1
|
Chen G, Li W, Ge R, Guo T, Zhang Y, Zhou C, Lin M. NUSAP1 Promotes Immunity and Apoptosis by the SHCBP1/JAK2/STAT3 Phosphorylation Pathway to Induce Dendritic Cell Generation in Hepatocellular Carcinoma. J Immunother 2025; 48:46-57. [PMID: 38980111 PMCID: PMC11753460 DOI: 10.1097/cji.0000000000000531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/29/2024] [Indexed: 07/10/2024]
Abstract
Hepatocellular carcinoma (HCC) is the most common type of liver cancer and is associated with high morbidity and mortality rates. The aims of this study were to investigate the immune-promoting action of nucleolar and spindle-associated protein 1 (NUSAP1) and identify an immunotherapy target for HCC. The Cancer Genome Atlas (TCGA) was used to analyze interaction molecules and immune correlation. The interaction between NUSAP1 and SHC binding and spindle associated 1 (SHCBP1) was examined. The role of the SHCBP1/Janus kinase 2/signal transducer and activator of transcription 3 (SHCBP1/JAK2/STAT3) pathway in this process was explored. After co-culture with HCC cell lines, the differentiation of peripheral blood mononuclear cells (PBMCs) into dendritic cells (DC) was evaluated by measuring the expression of surface factors CD1a and CD86. Pathological tissues from 50 patients with HCC were collected to validate the results of cell experiments. The expression levels of CD1a and CD86 in tissues were also determined. The results show that NUSAP1 interacted with SHCBP1 and was positively correlated with DC. In HCC cell lines, an interaction was observed between NUSAP1 and SHCBP1. It was verified that NUSAP1 inhibited the JAK2/STAT3 phosphorylation pathway by blocking SHCBP1. After co-culture, the levels of CD1a and CD86 in PBMC were elevated. In the clinical specimens, CD1a and CD86 expression levels were significantly higher in the high-NUSAP1 group versus the low-NUSAP1 group. In Summary, NUSAP1 enhanced immunity by inhibiting the SHCBP1/JAK2/STAT3 phosphorylation pathway and promoted DC generation and HCC apoptosis. NUSAP1 may be a target of immunotherapy for HCC.
Collapse
Affiliation(s)
- Guojie Chen
- Medical School of Nantong University, Nantong, Jiangsu, China
- Clinical Laboratory, Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, Jiangsu, China
| | - WenYa Li
- Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Ruomu Ge
- Clinical Laboratory, Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, Jiangsu, China
| | - Ting Guo
- Clinical Laboratory, Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, Jiangsu, China
| | - Yuhan Zhang
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Chenglin Zhou
- Laboratory Department, Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, Jiangsu, China
| | - Mei Lin
- Clinical Laboratory, Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, Jiangsu, China
| |
Collapse
|
2
|
Ge Y, Wang B, Xiao J, Wu H, Shao Q. NUSAP1 promotes gastric cancer radioresistance by inhibiting ubiquitination of ANXA2 and is suppressed by miR-129-5p. J Cancer Res Clin Oncol 2024; 150:406. [PMID: 39212774 PMCID: PMC11364566 DOI: 10.1007/s00432-024-05927-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Radiotherapy is an important strategy for the treatment of advanced gastric cancer (GC), while the radioresistance limits its effectiveness. Nucleolar and spindle associated protein 1 (NUSAP1) was implicated in cancer progression and chemoresistance. However, the underlying mechanisms of NUSAP1 influencing GC radioresistance remain largely unknown. METHODS Meta-analysis was conducted to systematically evaluate the prognostic value of NUSAP1 in human cancers. Gene set enrichment analysis (GSEA) was conducted using The Cancer Genome Atlas (TCGA) and gene expression omnibus (GEO) datasets. MRNA and protein expressions were detected by qRT-PCR and western blot, respectively. The radiosensitivity of GC cells was observed by colony formation, flow cytometry, comet, immunofluorescence, and animal assays. Immunoprecipitation assay and mass spectrometry were utilized to identify protein associations. MiRNAs binding with NUSAP1 were determined by starbase prediction, luciferase reporter, and RNA immunoprecipitation (RIP) assays. RESULTS NUSAP1 high expression predicted worse overall survival (OS) and disease-free survival (DFS) with no statistical heterogeneity through the meta-analysis. Downregulation of NUSAP1 significantly increased GC radiosensitivity by inhibiting colony formation, DNA damage repair, and promoting apoptosis following irradiation. Additionally, NUSAP1 silencing combined with radiation resulted in a synergistic anti-tumor effect in xenograft mouse model. Mechanistically, NUSAP1 interacted with ANXA2, protecting it against protein degradation via impeding its ubiquitination process. NUSAP1 was confirmed as a target of miR-129-5p and negatively regulated by it. CONCLUSION Our results suggested that NUSAP1 enhanced the radioresistance of GC cells. NUSAP1 could be a promising target to increase GC radiosensitivity.
Collapse
Affiliation(s)
- Yugang Ge
- Department of General Surgery, Jiangyin People's Hospital, The Affiliated Jiangyin Clinical College of Xuzhou Medical University, Jiangyin, Jiangsu Province, China
| | - Biao Wang
- Department of Oncology, First People's Hospital of Yancheng, Fourth Affiliated Hospital of Nantong University, Yancheng, China
| | - Jian Xiao
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Hongshuai Wu
- Wuxi Key Laboratory of Biomaterials for Clinical Application, Department of Central Laboratory, Jiangyin Clinical College of Xuzhou Medical University, Wuxi, China
| | - Qing Shao
- Department of General Surgery, Jiangyin People's Hospital, The Affiliated Jiangyin Clinical College of Xuzhou Medical University, Jiangyin, Jiangsu Province, China.
| |
Collapse
|
3
|
Gan D, Zhu Y, Lu X, Li J. SCIPAC: quantitative estimation of cell-phenotype associations. Genome Biol 2024; 25:119. [PMID: 38741183 PMCID: PMC11089691 DOI: 10.1186/s13059-024-03263-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/30/2024] [Indexed: 05/16/2024] Open
Abstract
Numerous algorithms have been proposed to identify cell types in single-cell RNA sequencing data, yet a fundamental problem remains: determining associations between cells and phenotypes such as cancer. We develop SCIPAC, the first algorithm that quantitatively estimates the association between each cell in single-cell data and a phenotype. SCIPAC also provides a p-value for each association and applies to data with virtually any type of phenotype. We demonstrate SCIPAC's accuracy in simulated data. On four real cancerous or noncancerous datasets, insights from SCIPAC help interpret the data and generate new hypotheses. SCIPAC requires minimum tuning and is computationally very fast.
