1
|
Poggiana C, Piazza AF, Catoni C, Gallingani I, Piccin L, Pellegrini S, Aneloni V, Salizzato V, Pigozzo J, Fabozzi A, Facchinetti A, Menin C, Del Fiore P, Mocellin S, Chiarion-Sileni V, Rosato A, Scaini MC. A model workflow for microfluidic enrichment and genetic analysis of circulating melanoma cells. Sci Rep 2025; 15:15329. [PMID: 40316673 PMCID: PMC12048555 DOI: 10.1038/s41598-025-99153-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 04/17/2025] [Indexed: 05/04/2025] Open
Abstract
Circulating melanoma cells (CMCs) are responsible for the hematogenous spread of melanoma and, ultimately, metastasis. However, their study has been limited by the low abundance in patient blood and the heterogeneous expression of surface markers. The FDA-approved CellSearch platform enriches CD146-positive CMCs, whose number correlates with progression-free survival and overall survival. However, a single marker may not be sufficient to identify them all. The Parsortix system allows enrichment of CMCs based on their size and deformability, keeping them viable and suitable for downstream molecular analyses. In this study, we tested the strengths, weaknesses and potential convergences of both platforms to integrate the counting of CMCs with a protocol for their genetic analysis. Samples run on Parsortix were labeled with a customized melanoma antibody cocktail, which efficiently labeled and distinguished CMCs from endothelial cells/leukocytes. The capture rate of CellSearch and Parsortix was comparable for cell lines, but Parsortix had a higher capture rate in real-life samples. Moreover, double enrichment with both CellSearch and Parsortix succeeded in removing most of the leukocyte contamination, resulting in an almost pure CMC sample suitable for genetic analysis. In this regard, a proof-of-concept analysis of CMCs from a paradigmatic case of a metastatic uveal melanoma patient led to the identification of multiple genetic alterations. In particular, the GNAQ p.Q209L was identified as homozygous, while a deletion in BAP1 exon 9 was found hemizygous. Moreover, an isochromosome 8 and a homozygous deletion of the CDKN2A gene were detected. In conclusion, we have optimized an approach to successfully enrich and retrieve viable CMCs from metastatic melanoma patients. Moreover, this study provides proof-of-principle for the feasibility of a marker-agnostic CMC enrichment followed by CMC phenotypic identification and genetic analysis.Kindly check and confirm the processed contributed equally is correctly identify We confirm.
Collapse
Affiliation(s)
- Cristina Poggiana
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | | | - Cristina Catoni
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy.
| | - Ilaria Gallingani
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy.
| | - Luisa Piccin
- Medical Oncology 2, Veneto Institute of Oncology, IOV-IRCCS, Padova, Italy
| | - Stefania Pellegrini
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | - Vittorio Aneloni
- UOC Immunotrasfusionale, University-Hospital of Padova, Padova, Italy
| | | | - Jacopo Pigozzo
- Medical Oncology 2, Veneto Institute of Oncology, IOV-IRCCS, Padova, Italy
| | - Alessio Fabozzi
- Oncology Unit 3, Veneto Institute of Oncology IOV-IRCCS, Padova, 35128, Italy
| | - Antonella Facchinetti
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Chiara Menin
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | - Paolo Del Fiore
- Soft-Tissue, Peritoneum and Melanoma Surgical Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | - Simone Mocellin
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
- Soft-Tissue, Peritoneum and Melanoma Surgical Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | | | - Antonio Rosato
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Maria Chiara Scaini
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| |
Collapse
|
2
|
Ding W, Ye W, Liu H, Yang J, Chu C, Zhu H, Wang J, Zhou L, Zhao M, Liu M. High-gradient microstructured hybrid microfluidic chip for rare tumor cell capture. Anal Bioanal Chem 2025; 417:2361-2374. [PMID: 40085212 DOI: 10.1007/s00216-025-05825-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/16/2025] [Accepted: 02/27/2025] [Indexed: 03/16/2025]
Abstract
Cancer remains the leading cause of death worldwide, and early detection can significantly reduce patient mortality. Circulating tumor cells (CTCs), which are tumor cells shed from the primary tumor and transported to distant sites through the bloodstream, are key biomarkers for cancer diagnosis and contain critical information reflecting the primary tumor, making them important for monitoring cancer progression. Microfluidic chips utilizing a purely physical capture technique based on the size and deformability differences between CTCs and other blood cells have proven to be effective in capturing CTCs. This study investigates three high-gradient microstructured hybrid microfluidic chips (HGMH-Chips), each incorporating a microarray structure and a distinct geometric gradient design: linear, sawtooth, and waveform. Multiphysics simulations revealed significant differences in pressure distribution among the chip configurations. Notably, the sawtooth design exhibited a more uniform pressure drop, with only 25% of the particles in the high-pressure region. We employed two cancer cell lines (MDA-MB-231 and A549) to evaluate the chip's capture capability. Additionally, we compared the capture efficiency and cell viability across the three designs in a single cancer cell system. Experimental results demonstrated that the sawtooth chip achieved a capture efficiency of up to 70%. When applied to mixed samples containing leukocytes, the high-gradient design exhibited a capture purity of up to 98%, effectively isolating a small number of cancer cells from complex samples. This model holds promise for the capture of CTCs in complex systems. Furthermore, the microarray structure aids in stabilizing the captured cancer cells, enhancing separation efficiency. This study presents a novel chip structure design for tumor cell capture, which holds promise for improving the capture of tumor cells in complex biological samples.
Collapse
Affiliation(s)
- Wen Ding
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310018, China
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Wu Ye
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310018, China
| | - Huayan Liu
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310018, China
| | - Jianbo Yang
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310018, China
| | - Chengxing Chu
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310018, China
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Huancheng Zhu
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310018, China
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Jiakang Wang
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310018, China
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Luping Zhou
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310018, China.
| | - Ming Zhao
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310018, China.
| | - Ming Liu
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310018, China.
| |
Collapse
|
3
|
Salomon R, Razavi Bazaz S, Mutafopulos K, Gallego-Ortega D, Warkiani M, Weitz D, Jin D. Challenges in blood fractionation for cancer liquid biopsy: how can microfluidics assist? LAB ON A CHIP 2025; 25:1097-1127. [PMID: 39775440 DOI: 10.1039/d4lc00563e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Liquid biopsy provides a minimally invasive approach to characterise the molecular and phenotypic characteristics of a patient's individual tumour by detecting evidence of cancerous change in readily available body fluids, usually the blood. When applied at multiple points during the disease journey, it can be used to monitor a patient's response to treatment and to personalise clinical management based on changes in disease burden and molecular findings. Traditional liquid biopsy approaches such as quantitative PCR, have tended to look at only a few biomarkers, and are aimed at early detection of disease or disease relapse using predefined markers. With advances in the next generation sequencing (NGS) and single-cell genomics, simultaneous analysis of both circulating tumour DNA (ctDNA) and circulating tumour cells (CTCs) is now a real possibility. To realise this, however, we need to overcome issues with current blood collection and fractionation processes. These include overcoming the need to add a preservative to the collection tube or the need to rapidly send blood tubes to a centralised processing lab with the infrastructure required to fractionate and process the blood samples. This review focuses on outlining the current state of liquid biopsy and how microfluidic blood fractionation tools can be used in cancer liquid biopsy. We describe microfluidic devices that can separate plasma for ctDNA analysis, and devices that are important in isolating the cellular component(s) in liquid biopsy, i.e., individual CTCs and CTC clusters. To facilitate a better understanding of these devices, we propose a new categorisation system based on how these devices operate. The three categories being 1) solid Interaction devices, 2) fluid Interaction devices and 3) external force/active devices. Finally, we conclude that whilst some assays and some cancers are well suited to current microfluidic techniques, new tools are necessary to support broader, clinically relevant multiomic workflows in cancer liquid biopsy.
Collapse
Affiliation(s)
- Robert Salomon
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, Australia.
- Institute for Biomedical Materials and Devices (IBMD)/Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007 Australia
| | - Sajad Razavi Bazaz
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, Australia.
| | - Kirk Mutafopulos
- Department of Physics, Harvard University, Cambridge, MA, 02138, USA
| | - David Gallego-Ortega
- Institute for Biomedical Materials and Devices (IBMD)/Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007 Australia
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales, Sydney, NSW, 2052, Australia
- School of Biomedical Engineering, University of Technology Sydney, Sydney, New South Wales 2007, Australia
- Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia
| | - Majid Warkiani
- Institute for Biomedical Materials and Devices (IBMD)/Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007 Australia
- School of Biomedical Engineering, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - David Weitz
- Department of Physics, Harvard University, Cambridge, MA, 02138, USA
| | - Dayong Jin
- Institute for Biomedical Materials and Devices (IBMD)/Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007 Australia
| |
Collapse
|
4
|
Espejo-Cruz ML, González-Rubio S, Espejo JJ, Zamora-Olaya JM, Prieto-Torre M, Linares CI, Ruiz-Ramas Á, Jiménez-Arranz Á, Guerrero-Misas M, Barrera-Baena P, Poyato-González A, Montero JL, Sánchez-Frías M, Ayllón MD, Rodríguez-Perálvarez ML, de la Mata M, Ferrín G. Early release of circulating tumor cells after transarterial chemoembolization hinders therapeutic response in patients with hepatocellular carcinoma. J Transl Med 2025; 23:139. [PMID: 39885581 PMCID: PMC11783761 DOI: 10.1186/s12967-025-06092-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 01/07/2025] [Indexed: 02/01/2025] Open
Abstract
BACKGROUND Transarterial chemoembolization (TACE) is the first-line therapeutic option for patients with intermediate-stage hepatocellular carcinoma (HCC). Tumor neovascularization allows tumor growth and may facilitate the release of circulating tumor cells (CTCs) to the bloodstream after TACE. We investigated the relationship between early release of CTCs and radiological response after TACE. METHODS Prospective, single-center study including patients with HCC undergoing a first TACE from January 2019 to June 2023. The IsoFlux® system was used to evaluate EpCAM+ CTC counts before TACE, at day 1 (D1), and at day 30 after TACE. Radiological response to TACE was assessed according to the mRECIST criteria one month after the procedure. Tumor vascularity was assessed by an interventional radiologist. RESULTS In all, 48 patients with HCC undergoing TACE were included (age 64.2 ± 7.6 years, 14.6% women). CTC levels increased at D1 (114.0% [IQR 76.5%-178.0%], p = 0.019) and normalized to baseline levels in the first month after TACE (76.5% [IQR 41.3%-131.8%], p = 0.263). Higher CTC counts at baseline (p = 0.009) and at D1 (p = 0.026) were associated with tumor hypervascularity. Larger tumor size [OR: 1.9 (95% CI: 1.1-3.3), p = 0.020] and CTC increase at D1 [OR: 5.3 (95% CI: 1.3-21.0), p = 0.017] were independent predictors of non-response to TACE, especially for those patients with hypervascular lesions. CONCLUSIONS A meaningful release of CTCs 24 h after TACE was associated with suboptimal tumor response one month after the procedure. Future studies should evaluate the role of CTC dynamics to select candidates for adjuvant therapy after TACE and to analyze their impact on long-term outcomes.
Collapse
Affiliation(s)
- María L Espejo-Cruz
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), University of Cordoba, Cordoba, Spain
- Biomedical Research Network Center for Liver and Digestive Diseases (CIBERehd), Madrid, Spain
| | - Sandra González-Rubio
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), University of Cordoba, Cordoba, Spain
| | - Juan J Espejo
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), University of Cordoba, Cordoba, Spain
- Department of Interventional Radiology, Reina Sofia University Hospital, Cordoba, Spain
| | - Javier M Zamora-Olaya
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), University of Cordoba, Cordoba, Spain
- Department of Hepatology and Liver Transplantation, Reina Sofia University Hospital, Cordoba, Spain
| | - María Prieto-Torre
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), University of Cordoba, Cordoba, Spain
- Department of Hepatology and Liver Transplantation, Reina Sofia University Hospital, Cordoba, Spain
| | - Clara I Linares
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), University of Cordoba, Cordoba, Spain
| | - Álvaro Ruiz-Ramas
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), University of Cordoba, Cordoba, Spain
| | - Álvaro Jiménez-Arranz
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), University of Cordoba, Cordoba, Spain
| | - Marta Guerrero-Misas
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), University of Cordoba, Cordoba, Spain
- Department of Hepatology and Liver Transplantation, Reina Sofia University Hospital, Cordoba, Spain
| | - Pilar Barrera-Baena
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), University of Cordoba, Cordoba, Spain
- Biomedical Research Network Center for Liver and Digestive Diseases (CIBERehd), Madrid, Spain
- Department of Hepatology and Liver Transplantation, Reina Sofia University Hospital, Cordoba, Spain
| | - Antonio Poyato-González
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), University of Cordoba, Cordoba, Spain
- Biomedical Research Network Center for Liver and Digestive Diseases (CIBERehd), Madrid, Spain
- Department of Hepatology and Liver Transplantation, Reina Sofia University Hospital, Cordoba, Spain
| | - José L Montero
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), University of Cordoba, Cordoba, Spain
- Biomedical Research Network Center for Liver and Digestive Diseases (CIBERehd), Madrid, Spain
- Department of Hepatology and Liver Transplantation, Reina Sofia University Hospital, Cordoba, Spain
| | - Marina Sánchez-Frías
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), University of Cordoba, Cordoba, Spain
- Department of Pathology, Reina Sofia University Hospital, Cordoba, Spain
| | - María D Ayllón
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), University of Cordoba, Cordoba, Spain
- Department of Hepatobiliary Surgery and Liver Transplantation, Reina Sofia University Hospital, Cordoba, Spain
| | - Manuel L Rodríguez-Perálvarez
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), University of Cordoba, Cordoba, Spain.
- Biomedical Research Network Center for Liver and Digestive Diseases (CIBERehd), Madrid, Spain.
- Department of Hepatology and Liver Transplantation, Reina Sofia University Hospital, Cordoba, Spain.
| | - Manuel de la Mata
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), University of Cordoba, Cordoba, Spain
- Biomedical Research Network Center for Liver and Digestive Diseases (CIBERehd), Madrid, Spain
- Department of Hepatology and Liver Transplantation, Reina Sofia University Hospital, Cordoba, Spain
| | - Gustavo Ferrín
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), University of Cordoba, Cordoba, Spain
- Biomedical Research Network Center for Liver and Digestive Diseases (CIBERehd), Madrid, Spain
| |
Collapse
|
5
|
Rusnáková DŠ, Aziri R, Dubovan P, Jurík M, Mego M, Pinďák D. Detection, significance and potential utility of circulating tumor cells in clinical practice in breast cancer (Review). Oncol Lett 2025; 29:10. [PMID: 39492933 PMCID: PMC11526295 DOI: 10.3892/ol.2024.14756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/15/2024] [Indexed: 11/05/2024] Open
Abstract
Although advances in diagnostic techniques, new therapeutic strategies and personalization of breast cancer (BC) care have improved the survival for a number of patients, BC remains a major cause of morbidity and mortality for women. The study of circulating tumor cells (CTCs) has significant potential in translational oncology since these cells represent promising biomarkers throughout the entire course of BC in patients. CTCs also have notable prognostic value in early BC as well as metastatic BC. Based on current knowledge, it seems that the dynamics of CTCs that change during therapy reflect therapy response, and CTCs could serve as a tool for risk stratification and real-time monitoring of treatment in patients with BC. The question of how to use this information in everyday clinical practice and how this information can guide or change therapy to affect the clinical outcome of patients with BC remains unanswered. The present review aims to discuss current completed and ongoing trials that have been designed to demonstrate the clinical significance of CTCs, offer insights into treatment efficacy and assess CTC utility, facilitating their implementation in the routine management of patients with BC.
