1
|
de Oliveira B, Goes WM, Nascimento FC, Carnielli JBT, Ferreira ER, de Carvalho AF, Dos Reis PVM, Pereira M, Ricotta TQN, Dos Santos LM, de Souza RP, Cargnelutti DE, Mottram JC, Teixeira SR, Fernandes AP, Gazzinelli RT. Characterization of a novel Leishmania antigen containing a repetitive domain and its potential use as a prophylactic and therapeutic vaccine. mSphere 2025; 10:e0009725. [PMID: 40261025 DOI: 10.1128/msphere.00097-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Accepted: 03/21/2025] [Indexed: 04/24/2025] Open
Abstract
Human visceral leishmaniasis (HVL) is the second most lethal tropical parasitic disease. Currently, no prophylactic or therapeutic vaccines exist for HVL. Thus, the development of an efficacious vaccine is still needed. We previously performed an immunoproteomics analysis on Leishmania amazonensis parasite extracts to identify immunodominant antigens recognized by the sera of vaccinated and protected mice. Among the identified antigens, we discovered a novel, previously unstudied repetitive protein, initially annotated in Leishmania genomes as a kinetoplast-associated protein-like protein from Leishmania infantum (LinKAP), containing conserved domains (trichohyalin-plectin-homology [TPH] and TolA) that are associated with other mitochondrial proteins. LinKAP sequences are conserved across trypanosomatids, including Endotrypanum, Leishmania, and Trypanosoma species. Using differential centrifugation of Leishmania subcellular structures, we showed that LinKAP was enriched in fractions colocalizing with other mitochondrial proteins. mNeonGreen labeling at the endogenous locus using CRISPR-Cas9 and confocal microscopy confirmed that LinKAP is a mitochondrial-associated protein in Leishmania but not specifically colocalized with kDNA. We cloned and expressed a truncated version of LinKAP (rLinKAP), containing part (15) of the several LinKAP amino acid repeats, demonstrating over 85% homology across L. infantum, L. amazonensis, L. braziliensis, and L. mexicana species. An adjuvanted formulation of LinKAP with Poly ICLC, a polyinosinic-polycytidylic acid (Poly I:C) stabilized with carboxymethylcellulose and polylysine, was used to vaccinate mice and hamsters as a prophylactic vaccine for visceral leishmaniasis. Animals immunized with rLinKAP showed a potent cellular and humoral response and a significant decrease in tissue parasitism when challenged with L. infantum. We also tested rLinKAP as a therapeutic vaccine in mice. Following therapeutic vaccination, antibody responses were enhanced, and cellular responses became apparent. Our treatment protocol inhibited splenic parasite burden by 75% in treated mice. In conclusion, our antigen discovery strategy and the observed protective effect highlight rLinKAP as a promising vaccine candidate for leishmaniasis. IMPORTANCE A previous reverse vaccinology study identified kinetoplast-associated protein-like protein from Leishmania infantum (LinKAP) as a potential new vaccine target, as this protein was recognized by the sera of protected mice in extracts of Leishmania promastigotes. Interestingly, LinKAP is a repetitive protein containing trichohyalin-plectin-homology (TPH) and TolA domains and was initially annotated as a kinetoplast-associated protein. We further characterized LinKAP as a mitochondrial-associated protein highly conserved among trypanosomatids. We also validated LinKAP as a promising vaccine antigen by using a truncated version of LinKAP (rLinKAP) as both a prophylactic and therapeutic vaccine, adjuvanted with Poly ICLC, to immunize animals against visceral leishmaniasis (VL). This disease, caused by the Leishmania parasite, affects several populations globally and still lacks highly effective vaccines. Identifying LinKAP and its preliminary characterization also provides new perspectives for studying its role in the parasite's biology.
Collapse
Affiliation(s)
- Bianca de Oliveira
- Centro de Tecnologia de Vacinas (CTVacinas), Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Instituto René Rachou, Fundação Osvaldo Cruz-Minas, Belo Horizonte, Minas Gerais, Brazil
| | - Wanessa M Goes
- Centro de Tecnologia de Vacinas (CTVacinas), Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Frederico C Nascimento
- Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Juliana B T Carnielli
- York Biomedical Research Institute, Department of Biology, University of York, York, United Kingdom
| | - Eden R Ferreira
- York Biomedical Research Institute, Department of Biology, University of York, York, United Kingdom
| | - Alex Fiorini de Carvalho
- Centro de Tecnologia de Vacinas (CTVacinas), Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Pablo Victor Mendes Dos Reis
- Centro de Tecnologia de Vacinas (CTVacinas), Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Milton Pereira
- Centro de Tecnologia de Vacinas (CTVacinas), Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | | | - Renan Pedra de Souza
- Centro de Tecnologia de Vacinas (CTVacinas), Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Diego Esteban Cargnelutti
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo (UNCuyo), Mendoza, Argentina
| | - Jeremy C Mottram
- York Biomedical Research Institute, Department of Biology, University of York, York, United Kingdom
| | - Santuza R Teixeira
- Centro de Tecnologia de Vacinas (CTVacinas), Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ana Paula Fernandes
- Centro de Tecnologia de Vacinas (CTVacinas), Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ricardo T Gazzinelli
- Centro de Tecnologia de Vacinas (CTVacinas), Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Instituto René Rachou, Fundação Osvaldo Cruz-Minas, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
2
|
Saini I, Joshi J, Kaur S. Leishmania vaccine development: A comprehensive review. Cell Immunol 2024; 399-400:104826. [PMID: 38669897 DOI: 10.1016/j.cellimm.2024.104826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/18/2024] [Accepted: 04/21/2024] [Indexed: 04/28/2024]
Abstract
Infectious diseases like leishmaniasis, malaria, HIV, tuberculosis, leprosy and filariasis are responsible for an immense burden on public health systems. Among these, leishmaniasis is under the category I diseases as it is selected by WHO (World Health Organization) on the ground of diversity and complexity. High cost, resistance and toxic effects of Leishmania traditional drugs entail identification and development of therapeutic alternative. Since the natural infection elicits robust immunity, consistence efforts are going on to develop a successful vaccine. Clinical trials have been conducted on vaccines like Leish-F1, F2, and F3 formulated using specific Leishmania antigen epitopes. Current strategies utilize individual or combined antigens from the parasite or its insect vector's salivary gland extract, with or without adjuvant formulation for enhanced efficacy. Promising animal data supports multiple vaccine candidates (Lmcen-/-, LmexCen-/-), with some already in or heading for clinical trials. The crucial challenge in Leishmania vaccine development is to translate the research knowledge into affordable and accessible control tools that refines the outcome for those who are susceptible to infection. This review focuses on recent findings in Leishmania vaccines and highlights difficulties facing vaccine development and implementation.
