1
|
Liu Y, Ren S, Ma L, Lin X, Lu J, Cao Z, Zheng S, Hu Z, Xu X, Chen X. Peg-IFNα combined with hepatitis B vaccination contributes to HBsAg seroconversion and improved immune function. Virol J 2024; 21:77. [PMID: 38555445 PMCID: PMC10981809 DOI: 10.1186/s12985-024-02344-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 03/17/2024] [Indexed: 04/02/2024] Open
Abstract
PURPOSE The purpose of this study was to investigate immunological variations between a group that received the hepatitis B vaccine and a non-vaccine group. We focused on a cohort that achieved HBsAg seroclearance after Peg-IFNα treatment of CHB. METHODS We enrolled twenty-eight individuals who achieved HBsAg seroclearance after Peg-IFNα treatment. They were divided into two groups: a vaccine group (n = 14) and a non-vaccine group (n = 14). We assessed lymphocyte subpopulations, B cell- and T cell-surface costimulatory/inhibitory factors, cytokines and immunoglobulin levels were detected at different time points to explore immune-function differences between both groups. RESULTS The seroconversion rate in the vaccine group at 24 weeks post-vaccination was 100%, which was significantly higher (p = 0.006) than that of the non-vaccine group (50%). Additionally, more individuals in the vaccine group exhibited anti-HBs levels exceeding 100 IUs/L and 300 IUs/L compared to the non-vaccine group (p < 0.05). The vaccine group demonstrated significantly increase total B cells and class-switched B cells at 24 weeks and plasma cells, CD80+B cells, Tfh cells, and ICOS+Tfh cell at 12 weeks, compared with baseline levels (p < 0.05). Conversely, Bregs (CD24+CD27+ and CD24+CD38high) decreased significantly at 24 weeks (p < 0.05). None of the above changes were statistically significance in the non-vaccine group (p > 0.05). Total IgG increased significantly in the vaccine group, and IL-2, IL-5, and IL-6 concentrations increased significantly at week 24 (p < 0.05). Differences in various types of cytokines and immunoglobulins in the plasma of the non-vaccine group were not significant (p > 0.05). Anti-HBs titers positively correlated with Th1/Th2 cells at 24 weeks (r = 0.448 and 0.458, respectively, p = 0.022 and 0.019, respectively), and negatively with CD24+CD38highBreg cells (r = -0.402, p = 0.042). CONCLUSIONS After achieving HBsAg seroclearance through Peg-IFNα treatment for CHB, administering the hepatitis B vaccine significantly increased anti-HBs-seroconversion rates and antibody levels. We also observed significant immunological differences between the vaccine and non-vaccine groups. Specifically, the vaccine group exhibited significant increases in B cells, plasma cells, and Tfh cells, while Breg levels was significantly lower. These immunological changes are likely conducive to the production of anti-HBs antibodies. However, in the non-vaccine group, the observed changes were not significantlly significant.
Collapse
Affiliation(s)
- Yisi Liu
- First Department of Liver Disease Center, Beijing Youan Hospital, Capital Medical University, No.8, Xi Tou Tiao, Youanmen wai, Beijing, 100069, China
| | - Shan Ren
- First Department of Liver Disease Center, Beijing Youan Hospital, Capital Medical University, No.8, Xi Tou Tiao, Youanmen wai, Beijing, 100069, China
| | - Lina Ma
- First Department of Liver Disease Center, Beijing Youan Hospital, Capital Medical University, No.8, Xi Tou Tiao, Youanmen wai, Beijing, 100069, China
| | - Xiao Lin
- First Department of Liver Disease Center, Beijing Youan Hospital, Capital Medical University, No.8, Xi Tou Tiao, Youanmen wai, Beijing, 100069, China
| | - Junfeng Lu
- First Department of Liver Disease Center, Beijing Youan Hospital, Capital Medical University, No.8, Xi Tou Tiao, Youanmen wai, Beijing, 100069, China
| | - Zhenhuan Cao
- Third Department of Liver Disease Center, Beijing Youan Hospital, Capital Medical University, No.8, Xi Tou Tiao, Youanmen wai, Beijing, 100069, China
| | - Sujun Zheng
- First Department of Liver Disease Center, Beijing Youan Hospital, Capital Medical University, No.8, Xi Tou Tiao, Youanmen wai, Beijing, 100069, China
| | - Zhongjie Hu
- First Department of Liver Disease Center, Beijing Youan Hospital, Capital Medical University, No.8, Xi Tou Tiao, Youanmen wai, Beijing, 100069, China
| | - Xiaoxue Xu
- Department of Core Facility Center, Capital Medical University, No.8, Xi Tou Tiao, Youanmen wai, Beijing, 100069, China
| | - Xinyue Chen
- First Department of Liver Disease Center, Beijing Youan Hospital, Capital Medical University, No.8, Xi Tou Tiao, Youanmen wai, Beijing, 100069, China.