Collapse
Affiliation(s)
- Dominika Šmičková Rusnáková
- Department of Surgical Oncology, Faculty of Medicine, Slovak Medical University and National Cancer Institute, 833 10 Bratislava, Slovak Republic
| | - Ramadan Aziri
- Department of Surgical Oncology, Faculty of Medicine, Slovak Medical University and National Cancer Institute, 833 10 Bratislava, Slovak Republic
| | - Peter Dubovan
- Department of Surgical Oncology, Faculty of Medicine, Slovak Medical University and National Cancer Institute, 833 10 Bratislava, Slovak Republic
| | - Miroslav Jurík
- Department of Surgical Oncology, Faculty of Medicine, Slovak Medical University and National Cancer Institute, 833 10 Bratislava, Slovak Republic
| | - Michal Mego
- Second Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, 833 10 Bratislava, Slovak Republic
| | - Daniel Pinďák
- Department of Surgical Oncology, Faculty of Medicine, Slovak Medical University and National Cancer Institute, 833 10 Bratislava, Slovak Republic
| |
Collapse
|
6
|
Liu C, Cai Y, Mou S. Liquid biopsy in lung cancer: The role of circulating tumor cells in diagnosis, treatment, and prognosis. Biomed Pharmacother 2024; 181:117726. [PMID: 39612860 DOI: 10.1016/j.biopha.2024.117726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2024] Open
Abstract
Despite numerous therapeutic advancements, such as immune checkpoint inhibitors, lung cancer continues to be the leading cause of cancer-related mortality. Therefore, the identification of cancer at an early stage is becoming a significant subject in contemporary oncology. Despite significant advancements in early detection tactics in recent decades, they continue to provide challenges because of the inconspicuous symptoms observed during the early stages of the primary tumor. Presently, tumor biomarkers and imaging techniques are extensively employed across different forms of cancer. Nevertheless, every approach has its own set of constraints. In certain instances, the detriments outweigh the advantages. Hence, there is an urgent need to enhance early detection methods. Currently, liquid biopsy is considered more flexible and not intrusive method in comparison to conventional test for early detection. Circulating tumor cells (CTCs) are crucial components of liquid biopsy and have a pivotal function in the spread and formation of secondary tumors. These indicators show great promise in the early identification of cancer. This study presents a comprehensive examination of the methodologies employed for the isolation and enrichment of circulating tumor cells (CTCs) in lung cancer. Additionally, it explores the formation of clusters of CTCs, which have a pivotal function in facilitating the effective dissemination of cancer to distant organs. In addition, we discuss the importance of CTCs in the detection, treatment, and prognosis of lung cancer.
Collapse
Affiliation(s)
- Chibo Liu
- Department of Clinical Laboratory, Taizhou Municipal Hospital, Taizhou, Zhejiang, China.
| | - Yanqun Cai
- Department of Clinical Laboratory, Taizhou Municipal Hospital, Taizhou, Zhejiang, China
| | - Sihua Mou
- Department of Clinical Laboratory, Taizhou Municipal Hospital, Taizhou, Zhejiang, China.
| |
Collapse
|
7
|
So KWL, Su Z, Cheung JPY, Choi SW. Single-Cell Analysis of Bone-Marrow-Disseminated Tumour Cells. Diagnostics (Basel) 2024; 14:2172. [PMID: 39410576 PMCID: PMC11475990 DOI: 10.3390/diagnostics14192172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 10/20/2024] Open
Abstract
Metastasis frequently targets bones, where cancer cells from the primary tumour migrate to the bone marrow, initiating new tumour growth. Not only is bone the most common site for metastasis, but it also often marks the first site of metastatic recurrence. Despite causing over 90% of cancer-related deaths, effective treatments for bone metastasis are lacking, with current approaches mainly focusing on palliative care. Circulating tumour cells (CTCs) are pivotal in metastasis, originating from primary tumours and circulating in the bloodstream. They facilitate metastasis through molecular interactions with the bone marrow environment, involving direct cell-to-cell contacts and signalling molecules. CTCs infiltrate the bone marrow, transforming into disseminated tumour cells (DTCs). While some DTCs remain dormant, others become activated, leading to metastatic growth. The presence of DTCs in the bone marrow strongly correlates with future bone and visceral metastases. Research on CTCs in peripheral blood has shed light on their release mechanisms, yet investigations into bone marrow DTCs have been limited. Challenges include the invasiveness of bone marrow aspiration and the rarity of DTCs, complicating their isolation. However, advancements in single-cell analysis have facilitated insights into these elusive cells. This review will summarize recent advancements in understanding bone marrow DTCs using single-cell analysis techniques.
Collapse
Affiliation(s)
| | | | | | - Siu-Wai Choi
- Department of Orthopaedics and Traumatology, School of Clinical Medicine, Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (K.W.L.S.); (Z.S.); (J.P.Y.C.)
| |
Collapse
|
8
|
Ciccioli M, Kim K, Khazan N, Khoury JD, Cooke MJ, Miller MC, O'Shannessy DJ, Pailhes-Jimenez AS, Moore RG. Identification of circulating tumor cells captured by the FDA-cleared Parsortix ® PC1 system from the peripheral blood of metastatic breast cancer patients using immunofluorescence and cytopathological evaluations. J Exp Clin Cancer Res 2024; 43:240. [PMID: 39169412 PMCID: PMC11337573 DOI: 10.1186/s13046-024-03149-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 08/03/2024] [Indexed: 08/23/2024] Open
Abstract
Circulating Tumor Cells (CTCs) may serve as a non-invasive source of tumor material to investigate an individual's disease in real-time. The Parsortix® PC1 System, the first FDA-cleared medical device for the capture and harvest of CTCs from peripheral blood of metastatic breast cancer (MBC) patients for use in subsequent user-validated downstream analyses, enables the epitope-independent capture of CTCs with diverse phenotypes based on cell size and deformability. The aim of this study was to determine the proportion of MBC patients and self-declared female healthy volunteers (HVs) that had CTCs identified using immunofluorescence (IF) or Wright-Giemsa (WG) staining. Peripheral blood from 76 HVs and 76 MBC patients was processed on Parsortix® PC1 Systems. Harvested cells were cytospun onto a charged slide and immunofluorescently stained for identification of CTCs expressing epithelial markers. The IF slides were subsequently WG-stained and analyzed for CTC identification based on morphological features of malignant cells. All testing was performed by operators blinded to the clinical status of each subject. CTCs were identified on the IF slides in 45.3% (≥ 1) / 24.0% (≥ 5) of the MBC patients (range = 0 - 125, mean = 7) and in 6.9% (≥ 1) / 2.8% (≥ 5) of the HVs (range = 0 - 28, mean = 1). Among the MBC patients with ≥ 1 CTC, 70.6% had only CK + /EpCAM- CTCs, with none having EpCAM + /CK- CTCs. CTC clusters were identified in 56.0% of the CTC-positive patients. On the WG-stained slides, CTCs were identified in 42.9% (≥ 1) / 21.4% (≥ 5) of the MBC patients (range = 0 - 41, mean = 4) and 4.3% (≥ 1) / 2.9% (≥ 5) of the HVs (range = 0 - 14, mean = 0). This study demonstrated the ability of the Parsortix® PC1 System to capture and harvest CTCs from a significantly larger proportion of MBC patients compared to HVs when coupled with both IF and WG cytomorphological assessment. The presence of epithelial cells in subjects without diagnosed disease has been previously described, with their significance being unclear. Interestingly, a high proportion of the identified CTCs did not express EpCAM, highlighting the limitations of using EpCAM-based approaches.
Collapse
Affiliation(s)
| | - Kyukwang Kim
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Negar Khazan
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Joseph D Khoury
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE, USA
| | | | | | | | | | - Richard G Moore
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
9
|
M Saini V, Oner E, Ward MP, Hurley S, Henderson BD, Lewis F, Finn SP, Fitzmaurice GJ, O'Leary JJ, O'Toole S, O'Driscoll L, Gately K. A comparative study of circulating tumor cell isolation and enumeration technologies in lung cancer. Mol Oncol 2024. [PMID: 39105395 DOI: 10.1002/1878-0261.13705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/17/2024] [Accepted: 07/19/2024] [Indexed: 08/07/2024] Open
Abstract
Circulating tumor cells (CTCs) have potential as diagnostic, prognostic, and predictive biomarkers in solid tumors. Despite Food and Drug Administration (FDA) approval of CTC devices in various cancers, the rarity and heterogeneity of CTCs in lung cancer make them technically challenging to isolate and analyze, hindering their clinical integration. Establishing a consensus through comparative analysis of different CTC systems is warranted. This study aimed to evaluate seven different CTC enrichment methods across five technologies using a standardized spike-in protocol: the CellMag™ (EpCAM-dependent enrichment), EasySep™ and RosetteSep™ (blood cell depletion), and the Parsortix® PR1 and the new design Parsortix® Prototype (PP) (size- and deformability-based enrichment). The Parsortix® systems were also evaluated for any differences in recovery rates between cell harvest versus in-cassette staining. Healthy donor blood (5 mL) was spiked with 100 fluorescently labeled EpCAMhigh H1975 cells, processed through each system, and the isolation efficiency was calculated. The CellMag™ had the highest recovery rate (70 ± 14%), followed by Parsortix® PR1 in-cassette staining, while the EasySep™ had the lowest recovery (18 ± 8%). Additional spike-in experiments were performed with EpCAMmoderate A549 and EpCAMlow H1299 cells using the CellMag™ and Parsortix® PR1 in-cassette staining. The recovery rate of CellMag™ significantly reduced to 35 ± 14% with A549 cells and 1 ± 1% with H1299 cells. However, the Parsortix® PR1 in-cassette staining showed cell phenotype-independent and consistent recovery rates among all lung cancer cell lines: H1975 (49 ± 2%), A549 (47 ± 10%), and H1299 (52 ± 10%). Furthermore, we demonstrated that the Parsortix® PR1 in-cassette staining method is capable of isolating heterogeneous single CTCs and cell clusters from patient samples. The Parsortix® PR1 in-cassette staining, capable of isolating different phenotypes of CTCs as either single cells or cell clusters with consistent recovery rates, is considered optimal for CTC enrichment for lung cancer, albeit needing further optimization and validation.
Collapse
Affiliation(s)
- Volga M Saini
- Thoracic Oncology Research Group, Trinity Translational Medicine Institute, St James's Hospital, Dublin, Ireland
- Department of Clinical Medicine, School of Medicine, Trinity College Dublin, Ireland
- Trinity St. James's Cancer Institute, Trinity College Dublin, Ireland
| | - Ezgi Oner
- Thoracic Oncology Research Group, Trinity Translational Medicine Institute, St James's Hospital, Dublin, Ireland
- Department of Clinical Medicine, School of Medicine, Trinity College Dublin, Ireland
- Trinity St. James's Cancer Institute, Trinity College Dublin, Ireland
| | - Mark P Ward
- Trinity St. James's Cancer Institute, Trinity College Dublin, Ireland
- Department of Obstetrics and Gynaecology, School of Medicine, Trinity College Dublin, Ireland
- Department of Histopathology and Morbid Anatomy, School of Medicine, Trinity College Dublin, Ireland
| | - Sinead Hurley
- Thoracic Oncology Research Group, Trinity Translational Medicine Institute, St James's Hospital, Dublin, Ireland
- Department of Clinical Medicine, School of Medicine, Trinity College Dublin, Ireland
- Trinity St. James's Cancer Institute, Trinity College Dublin, Ireland
- Department of Obstetrics and Gynaecology, School of Medicine, Trinity College Dublin, Ireland
| | - Brian David Henderson
- Trinity St. James's Cancer Institute, Trinity College Dublin, Ireland
- Department of Obstetrics and Gynaecology, School of Medicine, Trinity College Dublin, Ireland
- Department of Histopathology and Morbid Anatomy, School of Medicine, Trinity College Dublin, Ireland
| | - Faye Lewis
- Trinity St. James's Cancer Institute, Trinity College Dublin, Ireland
- Department of Obstetrics and Gynaecology, School of Medicine, Trinity College Dublin, Ireland
- Department of Histopathology and Morbid Anatomy, School of Medicine, Trinity College Dublin, Ireland
| | - Stephen P Finn
- Thoracic Oncology Research Group, Trinity Translational Medicine Institute, St James's Hospital, Dublin, Ireland
- Trinity St. James's Cancer Institute, Trinity College Dublin, Ireland
- Department of Histopathology and Morbid Anatomy, School of Medicine, Trinity College Dublin, Ireland
| | | | - John J O'Leary
- Trinity St. James's Cancer Institute, Trinity College Dublin, Ireland
- Department of Histopathology and Morbid Anatomy, School of Medicine, Trinity College Dublin, Ireland
| | - Sharon O'Toole
- Trinity St. James's Cancer Institute, Trinity College Dublin, Ireland
- Department of Obstetrics and Gynaecology, School of Medicine, Trinity College Dublin, Ireland
- Department of Histopathology and Morbid Anatomy, School of Medicine, Trinity College Dublin, Ireland
| | - Lorraine O'Driscoll
- Trinity St. James's Cancer Institute, Trinity College Dublin, Ireland
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Ireland
- Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland
| | - Kathy Gately
- Thoracic Oncology Research Group, Trinity Translational Medicine Institute, St James's Hospital, Dublin, Ireland
- Department of Clinical Medicine, School of Medicine, Trinity College Dublin, Ireland
- Trinity St. James's Cancer Institute, Trinity College Dublin, Ireland
| |
Collapse
|
10
|
Løppke C, Jørgensen AM, Sand NT, Klitgaard RB, Daugaard G, Agerbæk MØ. Combined microfluidic enrichment and staining workflow for single-cell analysis of circulating tumor cells in metastatic prostate cancer patients. Sci Rep 2024; 14:17501. [PMID: 39080445 PMCID: PMC11289449 DOI: 10.1038/s41598-024-68336-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 07/22/2024] [Indexed: 08/02/2024] Open
Abstract
Circulating tumor cells (CTCs) are precursors of cancer in the blood and provide an attractive source for dynamic monitoring of disease progression and tumor heterogeneity. However, the scarcity of CTCs in the bloodstream has limited their use in clinical practice. In this study, we present a workflow for easy detection of CTCs by cytokeratin staining using the FDA-cleared Parsortix device for size-based microfluidic enrichment. To minimize sample handling, the isolated cells are stained inside the separation cassette and harvested for subsequent single cell isolation and whole genome copy-number analysis. We validated the workflow on a panel of four prostate cancer cell lines spiked into healthy donor blood collected in CellRescue or EDTA tubes, resulting in mean recoveries of 42% (16-69%). Furthermore, we evaluated the clinical utility in a cohort of 12 metastatic prostate cancer patients and found CTCs in 67% of patients ranging from 0 to 1172 CTCs in 10 mL blood. Additionally, we isolated single patient-derived CTCs and identified genomic aberrations associated with treatment response and clinical outcome. Thus, this workflow provides a readily scalable strategy for analysis of single CTCs, applicable for use in monitoring studies to identify genomic variations important for guiding clinical therapy decision.
Collapse
Affiliation(s)
- Caroline Løppke
- Centre for Translational Medicine and Parasitology at Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Amalie M Jørgensen
- Centre for Translational Medicine and Parasitology at Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nicolai T Sand
- Centre for Translational Medicine and Parasitology at Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rasmus B Klitgaard
- Flow Cytometry and Single Cell Core Facility, Department for Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Gedske Daugaard
- Department of Oncology, Centre for Cancer and Organ Diseases, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Mette Ø Agerbæk
- Centre for Translational Medicine and Parasitology at Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
11
|
Qiao Z, Teng X, Liu A, Yang W. Novel Isolating Approaches to Circulating Tumor Cell Enrichment Based on Microfluidics: A Review. MICROMACHINES 2024; 15:706. [PMID: 38930676 PMCID: PMC11206030 DOI: 10.3390/mi15060706] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/14/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024]
Abstract
Circulating tumor cells (CTCs), derived from the primary tumor and carrying genetic information, contribute significantly to the process of tumor metastasis. The analysis and detection of CTCs can be used to assess the prognosis and treatment response in patients with tumors, as well as to help study the metastatic mechanisms of tumors and the development of new drugs. Since CTCs are very rare in the blood, it is a challenging problem to enrich CTCs efficiently. In this paper, we provide a comprehensive overview of microfluidics-based enrichment devices for CTCs in recent years. We explore in detail the methods of enrichment based on the physical or biological properties of CTCs; among them, physical properties cover factors such as size, density, and dielectric properties, while biological properties are mainly related to tumor-specific markers on the surface of CTCs. In addition, we provide an in-depth description of the methods for enrichment of single CTCs and illustrate the importance of single CTCs for performing tumor analyses. Future research will focus on aspects such as improving the separation efficiency, reducing costs, and increasing the detection sensitivity and accuracy.