Collapse
Affiliation(s)
- Isha Saini
- Parasitology Laboratory, Department of Zoology, Panjab University, Chandigarh, India
| | - Jyoti Joshi
- Goswami Ganesh Dutta Sanatan Dharma College, Sector-32C, Chandigarh, India
| | - Sukhbir Kaur
- Parasitology Laboratory, Department of Zoology, Panjab University, Chandigarh, India.
| |
Collapse
|
3
|
Lage DP, Vale DL, Linhares FP, Freitas CS, Machado AS, Cardoso JMO, de Oliveira D, Galvani NC, de Oliveira MP, Oliveira-da-Silva JA, Ramos FF, Tavares GSV, Ludolf F, Bandeira RS, Pereira IAG, Chávez-Fumagalli MA, Roatt BM, Machado-de-Ávila RA, Christodoulides M, Coelho EAF, Martins VT. A Recombinant Chimeric Protein-Based Vaccine Containing T-Cell Epitopes from Amastigote Proteins and Combined with Distinct Adjuvants, Induces Immunogenicity and Protection against Leishmania infantum Infection. Vaccines (Basel) 2022; 10:vaccines10071146. [PMID: 35891310 PMCID: PMC9317424 DOI: 10.3390/vaccines10071146] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/13/2022] [Accepted: 07/16/2022] [Indexed: 02/06/2023] Open
Abstract
Currently, there is no licensed vaccine to protect against human visceral leishmaniasis (VL), a potentially fatal disease caused by infection with Leishmania parasites. In the current study, a recombinant chimeric protein ChimT was developed based on T-cell epitopes identified from the immunogenic Leishmania amastigote proteins LiHyp1, LiHyV, LiHyC and LiHyG. ChimT was associated with the adjuvants saponin (Sap) or monophosphoryl lipid A (MPLA) and used to immunize mice, and their immunogenicity and protective efficacy were evaluated. Both ChimT/Sap and ChimT/MPLA induced the development of a specific Th1-type immune response, with significantly high levels of IFN-γ, IL-2, IL-12, TNF-α and GM-CSF cytokines produced by CD4+ and CD8+ T cell subtypes (p < 0.05), with correspondingly low production of anti-leishmanial IL-4 and IL-10 cytokines. Significantly increased (p < 0.05) levels of nitrite, a proxy for nitric oxide, and IFN-γ expression (p < 0.05) were detected in stimulated spleen cell cultures from immunized and infected mice, as was significant production of parasite-specific IgG2a isotype antibodies. Significant reductions in the parasite load in the internal organs of the immunized and infected mice (p < 0.05) were quantified with a limiting dilution technique and quantitative PCR and correlated with the immunological findings. ChimT/MPLA showed marginally superior immunogenicity than ChimT/Sap, and although this was not statistically significant (p > 0.05), ChimT/MPLA was preferred since ChimT/Sap induced transient edema in the inoculation site. ChimT also induced high IFN-γ and low IL-10 levels from human PBMCs isolated from healthy individuals and from VL-treated patients. In conclusion, the experimental T-cell multi-epitope amastigote stage Leishmania vaccine administered with adjuvants appears to be a promising vaccine candidate to protect against VL.
Collapse
Affiliation(s)
- Daniela P. Lage
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Belo Horizonte 30130-100, MG, Brazil; (D.P.L.); (D.L.V.); (F.P.L.); (C.S.F.); (A.S.M.); (N.C.G.); (M.P.d.O.); (J.A.O.-d.-S.); (F.F.R.); (G.S.V.T.); (F.L.); (R.S.B.); (I.A.G.P.); (E.A.F.C.); (V.T.M.)
| | - Danniele L. Vale
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Belo Horizonte 30130-100, MG, Brazil; (D.P.L.); (D.L.V.); (F.P.L.); (C.S.F.); (A.S.M.); (N.C.G.); (M.P.d.O.); (J.A.O.-d.-S.); (F.F.R.); (G.S.V.T.); (F.L.); (R.S.B.); (I.A.G.P.); (E.A.F.C.); (V.T.M.)
| | - Flávia P. Linhares
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Belo Horizonte 30130-100, MG, Brazil; (D.P.L.); (D.L.V.); (F.P.L.); (C.S.F.); (A.S.M.); (N.C.G.); (M.P.d.O.); (J.A.O.-d.-S.); (F.F.R.); (G.S.V.T.); (F.L.); (R.S.B.); (I.A.G.P.); (E.A.F.C.); (V.T.M.)
| | - Camila S. Freitas
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Belo Horizonte 30130-100, MG, Brazil; (D.P.L.); (D.L.V.); (F.P.L.); (C.S.F.); (A.S.M.); (N.C.G.); (M.P.d.O.); (J.A.O.-d.-S.); (F.F.R.); (G.S.V.T.); (F.L.); (R.S.B.); (I.A.G.P.); (E.A.F.C.); (V.T.M.)
| | - Amanda S. Machado
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Belo Horizonte 30130-100, MG, Brazil; (D.P.L.); (D.L.V.); (F.P.L.); (C.S.F.); (A.S.M.); (N.C.G.); (M.P.d.O.); (J.A.O.-d.-S.); (F.F.R.); (G.S.V.T.); (F.L.); (R.S.B.); (I.A.G.P.); (E.A.F.C.); (V.T.M.)
| | - Jamille M. O. Cardoso
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas (NUPEB), Departamento de Ciências Biológicas, Insituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto CEP 35400-000, MG, Brazil; (J.M.O.C.); (B.M.R.)
| | - Daysiane de Oliveira
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma 88806-000, SC, Brazil; (D.d.O.); (R.A.M.-d.-Á.)
| | - Nathália C. Galvani
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Belo Horizonte 30130-100, MG, Brazil; (D.P.L.); (D.L.V.); (F.P.L.); (C.S.F.); (A.S.M.); (N.C.G.); (M.P.d.O.); (J.A.O.-d.-S.); (F.F.R.); (G.S.V.T.); (F.L.); (R.S.B.); (I.A.G.P.); (E.A.F.C.); (V.T.M.)