| |
Collapse
|
2
|
Uhde M, Indart AC, Green PH, Yolken RH, Cook DB, Shukla SK, Vernon SD, Alaedini A. Suppressed immune and metabolic responses to intestinal damage-associated microbial translocation in myalgic encephalomyelitis/chronic fatigue syndrome. Brain Behav Immun Health 2023; 30:100627. [PMID: 37396339 PMCID: PMC10308215 DOI: 10.1016/j.bbih.2023.100627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 07/04/2023] Open
Abstract
The etiology and mechanism of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) are poorly understood and no biomarkers have been established. Specifically, the relationship between the immunologic, metabolic, and gastrointestinal abnormalities associated with ME/CFS and their relevance to established symptoms of the condition remain unclear. Relying on data from two independent pairs of ME/CFS and control cohorts, one at rest and one undergoing an exercise challenge, we identify a state of suppressed acute-phase innate immune response to microbial translocation in conjunction with a compromised gut epithelium in ME/CFS. This immunosuppression, along with observed enhancement of compensatory antibody responses to counter the microbial translocation, was associated with and may be mediated by alterations in glucose and citrate metabolism and an IL-10 immunoregulatory response. Our findings provide novel insights into mechanistic pathways, biomarkers, and potential therapeutic targets in ME/CFS, including in the context of exertion, with relevance to both intestinal and extra-intestinal symptoms.
Collapse
Affiliation(s)
- Melanie Uhde
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, NY, USA
| | - Alyssa C. Indart
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, NY, USA
| | - Peter H.R. Green
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, NY, USA
- Celiac Disease Center, Columbia University, New York, NY, USA
| | - Robert H. Yolken
- The Stanley Laboratory of Developmental Neurovirology, Johns Hopkins University, Baltimore, MD, USA
| | - Dane B. Cook
- Department of Kinesiology, University of Wisconsin - Madison, Madison, WI, USA
| | - Sanjay K. Shukla
- Center for Human Genetics, Marshfield Clinic Research Institute, Marshfield, WI, USA
| | | | - Armin Alaedini
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, NY, USA
- Institute of Human Nutrition, Columbia University, New York, NY, USA
- Celiac Disease Center, Columbia University, New York, NY, USA
- Division of Infectious Diseases, Department of Medicine, New York Medical College, Valhalla, NY, USA
| |
Collapse
|
3
|
Ticha O, Slanina P, Moos L, Stichova J, Vlkova M, Bekeredjian-Ding I. TNFR2 expression is a hallmark of human memory B cells with suppressive function. Eur J Immunol 2021; 51:1195-1205. [PMID: 33609401 DOI: 10.1002/eji.202048988] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/18/2020] [Accepted: 02/18/2021] [Indexed: 02/03/2023]
Abstract
Tumor Necrosis Factor Receptor 2 (TNFR2) expression is increasingly being linked to tolerogenic immune reactions and cells with suppressor function including a subset of T-regulatory cells. B-regulatory cells play an important role in control of T-cell responses and inflammation. Recently, we described TNFR2 as a marker for IL-10-producing B cells, a hallmark of this cell subset. Here, we demonstrate that proliferation of T cells is reduced in the presence of TNFR2 positive human memory B cells generated with TLR9 ligand, while TNFR2- and TNFR2+CD27- B cells display costimulatory activity. Our data further reveal that IL-10 secretion is characteristic of IgM+ naïve and memory B cells but suppressive activity is not restricted to IL-10: (i) the inhibitory effect of TNFR2+ switched memory B cells was comparable to that exerted by TNFR2+ IgM+ memory B cells although IL-10 secretion levels in the cocultures were lower; (ii) supernatants from TNFR2+ memory B cells failed to suppress T-cell proliferation. Based on our findings, we propose that formation of Breg is a specific characteristic of human memory B cells undergoing terminal differentiation. Our data further corroborate that TNFR2 represents a viable marker for identification of memory B cells with regulatory function.