Collapse
Affiliation(s)
- Zezheng Qiao
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China; (Z.Q.); (X.T.)
| | - Xiangyu Teng
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China; (Z.Q.); (X.T.)
| | - Anqin Liu
- School of Mechanical and Electrical Engineering, Yantai Institute of Technology, Yantai 264005, China
| | - Wenguang Yang
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China; (Z.Q.); (X.T.)
| |
Collapse
|
12
|
Rotatori S, Zhang Y, Madden-Hennessey K, Mohammed C, Yang CH, Urbani J, Shrestha P, Pettinelli J, Wang D, Liu X, Zhao Q. Live cell pool and rare cell isolation using Enrich TROVO system. N Biotechnol 2024; 80:12-20. [PMID: 38176452 DOI: 10.1016/j.nbt.2023.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 12/12/2023] [Accepted: 12/30/2023] [Indexed: 01/06/2024]
Abstract
Although several technologies have been developed to isolate cells of interest from a heterogenous sample, clogging and impaired cell viability limit such isolation. We have developed the Enrich TROVO system as a novel, nonfluidic technology to sort live cells. The TROVO system combines imaging-based cell selection and photo-crosslinking of (gelatin methacrylate) gelMA-hydrogel to capture cells. After capture, cells are released by enzymatic digestion of the hydrogel and then retrieved for downstream analysis or further cell culturing. The system can capture cells with a recovery rate of 48% while maintaining 90% viability. Moreover, TROVO can enrich rare cells 506-fold with 93% efficiency using single step isolation from a 1:104 cell mixture, and can also capture one target cell from 1 million cells, reaching an enrichment ratio of 9128. In addition, 100% purity and 49% recovery rate can be achieved by a following negative isolation process. Compared to existing technologies, the TROVO system is clog-resistant, highly biocompatible, and can process a wide range of sample sizes.
Collapse
Affiliation(s)
- Stephen Rotatori
- Enrich Biosystems Inc., 21 Business Park Drive. STE. 4, Branford, CT 06405, USA
| | - Yichong Zhang
- Enrich Biosystems Inc., 21 Business Park Drive. STE. 4, Branford, CT 06405, USA.
| | | | - Christina Mohammed
- Enrich Biosystems Inc., 21 Business Park Drive. STE. 4, Branford, CT 06405, USA
| | - Chi-Han Yang
- Enrich Biosystems Inc., 21 Business Park Drive. STE. 4, Branford, CT 06405, USA
| | - Jordan Urbani
- Enrich Biosystems Inc., 21 Business Park Drive. STE. 4, Branford, CT 06405, USA
| | - Prem Shrestha
- Enrich Biosystems Inc., 21 Business Park Drive. STE. 4, Branford, CT 06405, USA
| | - Joseph Pettinelli
- Enrich Biosystems Inc., 21 Business Park Drive. STE. 4, Branford, CT 06405, USA
| | - Dong Wang
- Enrich Biosystems Inc., 21 Business Park Drive. STE. 4, Branford, CT 06405, USA
| | - Xueqi Liu
- Enrich Biosystems Inc., 21 Business Park Drive. STE. 4, Branford, CT 06405, USA
| | - Qi Zhao
- Enrich Biosystems Inc., 21 Business Park Drive. STE. 4, Branford, CT 06405, USA.
| |
Collapse
|
13
|
Rabadi I, Carpentieri D, Wang J, Zenhausern F, Gu J. On reactive Ion Etching of Parylene-C with Simple Photoresist Mask for Fabrication of High Porosity Membranes to Capture Circulating and Exfoliated Tumor Cells. MICROMACHINES 2024; 15:521. [PMID: 38675332 PMCID: PMC11051955 DOI: 10.3390/mi15040521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/09/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024]
Abstract
A high porosity micropore arrayed parylene membrane is a promising device that is used to capture circulating and exfoliated tumor cells (CTCs and ETCs) for liquid biopsy applications. However, its fabrication still requires either expensive equipment or an expensive process. Here, we report on the fabrication of high porosity (>40%) micropore arrayed parylene membranes through a simple reactive ion etching (RIE) that uses photoresist as the etching mask. Vertical sidewalls were observed in etched parylene pores despite the sloped photoresist mask sidewalls, which was found to be due to the simultaneous high DC-bias RIE induced photoresist melting and substrate pedestal formation. A theoretical model has been derived to illustrate the dependence of the maximum membrane thickness on the final pore-to-pore spacing, and it is consistent with the experimental data. A simple, yet accurate, low number (<50) cell counting method was demonstrated through counting cells directly inside a pipette tip under phase-contrast microscope. Membranes as thin as 3 μm showed utility for low number tumor cell capture, with an efficiency of 87-92%.
Collapse
Affiliation(s)
- Inad Rabadi
- Center for Applied NanoBioscience and Medicine, The University of Arizona College of Medicine, Phoenix, AZ 85004, USA; (I.R.); (F.Z.)
- Department of Basic Medical Sciences, The University of Arizona College of Medicine, Phoenix, AZ 85004, USA
| | | | - Jue Wang
- Dignity Health-Cancer Institute at St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85004, USA;
| | - Frederic Zenhausern
- Center for Applied NanoBioscience and Medicine, The University of Arizona College of Medicine, Phoenix, AZ 85004, USA; (I.R.); (F.Z.)
- Department of Basic Medical Sciences, The University of Arizona College of Medicine, Phoenix, AZ 85004, USA
- Honor Health Research Institute, Scottsdale, AZ 85258, USA
| | - Jian Gu
- Center for Applied NanoBioscience and Medicine, The University of Arizona College of Medicine, Phoenix, AZ 85004, USA; (I.R.); (F.Z.)
- Department of Basic Medical Sciences, The University of Arizona College of Medicine, Phoenix, AZ 85004, USA
| |
Collapse
|
14
|
Smit DJ, Pantel K. Circulating tumor cells as liquid biopsy markers in cancer patients. Mol Aspects Med 2024; 96:101258. [PMID: 38387225 DOI: 10.1016/j.mam.2024.101258] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/07/2024] [Accepted: 02/14/2024] [Indexed: 02/24/2024]
Abstract
Over the past decade, novel methods for enrichment and identification of cancer cells circulating in the blood have been established. Blood-based detection of cancer cells and other tumor-associated products can be summarized under the term of Liquid Biopsy. Circulating tumor cells (CTCs) have been used for diagnosis, risk stratification and treatment selection as well as treatment monitoring in several studies over the past years, thus representing a valuable biomarker for cancer patients. A plethora of methods to enrich, detect and analyze CTCs has been established. In contrast to other liquid biopsy analytes (e.g. ctDNA), CTCs represent a viable analyte that provides a unique opportunity to understand the underlaying biology of cancer and the metastatic cascade on the molecular level. In this review, we provide an overview on the current methods used for enrichment, detection, molecular and functional characterization of CTCs.
Collapse
Affiliation(s)
- Daniel J Smit
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Klaus Pantel
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany.
| |
Collapse
|
15
|
Cortés-Hernández LE, Eslami-S Z, Pantel K, Alix-Panabières C. Circulating Tumor Cells: From Basic to Translational Research. Clin Chem 2024; 70:81-89. [PMID: 38175586 PMCID: PMC10765989 DOI: 10.1093/clinchem/hvad142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/18/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Metastasis is the leading cause of cancer-related deaths. Most studies have focused on the primary tumor or on overt metastatic lesions, leaving a significant knowledge gap concerning blood-borne cancer cell dissemination, a major step in the metastatic cascade. Circulating tumor cells (CTCs) in the blood of patients with solid cancer can now be enumerated and investigated at the molecular level, giving unexpected information on the biology of the metastatic cascade. CONTENT Here, we reviewed recent advances in basic and translational/clinical research on CTCs as key elements in the metastatic cascade. SUMMARY Findings from translational studies on CTCs have elucidated the complexity of the metastatic process. Fully understanding this process will open new potential avenues for cancer therapeutic and diagnostic strategies to propose precision medicine to all cancer patients.
Collapse
Affiliation(s)
- Luis Enrique Cortés-Hernández
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- European Liquid Biopsy Society (ELBS), Hamburg, Germany
| | - Zahra Eslami-S
- European Liquid Biopsy Society (ELBS), Hamburg, Germany
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Centre of Montpellier, Montpellier, France
- CREEC/CANECEV, MIVEGEC (CREES), University of Montpellier, CNRS, IRD, Montpellier, France
| | - Klaus Pantel
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- European Liquid Biopsy Society (ELBS), Hamburg, Germany
| | - Catherine Alix-Panabières
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- European Liquid Biopsy Society (ELBS), Hamburg, Germany
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Centre of Montpellier, Montpellier, France
- CREEC/CANECEV, MIVEGEC (CREES), University of Montpellier, CNRS, IRD, Montpellier, France
| |
Collapse
|
16
|
Pouyiourou M, Bochtler T, Coith C, Wikman H, Kraft B, Hielscher T, Stenzinger A, Riethdorf S, Pantel K, Krämer A. Frequency and Prognostic Value of Circulating Tumor Cells in Cancer of Unknown Primary. Clin Chem 2024; 70:297-306. [PMID: 38175594 DOI: 10.1093/clinchem/hvad180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 10/02/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Cancer of unknown primary (CUP) is defined as a primary metastatic malignancy, in which the primary tumor remains elusive in spite of a comprehensive diagnostic workup. The frequency and prognostic value of circulating tumor cells (CTCs), which are considered to be the source of metastasis, has not yet been systematically evaluated in CUP. METHODS A total of 110 patients with a confirmed diagnosis of CUP according to the European Society for Medical Oncology (ESMO) guidelines, who presented to our clinic between July 2021 and May 2023, provided blood samples for CTC quantification using CellSearch methodology. CTC counts were correlated with demographic, clinical, and molecular data generated by comprehensive genomic profiling of tumor tissue. RESULTS CTCs were detected in 26% of all patients at initial presentation to our department. The highest CTC frequency was observed among patients with unfavorable CUP (35.5%), while patients with single-site/oligometastatic CUP harbored the lowest CTC frequency (11.4%). No statistically significant association between CTC positivity and the number of affected organs (P = 0.478) or disease burden (P = 0.120) was found. High CTC levels (≥5 CTCs/7.5 mL; 12/95 analyzed patients) predicted for adverse overall survival compared to negative or low CTC counts (6-months overall survival rate 90% vs 32%, log-rank P < 0.001; HR 5.43; 95% CI 2.23-13.2). CTC dynamics were also prognostic for overall survival by landmark analysis (log-rank P < 0.001, HR 10.2, 95% CI 1.95-52.9). CONCLUSIONS CTC frequency is a strong, independent predictor of survival in patients with CUP. CTC quantification provides a useful prognostic tool in the management of these patients.
Collapse
Affiliation(s)
- Maria Pouyiourou
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center (DKFZ) and Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
- Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| | - Tilmann Bochtler
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center (DKFZ) and Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
- Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), University of Heidelberg, Heidelberg, Germany
| | - Cornelia Coith
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Harriet Wikman
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Bianca Kraft
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center (DKFZ) and Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| | - Thomas Hielscher
- Division of Biostatistics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Albrecht Stenzinger
- Institute of Pathology, University of Heidelberg, Heidelberg, Germany
- Center for Personalized Medicine (ZPM), University of Heidelberg, Heidelberg, Germany
| | - Sabine Riethdorf
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Klaus Pantel
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alwin Krämer
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center (DKFZ) and Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
- Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
17
|
Macaraniag C, Zhou J, Li J, Putzbach W, Hay N, Papautsky I. Microfluidic isolation of breast cancer circulating tumor cells from microvolumes of mouse blood. Electrophoresis 2023; 44:1859-1867. [PMID: 37528726 DOI: 10.1002/elps.202300108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/30/2023] [Accepted: 07/10/2023] [Indexed: 08/03/2023]
Abstract
Liquid biopsy has shown significant research and clinical implications in cancer. Particularly, the isolation of circulating tumor cells (CTCs) in preclinical studies can provide crucial information about disease progression and therefore may guide treatment decisions. Microfluidic isolation systems have played a considerable role in CTC isolation for cancer studies, disease diagnosis, and prognosis. CTCs are often studied using preclinical animal models such as xenografts or syngeneic models. However, most isolation systems are tested on human cell lines and human blood, whereas less validation studies are done on preclinical samples such as CTCs from mouse models. Here, we demonstrate and evaluate a complete workflow of a sized-based inertial microfluidic device to isolate CTCs from blood using exclusively mouse blood and mouse cancer cell lines. We then incorporate the cytospin, a commonly used method for enumeration of small number of cells in a glass slide to quantify the total cell yield of our workflow.
Collapse
Affiliation(s)
- Celine Macaraniag
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, Illinois, USA
| | - Jian Zhou
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, Illinois, USA
- University of Illinois Cancer Center, Chicago, Illinois, USA
| | - Jing Li
- Department of Biochemistry and Molecular Genetics, University of Illinois Chicago, Chicago, Illinois, USA
| | - William Putzbach
- Department of Biochemistry and Molecular Genetics, University of Illinois Chicago, Chicago, Illinois, USA
| | - Nissim Hay
- University of Illinois Cancer Center, Chicago, Illinois, USA
- Department of Biochemistry and Molecular Genetics, University of Illinois Chicago, Chicago, Illinois, USA
| | - Ian Papautsky
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, Illinois, USA
- University of Illinois Cancer Center, Chicago, Illinois, USA
| |
Collapse
|
18
|
Bonfil RD, Al-Eyd G. Evolving insights in blood-based liquid biopsies for prostate cancer interrogation. Oncoscience 2023; 10:69-80. [PMID: 38033786 PMCID: PMC10688444 DOI: 10.18632/oncoscience.592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 11/17/2023] [Indexed: 12/02/2023] Open
Abstract
During the last decade, blood sampling of cancer patients aimed at analyzing the presence of cells, membrane-bound vesicles, or molecules released by primary tumors or metastatic growths emerged as an alternative to traditional tissue biopsies. The advent of this minimally invasive approach, known as blood-based liquid biopsy, began to play a pivotal role in the management of diverse cancers, establishing itself as a vital component of precision medicine. Here, we discuss three blood-based liquid biopsies, namely circulating tumor cells (CTCs), circulating tumor DNA (ctDNA) and tumor-derived exosomes, as they relate to prostate cancer (PCa) management. The advances achieved in the molecular characterization of these types of liquid biopsies and their potential to predict recurrence, improve responses to certain treatments, and evaluate prognosis, in PCa patients, are highlighted herein. While there is currently full clinical validation for only one CTC-based and one ctDNA-based liquid biopsy for patients with metastatic castration-resistant PCa, the adoption of additional methods is anticipated as they undergo standardization and achieve analytical and clinical validation. Advantages and disadvantages of different blood-based liquid biopsy approaches in the context of PCa are outlined herein, while also considering potential synergies through combinatory strategies.
Collapse
Affiliation(s)
- R. Daniel Bonfil
- Department of Medical Education, Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | - Ghaith Al-Eyd
- Department of Medical Education, Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| |
Collapse
|
19
|
Temilola DO, Adeola HA, Grobbelaar J, Chetty M. Liquid Biopsy in Head and Neck Cancer: Its Present State and Future Role in Africa. Cells 2023; 12:2663. [PMID: 37998398 PMCID: PMC10670726 DOI: 10.3390/cells12222663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/12/2023] [Accepted: 11/17/2023] [Indexed: 11/25/2023] Open
Abstract
The rising mortality and morbidity rate of head and neck cancer (HNC) in Africa has been attributed to factors such as the poor state of health infrastructures, genetics, and late presentation resulting in the delayed diagnosis of these tumors. If well harnessed, emerging molecular and omics diagnostic technologies such as liquid biopsy can potentially play a major role in optimizing the management of HNC in Africa. However, to successfully apply liquid biopsy technology in the management of HNC in Africa, factors such as genetic, socioeconomic, environmental, and cultural acceptability of the technology must be given due consideration. This review outlines the role of circulating molecules such as tumor cells, tumor DNA, tumor RNA, proteins, and exosomes, in liquid biopsy technology for the management of HNC with a focus on studies conducted in Africa. The present state and the potential opportunities for the future use of liquid biopsy technology in the effective management of HNC in resource-limited settings such as Africa is further discussed.