| | - Marcelo P. de Oliveira
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Belo Horizonte 30130-100, MG, Brazil; (D.P.L.); (D.L.V.); (F.P.L.); (C.S.F.); (A.S.M.); (N.C.G.); (M.P.d.O.); (J.A.O.-d.-S.); (F.F.R.); (G.S.V.T.); (F.L.); (R.S.B.); (I.A.G.P.); (E.A.F.C.); (V.T.M.)
| | - João A. Oliveira-da-Silva
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Belo Horizonte 30130-100, MG, Brazil; (D.P.L.); (D.L.V.); (F.P.L.); (C.S.F.); (A.S.M.); (N.C.G.); (M.P.d.O.); (J.A.O.-d.-S.); (F.F.R.); (G.S.V.T.); (F.L.); (R.S.B.); (I.A.G.P.); (E.A.F.C.); (V.T.M.)
| | - Fernanda F. Ramos
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Belo Horizonte 30130-100, MG, Brazil; (D.P.L.); (D.L.V.); (F.P.L.); (C.S.F.); (A.S.M.); (N.C.G.); (M.P.d.O.); (J.A.O.-d.-S.); (F.F.R.); (G.S.V.T.); (F.L.); (R.S.B.); (I.A.G.P.); (E.A.F.C.); (V.T.M.)
| | - Grasiele S. V. Tavares
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Belo Horizonte 30130-100, MG, Brazil; (D.P.L.); (D.L.V.); (F.P.L.); (C.S.F.); (A.S.M.); (N.C.G.); (M.P.d.O.); (J.A.O.-d.-S.); (F.F.R.); (G.S.V.T.); (F.L.); (R.S.B.); (I.A.G.P.); (E.A.F.C.); (V.T.M.)
| | - Fernanda Ludolf
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Belo Horizonte 30130-100, MG, Brazil; (D.P.L.); (D.L.V.); (F.P.L.); (C.S.F.); (A.S.M.); (N.C.G.); (M.P.d.O.); (J.A.O.-d.-S.); (F.F.R.); (G.S.V.T.); (F.L.); (R.S.B.); (I.A.G.P.); (E.A.F.C.); (V.T.M.)
| | - Raquel S. Bandeira
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Belo Horizonte 30130-100, MG, Brazil; (D.P.L.); (D.L.V.); (F.P.L.); (C.S.F.); (A.S.M.); (N.C.G.); (M.P.d.O.); (J.A.O.-d.-S.); (F.F.R.); (G.S.V.T.); (F.L.); (R.S.B.); (I.A.G.P.); (E.A.F.C.); (V.T.M.)
| | - Isabela A. G. Pereira
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Belo Horizonte 30130-100, MG, Brazil; (D.P.L.); (D.L.V.); (F.P.L.); (C.S.F.); (A.S.M.); (N.C.G.); (M.P.d.O.); (J.A.O.-d.-S.); (F.F.R.); (G.S.V.T.); (F.L.); (R.S.B.); (I.A.G.P.); (E.A.F.C.); (V.T.M.)
| | - Miguel A. Chávez-Fumagalli
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa María, Urb. San José S/N, Umacollo, Arequipa 04000, Peru;
| | - Bruno M. Roatt
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas (NUPEB), Departamento de Ciências Biológicas, Insituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto CEP 35400-000, MG, Brazil; (J.M.O.C.); (B.M.R.)
| | - Ricardo A. Machado-de-Ávila
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma 88806-000, SC, Brazil; (D.d.O.); (R.A.M.-d.-Á.)
| | - Myron Christodoulides
- Neisseria Research Group, Molecular Microbiology, Faculty of Medicine, School of Clinical and Experimental Sciences, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, UK
- Correspondence: ; Tel.: +44-02381-205120
| | - Eduardo A. F. Coelho
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Belo Horizonte 30130-100, MG, Brazil; (D.P.L.); (D.L.V.); (F.P.L.); (C.S.F.); (A.S.M.); (N.C.G.); (M.P.d.O.); (J.A.O.-d.-S.); (F.F.R.); (G.S.V.T.); (F.L.); (R.S.B.); (I.A.G.P.); (E.A.F.C.); (V.T.M.)
- Departamento de Patologia Clínica, Colégio Técnico (COLTEC), Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil
| | - Vívian T. Martins
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Belo Horizonte 30130-100, MG, Brazil; (D.P.L.); (D.L.V.); (F.P.L.); (C.S.F.); (A.S.M.); (N.C.G.); (M.P.d.O.); (J.A.O.-d.-S.); (F.F.R.); (G.S.V.T.); (F.L.); (R.S.B.); (I.A.G.P.); (E.A.F.C.); (V.T.M.)
| |
Collapse
|
4
|
Germanó MJ, Mackern-Oberti JP, Vitório JG, Duarte MC, Pimenta DC, Sanchez MV, Bruna FA, Lozano ES, Fernandes AP, Cargnelutti DE. Identification of Immunodominant Antigens From a First-Generation Vaccine Against Cutaneous Leishmaniasis. Front Immunol 2022; 13:825007. [PMID: 35634280 PMCID: PMC9133320 DOI: 10.3389/fimmu.2022.825007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 04/04/2022] [Indexed: 12/02/2022] Open
Abstract
Leishmaniasis is a neglected tropical disease (NTD) caused by parasites belonging to the Leishmania genus for which there is no vaccine available for human use. Thus, the aims of this study are to evaluate the immunoprotective effect of a first-generation vaccine against L. amazonensis and to identify its immunodominant antigens. BALB/c mice were inoculated with phosphate buffer sodium (PBS), total L. amazonensis antigens (TLAs), or TLA with Poly (I:C) and Montanide ISA 763. The humoral and cellular immune response was evaluated before infection. IgG, IgG1, and IgG2a were measured on serum, and IFN-γ, IL-4, and IL-10 cytokines as well as cell proliferation were measured on a splenocyte culture from vaccinated mice. Immunized mice were challenged with 104 infective parasites of L. amazonensis on the footpad. After infection, the protection provided by the vaccine was analyzed by measuring lesion size, splenic index, and parasite load on the footpad and spleen. To identify immunodominant antigens, total proteins of L. amazonensis were separated on 2D electrophoresis gel and transferred to a membrane that was incubated with serum from immunoprotected mice. The antigens recognized by the serum were analyzed through a mass spectrometric assay (LC-MS/MS-IT-TOF) to identify their protein sequence, which was subjected to bioinformatic analysis. The first-generation vaccine induced higher levels of antibodies, cytokines, and cell proliferation than the controls after the second dose. Mice vaccinated with TLA + Poly (I:C) + Montanide ISA 763 showed less footpad swelling, a lower splenic index, and a lower parasite load than the control groups (PBS and TLA). Four immunodominant proteins were identified by mass spectrometry: cytosolic tryparedoxin peroxidase, an uncharacterized protein, a kinetoplast-associated protein-like protein, and a putative heat-shock protein DNAJ. The identified proteins showed high levels of conserved sequence among species belonging to the Leishmania genus and the Trypanosomatidae family. These proteins also proved to be phylogenetically divergent to human and canine proteins. TLA + Poly (I:C) + Montanide ISA 763 could be used as a first-generation vaccine against leishmaniasis. The four proteins identified from the whole-protein vaccine could be good antigen candidates to develop a new-generation vaccine against leishmaniasis.