Collapse
Affiliation(s)
- Olga Ticha
- Division of Microbiology, Paul-Ehrlich-Institut, Langen, Germany
| | - Peter Slanina
- Division of Microbiology, Paul-Ehrlich-Institut, Langen, Germany.,Department of Clinical Immunology and Allergology, St. Anne's Faculty Hospital, Masaryk University, Brno, Czech Republic
| | - Lukas Moos
- Division of Microbiology, Paul-Ehrlich-Institut, Langen, Germany
| | - Julie Stichova
- Department of Clinical Immunology and Allergology, St. Anne's Faculty Hospital, Masaryk University, Brno, Czech Republic
| | - Marcela Vlkova
- Department of Clinical Immunology and Allergology, St. Anne's Faculty Hospital, Masaryk University, Brno, Czech Republic
| | - Isabelle Bekeredjian-Ding
- Division of Microbiology, Paul-Ehrlich-Institut, Langen, Germany.,Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
4
|
Elucidating the Pivotal Immunomodulatory and Anti-Inflammatory Potentials of Chloroquine and Hydroxychloroquine. J Immunol Res 2020; 2020:4582612. [PMID: 33062720 PMCID: PMC7533005 DOI: 10.1155/2020/4582612] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 08/03/2020] [Indexed: 12/30/2022] Open
Abstract
Chloroquine (CQ) and hydroxychloroquine (HCQ) are derivatives of 4-aminoquinoline compounds with over 60 years of safe clinical usage. CQ and HCQ are able to inhibit the production of cytokines such as interleukin- (IL-) 1, IL-2, IL-6, IL-17, and IL-22. Also, CQ and HCQ inhibit the production of interferon- (IFN-) α and IFN-γ and/or tumor necrotizing factor- (TNF-) α. Furthermore, CQ blocks the production of prostaglandins (PGs) in the intact cell by inhibiting substrate accessibility of arachidonic acid necessary for the production of PGs. Moreover, CQ affects the stability between T-helper cell (Th) 1 and Th2 cytokine secretion by augmenting IL-10 production in peripheral blood mononuclear cells (PBMCs). Additionally, CQ is capable of blocking lipopolysaccharide- (LPS-) triggered stimulation of extracellular signal-modulated extracellular signal-regulated kinases 1/2 in human PBMCs. HCQ at clinical levels effectively blocks CpG-triggered class-switched memory B-cells from differentiating into plasmablasts as well as producing IgG. Also, HCQ inhibits cytokine generation from all the B-cell subsets. IgM memory B-cells exhibits the utmost cytokine production. Nevertheless, CQ triggers the production of reactive oxygen species. A rare, but serious, side effect of CQ or HCQ in nondiabetic patients is hypoglycaemia. Thus, in critically ill patients, CQ and HCQ are most likely to deplete all the energy stores of the body leaving the patient very weak and sicker. We advocate that, during clinical usage of CQ and HCQ in critically ill patients, it is very essential to strengthen the CQ or HCQ with glucose infusion. CQ and HCQ are thus potential inhibitors of the COVID-19 cytokine storm.