Collapse
Affiliation(s)
- Dada Oluwaseyi Temilola
- Department of Craniofacial Biology, Faculty of Dentistry, University of the Western Cape, Tygerberg Hospital, Cape Town 7505, South Africa;
| | - Henry Ademola Adeola
- Department of Oral and Maxillofacial Pathology, Faculty of Dentistry, University of the Western Cape, Tygerberg Hospital, Cape Town 7505, South Africa;
- Division of Dermatology, Department of Medicine, Faculty of Health Sciences and Groote Schuur Hospital, University of Cape Town, Cape Town 7925, South Africa
| | - Johan Grobbelaar
- Division of Otorhinolaryngology, Department of Surgical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg Hospital, Cape Town 7505, South Africa;
| | - Manogari Chetty
- Department of Craniofacial Biology, Faculty of Dentistry, University of the Western Cape, Tygerberg Hospital, Cape Town 7505, South Africa;
| |
Collapse
|
20
|
Reinhardt F, Coen L, Rivandi M, Franken A, Setyono ESA, Lindenberg T, Eberhardt J, Fehm T, Niederacher D, Knopf F, Neubauer H. DanioCTC: Analysis of Circulating Tumor Cells from Metastatic Breast Cancer Patients in Zebrafish Xenografts. Cancers (Basel) 2023; 15:5411. [PMID: 38001672 PMCID: PMC10670801 DOI: 10.3390/cancers15225411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/07/2023] [Accepted: 10/29/2023] [Indexed: 11/26/2023] Open
Abstract
Circulating tumor cells (CTCs) serve as crucial metastatic precursor cells, but their study in animal models has been hindered by their low numbers. To address this challenge, we present DanioCTC, an innovative xenograft workflow that overcomes the scarcity of patient-derived CTCs in animal models. By combining diagnostic leukapheresis (DLA), the Parsortix microfluidic system, flow cytometry, and the CellCelector setup, DanioCTC effectively enriches and isolates CTCs from metastatic breast cancer (MBC) patients for injection into zebrafish embryos. Validation experiments confirmed that MDA-MB-231 cells, transplanted following the standard protocol, localized frequently in the head and blood-forming regions of the zebrafish host. Notably, when MDA-MB-231 cells spiked (i.e., supplemented) into DLA aliquots were processed using DanioCTC, the cell dissemination patterns remained consistent. Successful xenografting of CTCs from a MBC patient revealed their primary localization in the head and trunk regions of zebrafish embryos. DanioCTC represents a major step forward in the endeavors to study the dissemination of individual and rare patient-derived CTCs, thereby enhancing our understanding of metastatic breast cancer biology and facilitating the development of targeted interventions in MBC. Summary statement: DanioCTC is a novel workflow to inject patient-derived CTCs into zebrafish, enabling studies of the capacity of these rare tumor cells to induce metastases.
Collapse
Affiliation(s)
- Florian Reinhardt
- Department of Obstetrics and Gynecology, Heinrich Heine University of Duesseldorf, 40225 Duesseldorf, Germany
- Center for Integrated Oncology (CIO Aachen, Bonn, Cologne, Duesseldorf), 53127 Bonn, Germany
| | - Luisa Coen
- Department of Obstetrics and Gynecology, Heinrich Heine University of Duesseldorf, 40225 Duesseldorf, Germany
- Center for Integrated Oncology (CIO Aachen, Bonn, Cologne, Duesseldorf), 53127 Bonn, Germany
| | - Mahdi Rivandi
- Department of Obstetrics and Gynecology, Heinrich Heine University of Duesseldorf, 40225 Duesseldorf, Germany
- Center for Integrated Oncology (CIO Aachen, Bonn, Cologne, Duesseldorf), 53127 Bonn, Germany
| | - André Franken
- Department of Obstetrics and Gynecology, Heinrich Heine University of Duesseldorf, 40225 Duesseldorf, Germany
- Center for Integrated Oncology (CIO Aachen, Bonn, Cologne, Duesseldorf), 53127 Bonn, Germany
| | - Eunike Sawitning Ayu Setyono
- Center for Regenerative Therapies TU Dresden (CRTD), Center for Molecular and Cellular Bioengineering (CMCB), TU Dresden, 01307 Dresden, Germany
- Center for Healthy Aging, Faculty of Medicine Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany
| | - Tobias Lindenberg
- Anatomical Institute, Neuroanatomy, Medical Faculty, University of Bonn, 53115 Bonn, Germany
| | | | - Tanja Fehm
- Department of Obstetrics and Gynecology, Heinrich Heine University of Duesseldorf, 40225 Duesseldorf, Germany
- Center for Integrated Oncology (CIO Aachen, Bonn, Cologne, Duesseldorf), 53127 Bonn, Germany
| | - Dieter Niederacher
- Department of Obstetrics and Gynecology, Heinrich Heine University of Duesseldorf, 40225 Duesseldorf, Germany
- Center for Integrated Oncology (CIO Aachen, Bonn, Cologne, Duesseldorf), 53127 Bonn, Germany
| | - Franziska Knopf
- Center for Regenerative Therapies TU Dresden (CRTD), Center for Molecular and Cellular Bioengineering (CMCB), TU Dresden, 01307 Dresden, Germany
- Center for Healthy Aging, Faculty of Medicine Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany
| | - Hans Neubauer
- Department of Obstetrics and Gynecology, Heinrich Heine University of Duesseldorf, 40225 Duesseldorf, Germany
- Center for Integrated Oncology (CIO Aachen, Bonn, Cologne, Duesseldorf), 53127 Bonn, Germany
- Life Science Center, Merowingerplatz 1 A, 40225 Düsseldorf, Germany
| |
Collapse
|
21
|
Andrikou K, Rossi T, Verlicchi A, Priano I, Cravero P, Burgio MA, Crinò L, Bandini S, Ulivi P, Delmonte A. Circulating Tumour Cells: Detection and Application in Advanced Non-Small Cell Lung Cancer. Int J Mol Sci 2023; 24:16085. [PMID: 38003273 PMCID: PMC10671094 DOI: 10.3390/ijms242216085] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) is one of the deadliest diseases worldwide. Tissue biopsy is the current gold standard for the diagnosis and molecular profiling of NSCLC. However, this approach presents some limitations due to inadequate tissue sampling, and intra- and intertumour heterogenicity. Liquid biopsy is a noninvasive method to determine cancer-related biomarkers in peripheral blood, and can be repeated at multiple timepoints. One of the most studied approaches to liquid biopsies is represented by circulating tumour cells (CTCs). Several studies have evaluated the prognostic and predictive role of CTCs in advanced NSCLC. Despite the limitations of these studies, the results of the majority of studies seem to be concordant regarding the correlation between high CTC count and poor prognosis in patients with NSCLC. Similarly, the decrease of CTC count during treatment may represent an important predictive marker of sensitivity to therapy in advanced NSCLC. Furthermore, molecular characterization of CTCs can be used to provide information on tumour biology, and on the mechanisms involved in resistance to targeted treatment. This review will discuss the current status of the clinical utility of CTCs in patients with advanced NSCLC, highlighting their potential application to prognosis and to treatment decision making.
Collapse
Affiliation(s)
- Kalliopi Andrikou
- Medical Oncology Department, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (K.A.); (A.V.); (I.P.); (P.C.); (M.A.B.); (L.C.); (A.D.)
| | - Tania Rossi
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (S.B.); (P.U.)
| | - Alberto Verlicchi
- Medical Oncology Department, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (K.A.); (A.V.); (I.P.); (P.C.); (M.A.B.); (L.C.); (A.D.)
| | - Ilaria Priano
- Medical Oncology Department, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (K.A.); (A.V.); (I.P.); (P.C.); (M.A.B.); (L.C.); (A.D.)
| | - Paola Cravero
- Medical Oncology Department, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (K.A.); (A.V.); (I.P.); (P.C.); (M.A.B.); (L.C.); (A.D.)
| | - Marco Angelo Burgio
- Medical Oncology Department, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (K.A.); (A.V.); (I.P.); (P.C.); (M.A.B.); (L.C.); (A.D.)
| | - Lucio Crinò
- Medical Oncology Department, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (K.A.); (A.V.); (I.P.); (P.C.); (M.A.B.); (L.C.); (A.D.)
| | - Sara Bandini
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (S.B.); (P.U.)
| | - Paola Ulivi
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (S.B.); (P.U.)
| | - Angelo Delmonte
- Medical Oncology Department, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (K.A.); (A.V.); (I.P.); (P.C.); (M.A.B.); (L.C.); (A.D.)
| |
Collapse
|
22
|
Paglia EB, Baldin EKK, Freitas GP, Santiago TSA, Neto JBMR, Silva JVL, Carvalho HF, Beppu MM. Circulating Tumor Cells Adhesion: Application in Biosensors. BIOSENSORS 2023; 13:882. [PMID: 37754116 PMCID: PMC10526177 DOI: 10.3390/bios13090882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/23/2023] [Accepted: 09/01/2023] [Indexed: 09/28/2023]
Abstract
The early and non-invasive diagnosis of tumor diseases has been widely investigated by the scientific community focusing on the development of sensors/biomarkers that act as a way of recognizing the adhesion of circulating tumor cells (CTCs). As a challenge in this area, strategies for CTCs capture and enrichment currently require improvements in the sensors/biomarker's selectivity. This can be achieved by understanding the biological recognition factors for different cancer cell lines and also by understanding the interaction between surface parameters and the affinity between macromolecules and the cell surface. To overcome some of these concerns, electrochemical sensors have been used as precise, fast-response, and low-cost transduction platforms for application in cytosensors. Additionally, distinct materials, geometries, and technologies have been investigated to improve the sensitivity and specificity properties of the support electrode that will transform biochemical events into electrical signals. This review identifies novel approaches regarding the application of different specific biomarkers (CD44, Integrins, and EpCAm) for capturing CTCs. These biomarkers can be applied in electrochemical biosensors as a cytodetection strategy for diagnosis of cancerous diseases.
Collapse
Affiliation(s)
- Eduarda B. Paglia
- School of Chemical Engineering, Department of Process and Product Development, University of Campinas, Campinas 13083-852, Brazil; (E.B.P.); (E.K.K.B.); (G.P.F.); (T.S.A.S.)
| | - Estela K. K. Baldin
- School of Chemical Engineering, Department of Process and Product Development, University of Campinas, Campinas 13083-852, Brazil; (E.B.P.); (E.K.K.B.); (G.P.F.); (T.S.A.S.)
- Renato Archer Information Technology Center, Campinas 13069-901, Brazil;
| | - Gabriela P. Freitas
- School of Chemical Engineering, Department of Process and Product Development, University of Campinas, Campinas 13083-852, Brazil; (E.B.P.); (E.K.K.B.); (G.P.F.); (T.S.A.S.)
- Renato Archer Information Technology Center, Campinas 13069-901, Brazil;
| | - Thalyta S. A. Santiago
- School of Chemical Engineering, Department of Process and Product Development, University of Campinas, Campinas 13083-852, Brazil; (E.B.P.); (E.K.K.B.); (G.P.F.); (T.S.A.S.)
| | - João B. M. R. Neto
- Technology Center, Federal University of Alagoas, Maceió 57072-900, Brazil;
| | - Jorge V. L. Silva
- Renato Archer Information Technology Center, Campinas 13069-901, Brazil;
| | - Hernandes F. Carvalho
- Institute of Biology, Department of Structural and Functional Biology, University of Campinas, Campinas 13083-864, Brazil;
| | - Marisa M. Beppu
- School of Chemical Engineering, Department of Process and Product Development, University of Campinas, Campinas 13083-852, Brazil; (E.B.P.); (E.K.K.B.); (G.P.F.); (T.S.A.S.)
| |
Collapse
|
23
|
Mishra S, Kumarasamy M. Microfluidics engineering towards personalized oncology-a review. IN VITRO MODELS 2023; 2:69-81. [PMID: 39871996 PMCID: PMC11756504 DOI: 10.1007/s44164-023-00054-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 01/29/2025]
Abstract
Identifying and monitoring the presence of cancer metastasis and highlighting inter-and intratumoral heterogeneity is a central tenet of targeted precision oncology medicine (POM). This process of relocation of cancer cells is often referred to as the missing link between a tumor and metastasis. In recent years, microfluidic technologies have been developed to isolate a plethora of different biomarkers, such as circulating tumor cells (CTCs), tumor-derived vesicles (exosomes), or cell/free nucleic acids and proteins directly from patients' blood samples. With the advent of microfluidic developments, minimally invasive and quantitative assessment of different tumors is becoming a reality. This short review article will touch briefly on how microfluidics at early-stage achievements can be combined or developed with the active vs passive microfluidic technologies, depending on whether they utilize external fields and forces (active) or just microchannel geometry and inherent fluid forces (passive) from the market to precision oncology research and our future prospectives in terms of the emergence of ultralow cost and rapid prototyping of microfluidics in precision oncology.
Collapse
Affiliation(s)
- Sushmita Mishra
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur (NIPERHajipur) Export Promotion Industrial Park (EPIP), Industrial Area, Vaishali, 844102 Bihar India
| | - Murali Kumarasamy
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur (NIPERHajipur) Export Promotion Industrial Park (EPIP), Industrial Area, Vaishali, 844102 Bihar India
| |
Collapse
|
24
|
Al-Hammouri T, Almeida-Magana R, Lawrence R, Duffy T, White L, Burke E, Kudahetti S, Collins J, Rajan P, Berney D, Gabe R, Shaw G, Lu YJ. Protocol for a prospective study evaluating circulating tumour cells status to predict radical prostatectomy treatment failure in localised prostate cancer patients (C-ProMeta-1). BMC Cancer 2023; 23:581. [PMID: 37353740 DOI: 10.1186/s12885-023-11081-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 06/16/2023] [Indexed: 06/25/2023] Open
Abstract
BACKGROUND Treatment decisions in prostate cancer (PCa) rely on disease stratification between localised and metastatic stages, but current imaging staging technologies are not sensitive to micro-metastatic disease. Circulating tumour cells (CTCs) status is a promising tool in this regard. The Parsortix® CTC isolation system employs an epitope-independent approach based on cell size and deformability to increase the capture rate of CTCs. Here, we present a protocol for prospective evaluation of this method to predict post radical prostatectomy (RP) PCa cancer recurrence. METHODS We plan to recruit 294 patients diagnosed with unfavourable intermediate, to high and very high-risk localised PCa. Exclusion criteria include synchronous cancer diagnosis or prior PCa treatment, including hormone therapy. RP is performed according to the standard of care. Two blood samples (20 ml) are collected before and again 3-months after RP. The clinical team are blinded to CTC results and the laboratory researchers are blinded to clinical information. Treatment failure is defined as a PSA ≥ 0.2 mg/ml, start of salvage treatment or imaging-proven metastatic lesions. The CTC analysis entails enumeration and RNA analysis of gene expression in captured CTCs. The primary outcome is the accuracy of CTC status to predict post-RP treatment failure at 4.5 years. Observed sensitivity, positive and negative predictive values will be reported. Specificity will be presented over time. DISCUSSION CTC status may reflect the true potential for PCa metastasis and may predict clinical outcomes better than the current PCa progression risk grading systems. Therefore establishing a robust biomarker for predicting treatment failure in localized high-risk PCa would significantly enhance guidance in treatment decision-making, optimizing cure rates while minimizing unnecessary harm from overtreatment. TRIAL REGISTRATION ISRCTN17332543.