Collapse
Affiliation(s)
- Dailin Gan
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, 46556, IN, USA
| | - Yini Zhu
- Department of Biological Sciences, Boler-Parseghian Center for Rare and Neglected Diseases, Harper Cancer Research Institute, Integrated Biomedical Sciences Graduate Program, University of Notre Dame, Notre Dame, 46556, IN, USA
| | - Xin Lu
- Department of Biological Sciences, Boler-Parseghian Center for Rare and Neglected Diseases, Harper Cancer Research Institute, Integrated Biomedical Sciences Graduate Program, University of Notre Dame, Notre Dame, 46556, IN, USA
- Tumor Microenvironment and Metastasis Program, Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, 46202, IN, USA
| | - Jun Li
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, 46556, IN, USA.
| |
Collapse
|
4
|
Dakal TC, George N, Xu C, Suravajhala P, Kumar A. Predictive and Prognostic Relevance of Tumor-Infiltrating Immune Cells: Tailoring Personalized Treatments against Different Cancer Types. Cancers (Basel) 2024; 16:1626. [PMID: 38730579 PMCID: PMC11082991 DOI: 10.3390/cancers16091626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 05/13/2024] Open
Abstract
TIICs are critical components of the TME and are used to estimate prognostic and treatment responses in many malignancies. TIICs in the tumor microenvironment are assessed and quantified by categorizing immune cells into three subtypes: CD66b+ tumor-associated neutrophils (TANs), FoxP3+ regulatory T cells (Tregs), and CD163+ tumor-associated macrophages (TAMs). In addition, many cancers have tumor-infiltrating M1 and M2 macrophages, neutrophils (Neu), CD4+ T cells (T-helper), CD8+ T cells (T-cytotoxic), eosinophils, and mast cells. A variety of clinical treatments have linked tumor immune cell infiltration (ICI) to immunotherapy receptivity and prognosis. To improve the therapeutic effectiveness of immune-modulating drugs in a wider cancer patient population, immune cells and their interactions in the TME must be better understood. This study examines the clinicopathological effects of TIICs in overcoming tumor-mediated immunosuppression to boost antitumor immune responses and improve cancer prognosis. We successfully analyzed the predictive and prognostic usefulness of TIICs alongside TMB and ICI scores to identify cancer's varied immune landscapes. Traditionally, immune cell infiltration was quantified using flow cytometry, immunohistochemistry, gene set enrichment analysis (GSEA), CIBERSORT, ESTIMATE, and other platforms that use integrated immune gene sets from previously published studies. We have also thoroughly examined traditional limitations and newly created unsupervised clustering and deconvolution techniques (SpatialVizScore and ProTICS). These methods predict patient outcomes and treatment responses better. These models may also identify individuals who may benefit more from adjuvant or neoadjuvant treatment. Overall, we think that the significant contribution of TIICs in cancer will greatly benefit postoperative follow-up, therapy, interventions, and informed choices on customized cancer medicines.
Collapse
Affiliation(s)
- Tikam Chand Dakal
- Genome and Computational Biology Lab, Department of Biotechnology, Mohanlal Sukhadia University, Udaipur 313001, Rajasthan, India
| | - Nancy George
- Department of Biotechnology, Chandigarh University, Mohali 140413, Punjab, India;
| | - Caiming Xu
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of the City of Hope, Monrovia, CA 91010, USA;
| | - Prashanth Suravajhala
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana P.O. 690525, Kerala, India;
| | - Abhishek Kumar
- Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, Karnataka, India
| |
Collapse
|
5
|
Wang Z, Cao L, Wang J, Wang H, Ma T, Yin Z, Cai W, Liu L, Liu T, Ma H, Zhang Y, Shen Z, Zheng H. A novel predictive model of microvascular invasion in hepatocellular carcinoma based on differential protein expression. BMC Gastroenterol 2023; 23:89. [PMID: 36973651 PMCID: PMC10041792 DOI: 10.1186/s12876-023-02729-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 03/13/2023] [Indexed: 03/29/2023] Open
Abstract
BACKGROUND This study aims to construct and verify a nomogram model for microvascular invasion (MVI) based on hepatocellular carcinoma (HCC) tumor characteristics and differential protein expressions, and explore the clinical application value of the prediction model. METHODS The clinicopathological data of 200 HCC patients were collected and randomly divided into training set and validation set according to the ratio of 7:3. The correlation between MVI occurrence and primary disease, age, gender, tumor size, tumor stage, and immunohistochemical characteristics of 13 proteins, including GPC3, CK19 and vimentin, were statistically analyzed. Univariate and multivariate analyzes identified risk factors and independent risk factors, respectively. A nomogram model that can be used to predict the presence of MVI was subsequently constructed. Then, receiver operating characteristic (ROC) curve, calibration curve, and decision curve analysis (DCA) were conducted to assess the performance of the model. RESULTS Multivariate logistic regression analysis indicated that tumor size, GPC3, P53, RRM1, BRCA1, and ARG were independent risk factors for MVI. A nomogram was constructed based on the above six predictors. ROC curve, calibration, and DCA analysis demonstrated the good performance and the clinical application potential of the nomogram model. CONCLUSIONS The predictive model constructed based on the clinical characteristics of HCC tumors and differential protein expression patterns could be helpful to improve the accuracy of MVI diagnosis in HCC patients.