Collapse
|
5
|
Bautista D, Vásquez C, Ayala-Ramírez P, Téllez-Sosa J, Godoy-Lozano E, Martínez-Barnetche J, Franco M, Angel J. Differential Expression of IgM and IgD Discriminates Two Subpopulations of Human Circulating IgM +IgD +CD27 + B Cells That Differ Phenotypically, Functionally, and Genetically. Front Immunol 2020; 11:736. [PMID: 32435242 PMCID: PMC7219516 DOI: 10.3389/fimmu.2020.00736] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 03/31/2020] [Indexed: 01/17/2023] Open
Abstract
The origin and function of blood IgM+IgD+CD27+ B cells is controversial, and they are considered a heterogeneous population. Previous staining of circulating B cells of healthy donors with rotavirus fluorescent virus-like particles allowed us to differentiate two subsets of IgM+IgD+CD27+: IgMhi and IgMlo B cells. Here, we confirmed this finding and compared the phenotype, transcriptome, in vitro function, and Ig gene repertoire of these two subsets. Eleven markers phenotypically discriminated both subsets (CD1c, CD69, IL21R, CD27, MTG, CD45RB, CD5, CD184, CD23, BAFFR, and CD38) with the IgMhi phenotypically resembling previously reported marginal zone B cells and the IgMlo resembling both naïve and memory B cells. Transcriptomic analysis showed that both subpopulations clustered close to germinal center-experienced IgM only B cells with a Principal Component Analysis, but differed in expression of 78 genes. Moreover, IgMhi B cells expressed genes characteristic of previously reported marginal zone B cells. After stimulation with CpG and cytokines, significantly (p < 0.05) higher frequencies (62.5%) of IgMhi B cells proliferated, compared with IgMlo B cells (35.37%), and differentiated to antibody secreting cells (14.22% for IgMhi and 7.19% for IgMlo). IgMhi B cells had significantly (p < 0.0007) higher frequencies of mutations in IGHV and IGKV regions, IgMlo B cells had higher usage of IGHJ6 genes (p < 0.0001), and both subsets differed in their HCDR3 properties. IgMhi B cells shared most of their shared IGH clonotypes with IgM only memory B cells, and IgMlo B cells with IgMhi B cells. These results support the notion that differential expression of IgM and IgD discriminates two subpopulations of human circulating IgM+IgD+CD27+ B cells, with the IgMhi B cells having similarities with previously described marginal zone B cells that passed through germinal centers, and the IgMlo B cells being the least differentiated amongst the IgM+CD27+ subsets.
Collapse
Affiliation(s)
- Diana Bautista
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Camilo Vásquez
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Paola Ayala-Ramírez
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Juan Téllez-Sosa
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Mexico
| | - Ernestina Godoy-Lozano
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Mexico
| | - Jesús Martínez-Barnetche
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Mexico
| | - Manuel Franco
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Juana Angel
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá, Colombia
| |
Collapse
|
6
|
Hydroxychloroquine efficiently suppresses inflammatory responses of human class-switched memory B cells via Toll-like receptor 9 inhibition. Clin Immunol 2018; 195:1-7. [PMID: 29981383 DOI: 10.1016/j.clim.2018.07.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 07/03/2018] [Accepted: 07/03/2018] [Indexed: 11/22/2022]
Abstract
Hydroxychloroquine is widely used for autoimmune diseases such as systemic lupus erythematosus and rheumatoid arthritis. Although B cells contribute to the pathogenesis of these diseases, the action of hydroxychloroquine on B cells remains unclear. Here we examined the effects of hydroxychloroquine on functions of B cell subsets. Hydroxychloroquine efficiently inhibited the mammalian target of rapamycin complex 1, differentiation of CD19+IgD-CD27+ class-switched memory B cells to plasmablasts and their IgG production, under stimulation with CpG, a Toll-like receptor (TLR)-9 ligand. Hydroxychloroquine also inhibited CpG-induced production of interleukin-6 and tumor necrosis factor-α in B cell subsets. Taken together, hydroxychloroquine markedly suppresses the TLR9-mediated human B cell functions during inflammatory processes. Based on our results, we believe that hydroxychloroquine can be beneficial in the treatment of B cell-mediated autoimmune diseases.