Collapse
Affiliation(s)
- Tarek Al-Hammouri
- Dept. of Urology, University College London Hospitals, London, UK
- Queen Mary University of London, Barts Cancer Institute, London, UK
- Division of Surgery and Interventional Science, University College London, London, UK
| | - Ricardo Almeida-Magana
- Dept. of Urology, University College London Hospitals, London, UK
- Queen Mary University of London, Barts Cancer Institute, London, UK
- Division of Surgery and Interventional Science, University College London, London, UK
| | - Rachel Lawrence
- Queen Mary University of London, Barts Cancer Institute, London, UK
| | - Tom Duffy
- Queen Mary University of London, Wolfson Institute of Population Health, London, UK
| | - Laura White
- Queen Mary University of London, Wolfson Institute of Population Health, London, UK
| | - Edwina Burke
- Queen Mary University of London, Barts Cancer Institute, London, UK
| | | | - Justin Collins
- Dept. of Urology, University College London Hospitals, London, UK
- Division of Surgery and Interventional Science, University College London, London, UK
| | - Prabhakar Rajan
- Dept. of Urology, University College London Hospitals, London, UK
- Queen Mary University of London, Barts Cancer Institute, London, UK
| | - Daniel Berney
- Queen Mary University of London, Barts Cancer Institute, London, UK
| | - Rhian Gabe
- Queen Mary University of London, Wolfson Institute of Population Health, London, UK.
| | - Greg Shaw
- Dept. of Urology, University College London Hospitals, London, UK.
- Queen Mary University of London, Barts Cancer Institute, London, UK.
- Division of Surgery and Interventional Science, University College London, London, UK.
| | - Yong-Jie Lu
- Queen Mary University of London, Barts Cancer Institute, London, UK.
| |
Collapse
|
25
|
Lawrence R, Watters M, Davies CR, Pantel K, Lu YJ. Circulating tumour cells for early detection of clinically relevant cancer. Nat Rev Clin Oncol 2023:10.1038/s41571-023-00781-y. [PMID: 37268719 DOI: 10.1038/s41571-023-00781-y] [Citation(s) in RCA: 138] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2023] [Indexed: 06/04/2023]
Abstract
Given that cancer mortality is usually a result of late diagnosis, efforts in the field of early detection are paramount to reducing cancer-related deaths and improving patient outcomes. Increasing evidence indicates that metastasis is an early event in patients with aggressive cancers, often occurring even before primary lesions are clinically detectable. Metastases are usually formed from cancer cells that spread to distant non-malignant tissues via the blood circulation, termed circulating tumour cells (CTCs). CTCs have been detected in patients with early stage cancers and, owing to their association with metastasis, might indicate the presence of aggressive disease, thus providing a possible means to expedite diagnosis and treatment initiation for such patients while avoiding overdiagnosis and overtreatment of those with slow-growing, indolent tumours. The utility of CTCs as an early diagnostic tool has been investigated, although further improvements in the efficiency of CTC detection are required. In this Perspective, we discuss the clinical significance of early haematogenous dissemination of cancer cells, the potential of CTCs to facilitate early detection of clinically relevant cancers, and the technological advances that might improve CTC capture and, thus, diagnostic performance in this setting.
Collapse
Affiliation(s)
- Rachel Lawrence
- Centre for Biomarkers and Therapeutics, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Melissa Watters
- Barts and London School of Medicine and Dentistry, Queen Mary University London, London, UK
| | - Caitlin R Davies
- Centre for Biomarkers and Therapeutics, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Klaus Pantel
- Department of Tumour Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Yong-Jie Lu
- Centre for Biomarkers and Therapeutics, Barts Cancer Institute, Queen Mary University of London, London, UK.
| |
Collapse
|
26
|
Kurma K, Alix-Panabières C. Mechanobiology and survival strategies of circulating tumor cells: a process towards the invasive and metastatic phenotype. Front Cell Dev Biol 2023; 11:1188499. [PMID: 37215087 PMCID: PMC10196185 DOI: 10.3389/fcell.2023.1188499] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 04/18/2023] [Indexed: 05/24/2023] Open
Abstract
Metastatic progression is the deadliest feature of cancer. Cancer cell growth, invasion, intravasation, circulation, arrest/adhesion and extravasation require specific mechanical properties to allow cell survival and the completion of the metastatic cascade. Circulating tumor cells (CTCs) come into contact with the capillary bed during extravasation/intravasation at the beginning of the metastatic cascade. However, CTC mechanobiology and survival strategies in the bloodstream, and specifically in the microcirculation, are not well known. A fraction of CTCs can extravasate and colonize distant areas despite the biomechanical constriction forces that are exerted by the microcirculation and that strongly decrease tumor cell survival. Furthermore, accumulating evidence shows that several CTC adaptations, via molecular factors and interactions with blood components (e.g., immune cells and platelets inside capillaries), may promote metastasis formation. To better understand CTC journey in the microcirculation as part of the metastatic cascade, we reviewed how CTC mechanobiology and interaction with other cell types in the bloodstream help them to survive the harsh conditions in the circulatory system and to metastasize in distant organs.
Collapse
Affiliation(s)
- Keerthi Kurma
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Centre of Montpellier, Montpellier, France
- CREEC/CANECEV, MIVEGEC (CREES), University of Montpellier, CNRS, IRD, Montpellier, France
- European Liquid Biopsy Society (E LBS), Hamburg, Germany
| | - Catherine Alix-Panabières
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Centre of Montpellier, Montpellier, France
- CREEC/CANECEV, MIVEGEC (CREES), University of Montpellier, CNRS, IRD, Montpellier, France
- European Liquid Biopsy Society (E LBS), Hamburg, Germany
| |
Collapse
|
27
|
Asawa S, Nüesch M, Gvozdenovic A, Aceto N. Circulating tumour cells in gastrointestinal cancers: food for thought? Br J Cancer 2023; 128:1981-1990. [PMID: 36932192 DOI: 10.1038/s41416-023-02228-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/17/2023] [Accepted: 03/02/2023] [Indexed: 03/19/2023] Open
Abstract
Gastrointestinal (GI) cancers account for 35% of cancer-related deaths, predominantly due to their ability to spread and generate drug-tolerant metastases. Arising from different locations in the GI system, the majority of metastatic GI malignancies colonise the liver and the lungs. In this context, circulating tumour cells (CTCs) are playing a critical role in the formation of new metastases, and their presence in the blood of patients has been correlated with a poor outcome. In addition to their prognostic utility, prospective targeting of CTCs may represent a novel, yet ambitious strategy in the fight against metastasis. A better understanding of CTC biology, mechanistic underpinnings and weaknesses may facilitate the development of previously underappreciated anti-metastasis approaches. Here, along with related clinical studies, we outline a selection of the literature describing biological features of CTCs with an impact on their metastasis forming ability in different GI cancers.
Collapse
Affiliation(s)
- Simran Asawa
- Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology Zurich (ETH Zurich), Zurich, Switzerland
| | - Manuel Nüesch
- Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology Zurich (ETH Zurich), Zurich, Switzerland
| | - Ana Gvozdenovic
- Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology Zurich (ETH Zurich), Zurich, Switzerland
| | - Nicola Aceto
- Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology Zurich (ETH Zurich), Zurich, Switzerland.
| |
Collapse
|
28
|
Madueke I, Lee RJ, Miyamoto DT. Circulating Tumor Cells and Circulating Tumor DNA in Urologic Cancers. Urol Clin North Am 2023; 50:109-114. [DOI: 10.1016/j.ucl.2022.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Gangadhar A, Sari-Sarraf H, Vanapalli SA. Deep learning assisted holography microscopy for in-flow enumeration of tumor cells in blood. RSC Adv 2023; 13:4222-4235. [PMID: 36760296 PMCID: PMC9892890 DOI: 10.1039/d2ra07972k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/25/2023] [Indexed: 02/05/2023] Open
Abstract
Currently, detection of circulating tumor cells (CTCs) in cancer patient blood samples relies on immunostaining, which does not provide access to live CTCs, limiting the breadth of CTC-based applications. Here, we take the first steps to address this limitation, by demonstrating staining-free enumeration of tumor cells spiked into lysed blood samples using digital holographic microscopy (DHM), microfluidics and machine learning (ML). A 3D-printed module for laser assembly was developed to simplify the optical set up for holographic imaging of cells flowing through a sheath-based microfluidic device. Computational reconstruction of the holograms was performed to localize the cells in 3D and obtain the plane of best focus images to train deep learning models. We developed a custom-designed light-weight shallow Network dubbed s-Net and compared its performance against off-the-shelf CNN models including ResNet-50. The accuracy, sensitivity and specificity of the s-Net model was found to be higher than the off-the-shelf ML models. By applying an optimized decision threshold to mixed samples prepared in silico, the false positive rate was reduced from 1 × 10-2 to 2.77 × 10-4. Finally, the developed DHM-ML framework was successfully applied to enumerate spiked MCF-7 breast cancer cells and SkOV3 ovarian cancer cells from lysed blood samples containing white blood cells (WBCs) at concentrations typical of label-free enrichment techniques. We conclude by discussing the advances that need to be made to translate the DHM-ML approach to staining-free enumeration of actual CTCs in cancer patient blood samples.
Collapse
Affiliation(s)
- Anirudh Gangadhar
- Department of Chemical Engineering, Texas Tech University Lubbock TX 79409 USA
| | - Hamed Sari-Sarraf
- Department of Electrical and Computer Engineering, Texas Tech UniversityLubbockTX 79409USA
| | - Siva A. Vanapalli
- Department of Chemical Engineering, Texas Tech UniversityLubbockTX 79409USA
| |
Collapse
|
30
|
Davies CR, Guo T, Burke E, Stankiewicz E, Xu L, Mao X, Scandura G, Rajan P, Tipples K, Alifrangis C, Wimalasingham AG, Galazi M, Crusz S, Powles T, Grey A, Oliver T, Kudahetti S, Shaw G, Berney D, Shamash J, Lu YJ. The potential of using circulating tumour cells and their gene expression to predict docetaxel response in metastatic prostate cancer. Front Oncol 2023; 12:1060864. [PMID: 36727071 PMCID: PMC9885040 DOI: 10.3389/fonc.2022.1060864] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/14/2022] [Indexed: 01/18/2023] Open
Abstract
Background Docetaxel improves overall survival (OS) in castration-resistant prostate cancer (PCa) (CRPC) and metastatic hormone-sensitive PCa (mHSPC). However, not all patients respond due to inherent and/or acquired resistance. There remains an unmet clinical need for a robust predictive test to stratify patients for treatment. Liquid biopsy of circulating tumour cell (CTCs) is minimally invasive, can provide real-time information of the heterogeneous tumour and therefore may be a potentially ideal docetaxel response prediction biomarker. Objective In this study we investigate the potential of using CTCs and their gene expression to predict post-docetaxel tumour response, OS and progression free survival (PFS). Methods Peripheral blood was sampled from 18 mCRPC and 43 mHSPC patients, pre-docetaxel treatment, for CTC investigation. CTCs were isolated using the epitope independent Parsortix® system and gene expression was determined by multiplex RT-qPCR. We evaluated CTC measurements for post-docetaxel outcome prediction using receiver operating characteristics and Kaplan Meier analysis. Results Detection of CTCs pre-docetaxel was associated with poor patient outcome post-docetaxel treatment. Combining total-CTC number with PSA and ALP predicted lack of partial response (PR) with an AUC of 0.90, p= 0.037 in mCRPC. A significantly shorter median OS was seen in mCRPC patients with positive CTC-score (12.80 vs. 37.33 months, HR= 5.08, p= 0.0005), ≥3 total-CTCs/7.5mL (12.80 vs. 37.33 months, HR= 3.84, p= 0.0053), ≥1 epithelial-CTCs/7.5mL (14.30 vs. 37.33 months, HR= 3.89, p= 0.0041) or epithelial to mesenchymal transitioning (EMTing)-CTCs/7.5mL (11.32 vs. 32.37 months, HR= 6.73, p= 0.0001). Significantly shorter PFS was observed in patients with ≥2 epithelial-CTCs/7.5mL (7.52 vs. 18.83 months, HR= 3.93, p= 0.0058). mHSPC patients with ≥5 CTCs/7.5mL had significantly shorter median OS (24.57 vs undefined months, HR= 4.14, p= 0.0097). In mHSPC patients, expression of KLK2, KLK4, ADAMTS1, ZEB1 and SNAI1 was significantly associated with shorter OS and/or PFS. Importantly, combining CTC measurements with clinical biomarkers increased sensitivity and specificity for prediction of patient outcome. Conclusion While it is clear that CTC numbers and gene expression were prognostic for PCa post-docetaxel treatment, and CTC subtype analysis may have additional value, their potential predictive value for docetaxel chemotherapy response needs to be further investigated in large patient cohorts.
Collapse
Affiliation(s)
- Caitlin R. Davies
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Tianyu Guo
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom,Department of Cell Biology and the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Edwina Burke
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Elzbieta Stankiewicz
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom,Central Biobank, Medical University of Gdansk, Gdansk, Poland
| | - Lei Xu
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom,Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xueying Mao
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Glenda Scandura
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Prabhakar Rajan
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom,Department of Urology, Barts Health National Health Service Trust (NHS), London, United Kingdom,Division of Surgery and Interventional Sciences, University College London, London, United Kingdom,University College London Hospitals, National Health Service (NHS) Foundation Trust, London, United Kingdom
| | - Karen Tipples
- Department of Urology, Barts Health National Health Service Trust (NHS), London, United Kingdom
| | - Constantine Alifrangis
- University College London Hospitals, National Health Service (NHS) Foundation Trust, London, United Kingdom,Department of Medical Oncology, Barts Health National Health Service (NHS) Trust, London, United Kingdom
| | | | - Myria Galazi
- Department of Medical Oncology, Barts Health National Health Service (NHS) Trust, London, United Kingdom
| | - Shanthini Crusz
- Department of Medical Oncology, Barts Health National Health Service (NHS) Trust, London, United Kingdom
| | - Thomas Powles
- Department of Urology, Barts Health National Health Service Trust (NHS), London, United Kingdom,Centre for Experimental Cancer Medicine, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Alistair Grey
- Department of Urology, Barts Health National Health Service Trust (NHS), London, United Kingdom,Division of Surgery and Interventional Sciences, University College London, London, United Kingdom,University College London Hospitals, National Health Service (NHS) Foundation Trust, London, United Kingdom
| | - Tim Oliver
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Sakunthala Kudahetti
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Greg Shaw
- Department of Urology, Barts Health National Health Service Trust (NHS), London, United Kingdom,Division of Surgery and Interventional Sciences, University College London, London, United Kingdom,University College London Hospitals, National Health Service (NHS) Foundation Trust, London, United Kingdom
| | - Daniel Berney
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Jonathan Shamash
- Department of Medical Oncology, Barts Health National Health Service (NHS) Trust, London, United Kingdom
| | - Yong-Jie Lu
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom,*Correspondence: Yong-Jie Lu,
| |
Collapse
|
31
|
Poonia S, Goel A, Chawla S, Bhattacharya N, Rai P, Lee YF, Yap YS, West J, Bhagat AA, Tayal J, Mehta A, Ahuja G, Majumdar A, Ramalingam N, Sengupta D. Marker-free characterization of full-length transcriptomes of single live circulating tumor cells. Genome Res 2023; 33:80-95. [PMID: 36414416 PMCID: PMC9977151 DOI: 10.1101/gr.276600.122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 11/10/2022] [Indexed: 11/23/2022]
Abstract
The identification and characterization of circulating tumor cells (CTCs) are important for gaining insights into the biology of metastatic cancers, monitoring disease progression, and medical management of the disease. The limiting factor in the enrichment of purified CTC populations is their sparse availability, heterogeneity, and altered phenotypes relative to the primary tumor. Intensive research both at the technical and molecular fronts led to the development of assays that ease CTC detection and identification from peripheral blood. Most CTC detection methods based on single-cell RNA sequencing (scRNA-seq) use a mix of size selection, marker-based white blood cell (WBC) depletion, and antibodies targeting tumor-associated antigens. However, the majority of these methods either miss out on atypical CTCs or suffer from WBC contamination. We present unCTC, an R package for unbiased identification and characterization of CTCs from single-cell transcriptomic data. unCTC features many standard and novel computational and statistical modules for various analyses. These include a novel method of scRNA-seq clustering, named deep dictionary learning using k-means clustering cost (DDLK), expression-based copy number variation (CNV) inference, and combinatorial, marker-based verification of the malignant phenotypes. DDLK enables robust segregation of CTCs and WBCs in the pathway space, as opposed to the gene expression space. We validated the utility of unCTC on scRNA-seq profiles of breast CTCs from six patients, captured and profiled using an integrated ClearCell FX and Polaris workflow that works by the principles of size-based separation of CTCs and marker-based WBC depletion.