Collapse
Affiliation(s)
- Zhenglu Wang
- Biological Sample Resource Sharing Center, Tianjin First Central Hospital, Nankai University, Tianjin, China
| | - Lei Cao
- Biological Sample Resource Sharing Center, Tianjin First Central Hospital, Nankai University, Tianjin, China
| | - Jianxi Wang
- Biological Sample Resource Sharing Center, Tianjin First Central Hospital, Nankai University, Tianjin, China
| | - Hanlin Wang
- Department of Pathology and Laboratory Medicine, University of California in Los Angeles (UCLA), Los Angeles, CA, USA
| | - Tingting Ma
- Biological Sample Resource Sharing Center, Tianjin First Central Hospital, Nankai University, Tianjin, China
| | - Zhiqi Yin
- Pathology Department, Tianjin First Central Hospital, Nankai University, Tianjin, China
| | - Wenjuan Cai
- Pathology Department, Tianjin First Central Hospital, Nankai University, Tianjin, China
| | - Lei Liu
- Research Institute of Transplant Medicine, Nankai University, Tianjin, China
| | - Tao Liu
- Key Laboratory of Transplant Medicine, Chinese Academy of Medical Sciences, 24 Fukang Road, Nankai, Tianjin, 300192, China
| | - Hengde Ma
- HPS Gene Technology Co., Ltd., Tianjin, China
| | - Yamin Zhang
- Organ Transplant Department, Tianjin First Central Hospital, Nankai University, Tianjin, China
| | - Zhongyang Shen
- Research Institute of Transplant Medicine, Nankai University, Tianjin, China
- Key Laboratory of Transplant Medicine, Chinese Academy of Medical Sciences, 24 Fukang Road, Nankai, Tianjin, 300192, China
| | - Hong Zheng
- Key Laboratory of Transplant Medicine, Chinese Academy of Medical Sciences, 24 Fukang Road, Nankai, Tianjin, 300192, China.
- Tianjin Key Laboratory for Organ Transplantation, Tianjin First Central Hospital, Nankai University, Tianjin, China.
| |
Collapse
|
6
|
Chiu CL, Li CG, Verschueren E, Wen RM, Zhang D, Gordon CA, Zhao H, Giaccia AJ, Brooks JD. NUSAP1 Binds ILF2 to Modulate R-Loop Accumulation and DNA Damage in Prostate Cancer. Int J Mol Sci 2023; 24:6258. [PMID: 37047232 PMCID: PMC10093842 DOI: 10.3390/ijms24076258] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/20/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Increased expression of NUSAP1 has been identified as a robust prognostic biomarker in prostate cancer and other malignancies. We have previously shown that NUSAP1 is positively regulated by E2F1 and promotes cancer invasion and metastasis. To further understand the biological function of NUSAP1, we used affinity purification and mass spectrometry proteomic analysis to identify NUSAP1 interactors. We identified 85 unique proteins in the NUSAP1 interactome, including ILF2, DHX9, and other RNA-binding proteins. Using proteomic approaches, we uncovered a function for NUSAP1 in maintaining R-loops and in DNA damage response through its interaction with ILF2. Co-immunoprecipitation and colocalization using confocal microscopy verified the interactions of NUSAP1 with ILF2 and DHX9, and RNA/DNA hybrids. We showed that the microtubule and charged helical domains of NUSAP1 were necessary for the protein-protein interactions. Depletion of ILF2 alone further increased camptothecin-induced R-loop accumulation and DNA damage, and NUSAP1 depletion abolished this effect. In human prostate adenocarcinoma, NUSAP1 and ILF2 mRNA expression levels are positively correlated, elevated, and associated with poor clinical outcomes. Our study identifies a novel role for NUSAP1 in regulating R-loop formation and accumulation in response to DNA damage through its interactions with ILF2 and hence provides a potential therapeutic target.
Collapse
Affiliation(s)
- Chun-Lung Chiu
- Department of Urology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Caiyun G. Li
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Erik Verschueren
- ULUA Besloten Vennootschap, Arendstraat 29, 2018 Antwerpen, Belgium
| | - Ru M. Wen
- Department of Urology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Dalin Zhang
- Department of Urology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Catherine A. Gordon
- Department of Urology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Hongjuan Zhao
- Department of Urology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Amato J. Giaccia
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Medical Research Council/Cancer Research United Kingdom Oxford Institute for Radiation Oncology and Gray Laboratory, University of Oxford, Oxford OX3 7DQ, UK
| | - James D. Brooks
- Department of Urology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Stanford Cancer Research Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
7
|
Li D, Hu J, Li S, Zhou C, Feng M, Li L, Gao Y, Chen X, Wu X, Cao Y, Hao B, Chen L. LINC01393, a Novel Long Non-Coding RNA, Promotes the Cell Proliferation, Migration and Invasion through MiR-128-3p/NUSAP1 Axis in Glioblastoma. Int J Mol Sci 2023; 24:ijms24065878. [PMID: 36982952 PMCID: PMC10056594 DOI: 10.3390/ijms24065878] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/04/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Nucleolar and spindle-associated protein 1 (NUSAP1) is a potential molecular marker and intervention target for glioblastoma (GBM). In this study, we aim to investigate upstream regulatory lncRNAs and miRNAs of NUSAP1 through both experimental and bioinformatic methods. We screened upstream lncRNAs and miRNAs of NUSAP1 through multiple databases based on ceRNA theory. Then, in vitro and in vivo experiments were performed to elucidate the relevant biological significance and regulatory mechanism among them. Finally, the potential downstream mechanism was discussed. LINC01393 and miR-128-3p were screened as upstream regulatory molecules of NUSAP1 by TCGA and ENCORI databases. The negative correlations among them were confirmed in clinical specimens. Biochemical studies revealed that overexpression or knockdown of LINC01393 respectively enhanced or inhibited malignant phenotype of GBM cells. MiR-128-3p inhibitor reversed LINC01393 knockdown-mediated impacts on GBM cells. Then, dual-luciferase reporter assay and RNA immunoprecipitation assay were conducted to validate LINC01393/miR-128-3p/NUSAP1 interactions. In vivo, LINC01393-knockdown decreased tumor growth and improved mice survival, while restoration of NUSAP1 partially reversed these effects. Additionally, enrichment analysis and western blot revealed that the roles of LINC01393 and NUSAP1 in GBM progression were associated with NF-κB activation. Our findings showed that LINC01393 sponged miR-128-3p to upregulate NUSAP1, thereby promoting GBM development and progression via activating NF-κB pathway. This work deepens understanding of GBM mechanisms and provides potential novel therapeutic targets for GBM.
