1
|
Zhang J, Zhang N, Mai Q, Zhou C. Mechanisms and rescue measures of female ovarian dysfunction induced by environmental endocrine chemicals: A review. Reprod Toxicol 2025:108954. [PMID: 40414323 DOI: 10.1016/j.reprotox.2025.108954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 05/15/2025] [Accepted: 05/22/2025] [Indexed: 05/27/2025]
Abstract
Environmental endocrine chemicals (EDCs) constitute a class of exogenous chemicals with the capacity to imitate or impede the processes of synthesis, secretion, transport, conjugation, reaction, and metabolism of natural hormones in living organisms. They elicit a broad spectrum of physiological effects, which may either mirror those of natural hormones or exhibit anti-natural characteristics. Prolonged exposure to EDCs has been demonstrated to exert significant effects on animal reproduction and development. It is noteworthy that the female reproductive system is more susceptible to the effects of EDCs than the male reproductive system. EDCs have the potential to cause significant damage to the structure and function of the female reproductive organs, and have been linked to an increased incidence of various tumors in the female reproductive system, including ovarian cancer. A growing body of evidence suggests that exposure to EDCs affects reproduction in five main ways: competitively binding to cell membrane-specific receptors, disruption of cellular signaling within germ cells, intracellular imbalance between reactive oxygen species and antioxidants, alteration of epigenetic modifications, and control of early apoptosis. Nevertheless, the same in vivo and in vitro studies have indicated that the reproductive toxicity produced by EDCs can also be attenuated in a multitude of ways, such as by antioxidants, hormones, and compensatory mechanisms of signal transduction. Through comprehensive analysis of epidemiological studies, laboratory experiments, and clinical observations, this review details the mechanisms of the effects of EDCs leading to ovarian dysfunction and proposes a series of strategies to prevent EDCs exposure.
Collapse
Affiliation(s)
- Jinglei Zhang
- Reproductive Medical Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Nan Zhang
- General Surgery, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China.
| | - Qingyun Mai
- Reproductive Medical Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Canquan Zhou
- Reproductive Medical Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
2
|
Barman A, Ghosh A, Kar TK, Chattopdhyay S. Methanolic extract of wheatgrass ( Triticum aestivum L.) prevents BPA-induced disruptions in the ovarian steroidogenic pathway and alleviates uterine inflammation in Wistar rats. 3 Biotech 2024; 14:310. [PMID: 39600302 PMCID: PMC11586330 DOI: 10.1007/s13205-024-04117-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 10/06/2024] [Indexed: 11/29/2024] Open
Abstract
The present study examined the anti-inflammatory and functional improvement of the uterus and ovary, respectively, in bisphenol-A (BPA)-fed adult Wistar rats following the ingestion of methanolic extract of wheatgrass (WG-ME). Four groups of rats were conditioned as vehicle-treated control, BPA-treated (100 mg/kg b.w.), BPA + WG-ME (100 mg BPA/kg b.w. + 200 mg WG-ME/kg b.w.), and WG-ME (200 mg/kg b.w.) groups. The LC-MS study confirmed the presence of numerous bioactive components in WG-ME. ELISA, PAGE, real-time PCR, and immunohistostaining were executed to test the efficacy of WG-ME against BPA. WG-ME was shown to induce significant weight gain of the uterus and ovaries as well as improve the estrous cycle and antioxidant status. WG-ME effectively suppressed the mRNA expression of TNF-α (tumor necrosis factor-alpha) and NF-κB (nuclear factor kappa-B). This extract also increased the expression of the antiapoptotic factor BCL2 (B-cell lymphoma 2) in the uterine tissue of rats administered BPA while impeding the abnormal expression of the tumor proteins p53, cylcin-D1, and BAX (BCL2-associated protein X). An enhanced steroidogenic event was supported by improved gonadotropins and reproductive hormone levels, feeble signaling of androgen receptors, and improved ovarian follicular growth with a distinct appearance of granulosa layer as well as better uterine histomorphology. The abundance of apigenin and catechin compounds in WG-ME may potentiate the above effects. The molecular interaction study predicted that apigenin inhibits TNF-α by interacting with its major site. Hence, WG-ME may exert its preventive efficacy in managing the functional imbalance of reproductive organs caused by BPA. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-04117-0.
Collapse
Affiliation(s)
- Ananya Barman
- Department of Biomedical Laboratory Science and Management and Clinical Nutrition and Dietetics, Vidyasagar University, Midnapore, West Bengal 721102 India
| | - Angshita Ghosh
- Department of Biomedical Laboratory Science and Management and Clinical Nutrition and Dietetics, Vidyasagar University, Midnapore, West Bengal 721102 India
| | - Tarun Kumar Kar
- Department of Biomedical Laboratory Science and Management and Clinical Nutrition and Dietetics, Vidyasagar University, Midnapore, West Bengal 721102 India
| | - Sandip Chattopdhyay
- Department of Biomedical Laboratory Science and Management and Clinical Nutrition and Dietetics, Vidyasagar University, Midnapore, West Bengal 721102 India
| |
Collapse
|
3
|
Maadurshni GB, Nagarajan M, Mahalakshmi B, Sivasubramanian J, Hemamalini V, Manivannan J. 4-Methyl-2,4-bis(4-hydroxyphenyl)pent-1-ene (MBP) exposure induces hepatotoxicity and nephrotoxicity - role of oxidative stress, mitochondrial dysfunction and pathways of cytotoxicity. Toxicol Res (Camb) 2024; 13:tfae173. [PMID: 39417036 PMCID: PMC11474237 DOI: 10.1093/toxres/tfae173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/24/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024] Open
Abstract
Objective Bisphenol A (BPA) is a ubiquitous pollutant worldwide and 4-Methyl-2,4-bis(4-hydroxyphenyl)pent-1-ene (MBP) is considered a major active metabolite of BPA with a wide range of potent toxicological properties. However, its adverse outcome pathway (AOP) on the hepatic and renal system has not yet been explored. Methods Hence, the current study evaluated its effect on cell survival, oxidative stress, and apoptosis. In addition, the influence of signalling pathways on cytotoxicity and ROS generating enzymes (NOX2 and XO) on oxidative stress was explored by siRNA knockdown experiments. Further, its molecular interaction with SOD, CAT, and HSA (molecular docking and dynamics) was evaluated and validated with spectroscopy (fluorescence and FTIR) based methods. Results The outcome indicates that MBP exposure dose dependently increased the cytotoxic response, oxidative stress, and apoptosis in both hepatocytes and kidney cells. Further, MAPK signalling pathways and oxidative stress influenced the overall cytotoxic response in both cells. In addition, the stimulatory (NOX2 and XO) and inhibitory (SOD and CAT) effects of MBP were observed, along with a robust interaction with HSA. Conclusions The overall observation illustrates that MBP exposure adversely impacts hepatic and renal cells through oxidative stress and relevant molecular pathways which may connect the missing links during risk assessment of BPA.
Collapse
Affiliation(s)
| | - Manikandan Nagarajan
- Environmental Health and Toxicology Laboratory, Department of Environmental Sciences, School of Life Sciences, Bharathiar University, Coimbatore - 641046, Tamil Nadu, India
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65212, United States of America
| | - Balamurali Mahalakshmi
- Environmental Health and Toxicology Laboratory, Department of Environmental Sciences, School of Life Sciences, Bharathiar University, Coimbatore - 641046, Tamil Nadu, India
| | | | - Vedagiri Hemamalini
- Department of Bioinformatics, Bharathiar University, Coimbatore - 641046, Tamil Nadu, India
| | - Jeganathan Manivannan
- Environmental Health and Toxicology Laboratory, Department of Environmental Sciences, School of Life Sciences, Bharathiar University, Coimbatore - 641046, Tamil Nadu, India
| |
Collapse
|
4
|
Toso A, Garoche C, Balaguer P. Human and fish differences in steroid receptors activation: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174889. [PMID: 39047839 DOI: 10.1016/j.scitotenv.2024.174889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/05/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
Steroid receptors (SRs) are transcription factors activated by steroid hormones (SHs) that belong to the nuclear receptors (NRs) superfamily. Several studies have shown that SRs are targets of endocrine disrupting chemicals (EDCs), widespread substances in the environment capable of interfering with the endogenous hormonal pathways and causing adverse health effects in living organisms and/or their progeny. Cell lines with SRs reporter gene are currently used for in vitro screening of large quantities of chemicals with suspected endocrine-disrupting activities. However, most of these cell lines express human SRs and therefore the toxicological data obtained are also extrapolated to non-mammalian species. In parallel, in vivo tests have recently been developed on fish species whose data are also extrapolated to mammalian species. As some species-specific differences in SRs activation by natural and synthetic chemicals have been recently reported, the aim of this review is to summarize those between human and fish SRs, as representatives of mammalian and non-mammalian toxicology, respectively. Overall, this literature study aims to improve inter-species extrapolation of toxicological data on EDCs and to understand which reporter gene cell lines expressing human SRs are relevant for the assessment of effects in fish and whether in vivo tests on fish can be properly used in the assessment of adverse effects on human health.
Collapse
Affiliation(s)
- Anna Toso
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Université Montpellier, Institut régional du Cancer de Montpellier (ICM), 34090 Montpellier, France; Department Environmental Toxicology, Swiss Federal Institute of Aquatic Science and Technology, Eawag, 8600 Dübendorf, Switzerland.
| | - Clémentine Garoche
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Université Montpellier, Institut régional du Cancer de Montpellier (ICM), 34090 Montpellier, France
| | - Patrick Balaguer
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Université Montpellier, Institut régional du Cancer de Montpellier (ICM), 34090 Montpellier, France
| |
Collapse
|
5
|
Vallée A, Saridogan E, Petraglia F, Keckstein J, Polyzos N, Wyns C, Gianaroli L, Tarlatzis B, Ayoubi JM, Feki A. Horizons in Endometriosis: Proceedings of the Montreux Reproductive Summit, 14-15 July 2023. Facts Views Vis Obgyn 2024; 16:1-32. [PMID: 38603778 PMCID: PMC11317919 DOI: 10.52054/fvvo.16.s1.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024] Open
Abstract
Endometriosis is a complex and chronic gynaecological disorder that affects millions of women worldwide, leading to significant morbidity and impacting reproductive health. This condition affects up to 10% of women of reproductive age and is characterised by the presence of endometrial-like tissue outside the uterus, potentially leading to symptoms such as chronic pelvic pain, dysmenorrhoea, dyspareunia, and infertility. The Montreux summit brought a number of experts in this field together to provide a platform for discussion and exchange of ideas. These proceedings summarise the six main topics that were discussed at this summit to shed light on future directions of endometriosis classification, diagnosis, and therapeutical management. The first question addressed the possibility of preventing endometriosis in the future by identifying risk factors, genetic predispositions, and further understanding of the pathophysiology of the condition to develop targeted interventions. The clinical presentation of endometriosis is varied, and the correlation between symptoms severity and disease extent is unclear. While there is currently no universally accepted optimal classification system for endometriosis, several attempts striving towards its optimisation - each with its own advantages and limitations - were discussed. The ideal classification should be able to reconcile disease status based on the various diagnostic tools, and prognosis to guide proper patient tailored management. Regarding diagnosis, we focused on future tools and critically discussed emerging approaches aimed at reducing diagnostic delay. Preserving fertility in endometriosis patients was another debatable aspect of management that was reviewed. Moreover, besides current treatment modalities, potential novel medical therapies that can target underlying mechanisms, provide effective symptom relief, and minimise side effects in endometriotic patients were considered, including hormonal therapies, immunomodulation, and regenerative medicine. Finally, the question of hormonal substitution therapy after radical treatment for endometriosis was debated, weighing the benefits of hormone replacement.
Collapse
|
6
|
Jeong SH, Jang JH, Cho HY, Lee YB. Sex differences in 4-tert-octylphenol toxicokinetics: Exploration of sex as an effective covariate through an in vivo modeling approach. Toxicology 2024; 502:153733. [PMID: 38253230 DOI: 10.1016/j.tox.2024.153733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/24/2024]
Abstract
4-tert-octylphenol (4-tert-OP) is a potentially harmful substance, which is found widely in the environment. Nevertheless, information on the in vivo toxicokinetics of 4-tert-OP is lacking, and quantitative risk assessment studies are urgently needed. Therefore, we aimed to quantitatively identify differences in the toxicokinetics of 4-tert-OP and its distribution among tissues between sexes. To this end, following exposure of male and female rats to 10 or 50 mg/kg 4-tert-OP orally and 4 or 8 mg/kg 4-tert-OP intravenously, we conducted a quantitative analysis of samples using ultra-high performance liquid chromatography-tandem mass spectrometry. The results revealed that the 4-tert-OP plasma concentration profiles differed between sexes; however, systemic absorption of 4-tert-OP through the gastrointestinal tract occurred within 0.5 h of exposure in both sexes. Although small, the excretion percentage of 4-tert-OP in urine and feces was lower in males than females (0.06-0.08% vs. 0.82-1.11% of exposure). Significant sex differences were also confirmed in the tissue distribution patterns of 4-tert-OP, and overall, the average tissue distribution in males was lower than that in females. The distribution of 4-tert-OP to liver, adipose, spleen, kidney, brain, and lung in both sexes was predominant. A covariate exploration modeling approach revealed that sex explained the differences in 4-tert-OP toxicokinetics between sexes. These significant differences in the toxicokinetics and tissue distribution of 4-tert-OP between sexes will be important for the scientific precision human risk assessment of 4-tert-OP.