Collapse
Affiliation(s)
- María José Germanó
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo (UNCuyo), Mendoza, Argentina
| | - Juan Pablo Mackern-Oberti
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo (UNCuyo), Mendoza, Argentina
- Facultad de Ciencias Médicas (FCM), Universidad Nacional de Cuyo (UNCuyo), Mendoza, Argentina
| | - Jessica Gardone Vitório
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mariana Costa Duarte
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Maria Victoria Sanchez
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo (UNCuyo), Mendoza, Argentina
| | - Flavia Alejandra Bruna
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo (UNCuyo), Mendoza, Argentina
| | - Esteban Sebastián Lozano
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo (UNCuyo), Mendoza, Argentina
- Facultad de Ciencias Médicas (FCM), Universidad Nacional de Cuyo (UNCuyo), Mendoza, Argentina
| | - Ana Paula Fernandes
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Diego Esteban Cargnelutti
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo (UNCuyo), Mendoza, Argentina
- Facultad de Ciencias Médicas (FCM), Universidad Nacional de Cuyo (UNCuyo), Mendoza, Argentina
- *Correspondence: Diego Esteban Cargnelutti,
| |
Collapse
|
5
|
Helou DG, Mauras A, Fasquelle F, Lanza JS, Loiseau PM, Betbeder D, Cojean S. Intranasal vaccine from whole Leishmania donovani antigens provides protection and induces specific immune response against visceral leishmaniasis. PLoS Negl Trop Dis 2021; 15:e0009627. [PMID: 34403413 PMCID: PMC8370633 DOI: 10.1371/journal.pntd.0009627] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 07/05/2021] [Indexed: 12/27/2022] Open
Abstract
Visceral leishmaniasis is a protozoan disease associated with high fatality rate in developing countries. Although the drug pipeline is constantly improving, available treatments are costly and live-threatening side effects are not uncommon. Moreover, an approved vaccine against human leishmaniasis does not exist yet. Using whole antigens from Leishmania donovani promastigotes (LdAg), we investigated the protective potential of a novel adjuvant-free vaccine strategy. Immunization of mice with LdAg via the intradermal or the intranasal route prior to infection decreases the parasitic burden in primary affected internal organs, including the liver, spleen, and bone marrow. Interestingly, the intranasal route is more efficient than the intradermal route, leading to better parasite clearance and remarkable induction of adaptive immune cells, notably the helper and cytotoxic T cells. In vitro restimulation experiments with Leishmania antigens led to significant IFN-γ secretion by splenocytes; therefore, exemplifying specificity of the adaptive immune response. To improve mucosal delivery and the immunogenic aspects of our vaccine strategy, we used polysaccharide-based nanoparticles (NP) that carry the antigens. The NP-LdAg formulation is remarkably taken up by dendritic cells and induces their maturation in vitro, as revealed by the increased expression of CD80, CD86 and MHC II. Intranasal immunization with NP-LdAg does not improve the parasite clearance in our experimental timeline; however, it does increase the percentage of effector and memory T helper cells in the spleen, suggesting a potential induction of long-term memory. Altogether, this study provides a simple and cost-effective vaccine strategy against visceral leishmaniasis based on LdAg administration via the intranasal route, which could be applicable to other parasitic diseases. Visceral leishmaniasis is a neglected tropical disease caused by specific species of Leishmania parasites that affect internal organs including spleen, liver, and bone marrow. The infective stage called promastigote, is transmitted into the host skin via sandfly bites. Visceral leishmaniasis is usually associated with high mortality rate in poor and developing countries, lacking proper health assistance. Moreover, treatments are expensive while no approved vaccines exist to prevent infection and avoid disease outbreaks. This study suggests an affordable and adjuvant-free vaccine formulation made from the total lysate of promastigotes. Vaccine administration via the intranasal route, ensures a remarkable clearance of Leishmania parasites from the internal organs of infected experimental mice. In particular, intranasal route known to be not invasive, is efficient in inducing adequate immune response against the infective form of the parasite. Further studies are now required to improve this prophylactic vaccine and provide therefore the basis for a promising translational approach.