Collapse
Affiliation(s)
- Sarita Poonia
- Department of Computational Biology, Indraprastha Institute of Information Technology-Delhi (IIIT-Delhi), New Delhi 110020, India
| | - Anurag Goel
- Department of Computer Science and Engineering, Indraprastha Institute of Information Technology-Delhi (IIIT-Delhi), New Delhi 110020, India
- Department of Computer Science and Engineering, Delhi Technological University, New Delhi 110042, India
| | - Smriti Chawla
- Department of Computational Biology, Indraprastha Institute of Information Technology-Delhi (IIIT-Delhi), New Delhi 110020, India
| | - Namrata Bhattacharya
- Department of Computer Science and Engineering, Indraprastha Institute of Information Technology-Delhi (IIIT-Delhi), New Delhi 110020, India
| | - Priyadarshini Rai
- Department of Computational Biology, Indraprastha Institute of Information Technology-Delhi (IIIT-Delhi), New Delhi 110020, India
| | - Yi Fang Lee
- Biolidics Limited, Singapore 118257, Singapore
| | - Yoon Sim Yap
- National Cancer Centre Singapore, Singapore 169610, Singapore
| | - Jay West
- Fluidigm Corporation, South San Francisco, California 94080, USA
| | | | - Juhi Tayal
- Department of Research, Rajiv Gandhi Cancer Institute and Research Centre-Delhi (RGCIRC-Delhi), New Delhi 110085, India
| | - Anurag Mehta
- Department of Laboratory Services and Molecular Diagnostics, Rajiv Gandhi Cancer Institute and Research Centre-Delhi (RGCIRC-Delhi), New Delhi 110085, India
| | - Gaurav Ahuja
- Department of Computational Biology, Indraprastha Institute of Information Technology-Delhi (IIIT-Delhi), New Delhi 110020, India
| | - Angshul Majumdar
- Department of Computer Science and Engineering, Indraprastha Institute of Information Technology-Delhi (IIIT-Delhi), New Delhi 110020, India
- Centre for Artificial Intelligence, Indraprastha Institute of Information Technology-Delhi (IIIT-Delhi), New Delhi 110020, India
- Department of Electronics & Communications Engineering, Indraprastha Institute of Information Technology-Delhi (IIIT-Delhi), New Delhi 110020, India
| | | | - Debarka Sengupta
- Department of Computational Biology, Indraprastha Institute of Information Technology-Delhi (IIIT-Delhi), New Delhi 110020, India
- Department of Computer Science and Engineering, Indraprastha Institute of Information Technology-Delhi (IIIT-Delhi), New Delhi 110020, India
- Centre for Artificial Intelligence, Indraprastha Institute of Information Technology-Delhi (IIIT-Delhi), New Delhi 110020, India
| |
Collapse
|
32
|
Zhao X, Qi Z, Gao Z, He H. High counting of circulating tumor cells in blood is not directly related to metastasis. Cytometry A 2023; 103:82-87. [PMID: 35912963 DOI: 10.1002/cyto.a.24672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/24/2022] [Accepted: 07/18/2022] [Indexed: 02/07/2023]
Abstract
Circulating tumor cells (CTCs) in blood flow have been believed as an essential biomarker of cancer. The technologies of in vitro and in vivo CTC enrichment and detection suggest although CTCs might play a role of "seed" in metastasis, only the minority of CTCs, probably in the form of CTC clusters, hold the potential to develop a tumor in organs. The detected amount of CTCs might be solely an indicator of tumor burden. To provide new insights into this argument, we take advantage of a safe drug to tune the pacemaker activity of a mouse tumor model to increase the heart rate for a period of time every day during the tumor development. We detect the CTCs in vivo by fast line scanning of a confocal microscope when the heart rate returns to the baseline and find the average CTC amount is significantly elevated in the drug-treated group but the metastases are even less than that of control. Our results imply the detected CTC counts in blood might not be directly related to metastasis.
Collapse
Affiliation(s)
- Xiaohui Zhao
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Ziang Qi
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Ziao Gao
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Hao He
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
33
|
Hasanzadeh Kafshgari M, Hayden O. Advances in analytical microfluidic workflows for differential cancer diagnosis. NANO SELECT 2023. [DOI: 10.1002/nano.202200158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- Morteza Hasanzadeh Kafshgari
- Heinz‐Nixdorf‐Chair of Biomedical Electronics Campus Klinikum München rechts der Isar TranslaTUM Technical University of Munich Munich Germany
| | - Oliver Hayden
- Heinz‐Nixdorf‐Chair of Biomedical Electronics Campus Klinikum München rechts der Isar TranslaTUM Technical University of Munich Munich Germany
| |
Collapse
|
34
|
Comparative application of microfluidic systems in circulating tumor cells and extracellular vesicles isolation; a review. Biomed Microdevices 2022; 25:4. [PMID: 36574057 DOI: 10.1007/s10544-022-00644-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2022] [Indexed: 12/28/2022]
Abstract
Cancer is a prevalent cause of mortality globally, where early diagnosis leads to a reduced death rate. Many researchers' common strategies are based on personalized diagnostic methods with rapid response and high accuracy. This technology was developed by applying liquid biopsy instead of tissue biopsies in the case of tumor cell analysis that facilitates point-of-care testing for cancer diagnosis and treatment. In recent years, significant progress in microfluidic technology led to the successful isolation, analysis, and monitoring of cancer biomarkers in body liquid biopsy with merits like high sensitivity and flexibility, low sample usage, cost effective, and the ability of automation. The most critical and informative markers in body liquid refer to circulating tumor cells (CTCs) and extracellular vesicles derived from tumors (EVs) that carry various biomarkers in their structure (DNAs, proteins, and RNAs) as compared to ctDNA. The released ctDNA has a low half-life and decreased sensitivity due to large amounts of nucleic acid in serum. This review intends to highlight different cancer screening tests with a particular focus on the details regarding the only FDA-approved and awaiting technologies for FDA clearance to isolate CTCs and EVs based on microfluidics systems.
Collapse
|
35
|
Derderian S, Vesval Q, Wissing MD, Hamel L, Côté N, Vanhuyse M, Ferrario C, Bladou F, Aprikian A, Chevalier S. Liquid biopsy-based targeted gene screening highlights tumor cell subtypes in patients with advanced prostate cancer. Clin Transl Sci 2022; 15:2597-2612. [PMID: 36172886 PMCID: PMC9652435 DOI: 10.1111/cts.13372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/23/2022] [Accepted: 07/08/2022] [Indexed: 01/25/2023] Open
Abstract
Prostate cancer (PCa) clinical heterogeneity underscores tumor heterogeneity, which may be best defined by cell subtypes. To test if cell subtypes contributing to progression can be assessed noninvasively, we investigated whether 14 genes representing luminal, neuroendocrine, and stem cells are detectable in whole blood RNA of patients with advanced PCa. For each gene, reverse transcription quantitative polymerase chain reaction assays were first validated using RNA from PCa cell lines, and their traceability in blood was assessed in cell spiking experiments. These were next tested in blood RNA of 40 advanced PCa cases and 40 healthy controls. Expression in controls, which was low or negative, was used to define stringent thresholds for gene overexpression in patients to account for normal variation in white blood cells. Thirty-five of 40 patients overexpressed at least one gene. Patients with more genes overexpressed had a higher risk of death (hazard ratio 1.42, range 1.12-1.77). Progression on androgen receptor inhibitors was associated with overexpression of stem (odds ratio [OR] 7.74, range 1.68-35.61) and neuroendocrine (OR 13.10, range 1.24-142.34) genes, while luminal genes were associated with taxanes (OR 2.7, range 1.07-6.82). Analyses in PCa transcriptomic datasets revealed that this gene panel was most prominent in metastases of advanced disease, with diversity among patients. Collectively, these findings support the contribution of the prostate cell subtypes to disease progression. Cell-subtype specific genes are traceable in blood RNA of patients with advanced PCa and are associated with clinically relevant end points. This opens the door to minimally invasive liquid biopsies for better management of this deadly disease.
Collapse
Affiliation(s)
- Seta Derderian
- Urologic Oncology Research Group, Cancer Research ProgramResearch Institute (RI)‐McGill University Health Center (MUHC)MontrealCanada,Department of Surgery (Urology Division)MUHC and McGill UniversityMontrealCanada
| | - Quentin Vesval
- Urologic Oncology Research Group, Cancer Research ProgramResearch Institute (RI)‐McGill University Health Center (MUHC)MontrealCanada,Department of UrologyCentre Hospitalier Régional et Universitaire (CHRU) de RennesRennesFrance
| | - Michel D. Wissing
- Urologic Oncology Research Group, Cancer Research ProgramResearch Institute (RI)‐McGill University Health Center (MUHC)MontrealCanada,Department of OncologyMUHC and McGill UniversityMontrealCanada
| | - Lucie Hamel
- Urologic Oncology Research Group, Cancer Research ProgramResearch Institute (RI)‐McGill University Health Center (MUHC)MontrealCanada
| | - Nathalie Côté
- Urologic Oncology Research Group, Cancer Research ProgramResearch Institute (RI)‐McGill University Health Center (MUHC)MontrealCanada
| | - Marie Vanhuyse
- Department of OncologyMUHC and McGill UniversityMontrealCanada
| | - Cristiano Ferrario
- Department of OncologyJewish General Hospital (JGH) and McGill UniversityMontrealCanada
| | - Franck Bladou
- Department of UrologyCentre Hospitalier Universitaire de BordeauxBordeauxFrance
| | - Armen Aprikian
- Urologic Oncology Research Group, Cancer Research ProgramResearch Institute (RI)‐McGill University Health Center (MUHC)MontrealCanada,Department of Surgery (Urology Division)MUHC and McGill UniversityMontrealCanada,Department of OncologyMUHC and McGill UniversityMontrealCanada
| | - Simone Chevalier
- Urologic Oncology Research Group, Cancer Research ProgramResearch Institute (RI)‐McGill University Health Center (MUHC)MontrealCanada,Department of Surgery (Urology Division)MUHC and McGill UniversityMontrealCanada,Department of OncologyMUHC and McGill UniversityMontrealCanada,Department of MedicineMcGill UniversityMontrealCanada
| |
Collapse
|
36
|
Malignancy Assessment Using Gene Identification in Captured Cells Algorithm for the Prediction of Malignancy in Women With a Pelvic Mass. Obstet Gynecol 2022; 140:631-642. [PMID: 36075062 PMCID: PMC9484762 DOI: 10.1097/aog.0000000000004927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 06/27/2022] [Indexed: 01/05/2023]
Abstract
OBJECTIVE To evaluate the detection of malignancy in women with a pelvic mass by using multiplexed gene expression analysis of cells captured from peripheral blood. METHODS This was an IRB-approved, prospective clinical study. Eligible patients had a pelvic mass and were scheduled for surgery or biopsy. Rare cells were captured from peripheral blood obtained preoperatively by using a microfluidic cell capture device. Isolated mRNA from the captured cells was analyzed for expression of 72 different gene transcripts. Serum levels for several commonly assayed biomarkers were measured. All patients had a tissue diagnosis. Univariate and multivariate logistic regression analyses for the prediction of malignancy using gene expression and serum biomarker levels were performed, and receiver operating characteristic curves were constructed and compared. RESULTS A total of 183 evaluable patients were enrolled (average age 56 years, range 19-91 years). There were 104 benign tumors, 17 low malignant potential tumors, and 62 malignant tumors. Comparison of the area under the receiver operating characteristic curve for individual genes and various combinations of genes with or without serum biomarkers to differentiate between benign conditions (excluding low malignant potential tumors) and malignant tumors showed that a multivariate model combining the expression levels of eight genes and four serum biomarkers achieved the highest area under the curve (AUC) (95.1%, 95% CI 92.0-98.2%). The MAGIC (Malignancy Assessment using Gene Identification in Captured Cells) algorithm significantly outperformed all individual genes (AUC 50.2-65.2%; all P <.001) and a multivariate model combining 14 different genes (AUC 88.0%, 95% CI 82.9-93.0%; P =.005). Further, the MAGIC algorithm achieved an AUC of 89.5% (95% CI 81.3-97.8%) for stage I-II and 98.9% (95% CI 96.7-100%) for stage III-IV patients with epithelial ovarian cancer. CONCLUSION Multiplexed gene expression evaluation of cells captured from blood, with or without serum biomarker levels, accurately detects malignancy in women with a pelvic mass. CLINICAL TRIAL REGISTRATION ClinicalTrials.gov, NCT02781272. FUNDING SOURCE This study was funded by ANGLE Europe Limited (Surrey Research Park, Guildford, Surrey, United Kingdom).
Collapse
|
37
|
Tulpule V, Morrison GJ, Falcone M, Quinn DI, Goldkorn A. Integration of Liquid Biopsies in Clinical Management of Metastatic Prostate Cancer. Curr Oncol Rep 2022; 24:1287-1298. [PMID: 35575959 PMCID: PMC9474724 DOI: 10.1007/s11912-022-01278-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2022] [Indexed: 01/08/2023]
Abstract
PURPOSE OF REVIEW The field of liquid biopsies is constantly evolving through novel technologies. This review outlines current data on liquid biopsies and application to clinical management of metastatic prostate cancer. RECENT FINDINGS To date, there are three platforms with FDA approval for use in the setting of metastatic prostate cancer and others which have been clinically validated. There is substantial evidence supporting the use of circulating tumor cell (CTC) enumeration to guide prognosis in metastatic castration-resistant prostate cancer (mCRPC). Additional evidence supports targeted sequencing of CTC and cell-free DNA (cfDNA) to guide androgren-directed therapy, identify candidates for treatment with PARP inhibitors, and monitor development of resistance. As a real-time and minimally invasive approach, utilization of liquid biopsies has the potential to drastically impact the treatment of metastatic prostate cancer and improve overall survival. With further clinical validation, additional liquid biopsy is likely to enter standard clinical practice.
Collapse
Affiliation(s)
- Varsha Tulpule
- Division of Medical Oncology, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Gareth J Morrison
- Division of Medical Oncology, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Mary Falcone
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - David I Quinn
- Division of Medical Oncology, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Amir Goldkorn
- Division of Medical Oncology, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
38
|
Janssen LM, Suelmann BBM, Elias SG, Janse MHA, van Diest PJ, van der Wall E, Gilhuijs KGA. Improving prediction of response to neoadjuvant treatment in patients with breast cancer by combining liquid biopsies with multiparametric MRI: protocol of the LIMA study - a multicentre prospective observational cohort study. BMJ Open 2022; 12:e061334. [PMID: 36127090 PMCID: PMC9490628 DOI: 10.1136/bmjopen-2022-061334] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 08/12/2022] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION The response to neoadjuvant chemotherapy (NAC) in breast cancer has important prognostic implications. Dynamic prediction of tumour regression by NAC may allow for adaption of the treatment plan before completion, or even before the start of treatment. Such predictions may help prevent overtreatment and related toxicity and correct for undertreatment with ineffective regimens. Current imaging methods are not able to fully predict the efficacy of NAC. To successfully improve response prediction, tumour biology and heterogeneity as well as treatment-induced changes have to be considered. In the LIMA study, multiparametric MRI will be combined with liquid biopsies. In addition to conventional clinical and pathological information, these methods may give complementary information at multiple time points during treatment. AIM To combine multiparametric MRI and liquid biopsies in patients with breast cancer to predict residual cancer burden (RCB) after NAC, in adjunct to standard clinico-pathological information. Predictions will be made before the start of NAC, approximately halfway during treatment and after completion of NAC. METHODS In this multicentre prospective observational study we aim to enrol 100 patients. Multiparametric MRI will be performed prior to NAC, approximately halfway and after completion of NAC. Liquid biopsies will be obtained immediately prior to every cycle of chemotherapy and after completion of NAC. The primary endpoint is RCB in the surgical resection specimen following NAC. Collected data will primarily be analysed using multivariable techniques such as penalised regression techniques. ETHICS AND DISSEMINATION Medical Research Ethics Committee Utrecht has approved this study (NL67308.041.19). Informed consent will be obtained from each participant. All data are anonymised before publication. The findings of this study will be submitted to international peer-reviewed journals. TRIAL REGISTRATION NUMBER NCT04223492.