Collapse
Affiliation(s)
- Seung-Hyun Jeong
- College of Pharmacy, Sunchon National University, 255 Jungang-ro, Suncheon-si, Jeollanam-do 57922, Republic of Korea; College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon-si 57922, Republic of Korea
| | - Ji-Hun Jang
- College of Pharmacy, Sunchon National University, 255 Jungang-ro, Suncheon-si, Jeollanam-do 57922, Republic of Korea
| | - Hea-Young Cho
- College of Pharmacy, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Republic of Korea
| | - Yong-Bok Lee
- College of Pharmacy, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea.
| |
Collapse
|
7
|
Nisa KU, Tarfeen N, Mir SA, Waza AA, Ahmad MB, Ganai BA. Molecular Mechanisms in the Etiology of Polycystic Ovary Syndrome (PCOS): A Multifaceted Hypothesis Towards the Disease with Potential Therapeutics. Indian J Clin Biochem 2024; 39:18-36. [PMID: 38223007 PMCID: PMC10784448 DOI: 10.1007/s12291-023-01130-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 03/01/2023] [Indexed: 03/28/2023]
Abstract
Among the premenopausal women, Polycystic Ovary Syndrome (PCOS) is the most prevalent endocrinopathy affecting the reproductive system and metabolic rhythms leading to disrupted menstrual cycle. Being heterogeneous in nature it is characterized by complex symptomology of oligomennorhoea, excess of androgens triggering masculine phenotypic appearance and/or multiple follicular ovaries. The etiology of this complex disorder remains somewhat doubtful and the researchers hypothesize multisystem links in the pathogenesis of this disease. In this review, we attempt to present several hypotheses that tend to contribute to the etiology of PCOS. Metabolic inflexibility, aberrant pattern of gonadotropin signaling along with the evolutionary, genetic and environmental factors have been discussed. Considered a lifelong endocrinological implication, no universal treatment is available for PCOS so far however; multiple drug therapy is often advised along with simple life style intervention is mainly advised to manage its cardinal symptoms. Here we aimed to present a summarized view of pathophysiological links of PCOS with potential therapeutic strategies.
Collapse
Affiliation(s)
- Khair Ul Nisa
- Department of Environmental Science, University of Kashmir, Srinagar, 190006 India
- Centre of Research for Development (CORD), University of Kashmir, Srinagar, 190006 India
| | - Najeebul Tarfeen
- Centre of Research for Development (CORD), University of Kashmir, Srinagar, 190006 India
| | - Shahnaz Ahmad Mir
- Department of Endocrinology, Government Medical College, Shireen Bagh, Srinagar, 190010 India
| | - Ajaz Ahmad Waza
- Multidisciplinary Research Unit (MRU), Government Medical Collage (GMC), Srinagar, 190010 India
| | - Mir Bilal Ahmad
- Department of Biochemistry, University of Kashmir, Srinagar, 190006 India
| | - Bashir Ahmad Ganai
- Centre of Research for Development (CORD), University of Kashmir, Srinagar, 190006 India
| |
Collapse
|
8
|
Pötzl B, Kürzinger L, Stopper H, Fassnacht M, Kurlbaum M, Dischinger U. Endocrine Disruptors: Focus on the Adrenal Cortex. Horm Metab Res 2024; 56:78-90. [PMID: 37884032 PMCID: PMC10764154 DOI: 10.1055/a-2198-9307] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 10/24/2023] [Indexed: 10/28/2023]
Abstract
Endocrine-disrupting chemicals (EDCs) are exogenous substances known to interfere with endocrine homeostasis and promote adverse health outcomes. Their impact on the adrenal cortex, corticosteroids and their physiological role in the organism has not yet been sufficiently elucidated. In this review, we collect experimental and epidemiological evidence on adrenal disruption by relevant endocrine disruptors. In vitro data suggest significant alterations of gene expression, cell signalling, steroid production, steroid distribution, and action. Additionally, morphological studies revealed disturbances in tissue organization and development, local inflammation, and zone-specific hyperplasia. Finally, endocrine circuits, such as the hypothalamic-pituitary-adrenal axis, might be affected by EDCs. Many questions regarding the detection of steroidogenesis disruption and the effects of combined toxicity remain unanswered. Not only due to the diverse mode of action of adrenal steroids and their implication in many common diseases, there is no doubt that further research on endocrine disruption of the adrenocortical system is needed.
Collapse
Affiliation(s)
- Benedikt Pötzl
- Department of Internal Medicine I, Division of Endocrinology and
Diabetes, University Hospital of Würzburg, Würzburg,
Germany
| | - Lydia Kürzinger
- Department of Internal Medicine I, Division of Endocrinology and
Diabetes, University Hospital of Würzburg, Würzburg,
Germany
| | - Helga Stopper
- Institute of Pharmacology and Toxicology, University of
Würzburg, Würzburg, Germany
| | - Martin Fassnacht
- Department of Internal Medicine I, Division of Endocrinology and
Diabetes, University Hospital of Würzburg, Würzburg,
Germany
| | - Max Kurlbaum
- Department of Internal Medicine I, Division of Endocrinology and
Diabetes, University Hospital of Würzburg, Würzburg,
Germany
- Central Laboratory, Core Unit Clinical Mass Spectrometry, University
Hospital of Würzburg, Würzburg, Germany
| | - Ulrich Dischinger
- Department of Internal Medicine I, Division of Endocrinology and
Diabetes, University Hospital of Würzburg, Würzburg,
Germany
| |
Collapse
|
9
|
Patel RH, Truong VB, Sabry R, Acosta JE, McCahill K, Favetta LA. SMAD signaling pathway is disrupted by BPA via the AMH receptor in bovine granulosa cells†. Biol Reprod 2023; 109:994-1008. [PMID: 37724935 DOI: 10.1093/biolre/ioad125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/18/2023] [Accepted: 09/13/2023] [Indexed: 09/21/2023] Open
Abstract
Significant events that determine oocyte competence occur during follicular growth and oocyte maturation. The anti-Mullerian hormone, a positive predictor of fertility, has been shown to be affected by exposure to endocrine disrupting compounds, such as bisphenol A and S. However, the interaction between bisphenols and SMAD proteins, mediators of the anti-Mullerian hormone pathway, has not yet been elucidated. AMH receptor (AMHRII) and downstream SMAD expression was investigated in bovine granulosa cells treated with bisphenol A, bisphenol S, and then competitively with the anti-Mullerian hormone. Here, we show that 24-h bisphenol A exposure in granulosa cells significantly increased SMAD1, SMAD4, and SMAD5 mRNA expression. No significant changes were observed in AMHRII or SMADs protein expression after 24-h treatment. Following 12-h treatments with bisphenol A (alone or with the anti-Mullerian hormone), a significant increase in SMAD1 and SMAD4 mRNA expression was observed, while a significant decrease in SMAD1 and phosphorylated SMAD1 was detected at the protein level. To establish a functional link between bisphenols and the anti-Mullerian hormone signaling pathway, antisense oligonucleotides were utilized to suppress AMHRII expression with or without bisphenol exposure. Initially, transfection conditions were optimized and validated with a 70% knockdown achieved. Our findings show that bisphenol S exerts its effects independently of the anti-Mullerian hormone receptor, while bisphenol A may act directly through the anti-Mullerian hormone signaling pathway providing a potential mechanism by which bisphenols may exert their actions to disrupt follicular development and decrease oocyte competence.
Collapse
Affiliation(s)
- Rushi H Patel
- Reproductive Health and Biotechnology Lab, Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Vivien B Truong
- Reproductive Health and Biotechnology Lab, Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Reem Sabry
- Reproductive Health and Biotechnology Lab, Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Julianna E Acosta
- Reproductive Health and Biotechnology Lab, Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Kiera McCahill
- Reproductive Health and Biotechnology Lab, Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Laura A Favetta
- Reproductive Health and Biotechnology Lab, Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
10
|
Maadurshni GB, Nagarajan M, Priyadharshini S, Singaravelu U, Manivannan J. System-wide health risk prediction for 4-methyl-2,4-bis(4-hydroxyphenyl)pent-1-ene(MBP), a major active metabolite of environmental pollutant and food contaminant - Bisphenol A. Toxicology 2023; 485:153414. [PMID: 36587891 DOI: 10.1016/j.tox.2022.153414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/19/2022] [Accepted: 12/28/2022] [Indexed: 12/30/2022]
Abstract
Human exposure to plastic contaminated foods and environmental micro/nano plastic derived chemicals necessitates system-wide health risk assessment. Hence, current study intend to explore the mode of action (MoA) based adverse outcome pathways of 4-methyl-2,4-bis(4-hydroxyphenyl)pent-1-ene (MBP), the major active metabolite of bisphenol A (BPA). The computational study employed broad range of target prediction, systems biology tools and molecular docking protocols. Further, validation of MBP targets was done using protein-ligand fluorescence quenching assay, endothelial cell culture and chicken embryo vascular angiogenesis models. Interestingly, the current results illustrate that various physiological signaling pathways (MAPK and VEGF related angiogenesis signaling) and disease progression pathways (hypertension, cancer and endocrine disorders) were enriched as potential targets of MBP. Further, docking studies highlights the possible binding mechanism of MBP with important targets including endothelial nitric oxide synthase (eNOS) and serum albumin (BSA). In addition, the validation studies on MBP-BSA interaction (fluorescence quenching), eNOS derived nitric oxide (NOx) generation in endothelial cells and chicken embryo angiogenesis support the system-wide impacts of MBP with highlights on cardiovascular pathogenesis. Thus, the current observation provides novel insights into the system wide impacts of MBP for the futuristic health risk assessment of plastic derived chemicals.
Collapse
Affiliation(s)
| | - Manigandan Nagarajan
- Environmental Health and Toxicology Laboratory, Department of Environmental Sciences, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Saravanan Priyadharshini
- Integrated Biocomputing Lab, Department of Bioinformatics, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Usha Singaravelu
- Integrated Biocomputing Lab, Department of Bioinformatics, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Jeganathan Manivannan
- Environmental Health and Toxicology Laboratory, Department of Environmental Sciences, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu, India.
| |
Collapse
|
11
|
Song JH, Hwang B, Kim SB, Choi YH, Kim WJ, Moon SK. Bisphenol A modulates proliferation, apoptosis, and wound healing process of normal prostate cells: Involvement of G2/M-phase cell cycle arrest, MAPK signaling, and transcription factor-mediated MMP regulation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114358. [PMID: 36508820 DOI: 10.1016/j.ecoenv.2022.114358] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 11/25/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
Bisphenol A (BPA) is commonly used to produce epoxy resins and polycarbonate plastics. BPA is an endocrine-disrupting chemical that is leaked from the polymer and absorbed into the body to disrupt the endocrine system. Although BPA may cause cytotoxicity in the prostate, a hormone-dependent reproductive organ, its underlying mechanism has not yet been elucidated. Here, we investigated the effects of BPA on cell proliferation, apoptosis, and the wound healing process using prostate epithelial cells (RWPE-1) and stromal cells (WPMY-1). Observations revealed that BPA induced G2/M cell cycle arrest in both cell types through the ATM-CHK1/CHK2-CDC25c-CDC2 signaling pathway, and the IC50 values were estimated to be 150 μM. Furthermore, BPA was found to induce caspase-dependent apoptosis through initiator (caspase-8 and -9) and executioner (caspase-3 and -7) caspase cascades. In addition, BPA interfered with the wound healing process through inhibition of MMP-2 and - 9 expression, accompanied by reductions in the binding activities of AP-1 as well as NF-κB motifs. Phosphorylation of MAPKs was associated with the BPA-mediated toxicity of prostate cells. These results suggest that BPA exhibits prostate toxicity by inhibiting cell proliferation, inducing apoptosis, and interfering with the wound healing process. Our study provided new insights into the precise molecular mechanisms of BPA-induced toxicity in human prostate cells.