Collapse
MESH Headings
- Adaptive Immunity
- Adjuvants, Immunologic/administration & dosage
- Administration, Intranasal
- Animals
- Antibodies, Protozoan/blood
- Antigens, Protozoan/administration & dosage
- Antigens, Protozoan/blood
- Antigens, Protozoan/immunology
- Bone Marrow/metabolism
- Bone Marrow/parasitology
- Female
- Immunization
- Interferon-gamma/metabolism
- Leishmania donovani/immunology
- Leishmaniasis Vaccines/administration & dosage
- Leishmaniasis Vaccines/immunology
- Leishmaniasis, Visceral/immunology
- Leishmaniasis, Visceral/parasitology
- Leishmaniasis, Visceral/prevention & control
- Liver/metabolism
- Liver/parasitology
- Mice
- Mice, Inbred BALB C
- Spleen/metabolism
- Spleen/parasitology
Collapse
Affiliation(s)
- Doumet Georges Helou
- Université Paris-Saclay, CNRS, BioCis-UMR 8076, Châtenay-Malabry, France
- * E-mail: (DGH); (SC)
| | - Aurélie Mauras
- Université Paris-Saclay, CNRS, BioCis-UMR 8076, Châtenay-Malabry, France
| | | | | | | | | | - Sandrine Cojean
- Université Paris-Saclay, CNRS, BioCis-UMR 8076, Châtenay-Malabry, France
- * E-mail: (DGH); (SC)
| |
Collapse
|
6
|
Martínez-Rodrigo A, S. Dias D, Ribeiro PAF, Roatt BM, Mas A, Carrión J, Coelho EAF, Domínguez-Bernal G. Immunization with the HisAK70 DNA Vaccine Induces Resistance against Leishmania Amazonensis Infection in BALB/c Mice. Vaccines (Basel) 2019; 7:vaccines7040183. [PMID: 31739549 PMCID: PMC6963319 DOI: 10.3390/vaccines7040183] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/11/2019] [Accepted: 11/13/2019] [Indexed: 12/04/2022] Open
Abstract
Leishmania amazonensis is the aetiological agent of a broad spectrum of leishmaniosis in South America. It can cause not only numerous cases of cutaneous leishmaniosis but also diffuse cutaneous leishmaniosis. Considering the diversity of parasite species causing different forms of the disease that coexist in the same region, it is desirable to develop a vaccine capable of eliciting cross-protection. We have previously described the use of HisAK70 DNA vaccine for immunization of mice to assess the induction of a resistant phenotype against Leishmania major and infantum infections. In this study, we extended its application in the murine model of infection by using L. amazonensis promastigotes. Our data revealed that 14 weeks post-infection, HisAK70-vaccinated mice showed key biomarkers of protection, such as higher iNOS/arginase activity, IFN-γ/IL-10, IFN-γ/IL-4, and GM-CSF/IL-10 ratios, in addition to an IgG2a-type response when compared to the control group. These findings correlated with the presentation of lower footpad swelling and parasite burdens in the immunized compared to the control mice. Overall, this study suggests that immunization with HisAK70 may be considered a suitable tool to combat leishmaniosis as it is able to induce a potent cellular immune response, which allows to control the infection caused by L. amazonensis.
Collapse
Affiliation(s)
- Abel Martínez-Rodrigo
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense Madrid, INMIVET, 28040 Madrid, Spain; (A.M.-R.); (A.M.); (J.C.)
| | - Daniel S. Dias
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, Minas Gerais, Brazil; (D.S.D.); (P.A.F.R.); (E.A.F.C.)
| | - Patrícia A. F. Ribeiro
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, Minas Gerais, Brazil; (D.S.D.); (P.A.F.R.); (E.A.F.C.)
| | - Bruno M. Roatt
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto 35400-000, Minas Gerais, Brazil;
| | - Alicia Mas
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense Madrid, INMIVET, 28040 Madrid, Spain; (A.M.-R.); (A.M.); (J.C.)
| | - Javier Carrión
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense Madrid, INMIVET, 28040 Madrid, Spain; (A.M.-R.); (A.M.); (J.C.)
| | - Eduardo A. F. Coelho
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, Minas Gerais, Brazil; (D.S.D.); (P.A.F.R.); (E.A.F.C.)
- Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil
| | - Gustavo Domínguez-Bernal
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense Madrid, INMIVET, 28040 Madrid, Spain; (A.M.-R.); (A.M.); (J.C.)
- Correspondence: ; Tel.: +34-913943712
| |
Collapse
|
7
|
Synthetic Peptides Elicit Strong Cellular Immunity in Visceral Leishmaniasis Natural Reservoir and Contribute to Long-Lasting Polyfunctional T-Cells in BALB/c Mice. Vaccines (Basel) 2019; 7:vaccines7040162. [PMID: 31661776 PMCID: PMC6963447 DOI: 10.3390/vaccines7040162] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 10/17/2019] [Accepted: 10/19/2019] [Indexed: 12/20/2022] Open
Abstract
Reverse vaccinology or immunoinformatics is a computational methodology which integrates data from in silico epitope prediction, associated to other important information as, for example, the predicted subcellular location of the proteins used in the design of the context of vaccine development. This approach has the potential to search for new targets for vaccine development in the predicted proteome of pathogenic organisms. To date, there is no effective vaccine employed in vaccination campaigns against visceral leishmaniasis (VL). For the first time, herein, an in silico, in vitro, and in vivo peptide screening was performed, and immunogenic peptides were selected to constitute VL peptide-based vaccines. Firstly, the screening of in silico potential peptides using dogs naturally infected by L. infantum was conducted and the peptides with the best performance were selected. The mentioned peptides were used to compose Cockt-1 (cocktail 1) and Cockt-2 (cocktail 2) in combination with saponin as the adjuvant. Therefore, tests for immunogenicity, polyfunctional T-cells, and the ability to induce central and effector memory in T-lymphocytes capacity in reducing the parasite load on the spleen for Cockt-1 and Cockt-2 were performed. Among the vaccines under study, Cockt-1 showed the best results, eliciting CD4+ and CD8+ polyfunctional T-cells, with a reduction in spleen parasitism that correlates to the generation of T CD4+ central memory and T CD8+ effector memory cells. In this way, our findings corroborate the use of immunoinformatics as a tool for the development of future vaccines against VL.
Collapse
|
8
|
Castelo-Branco PV, Alves HJ, Pontes RL, Maciel-Silva VL, Ferreira Pereira SR. Ascorbic acid reduces the genetic damage caused by miltefosine (hexadecylphosphocholine) in animals infected by Leishmania (Leishamnia) infantum without decreasing its antileishmanial activity. Int J Parasitol Drugs Drug Resist 2019; 9:8-15. [PMID: 30578864 PMCID: PMC6304451 DOI: 10.1016/j.ijpddr.2018.12.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 12/06/2018] [Accepted: 12/12/2018] [Indexed: 02/06/2023]
Abstract
Leishamaniasis is a neglected disease caused by over 20 Leishmania species, occurring in more than a hundred countries. Miltefosine (hexadecylphosphocholine) is the single oral drug used in treatment for leshmaniases, including cases of infections resistant to pentavalent antimony. Our group has recently demonstrated the ability of miltefosine to cause genomic lesions by DNA oxidation. Acknowledging that antioxidant compounds can potentially modulate Reactive Oxygen Species (ROS), our study verified whether ascorbic acid reduces the genotoxic and mutagenic effects caused by miltefosine, and whether it interferes with drug efficacy. For this purpose, uninfected Swiss mice received simultaneous (single dose treatment) miltefosine and ascorbic acid (gavage and intraperitoneally), besides pre and post treatments (ascorbic acid 24 h before and after drug administration); furthermore, Balb/c mice infected with Leishmania infantum received miltefosine plus ascorbic acid (repeated doses treatment). We conducted comet assays, micronucleus tests, dosages of superoxide dismutase enzyme and parasitic burden by the limiting dilution assay. We observed that ascorbic acid administered intraperitoneally displayed a protective effect over damage caused by miltefosine. However, this effect was not not observed when the same doses were administered via gavage, possibly due to low serum levels of this antioxidant. Ascorbic acid's protective effect reinforces that miltefosine damages DNA by oxidizing its nitrogenous bases, which is reduced by ascorbic acid due to its ability of protecting genetic material from the action of ROS. Therefore, our results show that this drug is efficient in reducing parasitic burden of L. infantum.