Collapse
|
7
|
Darwiche W, Gubler B, Marolleau JP, Ghamlouch H. Chronic Lymphocytic Leukemia B-Cell Normal Cellular Counterpart: Clues From a Functional Perspective. Front Immunol 2018; 9:683. [PMID: 29670635 PMCID: PMC5893869 DOI: 10.3389/fimmu.2018.00683] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 03/20/2018] [Indexed: 12/20/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) is characterized by the clonal expansion of small mature-looking CD19+ CD23+ CD5+ B-cells that accumulate in the blood, bone marrow, and lymphoid organs. To date, no consensus has been reached concerning the normal cellular counterpart of CLL B-cells and several B-cell types have been proposed. CLL B-cells have remarkable phenotypic and gene expression profile homogeneity. In recent years, the molecular and cellular biology of CLL has been enriched by seminal insights that are leading to a better understanding of the natural history of the disease. Immunophenotypic and molecular approaches (including immunoglobulin heavy-chain variable gene mutational status, transcriptional and epigenetic profiling) comparing the normal B-cell subset and CLL B-cells provide some new insights into the normal cellular counterpart. Functional characteristics (including activation requirements and propensity for plasma cell differentiation) of CLL B-cells have now been investigated for 50 years. B-cell subsets differ substantially in terms of their functional features. Analysis of shared functional characteristics may reveal similarities between normal B-cell subsets and CLL B-cells, allowing speculative assignment of a normal cellular counterpart for CLL B-cells. In this review, we summarize current data regarding peripheral B-cell differentiation and human B-cell subsets and suggest possibilities for a normal cellular counterpart based on the functional characteristics of CLL B-cells. However, a definitive normal cellular counterpart cannot be attributed on the basis of the available data. We discuss the functional characteristics required for a cell to be logically considered to be the normal counterpart of CLL B-cells.
Collapse
Affiliation(s)
- Walaa Darwiche
- EA 4666 Lymphocyte Normal - Pathologique et Cancers, HEMATIM, Université de Picardie Jules Verne, Amiens, France.,Laboratoire d'Hématologie, Centre Hospitalier Universitaire Amiens-Picardie, Amiens, France
| | - Brigitte Gubler
- EA 4666 Lymphocyte Normal - Pathologique et Cancers, HEMATIM, Université de Picardie Jules Verne, Amiens, France.,Laboratoire d'Oncobiologie Moléculaire, Centre Hospitalier Universitaire Amiens-Picardie, Amiens, France
| | - Jean-Pierre Marolleau
- EA 4666 Lymphocyte Normal - Pathologique et Cancers, HEMATIM, Université de Picardie Jules Verne, Amiens, France.,Service d'Hématologie Clinique et Thérapie cellulaire, Centre Hospitalier Universitaire Amiens-Picardie, Amiens, France
| | - Hussein Ghamlouch
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1170, Gustave Roussy, Villejuif, France.,Institut Gustave Roussy, Villejuif, France.,Université Paris-Sud, Faculté de Médecine, Le Kremlin-Bicêtre, France
| |
Collapse
|
8
|
Ticha O, Moos L, Wajant H, Bekeredjian-Ding I. Expression of Tumor Necrosis Factor Receptor 2 Characterizes TLR9-Driven Formation of Interleukin-10-Producing B Cells. Front Immunol 2018; 8:1951. [PMID: 29403470 PMCID: PMC5780339 DOI: 10.3389/fimmu.2017.01951] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 12/18/2017] [Indexed: 12/20/2022] Open
Abstract
B cell-derived interleukin-10 (IL-10) production has been described as a hallmark for regulatory function in B lymphocytes. However, there is an ongoing debate on the origin of IL-10-secreting B cells and lack of specific surface markers has turned into an important obstacle for studying human B regulatory cells. In this study, we propose that tumor necrosis factor receptor 2 (TNFR2) expression can be used for enrichment of IL-10-secreting B cells. Our data confirm that IL-10 production can be induced by TLR9 stimulation with CpG ODN and that IL-10 secretion accompanies differentiation of peripheral blood B cells into plasma blasts. We further show that CpG ODN stimulation induces TNFR2 expression, which correlates with IL-10 secretion and terminal differentiation. Indeed, flow cytometric sorting of TNFR2+ B cells revealed that TNFR2+ and TNFR2− fractions correspond to IL-10+ and IL-10− fractions, respectively. Furthermore, CpG-induced TNFR2+ B cells were predominantly found in the IgM+ CD27+ B cell subset and spontaneously released immunoglobulin. Finally, our data corroborate the functional impact of TNFR2 by demonstrating that stimulation with a TNFR2 agonist significantly augments IL-10 and IL-6 production in B cells. Altogether, our data highlight a new role for TNFR2 in IL-10-secreting human B lymphocytes along with the potential to exploit this finding for sorting and isolation of this currently ill-defined B cell subset.