Collapse
Affiliation(s)
- Deheng Li
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Junda Hu
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Sen Li
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Changshuai Zhou
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Mingtao Feng
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Liangdong Li
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Yang Gao
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Xin Chen
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Xiaojun Wu
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Yiqun Cao
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Bin Hao
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Lei Chen
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai 200032, China
| |
Collapse
|
8
|
Li J, Tang M, Wu J, Qu H, Tu M, Pan Z, Gao C, Yang Y, Qu C, Huang W, Hong J. NUSAP1, a novel stemness-related protein, promotes early recurrence of hepatocellular carcinoma. Cancer Sci 2022; 113:4165-4180. [PMID: 36106345 DOI: 10.1111/cas.15585] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/15/2022] [Accepted: 09/07/2022] [Indexed: 01/27/2023] Open
Abstract
Early recurrence (within 2 years after resection) is the primary cause of poor outcomes among hepatocellular carcinoma (HCC) patients, and liver cancer stem cells are the main contributors to postsurgical HCC recurrence. Nucleolar and spindle-associated protein 1 (NUSAP1) has been reported to be involved in tumor progression. We investigated the function and clinical value of NUSAP1 in early recurrence of HCC. Data from public datasets and our cohort were used to assess the association between NUSAP1 expression and early HCC recurrence. Gain- and loss-of-function experiments were carried out in vivo and in vitro. The predictive effect of NUSAP1 on early HCC recurrence was further evaluated by a validation cohort. We found that elevated NUSAP1 expression in HCC specimens was correlated with poor outcome, especially in cases with postoperative early recurrence. Functional studies indicated that NUSAP1 significantly promotes HCC progression. A postsurgical recurrence murine model further revealed that upregulated NUSAP1 dramatically increased the likelihood of HCC early recurrence. RNA sequencing data revealed that the gene sets of cancer stemness and the signal transducer and activator of transcription 3 (STAT3) pathway were enriched by NUSAP1 overexpression. Mechanistically, NUSAP1 enhanced cancer stemness through stimulating STAT3 nuclear translocation and activation through receptor of activated protein C kinase 1 (RACK1). In a validation cohort with 112 HCC patients, NUSAP1 effectively predicted HCC early recurrence. Our results indicated that NUSAP1 promotes early recurrence of HCC by sustaining cancer stemness and could serve as a valuable predictive indicator for postsurgical intervention in HCC patients.
Collapse
Affiliation(s)
- Jinying Li
- Department of Gastroenterology, The First Affiliated Hospital, Jinan University, Guangzhou, China.,Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, China
| | - Ming Tang
- Department of Gastroenterology, The First Affiliated Hospital, Jinan University, Guangzhou, China.,Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, China
| | - Junru Wu
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, China
| | - Hengdong Qu
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, China
| | - Mengxian Tu
- The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Zhaojie Pan
- Department of Gastroenterology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Chongqing Gao
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, China
| | - Yuping Yang
- Department of Gastroenterology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Chen Qu
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, China
| | - Wei Huang
- Department of Gastroenterology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Jian Hong
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, China.,Department of Hepatological Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, China
| |
Collapse
|
9
|
NUSAP1 and PCLAF (KIA0101) Downregulation by Neoadjuvant Therapy is Associated with Better Therapeutic Outcomes and Survival in Breast Cancer. JOURNAL OF ONCOLOGY 2022; 2022:6001947. [DOI: 10.1155/2022/6001947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/30/2022] [Accepted: 10/31/2022] [Indexed: 11/30/2022]
Abstract
Purpose. To evaluate whether changes in genomic expression that occur beginning with breast cancer (BC) diagnosis and through to tumor resection after neoadjuvant chemotherapy (NCT) reveal biomarkers that can help predict therapeutic response and survival. Materials and Methods. We determined gene expression profiles based on microarrays in tumor samples from 39 BC patients who showed pathologic complete response (pCR) or therapeutic failure (non-pCR) after NCT (cyclophosphamide-doxorubicin/epirubicin). Based on unsupervised clustering of gene expression, together with functional enrichment analyses of differentially expressed genes, we selected NUSAP1, PCLAF, MME, and DST. We evaluated the NCT response and the expression of these four genes in BC histologic subtypes. In addition, we study the presence of tumor-infiltrating lymphocytes. Finally, we analyze the correlation between NUSAP1 and PCLAF against disease-free survival (DFS) and overall survival (OS). Results. A signature of 43 differentially expressed genes discriminated pCR from non-pCR patients (|fold change >2|, false discovery rate <0.05) only in biopsies taken after surgery. Patients achieving pCR showed downregulation of NUSAP1 and PCLAF in tumor tissues and increased DFS and OS, while overexpression of these genes correlated with poor therapeutic response and OS. These genes are involved in the regulation of mitotic division. Conclusions. The downregulation of NUSAP1 and PCLAF after NCT is associated with the tumor response to chemotherapy and patient survival.
Collapse
|
10
|
Identification of crucial hub genes and potential molecular mechanisms in breast cancer by integrated bioinformatics analysis and experimental validation. Comput Biol Med 2022; 149:106036. [DOI: 10.1016/j.compbiomed.2022.106036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 08/14/2022] [Accepted: 08/20/2022] [Indexed: 11/24/2022]
|
11
|
Gou R, Zheng M, Hu Y, Gao L, Wang S, Liu O, Li X, Zhu L, Liu J, Lin B. Identification and clinical validation of NUSAP1 as a novel prognostic biomarker in ovarian cancer. BMC Cancer 2022; 22:690. [PMID: 35739489 PMCID: PMC9229913 DOI: 10.1186/s12885-022-09753-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 06/10/2022] [Indexed: 12/15/2022] Open
Abstract
Background Nucleolar and spindle-associated protein 1 (NUSAP1) was shown to be involved in cell cycle regulation in cancer. However, its prognostic value and underlying mechanism in ovarian cancer remain unclear. Methods Oncomine, TCGA, CCLE, and UALCAN databases were used to analyze the expression level of NUSAP1 in ovarian cancer. The Kaplan–Meier plotter database was used to evaluate its prognostic value. The results from these analyses were further validated using immunohistochemical assay. The potential molecular mechanism of NUSAP1 in ovarian cancer was assessed with respect to homologous recombination repair, mismatch repair, and immunology using different databases. Results Database analyses and experimental results demonstrated that NUSAP1 was highly expressed in ovarian cancer, its levels being correlated with the FIGO stage. High NUSAP1 expression was an independent risk factor affecting the prognosis of patients with epithelial ovarian cancer. Moreover, NUSAP1 was associated with cell cycle, DNA replication, homologous recombination, and p53 signaling pathway. A positive correlation was identified between the expression of NUSAP1 and BRCA1/2 in ovarian cancer. In addition, NUSAP1 was associated with the expression of DNA mismatch repair genes and immune cell infiltration. Conclusions NUSAP1 may be a valuable prognostic marker, as well as a novel biomarker for evaluating the response to immunotherapy of patients with ovarian cancer.