Collapse
Affiliation(s)
- Jun-Hui Song
- Department of Food and Nutrition, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Byungdo Hwang
- Department of Food and Nutrition, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Su-Bin Kim
- Department of Food and Nutrition, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Yung Hyun Choi
- Department of Biochemistry, College of Oriental Medicine, Dongeui University, Busan 47340, Republic of Korea
| | - Wun-Jae Kim
- Department of Urology, Chungbuk National University, Cheongju, Chungbuk 361-763, Republic of Korea
| | - Sung-Kwon Moon
- Department of Food and Nutrition, Chung-Ang University, Anseong 17546, Republic of Korea.
| |
Collapse
|
12
|
Beg MA, Beg MA, Zargar UR, Sheikh IA, Bajouh OS, Abuzenadah AM, Rehan M. Organotin Antifouling Compounds and Sex-Steroid Nuclear Receptor Perturbation: Some Structural Insights. TOXICS 2022; 11:25. [PMID: 36668751 PMCID: PMC9864748 DOI: 10.3390/toxics11010025] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 12/21/2022] [Indexed: 06/12/2023]
Abstract
Organotin compounds (OTCs) are a commercially important group of organometallic compounds of tin used globally as polyvinyl chloride stabilizers and marine antifouling biocides. Worldwide use of OTCs has resulted in their ubiquitous presence in ecosystems across all the continents. OTCs have metabolic and endocrine disrupting effects in marine and terrestrial organisms. Thus, harmful OTCs (tributyltin) have been banned by the International Convention on the Control of Harmful Antifouling Systems since 2008. However, continued manufacturing by non-member countries poses a substantial risk for animal and human health. In this study, structural binding of common commercial OTCs, tributyltin (TBT), dibutyltin (DBT), monobutyltin (MBT), triphenyltin (TPT), diphenyltin (DPT), monophenyltin (MPT), and azocyclotin (ACT) against sex-steroid nuclear receptors, androgen receptor (AR), and estrogen receptors (ERα, ERβ) was performed using molecular docking and MD simulation. TBT, DBT, DPT, and MPT bound deep within the binding sites of AR, ERα, and Erβ, showing good dock score, binding energy and dissociation constants that were comparable to bound native ligands, testosterone and estradiol. The stability of docking complex was shown by MD simulation of organotin/receptor complex with RMSD, RMSF, Rg, and SASA plots showing stable interaction, low deviation, and compactness of the complex. A high commonality (50-100%) of interacting residues of ERα and ERβ for the docked ligands and bound native ligand (estradiol) indicated that the organotin compounds bound in the same binding site of the receptor as the native ligand. The results suggested that organotins may interfere with the natural steroid/receptor binding and perturb steroid signaling.
Collapse
Affiliation(s)
- Mohd A. Beg
- Reproductive Biology Laboratory, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Md A. Beg
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia University, New Delhi 110025, India
| | - Ummer R. Zargar
- Department of Zoology, Government Degree College, Anantnag 192101, India
| | - Ishfaq A. Sheikh
- Reproductive Biology Laboratory, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Osama S. Bajouh
- Department of Obstetrics and Gynecology, Faculty of Medicine, King Abdulaziz University, Jeddah 21859, Saudi Arabia
| | - Adel M. Abuzenadah
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohd Rehan
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
13
|
Volatilomics as an Emerging Strategy to Determine Potential Biomarkers of Female Infertility: A Pilot Study. Biomedicines 2022; 10:biomedicines10112852. [DOI: 10.3390/biomedicines10112852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
Due to its high prevalence, infertility has become a prominent public health issue, posing a significant challenge to modern reproductive medicine. Some clinical conditions that lead to female infertility include polycystic ovary syndrome (PCOS), endometriosis, and premature ovarian failure (POF). Follicular fluid (FF) is the biological matrix that has the most contact with the oocyte and can, therefore, be used as a predictor of its quality. Volatilomics has emerged as a non-invasive, straightforward, affordable, and simple method for characterizing various diseases and determining the effectiveness of their current therapies. In order to find potential biomarkers of infertility, this study set out to determine the volatomic pattern of the follicular fluid from patients with PCOS, endometriosis, and POF. The chromatographic data integration was performed through solid-phase microextraction (SPME), followed by gas chromatography–mass spectrometry (GC-MS). The findings pointed to specific metabolite patterns as potential biomarkers for the studied diseases. These open the door for further research into the relevant metabolomic pathways to enhance infertility knowledge and diagnostic tools. An extended investigation may, however, produce a new mechanistic understanding of the pathophysiology of the diseases.
Collapse
|
14
|
Nguyen HT, Li L, Eguchi A, Agusa T, Yamamoto K, Kannan K, Kim EY, Iwata H. Effects of gestational exposure to bisphenol A on the hepatic transcriptome and lipidome of rat dams: Intergenerational comparison of effects in the offspring. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 826:153990. [PMID: 35192832 DOI: 10.1016/j.scitotenv.2022.153990] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/31/2022] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
Our previous studies demonstrated that prenatal bisphenol A (BPA) exposure affected the hepatic transcriptome and lipidome in rat offspring in a sex- and age-dependent manner. In this study, we investigated the effects of gestational exposure to BPA on the rat dams, after weaning period, and compared them with those of their offspring. Our results showed alterations in hepatic transcriptome related to insulin signaling, circadian rhythm, and infectious disease pathways in BPA-treated dams even 4 weeks after the exposure, whereas slight modifications on the lipid profile were found. Alterations in lipid and transcriptome profiles were more prominent in the prenatally BPA-exposed offspring at postnatal day (PND) 1 and 21 than those in the dams, suggesting that in utero exposure to BPA is more serious than exposure in the adulthood. Cryptochrome-1 (Cry1) and peroxisome proliferator-activated receptor delta (Ppard) were commonly altered in both dams and offspring. Nevertheless, the results of DIABLO (Data Integration Analysis for Biomarker discovery using Latent cOmponents), showed that multi-omics data successfully distinguished the exposed dams from the corresponding controls and their offspring with a high level of accuracy. The accuracy rates in BPA50 models (including control and 50 μg BPA/kg bw/day exposed groups) were smaller than those in BPA5000 models (control and 5000 μg BPA/kg bw/day exposed groups), suggesting dose-dependent severity in BPA effects. Palmitic acid and genes related to circadian rhythm, insulin responses, and lipid metabolism (e.g., 1-acylglycerol-3-phosphate O-acyltransferase 2 (Agpat2), B-cell CLL/lymphoma 10 (Bcl10), Cry1, Harvey rat sarcoma virus oncogene (Hras), and NLR family member X1 (Nlrx1)) were identified through DIABLO models as novel biomarkers of effects of BPA across two generations.
Collapse
Affiliation(s)
- Hoa Thanh Nguyen
- Center for Marine Environmental Studies, Ehime University, Matsuyama 7908577, Japan
| | - Lingyun Li
- Wadsworth Center, New York State Department of Health, Albany, NY 12201, United States
| | - Akifumi Eguchi
- Center for Preventive Medical Sciences, Chiba University, Chiba 2630022, Japan
| | - Tetsuro Agusa
- Center for Marine Environmental Studies, Ehime University, Matsuyama 7908577, Japan; Graduate School of Environmental and Symbiotic Sciences, Prefectural University of Kumamoto, Kumamoto 8628502, Japan
| | - Kimika Yamamoto
- Center for Marine Environmental Studies, Ehime University, Matsuyama 7908577, Japan
| | - Kurunthachalam Kannan
- Wadsworth Center, New York State Department of Health, Albany, NY 12201, United States; Department of Pediatrics and Department of Environmental Medicine, New York University School of Medicine, New York, NY 10016, United States
| | - Eun-Young Kim
- Department of Life and Nanopharmaceutical Science and Department of Biology, Kyung Hee University, Seoul 130701, Republic of Korea
| | - Hisato Iwata
- Center for Marine Environmental Studies, Ehime University, Matsuyama 7908577, Japan.
| |
Collapse
|
15
|
Zou Z, Harris LK, Forbes K, Heazell AEP. Sex-specific effects of Bisphenol a on the signalling pathway of ESRRG in the human placenta. Biol Reprod 2022; 106:1278-1291. [PMID: 35220427 PMCID: PMC9198953 DOI: 10.1093/biolre/ioac044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 01/17/2022] [Accepted: 02/16/2022] [Indexed: 11/17/2022] Open
Abstract
Bisphenol A (BPA) exposure during pregnancy is associated with low fetal weight, particularly in male fetuses. The expression of estrogen-related receptor gamma (ESRRG), a receptor for BPA in the human placenta, is reduced in fetal growth restriction. This study sought to explore whether ESRRG signaling mediates BPA-induced placental dysfunction and determine whether changes in the ESRRG signaling pathway are sex-specific. Placental villous explants from 18 normal term pregnancies were cultured with a range of BPA concentrations (1 nM–1 μM). Baseline BPA concentrations in the placental tissue used for explant culture ranged from 0.04 to 5.1 nM (average 2.3 ±1.9 nM; n = 6). Expression of ESRRG signaling pathway constituents and cell turnover were quantified. BPA (1 μM) increased ESRRG mRNA expression after 24 h in both sexes. ESRRG mRNA and protein expression was increased in female placentas treated with 1 μM BPA for 24 h but was decreased in male placentas treated with 1 nM or 1 μM for 48 h. Levels of 17β-hydroxysteroid dehydrogenase type 1 (HSD17B1) and placenta specific-1 (PLAC1), genes downstream of ESRRG, were also affected. HSD17B1 mRNA expression was increased in female placentas by 1 μM BPA; however, 1 nM BPA reduced HSD17B1 and PLAC1 expression in male placentas at 48 h. BPA treatment did not affect rates of proliferation, apoptosis, or syncytiotrophoblast differentiation in cultured villous explants. This study has demonstrated that BPA affects the ESRRG signaling pathway in a sex-specific manner in human placentas and a possible biological mechanism to explain the differential effects of BPA exposure on male and female fetuses observed in epidemiological studies.
Collapse
Affiliation(s)
- Zhiyong Zou
- Maternal and Fetal Health Research Centre, University of Manchester, 5th floor (Research), St Mary's Hospital, Oxford Road, Manchester, UK, M13 9WL
| | - Lynda K Harris
- Maternal and Fetal Health Research Centre, University of Manchester, 5th floor (Research), St Mary's Hospital, Oxford Road, Manchester, UK, M13 9WL
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PL, UK
| | - Karen Forbes
- Maternal and Fetal Health Research Centre, University of Manchester, 5th floor (Research), St Mary's Hospital, Oxford Road, Manchester, UK, M13 9WL
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, LS2 9JT, UK
| | - Alexander E P Heazell
- Maternal and Fetal Health Research Centre, University of Manchester, 5th floor (Research), St Mary's Hospital, Oxford Road, Manchester, UK, M13 9WL
- St Mary’s Hospital, Manchester Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
16
|
Adjei JK, Dayie AD, Addo JK, Asamoah A, Amoako EO, Egoh BY, Bekoe E, Ofori NO, Adjei GA, Essumang DK. Occurrence, ecological risk assessment and source apportionment of pharmaceuticals, steroid hormones and xenoestrogens in the Ghanaian aquatic environments. Toxicol Rep 2022; 9:1398-1409. [DOI: 10.1016/j.toxrep.2022.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/10/2022] [Accepted: 06/18/2022] [Indexed: 11/26/2022] Open
|
17
|
Type 2 Diabetes Mellitus Mediation by the Disruptive Activity of Environmental Toxicants on Sex Hormone Receptors: In Silico Evaluation. TOXICS 2021; 9:toxics9100255. [PMID: 34678951 PMCID: PMC8538912 DOI: 10.3390/toxics9100255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 05/09/2021] [Accepted: 05/11/2021] [Indexed: 11/16/2022]
Abstract
This study investigates the disruptive activity of environmental toxicants on sex hormone receptors mediating type 2 diabetes mellitus (T2DM). Toxicokinetics, gene target prediction, molecular docking, molecular dynamics, and gene network analysis were applied in silico techniques. From the results, permethrin, perfluorooctanoic acid, dichlorodiphenyltrichloroethane, O-phenylphenol, bisphenol A, and diethylstilbestrol were the active toxic compounds that could modulate androgen (AR) and estrogen-α and -β receptors (ER) to induce T2DM. Early growth response 1 (EGR1), estrogen receptor 1 (ESR1), and tumour protein 63 (TP63) were the major transcription factors, while mitogen-activated protein kinases (MAPK) and cyclin-dependent kinases (CDK) were the major kinases upregulated by these toxicants via interactions with intermediary proteins such as PTEN, AKT1, NfKβ1, SMAD3 and others in the gene network analysis to mediate T2DM. These toxicants pose a major challenge to public health; hence, monitoring their manufacture, use, and disposal should be enforced. This would ensure reduced interaction between people and these toxic chemicals, thereby reducing the incidence and prevalence of T2DM.