Collapse
Affiliation(s)
- Patrícia Valéria Castelo-Branco
- Laboratory of Genetics and Molecular Biology, Department of Biology, Federal University of Maranhão, Cidade Universitária do Bacanga, São Luís, Maranhão, Brazil
| | - Hugo José Alves
- Laboratory of Genetics and Molecular Biology, Department of Biology, Federal University of Maranhão, Cidade Universitária do Bacanga, São Luís, Maranhão, Brazil
| | - Raissa Lacerda Pontes
- Laboratory of Genetics and Molecular Biology, Department of Biology, Federal University of Maranhão, Cidade Universitária do Bacanga, São Luís, Maranhão, Brazil
| | - Vera Lucia Maciel-Silva
- Laboratory of Genetics and Molecular Biology, Department of Biology, Federal University of Maranhão, Cidade Universitária do Bacanga, São Luís, Maranhão, Brazil; Department of Chemistry and Biology, University of State of Maranhão, São Luís, Maranhão, Brazil
| | - Silma Regina Ferreira Pereira
- Laboratory of Genetics and Molecular Biology, Department of Biology, Federal University of Maranhão, Cidade Universitária do Bacanga, São Luís, Maranhão, Brazil.
| |
Collapse
|
9
|
Almeida APMM, Machado LFM, Doro D, Nascimento FC, Damasceno L, Gazzinelli RT, Fernandes AP, Junqueira C. New Vaccine Formulations Containing a Modified Version of the Amastigote 2 Antigen and the Non-Virulent Trypanosoma cruzi CL-14 Strain Are Highly Antigenic and Protective against Leishmania infantum Challenge. Front Immunol 2018; 9:465. [PMID: 29599776 PMCID: PMC5863692 DOI: 10.3389/fimmu.2018.00465] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 02/21/2018] [Indexed: 12/21/2022] Open
Abstract
Visceral leishmaniasis (VL) is a major public health issue reported as the second illness in mortality among all tropical diseases. Clinical trials have shown that protection against VL is associated with robust T cell responses, especially those producing IFN-γ. The Leishmania amastigote 2 (A2) protein has been repeatedly described as immunogenic and protective against VL in different animal models; it is recognized by human T cells, and it is also commercially available in a vaccine formulation containing saponin against canine VL. Moving toward a more appropriate formulation for human vaccination, here, we tested a new optimized version of the recombinant protein (rA2), designed for Escherichia coli expression, in combination with adjuvants that have been approved for human use. Moreover, aiming at improving the cellular immune response triggered by rA2, we generated a recombinant live vaccine vector using Trypanosoma cruzi CL-14 non-virulent strain, named CL-14 A2. Mice immunized with respective rA2, adsorbed in Alum/CpG B297, a TLR9 agonist recognized by mice and human homologs, or with the recombinant CL-14 A2 parasites through homologous prime-boost protocol, were evaluated for antigen-specific immune responses and protection against Leishmania infantum promastigote challenge. Immunization with the new rA2/Alum/CpG formulations and CL-14 A2 transgenic vectors elicited stronger cellular immune responses than control groups, as shown by increased levels of IFN-γ, conferring protection against L. infantum challenge. Interestingly, the use of the wild-type CL-14 alone was enough to boost immunity and confer protection, confirming the previously reported immunogenic potential of this strain. Together, these results support the success of both the newly designed rA2 antigen and the ability of T. cruzi CL-14 to induce strong T cell-mediated immune responses against VL in animal models when used as a live vaccine vector. In conclusion, the vaccination strategies explored here reveal promising alternatives for the development of new rA2 vaccine formulations to be translated human clinical trials.
Collapse
Affiliation(s)
- Ana Paula M M Almeida
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Leopoldo F M Machado
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | - Daniel Doro
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | - Frederico C Nascimento
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Ricardo Tostes Gazzinelli
- Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil.,Division of Infectious Disease, University of Massachusetts Medical School, Worcester, MA, United States
| | - Ana Paula Fernandes
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | |
Collapse
|
10
|
Achievement amastigotes of Leishmania infantum and investigation of pathological changes in the tissues of infected golden hamsters. J Parasit Dis 2018; 42:187-195. [PMID: 29844622 DOI: 10.1007/s12639-018-0981-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 02/20/2018] [Indexed: 10/17/2022] Open
Abstract
Leishmania infantum is an agent of visceral leishmaniasis (VL). Amastigote form is a more appropriate target for investigations on vaccines, treatment, and diagnosis. This study aimed to achieve the amastigotes of L. infantum in the golden hamster and J774 macrophages and report the pathological changes that occur in the liver and spleen of the hamsters with VL. 4 male golden hamsters were infected with L. infantum promastigotes. After 5 months, the hamsters were euthanized and touch and pathology smears were prepared from the livers and spleens. Then, these tissues were homogenized and centrifuged at 100×g. Supernatants were collected and centrifuged at 2000×g and the pellets were collected. In the next part of our study, J774 macrophages were infected with L. infantum promastigotes. Then, the infected macrophages were ruptured. Centrifuge stages were done same the previous part. The amastigotes were observed in touch and pathology smears. A load of amastigotes in the livers was more than the spleens in both types of smears. Although the livers' structure had undergone pathological changes, the spleens were unchanged. Also, the macrophage infectivity ratio was up to 95%. Our results present a simple and accessible way of achieving a lot of pure and real amastigotes for different fields in Leishmania. Also, it seems that the pathological changes occurring in the spleen and the liver of animals with VL are different and probably can be attributed to the genetic and immune process of the infected animals.