Collapse
Affiliation(s)
- Olga Ticha
- Division of Microbiology, Paul-Ehrlich-Institut, Langen, Germany
| | - Lukas Moos
- Division of Microbiology, Paul-Ehrlich-Institut, Langen, Germany
| | - Harald Wajant
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Wuerzburg, Wuerzburg, Germany
| | | |
Collapse
|
9
|
Moura RA, Quaresma C, Vieira AR, Gonçalves MJ, Polido-Pereira J, Romão VC, Martins N, Canhão H, Fonseca JE. B-cell phenotype and IgD-CD27- memory B cells are affected by TNF-inhibitors and tocilizumab treatment in rheumatoid arthritis. PLoS One 2017; 12:e0182927. [PMID: 28886017 PMCID: PMC5590747 DOI: 10.1371/journal.pone.0182927] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Accepted: 07/18/2017] [Indexed: 01/22/2023] Open
Abstract
Background The use of TNF-inhibitors and/or the IL-6 receptor antagonist, tocilizumab, in rheumatoid arthritis (RA) have pleiotropic effects that also involve circulating B-cells. The main goal of this study was to assess the effect of TNF-inhibitors and tocilizumab on B-cell phenotype and gene expression in RA. Methods Blood samples were collected from untreated early RA (ERA) patients, established RA patients under methotrexate treatment, established RA patients before and after treatment with TNF-inhibitors and tocilizumab, and healthy donors. B-cell subpopulations were characterized by flow cytometry and B-cell gene expression was analyzed by real-time PCR on isolated B-cells. Serum levels of BAFF, CXCL13 and sCD23 were determined by ELISA. Results The frequency of total CD19+ B cells in circulation was similar between controls and all RA groups, irrespective of treatment, but double negative (DN) IgD-CD27- memory B cells were significantly increased in ERA and established RA when compared to controls. Treatment with TNF-inhibitors and tocilizumab restored the frequency of IgD-CD27- B-cells to normal levels, but did not affect other B cell subpopulations. TACI, CD95, CD5, HLA-DR and TLR9 expression on B-cells significantly increased after treatment with either TNF-inhibitors and/ or tocilizumab, but no significant changes were observed in BAFF-R, BCMA, CD69, CD86, CXCR5, CD23, CD38 and IgM expression on B-cells when comparing baseline with post-treatment follow-ups. Alterations in B-cell gene expression of BAFF-R, TACI, TLR9, FcγRIIB, BCL-2, BLIMP-1 and β2M were found in ERA and established RA patients, but no significant differences were observed after TNF-inhibitors and tocilizumab treatment when comparing baseline and follow-ups. Serum levels of CXCL13, sCD23 and BAFF were not significantly affected by treatment with TNF-inhibitors and tocilizumab. Conclusions In RA patients, the use of TNF-inhibitors and/ or tocilizumab treatment affects B-cell phenotype and IgD-CD27- memory B cells in circulation, but not B-cell gene expression levels.