Collapse
|
18
|
Hall JM, Korach KS. Endocrine disrupting chemicals (EDCs) and sex steroid receptors. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2021; 92:191-235. [PMID: 34452687 DOI: 10.1016/bs.apha.2021.04.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Sex-steroid receptors (SSRs) are essential mediators of estrogen, progestin, and androgen signaling that are critical in vast aspects of human development and multi-organ homeostasis. Dysregulation of SSR function has been implicated in numerous pathologies including cancers, obesity, Type II diabetes mellitus, neuroendocrine disorders, cardiovascular disease, hyperlipidemia, male and female infertility, and other reproductive disorders. Endocrine disrupting chemicals (EDCs) modulate SSR function in a wide variety of cell and tissues. There exists strong experimental, clinical, and epidemiological evidence that engagement of EDCs with SSRs may disrupt endogenous hormone signaling leading to physiological abnormalities that may manifest in disease. In this chapter, we discuss the molecular mechanisms by which EDCs interact with estrogen, progestin, and androgen receptors and alter SSR functions in target cells. In addition, the pathological consequences of disruption of SSR action in reproductive and other organs by EDCs is described with an emphasis on underlying mechanisms of receptors dysfunction.
Collapse
Affiliation(s)
- Julianne M Hall
- Quinnipiac University Frank H. Netter MD School of Medicine, Hamden, CT, United States.
| | - Kenneth S Korach
- National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, United States
| |
Collapse
|
19
|
Endocrine disrupting chemicals in the pathogenesis of hypospadias; developmental and toxicological perspectives. Curr Res Toxicol 2021; 2:179-191. [PMID: 34345859 PMCID: PMC8320613 DOI: 10.1016/j.crtox.2021.03.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 12/11/2022] Open
Abstract
Penis development is regulated by a tight balance of androgens and estrogens. EDCs that impact androgen/estrogen balance during development cause hypospadias. Cross-disciplinary collaborations are needed to define a mechanistic link.
Hypospadias is a defect in penile urethral closure that occurs in approximately 1/150 live male births in developed nations, making it one of the most common congenital abnormalities worldwide. Alarmingly, the frequency of hypospadias has increased rapidly over recent decades and is continuing to rise. Recent research reviewed herein suggests that the rise in hypospadias rates can be directly linked to our increasing exposure to endocrine disrupting chemicals (EDCs), especially those that affect estrogen and androgen signalling. Understanding the mechanistic links between endocrine disruptors and hypospadias requires toxicologists and developmental biologists to define exposures and biological impacts on penis development. In this review we examine recent insights from toxicological, developmental and epidemiological studies on the hormonal control of normal penis development and describe the rationale and evidence for EDC exposures that impact these pathways to cause hypospadias. Continued collaboration across these fields is imperative to understand the full impact of endocrine disrupting chemicals on the increasing rates of hypospadias.
Collapse
Key Words
- Androgen
- BBP, benzyl butyl phthalate
- BPA, bisphenol A
- DBP, Σdibutyl phthalate
- DDT, dichlorodiphenyltrichloroethane
- DEHP, Σdi-2(ethylhexyl)-phthalate
- DHT, dihydrotestosterone
- EDC, endocrine disrupting chemicals
- EMT, epithelial to mesenchymal transition
- ER, estrogen receptor
- Endocrine disruptors
- Estrogen
- GT, genital tubercle
- Hypospadias
- NOAEL, no observed adverse effect level
- PBB, polybrominated biphenyl
- PBDE, polybrominated diphenyl ether
- PCB, polychlorinated biphenyl
- PCE, tetrachloroethylene
- Penis
Collapse
|
20
|
vom Saal FS, Vandenberg LN. Update on the Health Effects of Bisphenol A: Overwhelming Evidence of Harm. Endocrinology 2021; 162:6124507. [PMID: 33516155 PMCID: PMC7846099 DOI: 10.1210/endocr/bqaa171] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Indexed: 12/14/2022]
Abstract
In 1997, the first in vivo bisphenol A (BPA) study by endocrinologists reported that feeding BPA to pregnant mice induced adverse reproductive effects in male offspring at the low dose of 2 µg/kg/day. Since then, thousands of studies have reported adverse effects in animals administered low doses of BPA. Despite more than 100 epidemiological studies suggesting associations between BPA and disease/dysfunction also reported in animal studies, regulatory agencies continue to assert that BPA exposures are safe. To address this disagreement, the CLARITY-BPA study was designed to evaluate traditional endpoints of toxicity and modern hypothesis-driven, disease-relevant outcomes in the same set of animals. A wide range of adverse effects was reported in both the toxicity and the mechanistic endpoints at the lowest dose tested (2.5 µg/kg/day), leading independent experts to call for the lowest observed adverse effect level (LOAEL) to be dropped 20 000-fold from the current outdated LOAEL of 50 000 µg/kg/day. Despite criticism by members of the Endocrine Society that the Food and Drug Administration (FDA)'s assumptions violate basic principles of endocrinology, the FDA rejected all low-dose data as not biologically plausible. Their decisions rely on 4 incorrect assumptions: dose responses must be monotonic, there exists a threshold below which there are no effects, both sexes must respond similarly, and only toxicological guideline studies are valid. This review details more than 20 years of BPA studies and addresses the divide that exists between regulatory approaches and endocrine science. Ultimately, CLARITY-BPA has shed light on why traditional methods of evaluating toxicity are insufficient to evaluate endocrine disrupting chemicals.
Collapse
Affiliation(s)
- Frederick S vom Saal
- University of Missouri – Columbia, Division of Biological Sciences, Columbia, Missouri
- Correspondence: Dr. Frederick vom Saal, University of Missouri-Columbia, Division of Biological Sciences, 105 Lefevre Hall, Columbia, MO, 65211, USA. E-mail:
| | - Laura N Vandenberg
- University of Massachusetts – Amherst, Department of Environmental Health Sciences, Amherst, Massachusetts
| |
Collapse
|
21
|
Amir S, Shah STA, Mamoulakis C, Docea AO, Kalantzi OI, Zachariou A, Calina D, Carvalho F, Sofikitis N, Makrigiannakis A, Tsatsakis A. Endocrine Disruptors Acting on Estrogen and Androgen Pathways Cause Reproductive Disorders through Multiple Mechanisms: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:1464. [PMID: 33557243 PMCID: PMC7913912 DOI: 10.3390/ijerph18041464] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 01/28/2021] [Accepted: 02/01/2021] [Indexed: 02/07/2023]
Abstract
Increasing contamination of the environment by toxic compounds such as endocrine disrupting chemicals (EDCs) is one of the major causes of reproductive defects in both sexes. Estrogen/androgen pathways are of utmost importance in gonadal development, determination of secondary sex characteristics and gametogenesis. Most of the EDCs mediate their action through respective receptors and/or downstream signaling. The purpose of this review is to highlight the mechanism by which EDCs can trigger antagonistic or agonistic response, acting through estrogen/androgen receptors causing reproductive defects that lead to infertility. In vitro, in vivo and in silico studies focusing on the impact of EDCs on estrogen/androgen pathways and related proteins published in the last decade were considered for the review. PUBMED and PUBCHEM were used for literature search. EDCs can bind to estrogen receptors (ERα and ERβ) and androgen receptors or activate alternative receptors such as G protein-coupled receptors (GPCR), GPR30, estrogen-related receptor (ERRγ) to activate estrogen signaling via downstream kinases. Bisphenol A, dichlorodiphenyltrichloroethane, dichlorodiphenyldichloroethylene, polychlorinated biphenyls and phthalates are major toxicants that interfere with the normal estrogen/androgen pathways leading to infertility in both sexes through many ways, including DNA damage in spermatozoids, altered methylation pattern, histone modifications and miRNA expression.
Collapse
Affiliation(s)
- Saira Amir
- Department of Biosciences, COMSATS University Islamabad, Islamabad 44000, Pakistan; (S.A.); (S.T.A.S.)
| | - Syed Tahir Abbas Shah
- Department of Biosciences, COMSATS University Islamabad, Islamabad 44000, Pakistan; (S.A.); (S.T.A.S.)
| | - Charalampos Mamoulakis
- Department of Urology, University General Hospital of Heraklion, Medical School, University of Crete, 700 13 Heraklion, Greece
| | - Anca Oana Docea
- Department of Toxicology, Faculty of Pharmacy, University of Medicine and Pharmacy, Petru Rares, 200349 Craiova, Romania
| | - Olga-Ioanna Kalantzi
- Department of Environment, University of Aegean, University Hill, 81100 Mytilini, Greece;
| | - Athanasios Zachariou
- Department of Urology, Ioannina University School of Medicine, 45110 Ioannina, Greece; (A.Z.); (N.S.)
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Felix Carvalho
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal;
| | - Nikolaos Sofikitis
- Department of Urology, Ioannina University School of Medicine, 45110 Ioannina, Greece; (A.Z.); (N.S.)
| | - Antonios Makrigiannakis
- Department of Obstetrics and Gynecology, Medical School, University of Crete, 71003 Heraklion, Greece;
| | - Aristidis Tsatsakis
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, 71003 Heraklion, Greece
| |
Collapse
|
22
|
Li M, Yang T, Gao L, Xu H. An inadvertent issue of human retina exposure to endocrine disrupting chemicals: A safety assessment. CHEMOSPHERE 2021; 264:128484. [PMID: 33022499 DOI: 10.1016/j.chemosphere.2020.128484] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/07/2020] [Accepted: 09/27/2020] [Indexed: 06/11/2023]
Abstract
Endocrine disrupting chemicals (EDCs) are a group of chemical compounds that present a considerable public health problem due to their pervasiveness and associations with chronic diseases. EDCs can interrupt the endocrine system and interfere with hormone homeostasis, leading to abnormalities in human physiology. Much attention has been focused on the adverse effects EDCs have on the reproductive system, neurogenesis, neuroendocrine system, and thyroid dysfunction. The eye is usually directly exposed to the surrounding environment; however, the influences of EDCs on the eye have received comparatively little attention. Ocular diseases, such as ocular surface diseases and retinal diseases, have been implicated in hormone deficiency or excess. Epidemiologic studies have shown that EDC exposure not only causes ocular surface disorders, such as dry eye, but also associates with visual deficits and retinopathy. EDCs can pass through the human blood-retinal barrier and enter the neural retina, and can then accumulate in the retina. The retina is an embryologic extension of the central nervous system, and is extremely sensitive and vulnerable to EDCs that could be passed across the placenta during critical periods of retinal development. Subtle alterations in the retinal development process usually result in profound immediate, long-term, and delayed effects late in life. This review, based on extensive literature survey, briefly summarizes the current knowledge about the impact of representative manufactured EDCs on retinal toxicity, including retinal structure alterations and dysfunction. We also highlight the potential mechanism of action of EDCs on the retina, and the predictive retinal models of EDC exposure.
Collapse
Affiliation(s)
- Minghui Li
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Tian Yang
- Department of Cold Environmental Medicine, College of High Altitude Military Medicine, Third Military Medical University (Army Medical University), Chongqing, China
| | - Lixiong Gao
- Department of Ophthalmology, Third Medical Center of PLA General Hospital, Beijing, China
| | - Haiwei Xu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China.