Collapse
Affiliation(s)
- Liselore M Janssen
- Image Sciences Institute, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Britt B M Suelmann
- Department of Medical Oncology, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Sjoerd G Elias
- Julius Center for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Markus H A Janse
- Image Sciences Institute, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Paul J van Diest
- Department of Pathology, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Elsken van der Wall
- Department of Medical Oncology, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Kenneth G A Gilhuijs
- Image Sciences Institute, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
39
|
Hirotsu A, Kikuchi H, Yamada H, Ozaki Y, Haneda R, Kawata S, Murakami T, Matsumoto T, Hiramatsu Y, Kamiya K, Yamashita D, Fujimori Y, Ueda Y, Okazaki S, Kitagawa M, Konno H, Takeuchi H. Artificial intelligence-based classification of peripheral blood nucleated cells using label-free imaging flow cytometry. LAB ON A CHIP 2022; 22:3464-3474. [PMID: 35942978 DOI: 10.1039/d2lc00166g] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Label-free image identification of circulating rare cells, such as circulating tumor cells within peripheral blood nucleated cells (PBNCs), the vast majority of which are white blood cells (WBCs), remains challenging. We previously described developing label-free image cytometry for classifying live cells using computer vision technology for pattern recognition, based on the subcellular structure of the quantitative phase microscopy images. We applied our image recognition methods to cells flowing in a flow cytometer microfluidic channel, and differentiated WBCs from cancer cell lines (area under receiver operating characteristic curve = 0.957). We then applied this method to healthy volunteers' and advanced cancer patients' blood samples and found that the non-WBC fraction rates (NWBC-FRs), defined as the percentage of cells classified as non-WBCs of the total PBNCs, were significantly higher in cancer patients than in healthy volunteers. Furthermore, we monitored NWBC-FRs over the therapeutic courses in cancer patients, which revealed the potential ability in monitoring the clinical status during therapy. Our image recognition system has the potential to provide a morphological diagnostic tool for circulating rare cells as non-WBC fractions.
Collapse
Affiliation(s)
- Amane Hirotsu
- Department of Surgery, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan.
| | - Hirotoshi Kikuchi
- Department of Surgery, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan.
| | - Hidenao Yamada
- Central Research Laboratory, Hamamatsu Photonics K.K, Hamamatsu, Shizuoka, Japan
| | - Yusuke Ozaki
- Department of Surgery, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan.
| | - Ryoma Haneda
- Department of Surgery, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan.
| | - Sanshiro Kawata
- Department of Surgery, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan.
| | - Tomohiro Murakami
- Department of Surgery, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan.
| | - Tomohiro Matsumoto
- Department of Surgery, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan.
| | - Yoshihiro Hiramatsu
- Department Perioperative Functioning Care and Support, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan
| | - Kinji Kamiya
- Department of Surgery, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan.
| | - Daisuke Yamashita
- Central Research Laboratory, Hamamatsu Photonics K.K, Hamamatsu, Shizuoka, Japan
| | - Yuki Fujimori
- Central Research Laboratory, Hamamatsu Photonics K.K, Hamamatsu, Shizuoka, Japan
| | - Yukio Ueda
- Central Research Laboratory, Hamamatsu Photonics K.K, Hamamatsu, Shizuoka, Japan
| | - Shigetoshi Okazaki
- HAMAMATSU BioPhotonics Innovation Chair, Institute for Medical Photonics Research, Preeminent Medical Photonics Education and Research Centre, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan
| | - Masatoshi Kitagawa
- Department of Molecular Biology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan
- Laboratory Animal Facilities and Services, Preeminent Medical Photonics Education and Research Centre, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan
| | - Hiroyuki Konno
- Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan
| | - Hiroya Takeuchi
- Department of Surgery, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan.
| |
Collapse
|
40
|
Rodríguez‐Pena A, Armendariz E, Oyarbide A, Morales X, Ortiz‐Espinosa S, Ruiz‐Fernández de Córdoba B, Cochonneau D, Cornago I, Heymann D, Argemi J, D'Avola D, Sangro B, Lecanda F, Pio R, Cortés‐Domínguez I, Ortiz‐de‐Solórzano C. Design and validation of a tunable inertial microfluidic system for the efficient enrichment of circulating tumor cells in blood. Bioeng Transl Med 2022; 7:e10331. [PMID: 36176621 PMCID: PMC9472016 DOI: 10.1002/btm2.10331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 03/11/2022] [Accepted: 04/04/2022] [Indexed: 11/08/2022] Open
Abstract
The analysis of circulating tumor cells (CTCs) in blood is a powerful noninvasive alternative to conventional tumor biopsy. Inertial-based separation is a promising high-throughput, marker-free sorting strategy for the enrichment and isolation of CTCs. Here, we present and validate a double spiral microfluidic device that efficiently isolates CTCs with a fine-tunable cut-off value of 9 μm and a separation range of 2 μm. We designed the device based on computer simulations that introduce a novel, customized inertial force term, and provide practical fabrication guidelines. We validated the device using calibration beads, which allowed us to refine the simulations and redesign the device. Then we validated the redesigned device using blood samples and a murine model of metastatic breast cancer. Finally, as a proof of principle, we tested the device using peripheral blood from a patient with hepatocellular carcinoma, isolating more than 17 CTCs/ml, with purity/removal values of 96.03% and 99.99% of white blood cell and red blood cells, respectively. These results confirm highly efficient CTC isolation with a stringent cut-off value and better separation results than the state of the art.
Collapse
Affiliation(s)
- Alejandro Rodríguez‐Pena
- Program in Solid TumorsCenter for Applied Medical Research (CIMA)PamplonaSpain
- Oncology DivisionNavarra's Health Research Institute (IDISNA)PamplonaSpain
| | | | - Alvaro Oyarbide
- Program in Solid TumorsCenter for Applied Medical Research (CIMA)PamplonaSpain
- Oncology DivisionNavarra's Health Research Institute (IDISNA)PamplonaSpain
| | - Xabier Morales
- Program in Solid TumorsCenter for Applied Medical Research (CIMA)PamplonaSpain
- Oncology DivisionNavarra's Health Research Institute (IDISNA)PamplonaSpain
| | - Sergio Ortiz‐Espinosa
- Program in Solid TumorsCenter for Applied Medical Research (CIMA)PamplonaSpain
- Oncology DivisionNavarra's Health Research Institute (IDISNA)PamplonaSpain
- Department of Biochemistry and Genetics, School of SciencesUniversity of NavarraPamplonaSpain
| | - Borja Ruiz‐Fernández de Córdoba
- Program in Solid TumorsCenter for Applied Medical Research (CIMA)PamplonaSpain
- Oncology DivisionNavarra's Health Research Institute (IDISNA)PamplonaSpain
| | - Denis Cochonneau
- Institut de Cancérologie de l'Ouest, “Tumor Heterogeneity and Precision Medicine” Lab., Blvd Jacques MonodSaint‐HerblainFrance
| | - Iñaki Cornago
- Automotive and Mechatronics R&D Foundation (Naitec)PamplonaSpain
| | - Dominique Heymann
- Institut de Cancérologie de l'Ouest, “Tumor Heterogeneity and Precision Medicine” Lab., Blvd Jacques MonodSaint‐HerblainFrance
- Nantes Université, CNRS, US2B, UMR 6286NantesFrance
| | - Josepmaría Argemi
- Liver Unit, Clinica Universitaria de NavarraPamplona (Navarra)Spain
- Centro de Investigación Biomédica en Red de Enfermedades hepáticas y Digestivas (CIBEREHD)Spain
| | - Delia D'Avola
- Liver Unit, Clinica Universitaria de NavarraPamplona (Navarra)Spain
- Centro de Investigación Biomédica en Red de Enfermedades hepáticas y Digestivas (CIBEREHD)Spain
| | - Bruno Sangro
- Liver Unit, Clinica Universitaria de NavarraPamplona (Navarra)Spain
- Centro de Investigación Biomédica en Red de Enfermedades hepáticas y Digestivas (CIBEREHD)Spain
| | - Fernando Lecanda
- Program in Solid TumorsCenter for Applied Medical Research (CIMA)PamplonaSpain
- Oncology DivisionNavarra's Health Research Institute (IDISNA)PamplonaSpain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC)MadridSpain
- Department of Pathology, Anatomy and PhysiologyUniversity of NavarraPamplonaSpain
| | - Ruben Pio
- Program in Solid TumorsCenter for Applied Medical Research (CIMA)PamplonaSpain
- Oncology DivisionNavarra's Health Research Institute (IDISNA)PamplonaSpain
- Department of Biochemistry and Genetics, School of SciencesUniversity of NavarraPamplonaSpain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC)MadridSpain
| | - Iván Cortés‐Domínguez
- Program in Solid TumorsCenter for Applied Medical Research (CIMA)PamplonaSpain
- Oncology DivisionNavarra's Health Research Institute (IDISNA)PamplonaSpain
| | - Carlos Ortiz‐de‐Solórzano
- Program in Solid TumorsCenter for Applied Medical Research (CIMA)PamplonaSpain
- Oncology DivisionNavarra's Health Research Institute (IDISNA)PamplonaSpain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC)MadridSpain
| |
Collapse
|
41
|
Ju S, Chen C, Zhang J, Xu L, Zhang X, Li Z, Chen Y, Zhou J, Ji F, Wang L. Detection of circulating tumor cells: opportunities and challenges. Biomark Res 2022; 10:58. [PMID: 35962400 PMCID: PMC9375360 DOI: 10.1186/s40364-022-00403-2] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/26/2022] [Indexed: 11/25/2022] Open
Abstract
Circulating tumor cells (CTCs) are cells that shed from a primary tumor and travel through the bloodstream. Studying the functional and molecular characteristics of CTCs may provide in-depth knowledge regarding highly lethal tumor diseases. Researchers are working to design devices and develop analytical methods that can capture and detect CTCs in whole blood from cancer patients with improved sensitivity and specificity. Techniques using whole blood samples utilize physical prosperity, immunoaffinity or a combination of the above methods and positive and negative enrichment during separation. Further analysis of CTCs is helpful in cancer monitoring, efficacy evaluation and designing of targeted cancer treatment methods. Although many advances have been achieved in the detection and molecular characterization of CTCs, several challenges still exist that limit the current use of this burgeoning diagnostic approach. In this review, a brief summary of the biological characterization of CTCs is presented. We focus on the current existing CTC detection methods and the potential clinical implications and challenges of CTCs. We also put forward our own views regarding the future development direction of CTCs.
Collapse
Affiliation(s)
- Siwei Ju
- Department of Surgical Oncology, The Sir Run Run Shaw Hospital Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Zhejiang, Hangzhou, China
| | - Cong Chen
- Department of Surgical Oncology, The Sir Run Run Shaw Hospital Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Zhejiang, Hangzhou, China
| | - Jiahang Zhang
- Department of Surgical Oncology, The Sir Run Run Shaw Hospital Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Zhejiang, Hangzhou, China
| | - Lin Xu
- Department of Surgical Oncology, The Sir Run Run Shaw Hospital Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Zhejiang, Hangzhou, China
| | - Xun Zhang
- Department of Surgical Oncology, The Sir Run Run Shaw Hospital Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Zhejiang, Hangzhou, China
| | - Zhaoqing Li
- Department of Surgical Oncology, The Sir Run Run Shaw Hospital Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Zhejiang, Hangzhou, China
| | - Yongxia Chen
- Department of Surgical Oncology, The Sir Run Run Shaw Hospital Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Zhejiang, Hangzhou, China
| | - Jichun Zhou
- Department of Surgical Oncology, The Sir Run Run Shaw Hospital Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Zhejiang, Hangzhou, China
| | - Feiyang Ji
- Department of Surgical Oncology, The Sir Run Run Shaw Hospital Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China.
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Zhejiang, Hangzhou, China.
| | - Linbo Wang
- Department of Surgical Oncology, The Sir Run Run Shaw Hospital Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China.
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Zhejiang, Hangzhou, China.
| |
Collapse
|
42
|
Rahmanian M, Sartipzadeh Hematabad O, Askari E, Shokati F, Bakhshi A, Moghadam S, Olfatbakhsh A, Al Sadat Hashemi E, Khorsand Ahmadi M, Morteza Naghib S, Sinha N, Tel J, Eslami Amirabadi H, den Toonder JMJ, Majidzadeh-A K. A micropillar array-based microfluidic chip for label-free separation of circulating tumor cells: The best micropillar geometry? J Adv Res 2022; 47:105-121. [PMID: 35964874 PMCID: PMC10173300 DOI: 10.1016/j.jare.2022.08.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/22/2022] [Accepted: 08/07/2022] [Indexed: 10/15/2022] Open
Abstract
INTRODUCTION The information derived from the number and characteristics of circulating tumor cells (CTCs), is crucial to ensure appropriate cancer treatment monitoring. Currently, diverse microfluidic platforms have been developed for isolating CTCs from blood, but it remains a challenge to develop a low-cost, practical, and efficient strategy. OBJECTIVES This study aimed to isolate CTCs from the blood of cancer patients via introducing a new and efficient micropillar array-based microfluidic chip (MPA-Chip), as well as providing prognostic information and monitoring the treatment efficacy in cancer patients. METHODS We fabricated a microfluidic chip (MPA-Chip) containing arrays of micropillars with different geometries (lozenge, rectangle, circle, and triangle). We conducted numerical simulations to compare velocity and pressure profiles inside the micropillar arrays. Also, we experimentally evaluated the capture efficiency and purity of the geometries using breast and prostate cancer cell lines as well as a blood sample. Moreover, the device's performance was validated on 12 patients with breast cancer (BC) in different states. RESULTS The lozenge geometry was selected as the most effective and optimized micropillar design for CTCs isolation, providing high capture efficiency (>85 %), purity (>90 %), and viability (97 %). Furthermore, the lozenge MPA-chip was successfully validated by the detection of CTCs from 12 breast cancer (BC) patients, with non-metastatic (median number of 6 CTCs) and metastatic (median number of 25 CTCs) diseases, showing different prognoses. Also, increasing the chemotherapy period resulted in a decrease in the number of captured CTCs from 23 to 7 for the metastatic patient. The MPA-Chip size was only 0.25 cm2 and the throughput of a single chip was 0.5 ml/h, which can be increased by multiple MPA-Chips in parallel. CONCLUSION The lozenge MPA-Chip presented a novel micropillar geometry for on-chip CTC isolation, detection, and staining, and in the future, the possibilities can be extended to the culture of the CTCs.
Collapse
Affiliation(s)
- Mehdi Rahmanian
- Biomaterials and Tissue Engineering Research Group, Interdisciplinary Technologies Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran; Microsystems Research Section, Department of Mechanical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Omid Sartipzadeh Hematabad
- Biomaterials and Tissue Engineering Research Group, Interdisciplinary Technologies Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Esfandyar Askari
- Biomaterials and Tissue Engineering Research Group, Interdisciplinary Technologies Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Farhad Shokati
- Biomaterials and Tissue Engineering Research Group, Interdisciplinary Technologies Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Atin Bakhshi
- Biomaterials and Tissue Engineering Research Group, Interdisciplinary Technologies Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Shiva Moghadam
- Breast Diseases Group, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Asiie Olfatbakhsh
- Breast Diseases Group, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Esmat Al Sadat Hashemi
- Breast Diseases Group, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Mohammad Khorsand Ahmadi
- Microsystems Research Section, Department of Mechanical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology, Tehran, Iran
| | - Nidhi Sinha
- Laboratory of Immunoengineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Jurjen Tel
- Laboratory of Immunoengineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Hossein Eslami Amirabadi
- Microsystems Research Section, Department of Mechanical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands; AZAR Innovations, Utrecht, the Netherlands
| | - Jaap M J den Toonder
- Microsystems Research Section, Department of Mechanical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands.
| | - Keivan Majidzadeh-A
- Genetics Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran.
| |
Collapse
|
43
|
Khan T, Becker TM, Po JW, Chua W, Ma Y. Single-Circulating Tumor Cell Whole Genome Amplification to Unravel Cancer Heterogeneity and Actionable Biomarkers. Int J Mol Sci 2022; 23:ijms23158386. [PMID: 35955517 PMCID: PMC9369222 DOI: 10.3390/ijms23158386] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 12/04/2022] Open
Abstract
The field of single-cell analysis has advanced rapidly in the last decade and is providing new insights into the characterization of intercellular genetic heterogeneity and complexity, especially in human cancer. In this regard, analyzing single circulating tumor cells (CTCs) is becoming particularly attractive due to the easy access to CTCs from simple blood samples called “liquid biopsies”. Analysis of multiple single CTCs has the potential to allow the identification and characterization of cancer heterogeneity to guide best therapy and predict therapeutic response. However, single-CTC analysis is restricted by the low amounts of DNA in a single cell genome. Whole genome amplification (WGA) techniques have emerged as a key step, enabling single-cell downstream molecular analysis. Here, we provide an overview of recent advances in WGA and their applications in the genetic analysis of single CTCs, along with prospective views towards clinical applications. First, we focus on the technical challenges of isolating and recovering single CTCs and then explore different WGA methodologies and recent developments which have been utilized to amplify single cell genomes for further downstream analysis. Lastly, we list a portfolio of CTC studies which employ WGA and single-cell analysis for genetic heterogeneity and biomarker detection.