Collapse
|
11
|
Oliveira MP, Martins VT, Santos TTO, Lage DP, Ramos FF, Salles BCS, Costa LE, Dias DS, Ribeiro PAF, Schneider MS, Machado-de-Ávila RA, Teixeira AL, Coelho EAF, Chávez-Fumagalli MA. Small Myristoylated Protein-3, Identified as a Potential Virulence Factor in Leishmania amazonensis, Proves to be a Protective Antigen against Visceral Leishmaniasis. Int J Mol Sci 2018; 19:E129. [PMID: 29301342 PMCID: PMC5796078 DOI: 10.3390/ijms19010129] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 12/14/2017] [Accepted: 12/25/2017] [Indexed: 11/23/2022] Open
Abstract
In a proteomics approach conducted with Leishmania amazonensis, parasite proteins showed either an increase or a decrease in their expression content during extensive in vitro cultivation, and were related to the survival and the infectivity of the parasites, respectively. In the current study, a computational screening was performed to predict virulence factors among these molecules. Three proteins were selected, one of which presented no homology to human proteins. This candidate, namely small myristoylated protein-3 (SMP-3), was cloned, and its recombinant version (rSMP-3) was used to stimulate peripheral blood mononuclear cells (PBMCs) from healthy subjects living in an endemic area of leishmaniasis and from visceral leishmaniasis patients. Results showed high interferon-γ (IFN-γ) production and low levels of interleukin 10 (IL-10) in the cell supernatants. An in vivo experiment was then conducted on BALB/c mice, which were immunized with rSMP-3/saponin and later challenged with Leishmania infantum promastigotes. The rSMP-3/saponin combination induced high production of protein-specific IFN-γ, IL-12, and granulocyte-macrophage colony-stimulating factor (GM-CSF) by the spleen cells of the immunized mice. This pattern was associated with protection, which was characterized by a significant reduction in the parasite load in distinct organs of the animals. Altogether, these results have revealed that this new virulence factor is immunogenic in both mice and humans, and have proven its protective efficacy against visceral leishmaniasis in a murine model.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antigens, Protozoan/chemistry
- Antigens, Protozoan/metabolism
- Computational Biology
- Cytokines/metabolism
- Epitopes, T-Lymphocyte/metabolism
- Humans
- Immunity, Cellular
- Immunity, Humoral
- Leishmania/pathogenicity
- Leishmania infantum
- Leishmaniasis, Visceral/immunology
- Leishmaniasis, Visceral/parasitology
- Leishmaniasis, Visceral/prevention & control
- Leukocytes, Mononuclear/metabolism
- Linear Models
- Mice, Inbred BALB C
- Molecular Sequence Annotation
- Protozoan Proteins/chemistry
- Protozoan Proteins/metabolism
- Reproducibility of Results
- Structural Homology, Protein
- Virulence Factors/metabolism
Collapse
Affiliation(s)
- Marcelo P Oliveira
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, Minas Gerais, Brazil.
| | - Vívian T Martins
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, Minas Gerais, Brazil.
| | - Thaís T O Santos
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, Minas Gerais, Brazil.
| | - Daniela P Lage
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, Minas Gerais, Brazil.
| | - Fernanda F Ramos
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, Minas Gerais, Brazil.
| | - Beatriz C S Salles
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, Minas Gerais, Brazil.
| | - Lourena E Costa
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, Minas Gerais, Brazil.
| | - Daniel S Dias
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, Minas Gerais, Brazil.
| | - Patrícia A F Ribeiro
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, Minas Gerais, Brazil.
| | - Mônica S Schneider
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, Minas Gerais, Brazil.
| | - Ricardo A Machado-de-Ávila
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma 88806-000, Santa Catarina, Brazil.
| | - Antônio L Teixeira
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, Minas Gerais, Brazil.
- Laboratório Interdisciplinar de Investigação Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, Minas Gerais, Brazil.
- Neuropsychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, 1941 East Road, Houston, TX 77041, USA.
| | - Eduardo A F Coelho
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, Minas Gerais, Brazil.
- Departamento de Patologia Clínica, do Colégio Técnico (COLTEC), Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil.
| | - Miguel A Chávez-Fumagalli
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, Minas Gerais, Brazil.
| |
Collapse
|
12
|
Identification of immune biomarkers related to disease progression and treatment efficacy in human visceral leishmaniasis. Immunobiology 2017; 223:303-309. [PMID: 29074301 DOI: 10.1016/j.imbio.2017.10.043] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 10/19/2017] [Indexed: 01/26/2023]
Abstract
Visceral leishmaniasis (VL) is a potentially fatal disease, in which the treatment based on chemotherapy is considered toxic. The cure of disease is associated with the life-long Th1-type immunity against the infection. The Th1-related cytokines production by peripheral blood mononuclear cells (PBMCs) seems to be crucial for host control of parasite load and clinical cure. In the current study, we used five proteins (IgE-dependent histamine-releasing factor [HRF], LiHyD, LiHyV, LiHyT and LiHyp6) recently shown to be antigenic and/or immunogenic in the canine VL, aiming to evaluate the antigen-specific antibody levels and cytokine production in PBMCs culture supernatants collected from VL patients before and after anti-VL treatment. In the results, when PBMCs were exposed to rHRF, rLiHyD and rLiHyT, higher IFN-γ and lower IL-10 levels were observed in all patients that were treated and clinically cured. Analysis of specific antibody subclasses was in line with in vitro cellular response, since a higher IgG2 production was found in the treated and cured patients, when compared to the IgG1 subclass levels. In addition, evaluating the diagnostic efficacy of the recombinant molecules, the rHRF, rLiHyD and rLiHyT proteins showed the best results in the serology assays to identify all VL patients, as well as these antigens were not recognized by antibodies in sera from non-infected subjects or those with leishmaniasis-related diseases. Our results corroborate the view that clinical cure of VL is associated with a sustained Th1-related response, and indicate the potential use of rHRF, rLiHyD and rLiHyT as immune biomarkers of VL treatment.
