID: 27746742 PMCID: PMC5040721 DOI: 10.3389/fphys.2016.00439] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Accepted: 09/15/2016] [Indexed: 12/19/2022] Open
Abstract
Obesity and osteoporosis are two alarming health disorders prominent among middle and old age populations, and the numbers of those affected by these two disorders are increasing. It is estimated that more than 600 million adults are obese and over 200 million people have osteoporosis worldwide. Interestingly, both of these abnormalities share some common features including a genetic predisposition, and a common origin: bone marrow mesenchymal stromal cells. Obesity is characterized by the expression of leptin, adiponectin, interleukin 6 (IL-6), interleukin 10 (IL-10), monocyte chemotactic protein-1 (MCP-1), tumor necrosis factor-alpha (TNF-α), macrophage colony stimulating factor (M-CSF), growth hormone (GH), parathyroid hormone (PTH), angiotensin II (Ang II), 5-hydroxy-tryptamine (5-HT), Advance glycation end products (AGE), and myostatin, which exert their effects by modulating the signaling pathways within bone and muscle. Chemical messengers (e.g., TNF-α, IL-6, AGE, leptins) that are upregulated or downregulated as a result of obesity have been shown to act as negative regulators of osteoblasts, osteocytes and muscles, as well as positive regulators of osteoclasts. These additive effects of obesity ultimately increase the risk for osteoporosis and muscle atrophy. The aim of this review is to identify the potential cellular mechanisms through which obesity may facilitate osteoporosis, muscle atrophy and bone fractures.
Collapse
Affiliation(s)
- Bipradas Roy
- Department of Biological Sciences, Tennessee State University Nashville, TN, USA
| | - Mary E Curtis
- Department of Biological Sciences, Tennessee State University Nashville, TN, USA
| | - Letimicia S Fears
- Department of Biological Sciences, Tennessee State University Nashville, TN, USA
| | - Samuel N Nahashon
- Department of Agricultural and Environmental Sciences, Tennessee State University Nashville, TN, USA
| | - Hugh M Fentress
- Department of Biological Sciences, Tennessee State University Nashville, TN, USA
| |
Collapse
|
30
|
Feng G, Zheng K, Song D, Xu K, Huang D, Zhang Y, Cao P, Shen S, Zhang J, Feng X, Zhang D. SIRT1 was involved in TNF-α-promoted osteogenic differentiation of human DPSCs through Wnt/β-catenin signal. In Vitro Cell Dev Biol Anim 2016; 52:1001-1011. [PMID: 27530621 DOI: 10.1007/s11626-016-0070-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Accepted: 06/27/2016] [Indexed: 02/06/2023]
Abstract
Dental pulp stem cells (DPSCs), as one type of mesenchymal stem cells (MSCs), have the capability of self-renewal and differentiating along the various directions, including osteogenic, chondrogenic, neurogenic, and adipogenic. We previously study and found that tumor necrosis factor-α (TNF-α) promoted osteogenic differentiation of human DPSCs via the Wnt/β-catenin signaling pathway in low concentration while inhibited that in high concentration. In the abovementioned process, we found that sirtuin-1 (SIRT1) had the same change compared with the characteristic protein of bone formation, such as bone morphogenetic protein 2 (BMP2), runt-related transcription factor 2 (Runx2), and collagen I (COL1). We asked whether SIRT1 could regulate osteogenesis of DPSCs. In inflammation microenvironment constructed by TNF-α, we tested the expression changing of SIRT1 and analyzed the function of SIRT1 on osteogenic differentiation of DPSCs. SIRT1 deacetylated β-catenin, and then promote its accumulation in the nucleus. Accumulated β-catenin can lead to transcription of osteogenic characteristic genes. Using the activator of SIRT1, resveratrol, could promote the above-mentioned process of osteogenic differentiation. SIRT1 could regulate osteogenesis of DPSCs through Wnt/β-catenin signal. SIRT1, as a regulator of differentiation of DPSCs, may be a new target for cell-based therapy in oral diseases and other regenerative medicine.