Collapse
Affiliation(s)
- Rui Gou
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Liaoning, 110004, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China
| | - Mingjun Zheng
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Liaoning, 110004, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China.,Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr 15, 81377, Munich, Germany
| | - Yuexin Hu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Liaoning, 110004, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China
| | - Lingling Gao
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Liaoning, 110004, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China
| | - Shuang Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Liaoning, 110004, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China
| | - Ouxuan Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Liaoning, 110004, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China
| | - Xiao Li
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Liaoning, 110004, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China
| | - Liancheng Zhu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Liaoning, 110004, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China
| | - Juanjuan Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Liaoning, 110004, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China
| | - Bei Lin
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Liaoning, 110004, China. .,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China.
| |
Collapse
|
12
|
Han Y, Hu X, Yun X, Liu J, Yang J, Tian Z, Zhang X, Zhang Y, Wang X. Nucleolar and spindle associated protein 1 enhances chemoresistance through DNA damage repair pathway in chronic lymphocytic leukemia by binding with RAD51. Cell Death Dis 2021; 12:1083. [PMID: 34782617 PMCID: PMC8593035 DOI: 10.1038/s41419-021-04368-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 10/21/2021] [Accepted: 10/27/2021] [Indexed: 12/14/2022]
Abstract
Nucleolar and spindle-associated protein 1 (NUSAP1) is an essential regulator of mitotic progression, spindle assembly, and chromosome attachment. Although NUSAP1 acts as an oncogene involved in the progression of several cancers, the exact role of chronic lymphocytic leukemia (CLL) remains elusive. Herein, we first discovered obvious overexpression of NUSAP1 in CLL associated with poor prognosis. Next, the NUSAP1 level was modulated by transfecting CLL cells with lentivirus. Silencing NUSAP1 inhibited the cell proliferation, promoted cell apoptosis and G0/G1 phase arrest. Mechanistically, high expression of NUSAP1 strengthened DNA damage repairing with RAD51 engagement. Our results also indicated that NUSAP1 knockdown suppressed the growth CLL cells in vivo. We further confirmed that NUSAP1 reduction enhanced the sensitivity of CLL cells to fludarabine or ibrutinib. Overall, our research investigates the mechanism by which NUSAP1 enhances chemoresistance via DNA damage repair (DDR) signaling by stabilizing RAD51 in CLL cells. Hence, NUSAP1 may be expected to be a perspective target for the treatment of CLL with chemotherapy resistance.
Collapse
Affiliation(s)
- Yang Han
- grid.460018.b0000 0004 1769 9639Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021 China ,grid.460018.b0000 0004 1769 9639Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021 China ,grid.27255.370000 0004 1761 1174School of Medicine, Shandong University, Jinan, Shandong 250012 China ,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, Shandong 250021 China
| | - Xinting Hu
- grid.460018.b0000 0004 1769 9639Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021 China ,grid.460018.b0000 0004 1769 9639Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021 China ,grid.27255.370000 0004 1761 1174School of Medicine, Shandong University, Jinan, Shandong 250012 China ,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, Shandong 250021 China
| | - Xiaoya Yun
- grid.460018.b0000 0004 1769 9639Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021 China ,grid.460018.b0000 0004 1769 9639Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021 China ,grid.27255.370000 0004 1761 1174School of Medicine, Shandong University, Jinan, Shandong 250012 China ,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, Shandong 250021 China
| | - Jiarui Liu
- grid.460018.b0000 0004 1769 9639Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021 China ,grid.460018.b0000 0004 1769 9639Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021 China ,grid.27255.370000 0004 1761 1174School of Medicine, Shandong University, Jinan, Shandong 250012 China ,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, Shandong 250021 China
| | - Juan Yang
- grid.460018.b0000 0004 1769 9639Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021 China ,grid.460018.b0000 0004 1769 9639Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021 China ,grid.27255.370000 0004 1761 1174School of Medicine, Shandong University, Jinan, Shandong 250012 China ,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, Shandong 250021 China
| | - Zheng Tian
- grid.460018.b0000 0004 1769 9639Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021 China ,grid.460018.b0000 0004 1769 9639Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021 China ,grid.27255.370000 0004 1761 1174School of Medicine, Shandong University, Jinan, Shandong 250012 China ,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, Shandong 250021 China
| | - Xin Zhang
- grid.460018.b0000 0004 1769 9639Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021 China ,grid.460018.b0000 0004 1769 9639Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021 China ,grid.27255.370000 0004 1761 1174School of Medicine, Shandong University, Jinan, Shandong 250012 China ,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, Shandong 250021 China
| | - Ya Zhang
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China. .,Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China. .,School of Medicine, Shandong University, Jinan, Shandong, 250012, China. .,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, Shandong, 250021, China. .,Branch of National Clinical Research Center for Hematologic Diseases, Jinan, Shandong, 250021, China. .,National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 251006, China.
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China. .,Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China. .,School of Medicine, Shandong University, Jinan, Shandong, 250012, China. .,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, Shandong, 250021, China. .,Branch of National Clinical Research Center for Hematologic Diseases, Jinan, Shandong, 250021, China. .,National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 251006, China.