Collapse
MESH Headings
- Antibodies, Monoclonal, Humanized/pharmacology
- Antibodies, Monoclonal, Humanized/therapeutic use
- Arthritis, Rheumatoid/diagnosis
- Arthritis, Rheumatoid/drug therapy
- Arthritis, Rheumatoid/immunology
- Arthritis, Rheumatoid/metabolism
- B-Lymphocyte Subsets/drug effects
- B-Lymphocyte Subsets/immunology
- B-Lymphocyte Subsets/metabolism
- Biomarkers
- Chemokine CXCL13/blood
- Follow-Up Studies
- Gene Expression Profiling
- Gene Expression Regulation/drug effects
- Humans
- Immunoglobulin D/metabolism
- Immunologic Memory
- Immunophenotyping
- Lymphocyte Count
- Methotrexate/pharmacology
- Methotrexate/therapeutic use
- Phenotype
- Receptors, CXCR5/metabolism
- Receptors, IgE/blood
- Treatment Outcome
- Tumor Necrosis Factor Receptor Superfamily, Member 7/metabolism
- Tumor Necrosis Factor-alpha/antagonists & inhibitors
Collapse
Affiliation(s)
- Rita A. Moura
- Rheumatology Research Unit, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- * E-mail:
| | - Cláudia Quaresma
- Rheumatology Research Unit, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Ana R. Vieira
- Rheumatology Research Unit, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Maria J. Gonçalves
- Rheumatology Research Unit, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Rheumatology Department, Centro Hospitalar de Lisboa Norte, EPE, Hospital de Santa Maria, Lisbon Academic Medical Centre, Lisbon, Portugal
| | - Joaquim Polido-Pereira
- Rheumatology Research Unit, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Rheumatology Department, Centro Hospitalar de Lisboa Norte, EPE, Hospital de Santa Maria, Lisbon Academic Medical Centre, Lisbon, Portugal
| | - Vasco C. Romão
- Rheumatology Research Unit, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Rheumatology Department, Centro Hospitalar de Lisboa Norte, EPE, Hospital de Santa Maria, Lisbon Academic Medical Centre, Lisbon, Portugal
| | - Nádia Martins
- Rheumatology Department, Centro Hospitalar de Lisboa Norte, EPE, Hospital de Santa Maria, Lisbon Academic Medical Centre, Lisbon, Portugal
| | - Helena Canhão
- Rheumatology Research Unit, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Rheumatology Department, Centro Hospitalar de Lisboa Norte, EPE, Hospital de Santa Maria, Lisbon Academic Medical Centre, Lisbon, Portugal
| | - João E. Fonseca
- Rheumatology Research Unit, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Rheumatology Department, Centro Hospitalar de Lisboa Norte, EPE, Hospital de Santa Maria, Lisbon Academic Medical Centre, Lisbon, Portugal
| |
Collapse
|
10
|
CD11c+ T-bet+ memory B cells: Immune maintenance during chronic infection and inflammation? Cell Immunol 2017; 321:8-17. [PMID: 28838763 DOI: 10.1016/j.cellimm.2017.07.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 07/18/2017] [Indexed: 01/30/2023]
Abstract
CD11c+ T-bet+ B cells have now been detected and characterized in different experimental and clinical settings, in both mice and humans. Whether such cells are monolithic, or define subsets of B cells with different functions is not yet known. Our studies have identified CD11c+ IgM+ CD19hi splenic IgM memory B cells that appear at approximately three weeks post-ehrlichial infection, and persist indefinitely, during low-level chronic infection. Although the CD11c+ T-bet+ B cells we have described are distinct, they appear to share many features with similar cells detected under diverse conditions, including viral infections, aging, and autoimmunity. We propose that CD11c+ T-bet+ B cells as a group share characteristics of memory B cells that are maintained under conditions of inflammation and/or low-level chronic antigen stimulation. In some cases, these cells may be advantageous, by providing immunity to re-infection, but in others may be deleterious, by contributing to aged-associated autoimmune responses.
Collapse
|
11
|
Myeloid-derived suppressor cells modulate B-cell responses. Immunol Lett 2017; 188:108-115. [PMID: 28687234 DOI: 10.1016/j.imlet.2017.07.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 06/27/2017] [Accepted: 07/03/2017] [Indexed: 02/07/2023]
Abstract
Myeloid-derived suppressor cells (MDSCs) are key regulators of adaptive immunity by suppressing T-cell functions. However, their potential action on or interaction with B cells remained poorly understood. Here we demonstrate that human polymorphonuclear MDSCs differentially modulate B-cell function by suppressing B-cell proliferation and antibody production. We further demonstrate that this MDSC-mediated effect is cell contact dependent and involves established mediators such as arginase-1, nitric oxide (NO), reactive oxygen species (ROS) as well as B-cell death. Collectively, our studies provide novel evidence that human MDSCs modulate B cells, which could have future implications for immunotherapy approaches.