Collapse
Affiliation(s)
- Tanzila Khan
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia; (T.K.); (T.M.B.); (W.C.)
- Medical Oncology, Ingham Institute of Applied Medical Research, Liverpool, NSW 2170, Australia
- Centre of Circulating Tumor Cells Diagnostics & Research, Ingham Institute of Applied Medical Research, Liverpool, NSW 2170, Australia;
| | - Therese M. Becker
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia; (T.K.); (T.M.B.); (W.C.)
- Medical Oncology, Ingham Institute of Applied Medical Research, Liverpool, NSW 2170, Australia
- Centre of Circulating Tumor Cells Diagnostics & Research, Ingham Institute of Applied Medical Research, Liverpool, NSW 2170, Australia;
- South West Sydney Clinical School, University of New South Wales, Liverpool, NSW 2170, Australia
| | - Joseph W. Po
- Centre of Circulating Tumor Cells Diagnostics & Research, Ingham Institute of Applied Medical Research, Liverpool, NSW 2170, Australia;
- Surgical Innovations Unit, Westmead Hospital, Westmead, NSW 2145, Australia
| | - Wei Chua
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia; (T.K.); (T.M.B.); (W.C.)
- Medical Oncology, Liverpool Hospital, Liverpool, NSW 2170, Australia
| | - Yafeng Ma
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia; (T.K.); (T.M.B.); (W.C.)
- Medical Oncology, Ingham Institute of Applied Medical Research, Liverpool, NSW 2170, Australia
- Centre of Circulating Tumor Cells Diagnostics & Research, Ingham Institute of Applied Medical Research, Liverpool, NSW 2170, Australia;
- South West Sydney Clinical School, University of New South Wales, Liverpool, NSW 2170, Australia
- Correspondence:
| |
Collapse
|
44
|
Powering single-cell genomics to unravel circulating tumour cell subpopulations in non-small cell lung cancer patients. J Cancer Res Clin Oncol 2022; 149:1941-1950. [PMID: 35896898 PMCID: PMC10097753 DOI: 10.1007/s00432-022-04202-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/09/2022] [Indexed: 10/16/2022]
Abstract
BACKGROUND Circulating tumour cells (CTCs) are attractive "liquid biopsy" candidates that could provide insights into the different phenotypes of tumours present within a patient. The epithelial-to-mesenchymal transition (EMT) of CTCs is considered a critical step in tumour metastasis; however, it may confound traditional epithelial feature-based CTC isolation and detection. We applied single-cell copy number alteration (CNA) analysis for the identification of genomic alterations to confirm the neoplastic nature of circulating cells with only mesenchymal phenotypes. METHODS We isolated CTCs from blood samples collected from 46 NSCLC patients using the Parsortix system. Enriched cells were subjected to immunofluorescent staining for CTC identification using a multi-marker panel comprising both epithelial and mesenchymal markers. A subset of isolated CTCs was subjected to whole genome amplification (WGA) and low-pass whole-genome sequencing (LP-WGS) for the analysis of copy number alterations (CNAs). RESULTS CTCs were detected in 16/46 (34.8%) patients, inclusive of CK+/EpCAM+ CTCs (3/46, 6.5%) and Vim+ CTCs (13/46, 28.3%). Clusters of Vim+ cells were detected in 8 samples, which constitutes 50% of the total number of NSCLC patients with CTCs. No patients had detectable hybrid CK+/EpCAM+/Vim+ cells. All of the tested CK+/EpCAM+ CTCs and 7/8 Vim+ CTCs or CTC clusters carried CNAs confirming their neoplastic nature. Notably, the Vim+ cluster with no CNAs was characterised by spindle morphology and, therefore, defined as normal mesenchymal circulating cells. CONCLUSION Our results revealed that CK-negative, vimentin-expressing cells represent a large proportion of CTCs detected in NSCLC patients, which are likely missed by standard epithelial-marker-dependent CTC categorisation.
Collapse
|
45
|
Varillas JI, Chen K, Dopico P, Zhang J, George TJ, Fan ZH. Comparison of sample preparation methods for rare cell isolation in microfluidic devices. CAN J CHEM 2022; 100:512-519. [PMID: 36338875 PMCID: PMC9635407 DOI: 10.1139/cjc-2021-0229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2024]
Abstract
The analysis of circulating tumor cells (CTCs) is important for cancer diagnosis and prognosis. Microfluidics has been employed for CTC analysis due to its scaling advantages and high performance. However, pre-analytical methods for CTC sample preparation are often combined with microfluidic platforms because a large sample volume is required to detect extremely rare CTCs. Among pre-analytical methods, Ficoll-Paque™, OncoQuick™, and RosetteSep™ are commonly used to separate cells of interest. To compare their performance, we spiked L3.6pl pancreatic cancer cells into healthy blood samples and then employed each technique to prepare blood samples, followed by using a microfluidic platform to capture and detect L3.6pl cells. We found these three methods have similar performance, though the slight edge of RosetteSep™ over Ficoll-Paque™ is statistically significant. We also studied the effects of the tumor cell concentrations on the performance of the frequently used Ficoll-Paque™ method. Furthermore, we examined the repeatability and variability of each pre-analytical technique and the microfluidics-enabled detection. This study will provide researchers and clinicians with comparative data that can influence the choice of sample preparation method, help estimate CTC loss in each pre-analytical method, and correlate the results of clinical studies that employ different techniques.
Collapse
Affiliation(s)
- Jose I Varillas
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, P.O. Box 116131, Gainesville, FL 32611, USA
| | - Kangfu Chen
- Interdisciplinary Microsystems Group, Department of Mechanical and Aerospace Engineering, University of Florida, P.O. Box 116250, Gainesville, FL 32611, USA
| | - Pablo Dopico
- Interdisciplinary Microsystems Group, Department of Mechanical and Aerospace Engineering, University of Florida, P.O. Box 116250, Gainesville, FL 32611, USA
| | - Jinling Zhang
- Interdisciplinary Microsystems Group, Department of Mechanical and Aerospace Engineering, University of Florida, P.O. Box 116250, Gainesville, FL 32611, USA
| | - Thomas J George
- Department of Medicine, University of Florida, P.O. Box 100278, Gainesville, FL 32610, USA
| | - Z Hugh Fan
- Interdisciplinary Microsystems Group, Department of Mechanical and Aerospace Engineering, University of Florida, P.O. Box 116250, Gainesville, FL 32611, USA; J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, P.O. Box 116131, Gainesville, FL 32611, USA; Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, FL 32611, USA
| |
Collapse
|
46
|
Blood-based liquid biopsies for prostate cancer: clinical opportunities and challenges. Br J Cancer 2022; 127:1394-1402. [PMID: 35715640 PMCID: PMC9553885 DOI: 10.1038/s41416-022-01881-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 05/19/2022] [Accepted: 06/01/2022] [Indexed: 12/19/2022] Open
Abstract
Liquid biopsy has been established as a powerful, minimally invasive, tool to detect clinically actionable aberrations across numerous cancer types in real-time. With the development of new therapeutic agents in prostate cancer (PC) including DNA repair targeted therapies, this is especially attractive. However, there is unclarity on how best to screen for PC, improve risk stratification and ultimately how to treat advanced disease. Therefore, there is an urgent need to develop better biomarkers to help guide oncologists' decisions in these settings. Circulating tumour cells (CTCs), exosomes and cell-free DNA/RNA (cfDNA/cfRNA) analysis, including epigenetic features such as methylation, have all shown potential in prognostication, treatment response assessment and detection of emerging mechanisms of resistance. However, there are still challenges to overcome prior to implementing liquid biopsies in routine clinical practice such as preanalytical considerations including blood collection and storage, the cost of CTC isolation and enrichment, low-circulating tumour content as a limitation for genomic analysis and how to better interpret the sequencing data generated. In this review, we describe an overview of the up-to-date clinical opportunities in the management of PC through blood-based liquid biopsies and the next steps for its implementation in personalised treatment guidance.
Collapse
|
47
|
De Renzi G, De Marco G, De Meo M, Del Rosso E, Gazzaniga P, Nicolazzo C. In vitro cultures of circulating tumor cells: a potential tool to unravel drug sensitivity. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2022; 5:245-260. [PMID: 35582538 PMCID: PMC8992597 DOI: 10.20517/cdr.2021.121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/17/2022] [Accepted: 02/22/2022] [Indexed: 12/13/2022]
Abstract
Since taking part as leading actors in driving the metastatic process, circulating tumor cells (CTCs) have displayed a wide range of potential applications in the cancer-related research field. Besides their well-proved prognostic value, the role of CTCs in both predictive and diagnostics terms might be extremely informative about cancer properties and therefore highly helpful in the clinical decision-making process. Unfortunately, CTCs are scarcely released in the blood circulation and their counts vary a lot among different types of cancer, therefore CTC detection and consequent characterization are still highly challenging. In this context, in vitro CTC cultures could potentially offer a great opportunity to expand the number of tumor cells isolated at different stages of the disease and thus simplify the analysis of their biological and molecular features, allowing a deeper comprehension of the nature of neoplastic diseases. The aim of this review is to highlight the main attempts to establish in vitro CTC cultures from patients harboring different tumor types in order to highlight how powerful this practice could be, especially in optimizing the therapeutic strategies available in clinical practice and potentially preventing or contrasting the development of treatment resistance.
Collapse
Affiliation(s)
- Gianluigi De Renzi
- Cancer Liquid Biopsy Unit, Department of Molecular Medicine, Sapienza University of Rome, Rome 00161, Italy
| | - Giulia De Marco
- Cancer Liquid Biopsy Unit, Department of Molecular Medicine, Sapienza University of Rome, Rome 00161, Italy
| | - Michela De Meo
- Cancer Liquid Biopsy Unit, Department of Molecular Medicine, Sapienza University of Rome, Rome 00161, Italy
| | - Eleonora Del Rosso
- Cancer Liquid Biopsy Unit, Department of Molecular Medicine, Sapienza University of Rome, Rome 00161, Italy
| | - Paola Gazzaniga
- Cancer Liquid Biopsy Unit, Department of Molecular Medicine, Sapienza University of Rome, Rome 00161, Italy
| | - Chiara Nicolazzo
- Cancer Liquid Biopsy Unit, Department of Molecular Medicine, Sapienza University of Rome, Rome 00161, Italy
| |
Collapse
|
48
|
Functional analysis of circulating tumour cells: the KEY to understand the biology of the metastatic cascade. Br J Cancer 2022; 127:800-810. [PMID: 35484215 PMCID: PMC9427839 DOI: 10.1038/s41416-022-01819-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 03/21/2022] [Accepted: 04/01/2022] [Indexed: 02/06/2023] Open
Abstract
Metastasis formation is the main cause of cancer-related death in patients with solid tumours. At the beginning of this process, cancer cells escape from the primary tumour to the blood circulation where they become circulating tumour cells (CTCs). Only a small subgroup of CTCs will survive during the harsh journey in the blood and colonise distant sites. The in-depth analysis of these metastasis-competent CTCs is very challenging because of their extremely low concentration in peripheral blood. So far, only few groups managed to expand in vitro and in vivo CTCs to be used as models for large-scale descriptive and functional analyses of CTCs. These models have shown already the high variability and complexity of the metastatic cascade in patients with cancer, and open a new avenue for the development of new diagnostic and therapeutic approaches.
Collapse
|
49
|
De Alwis R, Hansson J, Lindgren D, Schoch S, Tejera A, Scholtz B, Elfving P, Möller C, Nilsson H, Johansson M, Axelson H. Size‑based isolation and detection of renal carcinoma cells from whole blood. Mol Clin Oncol 2022; 16:101. [PMID: 35463211 PMCID: PMC9022084 DOI: 10.3892/mco.2022.2534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/18/2022] [Indexed: 11/25/2022] Open
Abstract
Renal cell carcinoma (RCC) is a tumour type with an indolent growth pattern and rather vague symptoms. The present study developed a platform for liquid biopsy of RCC based upon the isolation of circulating tumour cells (CTCs). Founded on the observation that RCC tumour cells are considerably larger than leucocytes, the present study employed a microfluidics-based system for isolation of RCC CTCs from whole blood. Using this system, it was revealed that 66% of spiked-in RCC tumour cells could be retrieved using this approach. Furthermore, it was demonstrated that these cells could be molecularly detected with digital PCR using RCC-specific genes down to one tumour cell, whilst avoiding detection in samples lacking tumour cells. Finally, subtype specific transcripts were identified to distinguish the different subtypes of RCC, which were then validated in patient tumours. The present study established a novel workflow for the isolation of RCC CTCs from whole blood, with the potential to detect these cells irrespective of subtype.
Collapse
Affiliation(s)
- Roger De Alwis
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, 223 81 Lund, Sweden
| | - Jennifer Hansson
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, 223 81 Lund, Sweden
| | - David Lindgren
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, 223 81 Lund, Sweden
| | - Sarah Schoch
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, 223 81 Lund, Sweden
| | - Alexander Tejera
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, 223 81 Lund, Sweden
| | - Bianca Scholtz
- Department of Urology, Skåne University Hospital, 214 28 Malmö, Sweden
| | - Peter Elfving
- Department of Urology, Skåne University Hospital, 214 28 Malmö, Sweden
| | - Christina Möller
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, 223 81 Lund, Sweden
| | - Helén Nilsson
- Center for Molecular Pathology, Department of Translational Medicine, Skåne University Hospital, 214 28 Malmö, Sweden
| | - Martin Johansson
- Center for Molecular Pathology, Department of Translational Medicine, Skåne University Hospital, 214 28 Malmö, Sweden
| | - Håkan Axelson
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, 223 81 Lund, Sweden
| |
Collapse
|
50
|
Liquid Biopsy and Dielectrophoretic Analysis—Complementary Methods in Skin Cancer Monitoring. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12073366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The incidence and prevalence of skin cancers is currently increasing worldwide, with early detection, adequate treatment, and prevention of recurrences being topics of great interest for researchers nowadays. Although tumor biopsy remains the gold standard of diagnosis, this technique cannot be performed in a significant proportion of cases, so that the use of alternative methods with high sensitivity and specificity is becoming increasingly desirable. In this context, liquid biopsy appears to be a feasible solution for the study of cellular and molecular markers relevant to different types of skin cancers. Circulating tumor cells are just one of the components of interest obtained from performing liquid biopsy, and their study by complementary methods, such as dielectrophoresis, could bring additional benefits in terms of characterizing skin tumors and subsequently applying personalized therapy. One purpose of this review is to demonstrate the utility of liquid biopsy primarily in monitoring the most common types of skin tumors: basal cell carcinoma, squamous cell carcinoma, and malign melanoma. In addition, the originality of the article is based on the detailed presentation of the dielectrophoretic analysis method of the most important elements obtained from liquid biopsy, with direct impact on the clinical and therapeutic approach of skin tumors.
Collapse
|