| |
Collapse
|
13
|
Sui C, Qu W, Lian Y, Feng C, Zhan Y. Hsa_circ_0069094 knockdown inhibits cell proliferation, migration, invasion and glycolysis, while induces cell apoptosis by miR-661/HMGA1 axis in breast cancer. Anticancer Drugs 2021; 32:829-841. [PMID: 33929992 DOI: 10.1097/cad.0000000000001076] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Circular RNAs (circRNAs) are revealed to regulate breast cancer progression. This study aimed to investigate hsa_circ_0069094-mediated effects on breast cancer cell malignancy. Quantitative real time PCR was employed to evaluate the expressions of hsa_circ_0069094, miR-661 and high mobility group A1 (HMGA1). Western blot was performed to determine the protein expression of HMGA1 and proliferating cell nuclear antigen. Breast cancer malignant progressions were explained by cell counting kit-8 proliferation, cell colony formation, flow cytometry analysis, wound-healing and transwell assays. Cell glycolysis was assessed by detecting glucose take, lactate production and hexokinase 2 (HK2) protein level. The target relationship between miR-661 and hsa_circ_0069094 or HMGA1 was predicted by circular RNA interactome and targetscan online databases, and identified by dual-luciferase reporter and RNA immunoprecipitation assay. The effects of hsa_circ_0069094 knockdown on breast cancer growth in vivo were elucidated by in vivo tumor formation assay. Hsa_circ_0069094 and HMGA1 expression were significantly upregulated, while miR-661 expression level was downregulated in breast cancer tissues and cells relative to adjacent normal breast tissues or MCF-10A cells. Functionally, hsa_circ_0069094 knockdown inhibited cell glycolysis, proliferation, migration and invasion, whereas induced cell apoptosis in breast cancer, which was decreased by miR-661 inhibitor. Mechanistically, hsa_circ_0069094 regulated HMGA1 by sponging miR-661. Furthermore, hsa_circ_0069094 knockdown repressed tumor formation in vivo. Collectively, hsa_circ_0069094 knockdown repressed breast cancer cell carcinogenesis and cell glycolysis by regulating HMGA1 through sponging miR-661, which provided a new insight for studying the mechanism of hsa_circ_0069094 in modulating breast cancer development.
Collapse
Affiliation(s)
- Chao Sui
- Department of Oncology, Weihai Central Hospital
| | - Wei Qu
- Department of Oncology, Shidao People's Hospital Of Rongcheng, Weihai, Shandong
| | - Yanfen Lian
- Department of Oncology, Weihai Central Hospital
| | - Chuanbo Feng
- Department of Thyroid and Breast Surgery, The Second People's Hospital of Lianyungang
| | - Yi Zhan
- Department of Thoracic Surgery, The Second People's Hospital of Lianyungang, Lianyungang, Jiangsu, China
| |
Collapse
|
14
|
Zhu W, Xu J, Chen Z, Jiang J. Analyzing Roles of NUSAP1 From Clinical, Molecular Mechanism and Immune Perspectives in Hepatocellular Carcinoma. Front Genet 2021; 12:689159. [PMID: 34354737 PMCID: PMC8329558 DOI: 10.3389/fgene.2021.689159] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/23/2021] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common carcinomas worldwide. Our study aims to analyze how NUSAP1 affects progression of HCC from clinical, molecular mechanism and immune perspectives. Firstly, we downloaded GSE62232, GSE102079, GSE112790, and GSE121248 gene expression profile datasets from GEO database. R studio was used to screen DEGs of each dataset, and 86 overlapping DEGs of the four datasets were screened at last. Then, CytoHubba plug-in in Cytoscape software was used to screen out NUSAP1 from the 86 DEGs. Subsequently, survival analysis, clinical correlation analysis, independent prognostic analysis, and GSEA enrichment analysis of NUSAP1 were analyzed using HCC patients from GSE76427 dataset, ICGC database, and TCGA database. The results revealed that HCC patients with higher expression level of NUSAP1 had a worse prognosis. NUSAP1 was an independent prognostic factor of HCC, and it may promote HCC progress by regulating cell cycle. To further elucidate its underlying molecular mechanism, we used cBioProtal online data analysis tool to screen all co-expression genes of NUSAP1 and used top 300 co-expression genes to accomplish KEGG and GO enrichment analysis; the results confirmed that NUSAP1 accelerated progression of HCC by regulating cell cycle. We continued to draw KEGG pathway map of cell cycle using co-expression genes enriched in cell cycle pathway by KEGG online tool. The map depicted that most of co-expression genes of NUSAP1 were located in S phase and G2/M phase of the cell cycle, and they could regulate the genes in G1 phase. To further understand the mechanism of cell cycle, we also did qRT-PCR, Western blot, and flow cytometry; the results showed that NUSAP1 was closely associated with CDK4, CDK6, and cyclinD1, which could regulate G1 to S phase transition. Besides, we also analyzed correlation between NUSAP1 and immune cells using HCC patients from GSE76427 dataset, ICGC database, and TCGA database. NUSAP1 was associated with some immune cells, and we speculated that NUSAP1 could also promote HCC progression by influencing T cell CD4 memory resting and macrophage M0 through some underlying mechanism.
Collapse
Affiliation(s)
- Wenjie Zhu
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jian Xu
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zehao Chen
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jianxin Jiang
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
15
|
Wang H, Liu Z, Wu P, Wang H, Ren W. NUSAP1 Accelerates Osteosarcoma Cell Proliferation and Cell Cycle Progression via Upregulating CDC20 and Cyclin A2. Onco Targets Ther 2021; 14:3443-3454. [PMID: 34079289 PMCID: PMC8164717 DOI: 10.2147/ott.s295818] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/25/2021] [Indexed: 01/17/2023] Open
Abstract
Purpose Nucleolar and spindle-associated protein 1 (NUSAP1) is a significant mitotic regulator and has been found to be implicated in carcinogenesis of several cancers. The aim of this study was to explore the functional role and underlying mechanisms of NUSAP1 in osteosarcoma. Methods Western blot assay and Real-time fluorescent quantitative polymerase chain reaction (RT-qPCR) were employed to assess the expressions of NUSAP1, cell division cycle 20 homologue (CDC20) and cyclin A2 (CCNA2) in osteosarcoma cells. Cell proliferation was evaluated by Cell Counting Kit-8 (CCK-8) assay and 5-ethynyl-2'-deoxyuridine (EdU) assay, and flow cytometry was applied for exploring cell cycle. In addition, an osteosarcoma tumor-bearing mouse model was established by injection of transfected osteosarcoma cells. Tumor volume and protein expressions of Ki67 and PCNA were examined. Bioinformatics analysis and immunoprecipitation were used to identify the combination of NUSAP1 with CDC20 and CCNA2. Results The mRNA and protein expression of NUSAP1 were extremely upregulated in osteosarcoma cells. Overexpression of NUSAP1 promoted whereas NUSAP1 silencing suppressed cell proliferation and cell cycle progression in transfected osteosarcoma cells. In osteosarcoma mouse model, NUSAP1 expression affected tumor volume and levels of Ki67 and PCNA. Moreover, CDC20 or CCNA2 silencing inhibited NUSAP1-induced cell proliferation and cell cycle in osteosarcoma cells. Conclusion Our data demonstrated that upregulated NUSAP1 may exacerbate the development of osteosarcoma by accelerating the proliferation and cell cycle process of osteosarcoma cells by binding to CDC20 and CCNA2, suggesting NUSAP1 as a possible therapeutic target for treatment of osteosarcoma.