Collapse
Affiliation(s)
- Guijuan Feng
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Ke Zheng
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Donghui Song
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Ke Xu
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Dan Huang
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Ye Zhang
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Peipei Cao
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Shuling Shen
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Jinlong Zhang
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Xingmei Feng
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, 226001, China.
| | - Dongmei Zhang
- Department of Pathogen Biology, Medical College, Nantong University, Nantong, 226001, China.
| |
Collapse
|
31
|
Pérez-García S, Gutiérrez-Cañas I, Seoane IV, Fernández J, Mellado M, Leceta J, Tío L, Villanueva-Romero R, Juarranz Y, Gomariz RP. Healthy and Osteoarthritic Synovial Fibroblasts Produce a Disintegrin and Metalloproteinase with Thrombospondin Motifs 4, 5, 7, and 12: Induction by IL-1β and Fibronectin and Contribution to Cartilage Damage. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:2449-61. [PMID: 27449198 DOI: 10.1016/j.ajpath.2016.05.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 05/20/2016] [Accepted: 05/23/2016] [Indexed: 12/22/2022]
Abstract
Current description of osteoarthritis includes the involvement of synovial inflammation. Studies contributing to understanding the mechanisms of cross-talk and feedback among the joint tissues could be relevant to the development of therapies that block disease progression. During osteoarthritis, synovial fibroblasts exposed to anomalous mechanical forces and an inflammatory microenvironment release factors such as a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS) metalloproteinases that mediate tissue damage and perpetuate inflammation. We therefore studied the production of ADAMTS by synovial fibroblasts and their contribution to cartilage degradation. Moreover, we analyzed the implication of two mediators present in the osteoarthritis joint, IL-1β as proinflammatory cytokine, and 45-kDa fibronectin fragments as products of matrix degradation. We reported that synovial fibroblasts constitutively express and release ADAMTS 4, 5, 7, and 12. Despite the contribution of both mediators to the stimulation of Runx2 and Wnt/β-catenin signaling pathways, as well as to ADAMTS expression, promoting the degradation of aggrecan and cartilage oligomeric matrix protein from cartilage, fibronectin fragments rather than IL-1β played the major pathological role in osteoarthritis, contributing to the maintenance of the disease. Moreover, higher levels of ADAMTS 4 and 7 and a specific regulation of ADAMTS-12 were observed in osteoarthritis, suggesting them as new potential therapeutic targets. Therefore, synovial fibroblasts provide the biochemical tools to the chronicity and destruction of the osteoarthritic joints.
Collapse
Affiliation(s)
- Selene Pérez-García
- Department of Cell Biology, Faculty of Biology, Complutense University of Madrid, Madrid, Spain
| | - Irene Gutiérrez-Cañas
- Department of Cell Biology, Faculty of Biology, Complutense University of Madrid, Madrid, Spain
| | - Iria V Seoane
- Department of Cell Biology, Faculty of Biology, Complutense University of Madrid, Madrid, Spain
| | - Julián Fernández
- Traumatology Service, Hospital Universitario de La Princesa, Medical Research Institute, Madrid, Spain
| | - Mario Mellado
- Department of Immunology and Oncology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Javier Leceta
- Department of Cell Biology, Faculty of Biology, Complutense University of Madrid, Madrid, Spain
| | - Laura Tío
- Cellular Inflammation and Cartilage Research Group, Hospital del Mar Research Institute (IMIM), Barcelona, Spain
| | - Raúl Villanueva-Romero
- Department of Cell Biology, Faculty of Biology, Complutense University of Madrid, Madrid, Spain
| | - Yasmina Juarranz
- Department of Cell Biology, Faculty of Biology, Complutense University of Madrid, Madrid, Spain
| | - Rosa P Gomariz
- Department of Cell Biology, Faculty of Biology, Complutense University of Madrid, Madrid, Spain.
| |
Collapse
|