| |
Collapse
|
23
|
Hazarika J, Ganguly M, Borgohain G, Sarma S, Bhuyan P, Mahanta R. Disruption of androgen receptor signaling by chlorpyrifos (CPF) and its environmental degradation products: a structural insight. J Biomol Struct Dyn 2021; 40:6027-6038. [PMID: 33480323 DOI: 10.1080/07391102.2021.1875885] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Androgen-disruptors are chemicals that interfere with the biosynthesis, metabolism or function of endogenous androgens affecting normal male reproductive development and health. Several epidemiological studies have indicated a link between exposure to androgen disrupting chemicals with reduced sperm counts and increased infertility. The actions of androgens within target cells are transduced by the androgen receptors (ARs). Chlorpyrifos (CPF), a chlorinated organophosphorus pesticide, is known to cause impairment in both male and female reproductive systems. Recent publications have shown molecular interactions of CPF and its environmental degradation products with human progesterone receptor and human estrogen receptor. Exposure to CPF causes a marked reduction in sperm counts with lowering in serum testosterone level, which suggests possible molecular interaction of CPF with AR. The investigation to reveal the possibility and the extent of binding of CPF and some of its degradation products (chlorpyrifos-oxon [CPYO], desethyl chlorpyrifos [DEC], trichloromethoxypyridine [TMP] and trichloropyridinol [TCP]) with AR using molecular docking simulation are reported. The findings of the present docking, binding energy and molecular dynamics studies reveal that CPF and its degradation products may bind to ARs and act as a potent androgen disruptor.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Mausumi Ganguly
- Department of Chemistry, Cotton University, Guwahati, Assam, India
| | - Gargi Borgohain
- Department of Chemistry, Cotton University, Guwahati, Assam, India
| | - Shruti Sarma
- Department of Chemistry, Cotton University, Guwahati, Assam, India
| | - Pranjal Bhuyan
- Department of Chemistry, Cotton University, Guwahati, Assam, India
| | - Rita Mahanta
- Department of Zoology, Cotton University, Guwahati, Assam, India
| |
Collapse
|
24
|
Hazarika J, Ganguly M, Borgohain G, Baruah I, Sarma S, Bhuyan P, Mahanta R. Endocrine disruption: molecular interactions of chlorpyrifos and its degradation products with estrogen receptor. Struct Chem 2020. [DOI: 10.1007/s11224-020-01562-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
25
|
Klingelhöfer I, Hockamp N, Morlock GE. Non-targeted detection and differentiation of agonists versus antagonists, directly in bioprofiles of everyday products. Anal Chim Acta 2020; 1125:288-298. [PMID: 32674775 DOI: 10.1016/j.aca.2020.05.057] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/19/2020] [Accepted: 05/22/2020] [Indexed: 12/25/2022]
Abstract
Xenoestrogens exert antiandrogenic effects on the human androgen receptor. In the analytical field, such antagonists block the detection of testosterone and falsify results obtained by sum parameter assays. Currently, such agonistic versus antagonistic effects are not differentiated in complex mixtures. Oppositely acting hormonal effects present in products of everyday use can only be differentiated after tedious fractionation and isolation of the individual compounds along with subjection of each fraction/compound to the status quo bioassay testing. However, such long-lasting procedures are not suited for routine. Hence, we developed a fast bioanalytical tool that figures out agonists versus antagonists directly in complex mixtures. Exemplarily, 8 cosmetics and 15 thermal papers were analyzed. The determined antagonistic potentials of active compounds found were comparable to the ones of known antagonists (in reference shown for bisphenol A, 4-n-nonylphenol and four parabens). Relevant biological/chromatographic parameters such as cell viability, culture conditions, dose response curves, limits of biological detection/quantification and working range (shown for testosterone, dihydrotestosterone, nandrolone and trenbolone) were investigated to obtain the best sensitivity of the biological detection. The developed and validated method was newly termed reversed phase high-performance thin-layer chromatography planar yeast ant-/agonistic androgen screen (RP-HPTLC-pYAAS bioassay). Results were also compared with the RP-HPTLC-Aliivibrio fischeri bioassay (applied on RP plates for the first time). As proof-of-concept, the transfer to another bioassay (RP-HPTLC-pYES) was successfully demonstrated, analogously termed RP-HPTLC-pYAES bioassay detecting anti-/estrogens (exemplarily shown for evaluation of 4 pharmaceuticals used in breast cancer treatment). The new imaging concept provides (1) detection and differentiation of individual agonistic versus antagonistic effects in the bioprofiles, (2) bioanalytical quantification of their activity potential by scanning densitometry and (3) characterization of unknown bioactive compound zones by hyphenation to high-resolution mass spectrometry. Depending on the hormonal bioassay, 15 samples were analyzed in parallel within 5 h or 6 h (calculated as 20 or 24 min per sample). For the first time, piezoelectric spraying of the yeast cells was successfully demonstrated for the planar yeast-based bioassays.
Collapse
Affiliation(s)
- Ines Klingelhöfer
- Chair of Food Science, Institute of Nutritional Science, and TransMIT Center for Effect-Directed Analysis, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Nele Hockamp
- Chair of Food Science, Institute of Nutritional Science, and TransMIT Center for Effect-Directed Analysis, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Gertrud E Morlock
- Chair of Food Science, Institute of Nutritional Science, and TransMIT Center for Effect-Directed Analysis, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany.
| |
Collapse
|
26
|
Palmer K, Speirs V. BPA and risk assessment. Lancet Diabetes Endocrinol 2020; 8:269. [PMID: 32197110 DOI: 10.1016/s2213-8587(20)30068-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 02/18/2020] [Indexed: 10/24/2022]
Affiliation(s)
- Kerri Palmer
- Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Valerie Speirs
- Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK.
| |
Collapse
|
27
|
Soave I, Occhiali T, Assorgi C, Marci R, Caserta D. Environmental toxin exposure in polycystic ovary syndrome women and possible ovarian neoplastic repercussion. Curr Med Res Opin 2020; 36:693-703. [PMID: 32046531 DOI: 10.1080/03007995.2020.1729108] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Purpose: Over the last two decades, increasing attention has been paid to environmental toxins and their effects on the female reproductive system. Endocrine disrupting chemicals (EDCs) are exogenous substances or mixtures that can mimic the action of steroid hormones and interfere with their metabolism. Advanced glycation end products (AGEs) are proinflammatory molecules that can interact with cell surface receptors and mediate the triggering of proinflammatory pathways and oxidative stress. The purpose of this review is to explore the effects of environmental toxin exposure in the pathogenesis of both polycystic ovary syndrome (PCOS) and OC (ovarian cancer), considered separately, and also to evaluate possible neoplastic ovarian repercussion after exposure in patients diagnosed with PCOS.Materials and methods: We searched PubMed for articles published in the English language with the use of the following MeSH search terms: "polycystic ovary syndrome" and "ovarian cancer" combined with "endocrine disruptors". Titles and abstracts were examined and full articles that met the selection criteria were retrieved. A manual search of review articles and cross-references completed the search.Results: Extensive data from different studies collected in recent years concerning the effects of EDC/AGE exposure have confirmed their role in the pathophysiology of both PCOS and OC. They favor PCOS/OC development through different mechanisms that finally lead to hormonal and metabolic disruption and epigenetic modifications.Conclusions: Environmental toxin exposure in PCOS women could favor neoplastic transformation by exacerbating and potentiating some PCOS features. Further research, although difficult, is needed in order to prevent further diffusion of these substances in the environment, or at least to provide adequate information to the population considered at risk.
Collapse
Affiliation(s)
- Ilaria Soave
- Department of Surgical and Clinical Sciences and Translational Medicine, S. Andrea Hospital, "Sapienza" University of Rome, Rome, Italy
| | - Tommaso Occhiali
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Italy
| | - Chiara Assorgi
- Department of Surgical and Clinical Sciences and Translational Medicine, S. Andrea Hospital, "Sapienza" University of Rome, Rome, Italy
| | - Roberto Marci
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Italy
| | - Donatella Caserta
- Department of Surgical and Clinical Sciences and Translational Medicine, S. Andrea Hospital, "Sapienza" University of Rome, Rome, Italy
| |
Collapse
|
28
|
Toporova L, Balaguer P. Nuclear receptors are the major targets of endocrine disrupting chemicals. Mol Cell Endocrinol 2020; 502:110665. [PMID: 31760044 DOI: 10.1016/j.mce.2019.110665] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 11/20/2019] [Indexed: 12/13/2022]
Abstract
Endocrine disrupting chemicals (EDCs) are exogenous substances that are suspected to cause adverse effects in the endocrine system mainly by acting through their interaction with nuclear receptors such as the estrogen receptors α and β (ERα and ERβ), the androgen receptor (AR), the pregnan X receptor (PXR), the peroxisome proliferator activated receptors α and γ (PPARα, PPARγ) and the thyroid receptors α and β (TRα and TRβ). More recently, the retinoid X receptors (RXRα, RXRβ and RXRγ), the constitutive androstane receptor (CAR) and the estrogen related receptor γ (ERRγ) have also been identified as targets of EDCs. Finally, nuclear receptors still poorly studied for their interaction with environmental ligands such as the progesterone receptor (PR), the mineralocorticoid receptor (MR), the glucocorticoid receptor (GR), the retinoic acid receptors (RAR α, RARβ and RARγ), the farnesoid X receptor (FXR) and the liver X receptors α and β (LXRα and LXβ) as well are suspected targets of EDCs. Humans are generally exposed to low doses of pollutants, therefore the aim of current research is to identify the targets of EDCs at environmental concentrations. In this review, we analyze recent works referring that nuclear receptors are targets of EDCs and we highlight which EDCs are able to act at low concentrations.
Collapse
Affiliation(s)
- Lucia Toporova
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, ICM, Univ Montpellier, 34090, Montpellier, France.
| | - Patrick Balaguer
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, ICM, Univ Montpellier, 34090, Montpellier, France.
| |
Collapse
|
29
|
Sheikh IA, Beg MA. Structural binding interactions of tetrabromobisphenol A with sex steroid nuclear receptors and sex hormone‐binding globulin. J Appl Toxicol 2020; 40:832-842. [DOI: 10.1002/jat.3947] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/22/2019] [Accepted: 01/07/2020] [Indexed: 11/12/2022]
Affiliation(s)
- Ishfaq A. Sheikh
- King Fahd Medical Research CenterKing Abdulaziz University Jeddah Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical SciencesKing Abdulaziz University Jeddah Saudi Arabia
| | - Mohd A. Beg
- King Fahd Medical Research CenterKing Abdulaziz University Jeddah Saudi Arabia
| |
Collapse
|
30
|
Mentor A, Bornehag CG, Jönsson M, Mattsson A. A suggested bisphenol A metabolite (MBP) interfered with reproductive organ development in the chicken embryo while a human-relevant mixture of phthalate monoesters had no such effects. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2020; 83:66-81. [PMID: 32077375 DOI: 10.1080/15287394.2020.1728598] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Bisphenol A (BPA) and phthalate diesters are ubiquitous environmental contaminants. While these compounds have been reported as reproductive toxicants, their effects may partially be attributed to metabolites. The aim of this study was to examine reproductive organ development in chicken embryos exposed to the BPA metabolite, 4-methyl-2,4-bis(4-hydroxyphenyl)pent-1-ene (MBP; 100 µg/g egg) or a human-relevant mixture of 4 phthalate monoesters (85 µg/g egg). The mixture was designed within the EU project EDC-MixRisk based upon a negative association with anogenital distance in boys at 21 months of age in a Swedish pregnancy cohort. Chicken embryos were exposed in ovo from an initial stage of gonad differentiation (embryonic day 4) and dissected two days prior to anticipated hatching (embryonic day 19). No discernible effects were noted on reproductive organs in embryos exposed to the mixture. MBP-treated males exhibited retention of Müllerian ducts and feminization of the left testicle, while MBP-administered females displayed a diminished the left ovary. In the left testicle of MBP-treated males, mRNA expression of female-associated genes was upregulated while the testicular marker gene SOX9 was downregulated, corroborating a feminizing effect by MBP. Our results demonstrate that MBP, but not the phthalate monoester mixture, disrupts both male and female reproductive organ development in an avian embryo model.
Collapse
Affiliation(s)
- Anna Mentor
- Department of Environmental Toxicology, Uppsala University, Uppsala, Sweden
- Department of Environmental Medicine and Public Health, Centre for Reproductive Biology in Uppsala (CRU), Uppsala, Sweden
| | - Carl-Gustaf Bornehag
- Public Health Sciences, Karlstad University, Karlstad, Sweden
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Maria Jönsson
- Department of Environmental Toxicology, Uppsala University, Uppsala, Sweden
- Department of Environmental Medicine and Public Health, Centre for Reproductive Biology in Uppsala (CRU), Uppsala, Sweden
| | - Anna Mattsson
- Department of Environmental Toxicology, Uppsala University, Uppsala, Sweden
- Department of Environmental Medicine and Public Health, Centre for Reproductive Biology in Uppsala (CRU), Uppsala, Sweden
| |
Collapse
|
31
|
Olaniyan LWB, Okoh OO, Mkwetshana NT, Okoh AI. Environmental Water Pollution, Endocrine Interference and Ecotoxicity of 4-tert-Octylphenol: A Review. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 248:81-109. [PMID: 30460491 DOI: 10.1007/398_2018_20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
4-tert-Octylphenol is a degradation product of non-ionic surfactants alkylphenol polyethoxylates as well as raw material for a number of industrial applications. It is a multimedia compound having been detected in all environmental compartments such as indoor air and surface waters. The pollutant is biodegradable, but certain degradation products are more toxic than the parent compound. Newer removal techniques from environmental waters have been presented, but they still require development for large-scale applications. Wastewater treatment by plant enzymes such as peroxidases offers promise in total removal of 4-tert-octylphenol leaving less toxic degradation products. The pollutant's endocrine interference has been well reported but more in oestrogens than in any other signalling pathways through which it is believed to exert toxicity on human and wildlife. In this paper we carried out a review of the activities of this pollutant in environmental waters, endocrine interference and relevance to its toxicities and concluded that inadequate knowledge of its endocrine activities impedes understanding of its toxicity which may frustrate current efforts at ridding the compound from the environment.
Collapse
Affiliation(s)
- Lamidi W B Olaniyan
- South Africa Medical Research Council, Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa.
- Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa.
| | - Omobola O Okoh
- South Africa Medical Research Council, Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa
- Department of Pure and Applied Chemistry, University of Fort Hare, Alice, South Africa
| | - Noxolo T Mkwetshana
- Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa
| | - Anthony I Okoh
- South Africa Medical Research Council, Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa
- Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa
| |
Collapse
|
32
|
Kose O, Rachidi W, Beal D, Erkekoglu P, Fayyad-Kazan H, Kocer Gumusel B. The effects of different bisphenol derivatives on oxidative stress, DNA damage and DNA repair in RWPE-1 cells: A comparative study. J Appl Toxicol 2019; 40:643-654. [PMID: 31875995 DOI: 10.1002/jat.3934] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bisphenol A (BPA) is a well-known endocrine disruptor and it is widely used mainly in the plastics industry. Due to recent reports on its possible impact on health (particularly on the male reproductive system), bisphenol F (BPF) and bisphenol S (BPS) are now being used as alternatives. In this study, RWPE-1 cells were used as a model to compare cytotoxicity, oxidative stress-causing potential and genotoxicity of these chemicals. In addition, the effects of the bisphenol derivatives were assessed on DNA repair proteins. RWPE-1 cells were incubated with BPA, BPF, and BPS at concentrations of 0-600 μM for 24 h. The inhibitory concentration 20 (IC20 , concentration that causes 20% of cell viability loss) values for BPA, BPF, and BPS were 45, 65, and 108 μM, respectively. These results indicated that cytotoxicity potentials were ranked as BPA > BPF > BPS. We also found alterations in superoxide dismutase, glutathione peroxidase and glutathione reductase activities, and glutathione and total antioxidant capacity in all bisphenol-exposed groups. In the standard and modified Comet assay, BPS produced significantly higher levels of DNA damage vs the control. DNA repair proteins (OGG1, Ape-1, and MyH) involved in the base excision repair pathway, as well as p53 protein levels were down-regulated in all of the bisphenol-exposed groups. We found that the BPA alternatives were also cytotoxic and genotoxic, and changed the expressions of DNA repair enzymes. Therefore, further studies are needed to assess whether they can be used safely as alternatives to BPA or not.
Collapse
Affiliation(s)
- Ozge Kose
- Faculty of Pharmacy, Department of Toxicology, Sıhhiye, Hacettepe University, Ankara, Turkey
| | - Walid Rachidi
- Faculté de Médecine-Pharmacie¸ Domaine de la Merci, University Grenoble Alpes, Grenoble, France.,Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA), Institut Nanosciences et Cryogénie (INAC), Systèmes Moléculaires et NanoMatériaux pour l'Energie et la Santé (SyMMES), Lésions des Acides Nucléiques (LAN), Grenoble, France
| | - David Beal
- Faculté de Médecine-Pharmacie¸ Domaine de la Merci, University Grenoble Alpes, Grenoble, France.,Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA), Institut Nanosciences et Cryogénie (INAC), Systèmes Moléculaires et NanoMatériaux pour l'Energie et la Santé (SyMMES), Lésions des Acides Nucléiques (LAN), Grenoble, France
| | - Pınar Erkekoglu
- Faculty of Pharmacy, Department of Toxicology, Sıhhiye, Hacettepe University, Ankara, Turkey
| | - Hussein Fayyad-Kazan
- Faculty of Sciences I, Laboratory of Cancer Biology and Molecular Immunology, Lebanese University, Hadath, Lebanon
| | - Belma Kocer Gumusel
- Faculty of Pharmacy, Department of Toxicology, Lokman Hekim University, Ankara, Turkey
| |
Collapse
|
33
|
Singh D, Rahi A, Kumari R, Gupta V, Gautam G, Aggarwal S, Rehan M, Bhatnagar R. Computational and mutational analysis of TatD DNase of Bacillus anthracis. J Cell Biochem 2019; 120:11318-11330. [PMID: 30719750 DOI: 10.1002/jcb.28408] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 12/12/2018] [Accepted: 12/14/2018] [Indexed: 01/24/2023]
Abstract
The role of TatD DNases as DNA repair enzymes or cell death (apoptotic) nucleases is well established in prokaryotes as well as eukaryotes. The current study aims to characterize the TatD nuclease from Bacillus anthracis (Ba TatD) and to explore its key histidine catalytic residues. Ba TatD was found to be a metal-dependent, nonspecific endonuclease which could efficiently cleave double-stranded DNA substrates. Moreover, Ba TatD nuclease was observed to be thermostable up to 55°C and act in a wide pH range indicating its industrial applicability. Diethyl pyrocarbonate-based histidine-selective alkylation of the Ba TatD resulted in a loss of its nuclease activity suggesting a crucial role of the histidine residues in its activity. The key residues of Ba TatD were predicted using sequence analysis and structure-based approaches, and then the predicted residues were further tested by mutational analysis. Upon mutational analysis, H128 and H153 have been found to be crucial for Ba TatD activity, though H153 seems to bear an important but a dispensable role for the Ba TatD nuclease. Ba TatD had a uniform expression in the cytosol of B. anthracis, which indicates a significant role of the protein in the pathogen's life cycle. This is the first study to identify and characterize the TatD DNase from B. anthracis and will be helpful in gaining more insights on the role of TatD proteins in Gram-positive bacteria where it remains unexplored.
Collapse
Affiliation(s)
- Damini Singh
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Amit Rahi
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Romika Kumari
- Finland Institute for Molecular Medicine (FIMM), Helsinki, Finland
| | - Vatika Gupta
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Gunjan Gautam
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Somya Aggarwal
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Mohd Rehan
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Rakesh Bhatnagar
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
34
|
Grimaldi M, Boulahtouf A, Toporova L, Balaguer P. Functional profiling of bisphenols for nuclear receptors. Toxicology 2019; 420:39-45. [PMID: 30951782 DOI: 10.1016/j.tox.2019.04.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/21/2019] [Accepted: 04/01/2019] [Indexed: 11/19/2022]
Abstract
Bisphenol-A (BPA) is one of the most abundant chemicals produced worldwide. Exposure to BPA has been associated with various physiological dysregulations, involving reproduction, development, metabolism, as well as genesis and progression of hormone-dependent cancers. It has been well published that BPA along with its analogs bind and activate estrogen receptors (ER) α and β, estrogen related receptor (ERR) γ and pregnan X receptor (PXR). BPA has been also characterized as an inhibitor of the androgen (AR) and progesterone (PR) receptor. Thus, the need for safer alternatives to BPA among bisphenols is rising. In this regard, we used reporter cell lines to analyze the effects of 24 bisphenols on the selected nuclear receptors (NRs), known and potential targets of BPA. We showed that bisphenols differently modulated the activities of NRs. ERs, ERRγ and PXR were generally activated by bisphenols, whereas many compounds of this family acted as AR, PR, GR and MR antagonists. On the other hand, some bisphenols such as BPA, BPC and BPE modulated the activity of several NRs, but others lacked the activity of other NRs. Altogether, these data provide the guidelines for development of safer BPA substitutes with reduced hormonal activity.
Collapse
Affiliation(s)
- Marina Grimaldi
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, ICM, Univ. Montpellier, 34090, Montpellier, France
| | - Abdelhay Boulahtouf
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, ICM, Univ. Montpellier, 34090, Montpellier, France
| | - Lucia Toporova
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, ICM, Univ. Montpellier, 34090, Montpellier, France
| | - Patrick Balaguer
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, ICM, Univ. Montpellier, 34090, Montpellier, France.
| |
Collapse
|
35
|
Darooei M, Khan F, Rehan M, Zubeda S, Jeyashanker E, Annapurna S, Shah A, Maddali S, Hasan Q. MED12 somatic mutations encompassing exon 2 associated with benign breast fibroadenomas and not breast carcinoma in Indian women. J Cell Biochem 2019; 120:182-191. [PMID: 30230586 DOI: 10.1002/jcb.27293] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 06/26/2018] [Indexed: 12/17/2022]
Abstract
Fibroadenoma is the most common type of benign breast tumor, accounting for 90% of benign lesions in India. Somatic mutations in the mediator complex subunit 12 (MED12) gene play a critical role in fibroepithelial tumorigenesis. The current study evaluated the hotspot region encompassing exon 2 of the MED12 gene, in benign and malignant breast tumor tissue from women who presented for breast lump evaluation. A total of 100 (80 fibroadenoma and 20 breast cancer) samples were analyzed by polymerase chain reaction-Sanger sequencing. Sequence variant analysis showed that 68.75% of nucleotide changes were found in exon 2 and the remaining in the adjacent intron 1. Codon 44 was implicated as a hotspot mutation in benign tumors, and 86.36% of the identified mutations involved this codon. An in silico functional analysis of missense mutations using consensus scoring sorting intolerant from tolerant (SIFT), SIFT seq, Polyphen2, Mutation Assessor, SIFT transFIC, Polyphen2 transFIC, Mutation Assesor transFIC, I-Mutant, DUET, PON-PS, SNAP2, and protein variation effect analyzer] revealed that apart from variants involving codon 44 (G44S; G44H), others like V41A and E55D were also predicted to be deleterious. Most of the missense mutations appeared in the loop region of the MED12 protein, which is expected to affect its functional interaction with cyclin C-CDK8/CDK19, causing loss of mediator-associated cyclin depended kinase (CDK) activity. These results suggest a key role of MED12 somatic variations in the pathogenesis of fibroadenoma. For the first time, it was demonstrated that MED12 sequence variations are present in benign breast tumors in the south Indian population.
Collapse
Affiliation(s)
- Mina Darooei
- Department of Genetics and Molecular Medicine, Kamineni Hospitals, Hyderabad, India
- Department of Genetics, Osmania University, Hyderabad, India
| | - Fazal Khan
- Department of Genetics and Molecular Medicine, Kamineni Hospitals, Hyderabad, India
- Department of Biochemistry, Novel Global Community Educational Foundation, Hebersham, NSW, Australia
| | - Mohd Rehan
- Department of Biochemistry, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Syeda Zubeda
- Department of Genetics, Osmania University, Hyderabad, India
| | | | - Srirambhatla Annapurna
- Department of Radiology, Kamineni Academy of Medical Sciences and Research Centre, Hyderabad, India
| | - Ashwin Shah
- Department of Oncology, Kamineni Hospitals, Hyderabad, India
| | | | - Qurratulain Hasan
- Department of Genetics and Molecular Medicine, Kamineni Hospitals, Hyderabad, India
- Department of Genetics and Molecular Medicine, Kamineni Hospitals, Narketpally, Telanga, India
| |
Collapse
|
36
|
Abstract
Endocrine disruption has been gathering increasing attention in the past 25 years as a possible new threat for health and safety. Exposure to endocrine disruptor has been progressively linked with a growing number of increasing disease in the human population. The mechanics through which endocrine disruptors act are not yet completely clear, however a number of pathways have been identified. A key concern is the cumulative and synergic effects that endocrine disruptors could have when mixed in consumer products. We reviewed the available literature to identify known or potential endocrine disruptors, as well as endocrine active substances that could contribute to cumulative effects, in topical consumer products. The number of endocrine actives used daily in consumer products is staggering and even though most if not all are used in concentrations that are considered to be safe, we believe that the possibility of combined effects in mixtures and non-monotonic dose/response is enough to require further precautions. A combined in vitro approach based on existing, validated OECD test methods is suggested to screen consumer products and mixtures for potential interaction with estrogen and androgen hormone receptors, in order to identify products that could have cumulative effects or support their safety concerning direct endocrine disruption capabilities.
Collapse
|
37
|
Conroy-Ben O, Garcia I, Teske SS. In silico binding of 4,4'-bisphenols predicts in vitro estrogenic and antiandrogenic activity. ENVIRONMENTAL TOXICOLOGY 2018; 33:569-578. [PMID: 29392883 DOI: 10.1002/tox.22539] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 01/10/2018] [Accepted: 01/18/2018] [Indexed: 06/07/2023]
Abstract
Bisphenols, anthropogenic pollutants, leach from consumer products and have potential to be ingested and are excreted in waste. The endocrine disrupting effects of highly manufactured bisphenols (BPA, BPS, and BPF) are known, however the activities of others are not. Here, the estrogenic and androgenic activities of a series of 4,4'-bisphenols that vary at the inter-connecting bisphenol bridge were determined (BPA, BPB, BPBP, BPC2, BPE, BPF, BPS, and BPZ) and compared to in silico binding to estrogen receptor-alpha and the androgen receptor. Bioassay results showed the order of estrogenicity (BPC2 (strongest) > BPBP > BPB > BPZ > BPE > BPF > BPA > BPS, r2 = 0.995) and anti-androgenicity (BPC2 (strongest) > BPE, BPB, BPA, BPF, and BPS, r2 = 0.996) correlated to nuclear receptor binding affinities. Like testosterone and the anti-androgen hydroxyflutamide, bisphenol fit in the ligand-binding domain through hydrogen-bonding at residues Thr877 and Asn705, but also interacted at either Cys784/Ser778 or Gln711 through the other phenol ring. This suggests the 4,4'-bisphenols, like hydroxyflutamide, are androgen receptor antagonists. Hydrogen-bond trends between ERα and the 4,4'-bisphenols were limited to residue Glu353, which interacted with the -OH of one phenol and the -OH of the A ring of 17β-estradiol; hydrogen-bonding varied at the -OH of ring D of 17β-estradiol and the second phenol -OH group. While both estrogen and androgen bioassays correlated to in silico results, conservation of hydrogen-bonding residues in the androgen receptor provides a convincing picture of direct antagonist binding by 4,4'-bisphenols.