Collapse
Affiliation(s)
- Haoran Wang
- Department of Orthopedics, Hangzhou Children's Hospital, Hangzhou, People's Republic of China
| | - Zixiang Liu
- Department of Orthopedics, Hangzhou Children's Hospital, Hangzhou, People's Republic of China
| | - Peng Wu
- Department of Orthopedics, Hangzhou Children's Hospital, Hangzhou, People's Republic of China
| | - Hanqing Wang
- Department of Orthopedics, Hangzhou Children's Hospital, Hangzhou, People's Republic of China
| | - Weiwei Ren
- Department of Gynecology, Hangzhou Children's Hospital, Hangzhou, People's Republic of China
| |
Collapse
|
16
|
Fararjeh AFS, Al Khader A, Kaddumi E, Obeidat M, Al-Fawares O. Differential Expression and Prognostic Significance of STARD3 Gene in Breast Carcinoma. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2021; 10:34-41. [PMID: 34268252 PMCID: PMC8256830 DOI: 10.22088/ijmcm.bums.10.1.34] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 04/21/2021] [Indexed: 12/28/2022]
Abstract
StAR related lipid transfer domain containing 3 (STARD3) gene has been reported to be co-amplified with human epidermal growth factor receptor 2 (HER2) in breast carcinoma. STARD3 is necessary for cholesterol transfer and metabolism in tumor cells. The possible role played by STARD3 as a diagnostic and prognostic biomarker was investigated in breast cancer (BC). Data mining was performed using several bioinformatics websites to investigate the correlation of STARD3 with BC and its molecular subtypes, and conventional PCR was used to detect the STARD3 mRNA levels in a panel of BC cell lines. STARD3 was overexpressed in BC more than the other types of cancer. The results also showed that STARD3 expression was significantly associated with HER2+ BC tumors and BC cell lines, and low STARD3 mRNA and protein expression levels were observed in estrogen receptor-positive (ER+) and triple-negative BC (TNBC) patients. Moreover, high STARD3 expression levels predicted worse overall survival (OS), relapse-free survival (RFS) and disease metastasis-free survival (DMFS) in BC, and HER2+ BC. Notably, low expression of STARD3 was associated with poor OS in ER+ BC. Our findings suggest that STARD3 may have strong diagnostic and prognostic value for HER2+ breast carcinoma.
Collapse
Affiliation(s)
| | - Ali Al Khader
- Department of Pathology and Forensic Medicine, Faculty of Medicine, Al-Balqa Applied University, Al-salt, Jordan.,Department of Pathology, Al-Hussein Salt Hospital, Al-salt, Jordan
| | - Ezidin Kaddumi
- Department of Basic Medical Sciences, Faculty of Medicine, Al-Balqa Applied University, Al-salt, Jordan
| | - Maher Obeidat
- Department of Medical Laboratory Analysis, Faculty of Science, Al-Balqa Applied University, Al-salt, Jordan
| | - O'la Al-Fawares
- Department of Medical Laboratory Analysis, Faculty of Science, Al-Balqa Applied University, Al-salt, Jordan
| |
Collapse
|
17
|
Wang Y, Liang F, Zhou Y, Qiu J, Lv Q, Du Z. Sharp Downregulation of Hub Genes Associated With the Pathogenesis of Breast Cancer From Ductal Carcinoma In Situ to Invasive Ductal Carcinoma. Front Oncol 2021; 11:634569. [PMID: 34094915 PMCID: PMC8175990 DOI: 10.3389/fonc.2021.634569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 04/30/2021] [Indexed: 02/05/2023] Open
Abstract
Introduction Breast atypical ductal hyperplasia (ADH) and ductal carcinoma in situ (DCIS) are precursor stages of invasive ductal carcinoma (IDC). This study aimed to investigate the pathogenesis of breast cancer by dynamically analyzing expression changes of hub genes from normal mammary epithelium (NME) to simple ductal hyperplasia (SH), ADH, DCIS, and finally to IDC. Methods Laser-capture microdissection (LCM) data for NME, SH, ADH, DCIS, and IDC cells were obtained. Weighted gene co-expression network analysis (WGCNA) was performed to dynamically analyze the gene modules and hub genes associated with the pathogenesis of breast cancer. Tissue microarray, immunohistochemical, and western blot analyses were performed to determine the protein expression trends of hub genes. Results Two modules showed a trend of increasing expression during the development of breast disease from NME to DCIS, whereas a third module displayed a completely different trend. Interestingly, the three modules displayed inverse trends from DCIS to IDC compared with from NME to DCIS; that is, previously upregulated modules were subsequently downregulated and vice versa. We further analyzed the module that was most closely associated with DCIS (p=7e-07). Kyoto Gene and Genomic Gene Encyclopedia enrichment analysis revealed that the genes in this module were closely related to the cell cycle (p= 4.3e-12). WGCNA revealed eight hub genes in the module, namely, CDK1, NUSAP1, CEP55, TOP2A, MELK, PBK, RRM2, and MAD2L1. Subsequent analysis of these hub genes revealed that their expression levels were lower in IDC tissues than in DCIS tissues, consistent with the expression trend of the module. The protein expression levels of five of the hub genes gradually increased from NME to DCIS and then decreased in IDC. Survival analysis predicted poor survival among breast cancer patients if these hub genes were not downregulated from DCIS to IDC. Conclusions Five hub genes, RRM2, TOP2A, PBK, MELK, and NUSAP1, which are associated with breast cancer pathogenesis, are gradually upregulated from NME to DCIS and then downregulated in IDC. If these hub genes are not downregulated from DCIS to IDC, patient survival is compromised. However, the underlying mechanisms warrant further elucidation in future studies.