Collapse
|
12
|
Papillion AM, Kenderes KJ, Yates JL, Winslow GM. Early derivation of IgM memory cells and bone marrow plasmablasts. PLoS One 2017; 12:e0178853. [PMID: 28575114 PMCID: PMC5456393 DOI: 10.1371/journal.pone.0178853] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 05/21/2017] [Indexed: 11/19/2022] Open
Abstract
IgM memory cells are recognized as an important component of B cell memory in mice and humans. Our studies of B cells elicited in response to ehrlichial infection identified a population of CD11c-positive IgM memory cells, and an IgM bone marrow antibody-secreting cell population. The origin of these cells was unknown, although an early T-independent spleen CD11c- and T-bet-positive IgM plasmablast population precedes both, suggesting a linear relationship. A majority of the IgM memory cells detected after day 30 post-infection, also T-bet-positive, had undergone somatic hypermutation, indicating they expressed activation-induced cytidine deaminase (AID). Therefore, to identify early AID-expressing precursor B cells, we infected an AID-regulated tamoxifen-inducible Cre-recombinase-EYFP reporter strain. Tamoxifen administration led to the labeling of both IgM memory cells and bone marrow ASCs on day 30 and later post-infection. High frequencies of labeled cells were identified on day 30 post-infection, following tamoxifen administration on day 10 post-infection, although IgM memory cells were marked when tamoxifen was administered as early as day 4 post-infection. Transcription of Aicda in the early plasmablasts was not detected in the absence of CD4 T cells, but occurred independently of TLR signaling. Unlike the IgM memory cells, the bone marrow IgM ASCs were elicited independent of T cell help. Moreover, Aicda was constitutively expressed in IgM memory cells, but not in bone marrow ASCs. These studies demonstrate that two distinct long-term IgM-positive B cell populations are generated early in response to infection, but are maintained via separate mechanisms.
Collapse
Affiliation(s)
- Amber M. Papillion
- Department of Microbiology and Immunology, Upstate Medical University, Syracuse, New York, United States of America
| | - Kevin J. Kenderes
- Department of Microbiology and Immunology, Upstate Medical University, Syracuse, New York, United States of America
| | - Jennifer L. Yates
- Wadsworth Center, and University at Albany, Albany, New York, United States of America
| | - Gary M. Winslow
- Department of Microbiology and Immunology, Upstate Medical University, Syracuse, New York, United States of America
- * E-mail:
| |
Collapse
|
13
|
Moens L, Kane A, Tangye SG. Naïve and memory B cells exhibit distinct biochemical responses following BCR engagement. Immunol Cell Biol 2016; 94:774-86. [PMID: 27101923 DOI: 10.1038/icb.2016.41] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 04/17/2016] [Accepted: 04/18/2016] [Indexed: 01/08/2023]
Abstract
Immunological memory is characterized by the rapid reactivation of memory B cells that produce large quantities of high-affinity antigen-specific antibodies. This contrasts the response of naïve B cells, and the primary immune response, which is much slower and of lower affinity. Memory responses are critical for protection against infectious diseases and form the basis of most currently available vaccines. Although we have known about the phenomenon of long-lived memory for centuries, the biochemical differences underlying these diverse responses of naïve and memory B cells is incompletely resolved. Here we investigated the nature of B-cell receptor (BCR) signaling in human splenic naïve, IgM(+) memory and isotype-switched memory B cells following multivalent BCR crosslinking. We observed comparable rapid and transient phosphorylation kinetics for proximal (phosphotyrosine and spleen tyrosine kinase) and propagation (B-cell linker, phospholipase Cγ2) signaling components in these different B-cell subsets. However, the magnitude of activation of downstream components of the BCR signaling pathway were greater in memory compared with naïve cells. Although no differences were observed in the magnitude of Ca(2+) mobilization between subsets, IgM(+) memory B cells exhibited a more rapid Ca(2+) mobilization and a greater depletion of the Ca(2+) endoplasmic reticulum stores, while IgG(+) memory B cells had a prolonged Ca(2+) uptake. Collectively, our findings show that intrinsic signaling features of B-cell subsets contribute to the robust response of human memory B cells over naïve B cells. This has implications for our understanding of memory B-cell responses and provides a framework to modulate these responses in the setting of vaccination and immunopathologies, such as immunodeficiency and autoimmunity.
Collapse
Affiliation(s)
- Leen Moens
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Alisa Kane
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia.,St Vincent's Clinical School, UNSW, Darlinghurst, New South Wales, Australia
| | - Stuart G Tangye
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia.,St Vincent's Clinical School, UNSW, Darlinghurst, New South Wales, Australia
| |
Collapse
|