Collapse
Affiliation(s)
- Otakuye Conroy-Ben
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona, 85282
| | - Isabel Garcia
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona, 85282
| | - Sondra S Teske
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona, 85282
| |
Collapse
|
38
|
MacKay H, Abizaid A. A plurality of molecular targets: The receptor ecosystem for bisphenol-A (BPA). Horm Behav 2018; 101:59-67. [PMID: 29104009 DOI: 10.1016/j.yhbeh.2017.11.001] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 09/29/2017] [Accepted: 11/01/2017] [Indexed: 01/01/2023]
Abstract
Bisphenol-A (BPA) is a well-known endocrine disrupting compound (EDC), capable of affecting the normal function and development of the reproductive system, brain, adipose tissue, and more. In spite of these diverse and well characterized effects, there is often comparatively little known about the molecular mechanisms which bring them about. BPA has traditionally been regarded as a primarily estrogenic EDC, and this perspective is often what guides research into the effects of BPA. However, emerging data from in-vitro and in-silico models show that BPA binds with a significant number of hormone receptors, including a number of nuclear and membrane-bound estrogen receptors, androgen receptors, as well as the thyroid hormone receptor, glucocorticoid receptor, and PPARγ. With this increased diversity of receptor targets, it may be possible to explain some of the more puzzling aspects of BPA pharmacology, including its non-monotonic dose-response curve, as well as experimental results which disagree with estrogenic positive controls. This paper reviews the receptors for which BPA has a known interaction, and discusses the implications of taking these receptors into account when studying the disruptive effects of BPA on growth and development.
Collapse
Affiliation(s)
- Harry MacKay
- Department of Pediatrics, Baylor College of Medicine, USDA/ARS Childrens Nutrition Research Center, Houston, TX, USA.
| | - Alfonso Abizaid
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| |
Collapse
|
39
|
Qin X, Fang L, Zhao J, Gou S. Theranostic Pt(IV) Conjugate with Target Selectivity for Androgen Receptor. Inorg Chem 2018; 57:5019-5029. [DOI: 10.1021/acs.inorgchem.8b00083] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
40
|
Rahi A, Dhiman A, Singh D, Lynn AM, Rehan M, Bhatnagar R. Exploring the interaction between Mycobacterium tuberculosis enolase and human plasminogen using computational methods and experimental techniques. J Cell Biochem 2018; 119:2408-2417. [PMID: 28888036 DOI: 10.1002/jcb.26403] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 08/29/2017] [Indexed: 12/16/2022]
Abstract
Surface localized microbial enolases' binding with human plasminogen has been increasingly proven to have an important role in initial infection cycle of several human pathogens. Likewise, surface localized Mycobacterium tuberculosis (Mtb) enolase also binds to human plasminogen, and this interaction may entail crucial consequences for granuloma stability. The current study is the first attempt to explore the plasminogen interacting residues of enolase from Mtb. Beginning with the structural modeling of Mtb enolase, the binding pose of Mtb enolase and human plasminogen was predicted using protein-protein docking simulations. The binding pose revealed the interface region with interacting residues and molecular interactions. Next, the interacting residues were refined and ranked by using various criteria. Finally, the selected interacting residues were tested experimentally for their involvement in plasminogen binding. The two consecutive lysine residues, Lys-193 and Lys-194, turned out to be active residues for plasminogen binding. These residues when substituted for alanine along with the most active residue Lys-429, that is, the triple mutant (K193A + K194A + K429A) Mtb enolase, exhibited 40% reduction in plasminogen binding. It is worth noting that Mtb enolase lost nearly half of the plasminogen binding activity with only three simultaneous substitutions, without any significant secondary structure perturbation. Further, the sequence comparison between Mtb and human enolase isoforms suggests the possibility of selective targeting of Mtb enolase to obstruct binding of human plasminogen.
Collapse
Affiliation(s)
- Amit Rahi
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Alisha Dhiman
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Damini Singh
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Andrew M Lynn
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Mohd Rehan
- King, Fahd Medical Research Center, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Rakesh Bhatnagar
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
41
|
Zhang J, Huang X, Liu H, Liu W, Liu J. Novel Pathways of Endocrine Disruption Through Pesticides Interference With Human Mineralocorticoid Receptors. Toxicol Sci 2017; 162:53-63. [DOI: 10.1093/toxsci/kfx244] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Jianyun Zhang
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health
| | - Xin Huang
- Research Center for Air Pollution and Health, Institute of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hongling Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Weiping Liu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health
| | - Jing Liu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health
- Research Center for Air Pollution and Health, Institute of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
42
|
Perera L, Li Y, Coons LA, Houtman R, van Beuningen R, Goodwin B, Auerbach SS, Teng CT. Binding of bisphenol A, bisphenol AF, and bisphenol S on the androgen receptor: Coregulator recruitment and stimulation of potential interaction sites. Toxicol In Vitro 2017; 44:287-302. [PMID: 28751236 DOI: 10.1016/j.tiv.2017.07.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 06/20/2017] [Accepted: 07/20/2017] [Indexed: 10/19/2022]
Abstract
Bisphenol A (BPA), bisphenol AF (BPAF), and bisphenol S (BPS) are well known endocrine disruptors. Previous in vitro studies showed that these compounds antagonize androgen receptor (AR) transcriptional activity; however, the mechanisms of action are unclear. In the present study, we investigated interactions of coregulator peptides with BPA, BPAF, or BPS at the AR complexes using Micro Array for Real-time Coregulator Nuclear Receptor Interaction (MARCoNI) assays and assessed the binding of these compounds on AR by molecular dynamics (MD) simulations. The set of coregulator peptides that are recruited by BPA-bound AR, either positively/or negatively, are different from those recruited by the agonist R1881-bound AR. Therefore, the data indicates that BPA shows no similarities to R1881 and suggests that it may recruit other coregulators to the AR complex. BPAF-bound AR recruits about 70-80% of the same coregulator peptides as BPA-bound AR. Meanwhile, BPS-bound AR interacts with only few peptides compared to BPA or BPAF-bound AR. MD results show that multiple binding sites with varying binding affinities are available on AR for BPA, BPAF, and BPS, indicating the availability of modified binding surfaces on AR for coregulator interactions. These findings help explain some of the distinct AR-related toxicities observed with bisphenol chemicals and raise concern for the use of substitutes for BPA in commercial products.
Collapse
Affiliation(s)
- Lalith Perera
- Genome Integrity and Structural Biology Laboratory, United States
| | - Yin Li
- Reproductive and Developmental Biology Laboratory, DIR, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, United States
| | - Laurel A Coons
- Reproductive and Developmental Biology Laboratory, DIR, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, United States
| | - Rene Houtman
- PamGene International B.V., Wolvenhoek 10, NL-5211 HH 's-Hertogenboch, The Netherlands
| | - Rinie van Beuningen
- PamGene International B.V., Wolvenhoek 10, NL-5211 HH 's-Hertogenboch, The Netherlands
| | - Bonnie Goodwin
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, United States
| | - Scott S Auerbach
- Biomolecular Screening Branch, DNTP, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, United States
| | - Christina T Teng
- Biomolecular Screening Branch, DNTP, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, United States.
| |
Collapse
|
43
|
Szafran AT, Stossi F, Mancini MG, Walker CL, Mancini MA. Characterizing properties of non-estrogenic substituted bisphenol analogs using high throughput microscopy and image analysis. PLoS One 2017; 12:e0180141. [PMID: 28704378 PMCID: PMC5509144 DOI: 10.1371/journal.pone.0180141] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 06/10/2017] [Indexed: 12/17/2022] Open
Abstract
Animal studies have linked the estrogenic properties of bisphenol A (BPA) to adverse effects on the endocrine system. Because of concerns for similar effects in humans, there is a desire to replace BPA in consumer products, and a search for BPA replacements that lack endocrine-disrupting bioactivity is ongoing. We used multiple cell-based models, including an established multi-parametric, high throughput microscopy-based platform that incorporates engineered HeLa cell lines with visible ERα- or ERβ-regulated transcription loci, to discriminate the estrogen-like and androgen-like properties of previously uncharacterized substituted bisphenol derivatives and hydroquinone. As expected, BPA induced 70–80% of the estrogen-like activity via ERα and ERβ compared to E2 in the HeLa prolactin array cell line. 2,2’ BPA, Bisguaiacol F, CHDM 4-hydroxybuyl acrylate, hydroquinone, and TM modified variants of BPF showed very limited estrogen-like or androgen-like activity (< 10% of that observed with the control compounds). Interestingly, TM-BFP and CHDM 4-hydroxybuyl acrylate, but not their derivatives, demonstrated evidence of anti-estrogenic and anti-androgenic activity. Our findings indicate that Bisguaiacol F, TM-BFP-ER and TM-BPF-DGE demonstrate low potential for affecting estrogenic or androgenic endocrine activity. This suggest that the tested compounds could be suitable commercially viable alternatives to BPA.
Collapse
Affiliation(s)
- Adam T. Szafran
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Fabio Stossi
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Maureen G. Mancini
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Cheryl L. Walker
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Michael A. Mancini
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- DeepBio, Inc., Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
44
|
Barrett ES, Sathyanarayana S, Mbowe O, Thurston SW, Redmon JB, Nguyen RHN, Swan SH. First-Trimester Urinary Bisphenol A Concentration in Relation to Anogenital Distance, an Androgen-Sensitive Measure of Reproductive Development, in Infant Girls. ENVIRONMENTAL HEALTH PERSPECTIVES 2017; 125:077008. [PMID: 28728138 PMCID: PMC5744699 DOI: 10.1289/ehp875] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 01/18/2017] [Accepted: 01/19/2017] [Indexed: 05/20/2023]
Abstract
INTRODUCTION Evidence from animal models suggests that prenatal exposure to bisphenol A (BPA), a ubiquitous endocrine-disrupting chemical, is associated with adverse reproductive outcomes in females. Exposure during early gestation, a critical period for reproductive development, is of particular concern. Anogenital distance (AGD) is a sensitive biomarker of the fetal hormonal milieu and a measure of reproductive toxicity in animal models. In some studies, the daughters of BPA-exposed dams have shorter AGD than controls. Here, we investigate this relationship in humans. METHODS BPA was assayed in first-trimester urine samples from 385 participants who delivered infant girls in a multicenter pregnancy cohort study. After birth, daughters underwent exams that included two measures of AGD (AGD-AC: distance from center of anus to clitoris; AGD-AF: distance from center of anus to fourchette). We fit linear regression models to examine the association between specific gravity-adjusted (SPG-adj) maternal BPA concentrations and infant AGD, adjusting for covariates. RESULTS BPA was detectable in 94% of women. In covariate-adjusted models fit on 381 eligible subjects, the natural logarithm of SpG-adj maternal BPA concentration was inversely associated with infant AGD-AC [β=−0.56, 95% confidence interval (CI): −0.97, −0.15]. We observed no association between maternal BPA and infant AGD-AF. CONCLUSION BPA may have toxic effects on the female reproductive system in humans, as it does in animal models. Higher first-trimester BPA exposure was associated with significantly shorter AGD in daughters, suggesting that BPA may alter the hormonal environment of the female fetus. https://doi.org/10.1289/EHP875.
Collapse
Affiliation(s)
- Emily S Barrett
- Department of Epidemiology, Environmental and Occupational Health Sciences Institute, Rutgers University School of Public Health, Piscataway, New Jersey, USA
- Department of Obstetrics and Gynecology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Sheela Sathyanarayana
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
- Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Omar Mbowe
- Department of Biostatistics and Computational Biology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Sally W Thurston
- Department of Biostatistics and Computational Biology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - J Bruce Redmon
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Ruby H N Nguyen
- Department of Epidemiology and Community Health, University of Minnesota, Minneapolis, Minnesota, USA
| | - Shanna H Swan
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
45
|
Le Magueresse-Battistoni B, Labaronne E, Vidal H, Naville D. Endocrine disrupting chemicals in mixture and obesity, diabetes and related metabolic disorders. World J Biol Chem 2017; 8:108-119. [PMID: 28588754 PMCID: PMC5439162 DOI: 10.4331/wjbc.v8.i2.108] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 01/25/2017] [Accepted: 05/05/2017] [Indexed: 02/05/2023] Open
Abstract
Obesity and associated metabolic disorders represent a major societal challenge in health and quality of life with large psychological consequences in addition to physical disabilities. They are also one of the leading causes of morbidity and mortality. Although, different etiologic factors including excessive food intake and reduced physical activity have been well identified, they cannot explain the kinetics of epidemic evolution of obesity and diabetes with prevalence rates reaching pandemic proportions. Interestingly, convincing data have shown that environmental pollutants, specifically those endowed with endocrine disrupting activities, could contribute to the etiology of these multifactorial metabolic disorders. Within this review, we will recapitulate characteristics of endocrine disruption. We will demonstrate that metabolic disorders could originate from endocrine disruption with a particular focus on convincing data from the literature. Eventually, we will present how handling an original mouse model of chronic exposition to a mixture of pollutants allowed demonstrating that a mixture of pollutants each at doses beyond their active dose could induce substantial deleterious effects on several metabolic end-points. This proof-of-concept study, as well as other studies on mixtures of pollutants, stresses the needs for revisiting the current threshold model used in risk assessment which does not take into account potential effects of mixtures containing pollutants at environmental doses, e.g., the real life exposure. Certainly, more studies are necessary to better determine the nature of the chemicals to which humans are exposed and at which level, and their health impact. As well, research studies on substitute products are essential to identify harmless molecules.