Collapse
|
13
|
Probing the efficacy of a heterologous Leishmania/L. Viannia braziliensis recombinant enolase as a candidate vaccine to restrict the development of L. infantum in BALB/c mice. Acta Trop 2017; 171:8-16. [PMID: 28288798 DOI: 10.1016/j.actatropica.2017.03.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 02/11/2017] [Accepted: 03/09/2017] [Indexed: 11/23/2022]
Abstract
In the present study, the Leishmania braziliensis enolase protein was evaluated as a vaccine candidate against visceral leishmaniasis (VL). The DNA sequence was cloned and the recombinant protein (rEnolase) was evaluated as a vaccine, associated with saponin, as an immune adjuvant. The protective efficacy of the rEnolase plus saponin combination was investigated in BALB/c mice against Leishmania infantum infection. The results revealed that the vaccine induced higher levels of IFN-γ, IL-12, and GM-CSF when a capture ELISA and flow cytometry were performed, as well as an antileishmanial nitrite production after using in vitro stimulation with rEnolase and an antigenic Leishmania preparation. The vaccinated animals, when compared to the control groups, showed a lower parasite burden in the liver, spleen, bone marrow, and paws' draining lymph nodes when both a limiting dilution technique and RT-PCR assay were performed. In addition, these mice showed low levels of antileishmanial IL-4, IL-10, and anti-Leishmania IgG1 isotype antibodies. Partial protection was associated with IFN-γ production, which was mainly mediated by CD4+ T cells. In conclusion, the present study's data showed that the L. braziliensis enolase protein could be considered a vaccine candidate that offers heterologous protection against VL.
Collapse
|
14
|
An ELISA immunoassay employing a conserved Leishmania hypothetical protein for the serodiagnosis of visceral and tegumentary leishmaniasis in dogs and humans. Cell Immunol 2017; 318:42-48. [PMID: 28602279 DOI: 10.1016/j.cellimm.2017.06.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 04/22/2017] [Accepted: 06/05/2017] [Indexed: 01/31/2023]
Abstract
In the present study, a conserved Leishmania hypothetical protein, namely LiHypA, was evaluated for the serodiagnosis of visceral and tegumentary leishmaniasis in dogs and humans. This protein showed a high amino acid sequence homology between viscerotropic and cutaneotropic Leishmania species. An enzyme-linked immunosorbent assay (ELISA) was developed using the recombinant antigen (rLiHypA), in addition to the A2 protein and two parasite antigenic preparations, which were used as controls. Regarding human diagnosis, results showed that rLiHypA was more sensitive and specific than ELISA-L. braziliensis SLA in detecting both cutaneous or mucosal leishmaniasis patients, but not those from Chagas disease patients or healthy subjects. Regarding canine diagnosis, this recombinant antigen showed higher sensitivity and specificity values, as well as a perfect accuracy to identify asymptomatic and symptomatic visceral leishmaniasis (VL) in dogs, but not those from vaccinated animals or those developing babesiosis, ehrlichiosis, or Chagas disease. However, using the rA2 protein or L. braziliensis SLA as controls, significant cross-reactivity was found when these samples were used, hampering their sensitivity and specificity values for the diagnosis. In this context, LiHypA could be considered a candidate to be evaluated for the serodiagnosis of visceral and tegumentary leishmaniasis in dogs and humans.
Collapse
|
15
|
Li M, Cai RJ, Song S, Jiang ZY, Li Y, Gou HC, Chu PP, Li CL, Qiu HJ. Evaluation of immunogenicity and protective efficacy of recombinant outer membrane proteins of Haemophilus parasuis serovar 5 in a murine model. PLoS One 2017; 12:e0176537. [PMID: 28448603 PMCID: PMC5407842 DOI: 10.1371/journal.pone.0176537] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 04/12/2017] [Indexed: 12/04/2022] Open
Abstract
Glässer’s disease is an economically important infectious disease of pigs caused by Haemophilus parasuis. Few vaccines are currently available that could provide effective cross-protection against various serovars of H. parasuis. In this study, five OMPs (OppA, TolC, HxuC, LppC, and HAPS_0926) identified by bioinformatic approaches, were cloned and expressed as recombinant proteins. Antigenicity of the purified proteins was verified through Western blotting, and primary screening for protective potential was evaluated in vivo. Recombinant TolC (rTolC), rLppC, and rHAPS_0926 proteins showing marked protection of mice against H. parasuis infection, and were further evaluated individually or in combination. Mice treated with these three OMPs produced humoral and host cell-mediated responses, with a significant rise in antigen-specific IgG titer and lymphoproliferative response in contrast with the mock-immunized group. Significant increases were noted in CD4+, CD8+ T cells, and three cytokines (IL-2, IL-4, and IFN-γ) in vaccinated animals. The antisera against candidate antigens could efficiently impede bacterial survival in whole blood bactericidal assay against H. parasuis infection. The multi-protein vaccine induced more pronounced immune responses and offered better protection than individual vaccines. Our findings indicate that these three OMPs are promising antigens for the development of multi-component subunit vaccines against Glässer's disease.
Collapse
Affiliation(s)
- Miao Li
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Open Laboratory of Veterinary Public Health, Guangzhou, China
- Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Guangzhou, China
| | - Ru-Jian Cai
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Open Laboratory of Veterinary Public Health, Guangzhou, China
- Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Guangzhou, China
| | - Shuai Song
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Open Laboratory of Veterinary Public Health, Guangzhou, China
- Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Guangzhou, China
| | - Zhi-Yong Jiang
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Open Laboratory of Veterinary Public Health, Guangzhou, China
- Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Guangzhou, China
| | - Yan Li
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Open Laboratory of Veterinary Public Health, Guangzhou, China
- Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Guangzhou, China
| | - Hong-Chao Gou
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Open Laboratory of Veterinary Public Health, Guangzhou, China
- Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Guangzhou, China
| | - Pin-Pin Chu
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Open Laboratory of Veterinary Public Health, Guangzhou, China
- Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Guangzhou, China
| | - Chun-Ling Li
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Open Laboratory of Veterinary Public Health, Guangzhou, China
- Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Guangzhou, China
- * E-mail: (CL); (HQ)
| | - Hua-Ji Qiu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- * E-mail: (CL); (HQ)
| |
Collapse
|
16
|
Martins VT, Chávez-Fumagalli MA, Lage DP, Duarte MC, Garde E, Costa LE, Grazielle da Silva V, Oliveira JS, Ferreira de Magalhães-Soares D, Teixeira SMR, Fernandes AP, Soto M, Tavares CAP, Coelho EAF. Correction: Antigenicity, Immunogenicity and Protective Efficacy of Three Proteins Expressed in the Promastigote and Amastigote Stages of Leishmania infantum against Visceral Leishmaniasis. PLoS One 2015; 10:e0141496. [PMID: 26485004 PMCID: PMC4618868 DOI: 10.1371/journal.pone.0141496] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|