Collapse
|
46
|
Babajko S, Jedeon K, Houari S, Loiodice S, Berdal A. Disruption of Steroid Axis, a New Paradigm for Molar Incisor Hypomineralization (MIH). Front Physiol 2017; 8:343. [PMID: 28603502 PMCID: PMC5445125 DOI: 10.3389/fphys.2017.00343] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 05/10/2017] [Indexed: 01/22/2023] Open
Affiliation(s)
- Sylvie Babajko
- Laboratory of Molecular Oral Pathophysiology, Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale UMRS 1138, University Paris-Descartes, University Pierre et Marie Curie-ParisParis, France.,Unité de Formation et de Recherche en Odontologie, University Paris-DiderotParis, France
| | - Katia Jedeon
- Laboratory of Molecular Oral Pathophysiology, Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale UMRS 1138, University Paris-Descartes, University Pierre et Marie Curie-ParisParis, France.,Unité de Formation et de Recherche en Odontologie, University Paris-DiderotParis, France
| | - Sophia Houari
- Laboratory of Molecular Oral Pathophysiology, Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale UMRS 1138, University Paris-Descartes, University Pierre et Marie Curie-ParisParis, France.,Unité de Formation et de Recherche en Odontologie, University Paris-DiderotParis, France
| | - Sophia Loiodice
- Laboratory of Molecular Oral Pathophysiology, Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale UMRS 1138, University Paris-Descartes, University Pierre et Marie Curie-ParisParis, France.,Unité de Formation et de Recherche en Odontologie, University Paris-DiderotParis, France
| | - Ariane Berdal
- Laboratory of Molecular Oral Pathophysiology, Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale UMRS 1138, University Paris-Descartes, University Pierre et Marie Curie-ParisParis, France.,Unité de Formation et de Recherche en Odontologie, University Paris-DiderotParis, France.,Centre de Référence des Maladies Rares de la face et de la Cavité Buccale MAFACE, Rothschild HospitalParis, France
| |
Collapse
|
47
|
Sheikh IA, Tayubi IA, Ahmad E, Ganaie MA, Bajouh OS, AlBasri SF, Abdulkarim IMJ, Beg MA. Computational insights into the molecular interactions of environmental xenoestrogens 4-tert-octylphenol, 4-nonylphenol, bisphenol A (BPA), and BPA metabolite, 4-methyl-2, 4-bis (4-hydroxyphenyl) pent-1-ene (MBP) with human sex hormone-binding globulin. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 135:284-291. [PMID: 27750096 DOI: 10.1016/j.ecoenv.2016.10.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Revised: 09/13/2016] [Accepted: 10/05/2016] [Indexed: 06/06/2023]
Abstract
Environmental contamination has been one of the major drawbacks of the industrial revolution. Several man-made chemicals are constantly released into the environment during the manufacturing process and by leaching from the industrial products. As a result, human and animal populations are exposed to these synthetic chemicals on a regular basis. Many of these chemicals have adverse effects on the physiological functions, particularly on the hormone systems in human and animals and are called endocrine disrupting chemicals (EDCs). Bisphenol A (BPA), 4-tert-octylphenol (OP), and 4-nonylphenol (NP) are three high volume production EDCs that are widely used for industrial purposes and are present ubiquitously in the environment. Bisphenol A is metabolized in the human body to a more potent compound (MBP: 4-Methyl-2, 4-bis (4-hydroxyphenyl) pent-1-ene). Epidemiological and experimental studies have shown the three EDCs to be associated with adverse effects on reproductive system in human and animals. Sex hormone-binding globulin (SHBG) is a circulatory protein that binds sex steroids and is a potential target for endocrine disruptors in the human body. The current study was done in order to understand the binding mechanism of OP, BPA, NP, and MBP with human SHBG using in silico approaches. All four compounds showed high binding affinity with SHBG, however, the binding affinity values were higher (more negative) for MBP and NP than for OP and BPA. The four ligands interacted with 19-23 residues of SHBG and a consistent overlapping of the interacting residues for the four ligands with the residues for the natural ligand, dihydrotestosterone (DHT; 82-91% commonality) was shown. The overlapping SHBG interacting residues among DHT and the four endocrine disruptors suggested that these compounds have potential for interference and disruption in the steroid binding function.
Collapse
Affiliation(s)
- Ishfaq A Sheikh
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Iftikhar A Tayubi
- Faculty of Computing and Information Technology, King Abdulaziz University, Rabigh, Kingdom of Saudi Arabia
| | - Ejaz Ahmad
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Majid A Ganaie
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, Kingdom of Saudi Arabia
| | - Osama S Bajouh
- Department of Obstetrics and Gynecology, Faculty of Medicine, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Samera F AlBasri
- Department of Obstetrics and Gynecology, Faculty of Medicine, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Ibtihal M J Abdulkarim
- Department of Obstetrics and Gynecology, Faculty of Medicine, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Mohd A Beg
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia.
| |
Collapse
|
48
|
Houari S, Loiodice S, Jedeon K, Berdal A, Babajko S. Expression of Steroid Receptors in Ameloblasts during Amelogenesis in Rat Incisors. Front Physiol 2016; 7:503. [PMID: 27853434 PMCID: PMC5090168 DOI: 10.3389/fphys.2016.00503] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 10/13/2016] [Indexed: 12/02/2022] Open
Abstract
Endocrine disrupting chemicals (EDCs) play a part in the modern burst of diseases and interfere with the steroid hormone axis. Bisphenol A (BPA), one of the most active and widely used EDCs, affects ameloblast functions, leading to an enamel hypomineralization pattern similar to that of Molar Incisor Hypomineralization (MIH). In order to explore the molecular pathways stimulated by BPA during amelogenesis, we thoroughly investigated the receptors known to directly or indirectly mediate the effects of BPA. The expression patterns of high affinity BPA receptors (ERRγ, GPR30), of ketosteroid receptors (ERs, AR, PGR, GR, MR), of the retinoid receptor RXRα, and PPARγ were established using RT-qPCR analysis of RNAs extracted from microdissected enamel organ of adult rats. Their expression was dependent on the stage of ameloblast differentiation, except that of ERβ and PPARγ which remained undetectable. An additional large scale microarray analysis revealed three main groups of receptors according to their level of expression in maturation-stage ameloblasts. The expression level of RXRα was the highest, similar to the vitamin D receptor (VDR), whereas the others were 13 to 612-fold lower, with AR and GR being intermediate. Immunofluorescent analysis of VDR, ERα and AR confirmed their presence mainly in maturation- stage ameloblasts. These data provide further evidence that ameloblasts express a specific combination of hormonal receptors depending on their developmental stage. This study represents the first step toward understanding dental endocrinology as well as some of the effects of EDCs on the pathophysiology of amelogenesis.
Collapse
Affiliation(s)
- Sophia Houari
- Paris Laboratory of Molecular Oral Pathophysiology, Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale UMRS 1138, Université Paris-Descartes, Université Pierre et Marie Curie-ParisParis, France; Université Paris-Diderot, Unité de Formation et de Recherche d'OdontologieParis, France
| | - Sophia Loiodice
- Paris Laboratory of Molecular Oral Pathophysiology, Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale UMRS 1138, Université Paris-Descartes, Université Pierre et Marie Curie-ParisParis, France; Université Paris-Diderot, Unité de Formation et de Recherche d'OdontologieParis, France
| | - Katia Jedeon
- Paris Laboratory of Molecular Oral Pathophysiology, Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale UMRS 1138, Université Paris-Descartes, Université Pierre et Marie Curie-ParisParis, France; Université Paris-Diderot, Unité de Formation et de Recherche d'OdontologieParis, France
| | - Ariane Berdal
- Paris Laboratory of Molecular Oral Pathophysiology, Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale UMRS 1138, Université Paris-Descartes, Université Pierre et Marie Curie-ParisParis, France; Université Paris-Diderot, Unité de Formation et de Recherche d'OdontologieParis, France; Centre de Référence des maladies rares de la face et de la cavité buccale MAFACE hôpital Rothschild, AP-HPParis, France
| | - Sylvie Babajko
- Paris Laboratory of Molecular Oral Pathophysiology, Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale UMRS 1138, Université Paris-Descartes, Université Pierre et Marie Curie-ParisParis, France; Université Paris-Diderot, Unité de Formation et de Recherche d'OdontologieParis, France
| |
Collapse
|
49
|
Rutkowska AZ, Diamanti-Kandarakis E. Polycystic ovary syndrome and environmental toxins. Fertil Steril 2016; 106:948-58. [PMID: 27559705 DOI: 10.1016/j.fertnstert.2016.08.031] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 08/15/2016] [Accepted: 08/15/2016] [Indexed: 11/19/2022]
Abstract
Polycystic ovary syndrome (PCOS) is the most common, heterogeneous, and multifactorial endocrine disorder in premenopausal women. The pathophysiology of this endocrinopathy is still unclear; however, the heterogeneity of its features within ethnic races, geographic location, and families suggests that environment and lifestyle are of prime importance. This work is mainly focused on the possible role of the most common and studied environmental toxins for this syndrome in the pathogenesis of PCOS. Plasticizers, such as bisphenol A (BPA) or phthalates, which belong to the categories of endocrine disrupting chemicals (EDCs) and advanced glycation end products (AGEs), affect humans' health in everyday, industrialized life; therefore special attention should be paid to such exposure. Timing of exposure to EDCs is crucial for the intensity of adverse health effects. It is now evident that fetuses, infants, and/or young children are the most susceptible groups, especially in the early development periods. Prenatal exposure to EDCs that mimic endogenous hormones may contribute to the altered fetal programming and in consequence lead to PCOS and other adverse health effects, potentially transgenerationally. Acute or prolonged exposure to EDCs and AGEs through different life cycle stages may result in destabilization of the hormonal homeostasis and lead to disruption of reproductive functions. They may also interfere with metabolic alterations such as obesity, insulin resistance, and compensatory hyperinsulinemia that can exacerbate the PCOS phenotype and contribute to PCOS consequences such as type 2 diabetes and cardiovascular disease. Since wide exposure to environmental toxins and their role in the pathophysiology of PCOS are supported by extensive data derived from diverse scientific models, protective strategies and strong recommendations should be considered to reduce human exposure to protect present and future generations from their adverse health effects.
Collapse
Affiliation(s)
| | - Evanthia Diamanti-Kandarakis
- Department of Endocrinology and Diabetes Center of Excellence, Medical School University of Athens, EUROCLINIC, Athens, Greece.
| |
Collapse
|
50
|
Palioura E, Diamanti-Kandarakis E. Polycystic ovary syndrome (PCOS) and endocrine disrupting chemicals (EDCs). Rev Endocr Metab Disord 2015; 16:365-71. [PMID: 26825073 DOI: 10.1007/s11154-016-9326-7] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Polycystic ovary syndrome (PCOS) is a heterogeneous disorder of unclear etiopathogenesis that is likely to involve genetic and environmental components synergistically contributing to its phenotypic expression. Endocrine disrupting chemicals (EDCs) and in particular Bisphenol A (BPA) represent a group of widespread pollutants intensively investigated as possible environmental contributors to PCOS pathogenesis. Substantial evidence from in vitro and animal studies incriminates endocrine disruptors in the induction of reproductive and metabolic aberrations resembling PCOS characteristics. In humans, elevated BPA concentrations are observed in adolescents and adult PCOS women compared to reproductively healthy ones and are positively correlated with hyperandrogenemia, implying a potential role of the chemical in PCOS pathophysiology, although a causal interference cannot yet be established. It is plausible that developmental exposure to specific EDCs could permanently alter neuroendocrine, reproductive and metabolic regulation favoring PCOS development in genetically predisposed individuals or it could accelerate and/or exacerbate the natural course of the syndrome throughout life cycle exposure.
Collapse
Affiliation(s)
- Eleni Palioura
- Department of Endocrinology and Center of Excellence in Diabetes, Euroclinic Athens, Athens, Greece
| | | |
Collapse
|