Collapse
Affiliation(s)
- Yao Wang
- Department of Breast Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Faqing Liang
- Department of Breast Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yuting Zhou
- Department of Breast Surgery, West China Hospital, Sichuan University, Chengdu, China.,Laboratory of Public Experimental Platform, West China Hospital, Sichuan University, Chengdu, China
| | - Juanjuan Qiu
- Department of Breast Surgery, West China Hospital, Sichuan University, Chengdu, China.,Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Qing Lv
- Department of Breast Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Zhenggui Du
- Department of Breast Surgery, West China Hospital, Sichuan University, Chengdu, China.,Laboratory of Public Experimental Platform, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
18
|
Chen L, Zhu X, Han B, Ji L, Yao L, Wang Z. High Expression of microRNA-223 Indicates a Good Prognosis in Triple-Negative Breast Cancer. Front Oncol 2021; 11:630432. [PMID: 33928027 PMCID: PMC8078593 DOI: 10.3389/fonc.2021.630432] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/12/2021] [Indexed: 12/19/2022] Open
Abstract
Purpose MicroRNAs can influence many biological processes and have shown promise as cancer biomarkers. Few studies have focused on the expression of microRNA-223 (miR-223) and its precise role in breast cancer (BC). We aimed to examine the expression level of miR-223 and its prognostic value in BC. Methods Tissue microarray (TMA)-based miRNA detection in situ hybridization (ISH) with a locked nucleic acid (LNA) probe was used to detect miR-223 expression in 450 BC tissue samples. Overall survival (OS) and disease-free survival (DFS) were compared between two groups using the Kaplan-Meier method and Cox regression model. Results OS and DFS were prolonged in the high miR-223 expression group compared to the low miR-223 expression group (p < 0.0001 and p = 0.017, respectively), especially in patients with the triple-negative breast cancer (TNBC) subtype (p = 0.046 and p < 0.001, respectively). Univariate and multivariate Cox regression analyses revealed that TNM stage (p = 0.008), the molecular subtype (p = 0.049), and miR-223 (p < 0.001) were independently associated with OS and DFS. External validation was performed with the METABRIC and The Cancer Genome Atlas (TCGA) databases via online webtools and was consistent with the data described above. Conclusions This study provides evidence that high miR-223 expression at diagnosis is associated with improved DFS and OS for BC patients, especially those with the TNBC subtype. miR-223 is a valid and independent prognostic biomarker in BC.
Collapse
Affiliation(s)
- Li Chen
- Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Xiuzhi Zhu
- Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Boyue Han
- Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lei Ji
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ling Yao
- Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Zhonghua Wang
- Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| |
Collapse
|
19
|
Cilibrasi C, Ditsiou A, Papakyriakou A, Mavridis G, Eravci M, Stebbing J, Gagliano T, Giamas G. LMTK3 inhibition affects microtubule stability. Mol Cancer 2021; 20:53. [PMID: 33731143 PMCID: PMC7968321 DOI: 10.1186/s12943-021-01345-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 03/05/2021] [Indexed: 02/07/2023] Open
Affiliation(s)
- Chiara Cilibrasi
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, JMS Building, Falmer, Brighton, BN1 9QG, UK
| | - Angeliki Ditsiou
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, JMS Building, Falmer, Brighton, BN1 9QG, UK
| | - Athanasios Papakyriakou
- National Centre for Scientific Research "Demokritos", Institute of Biosciences and Applications, 15341, Athens, Greece
| | - George Mavridis
- National Centre for Scientific Research "Demokritos", Institute of Biosciences and Applications, 15341, Athens, Greece
| | - Murat Eravci
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, JMS Building, Falmer, Brighton, BN1 9QG, UK
| | - Justin Stebbing
- Faculty of Medicine, Department of Surgery and Cancer, Imperial College, London, W12 0NN, UK
| | - Teresa Gagliano
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, JMS Building, Falmer, Brighton, BN1 9QG, UK
- Department of Medical Science, University of Udine, 33100, Udine, Italy
| | - Georgios Giamas
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, JMS Building, Falmer, Brighton, BN1 9QG, UK.
| |
Collapse
|
20
|
Chen Y, Liu J, Zhang W, Kadier A, Wang R, Zhang H, Yao X. O-GlcNAcylation Enhances NUSAP1 Stability and Promotes Bladder Cancer Aggressiveness. Onco Targets Ther 2021; 14:445-454. [PMID: 33488099 PMCID: PMC7815093 DOI: 10.2147/ott.s258175] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 12/24/2020] [Indexed: 11/23/2022] Open
Abstract
Objective NUSAPl and O-GlcNAcylation were reported to be hyper-activated in many kinds of cancers and involved in the advanced progression of cancers. In bladder cancer, O-GlcNAc transferase (OGT) expresses in patients' urine samples, with no expression in healthy individuals, indicating O-GlcNAcylation might involve in the occurrence and development of bladder cancer. Therefore, the present study aims to investigate the effects of O-GlcNAcylation in bladder cancer and if it can regulate NUSAP1 protein. Materials and Methods Western blot, immunohistochemistry, and PCR were used to evaluate the protein expression and mRNA level of NUSAP1; CCK-8 and flow cytometry used to evaluate the proliferation and inhibited the apoptosis of bladder cancer. Results The results showed that NUSAP1 was highly expressed in bladder cancer cells and tissue samples. NUSAP1 up-regulation significantly promoted the proliferation and inhibited the apoptosis of bladder cancer HT-1376 and T24 cells. Besides, the expression of O-GlcNAc was elevated in bladder cancer tissues and cells, and up-regulation of O-GlcNAc with GlcNAc and PuGNAc obviously increased NUSAP1 protein expression and stability. Moreover, knockdown OGT significantly inhibited the proliferation and tumorigenesis and promoted the apoptosis of bladder cancer cells, confirmed by CCK-8, in vivo xenotransplantation, and flow cytometry, whereas these roles were impaired when NUSAP1 was up-regulated. Conclusion Overall, our study makes clear that hyper-O-GlcNAcylation accelerates bladder cancer progression through promotion of NUSAP1 expression and its stability.
Collapse
Affiliation(s)
- Yifan Chen
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University of Medicine, Shanghai, 200072, People's Republic of China
| | - Ji Liu
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University of Medicine, Shanghai, 200072, People's Republic of China
| | - Wentao Zhang
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University of Medicine, Shanghai, 200072, People's Republic of China
| | - Aimaitiaji Kadier
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University of Medicine, Shanghai, 200072, People's Republic of China
| | - Ruiliang Wang
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University of Medicine, Shanghai, 200072, People's Republic of China
| | - Haimin Zhang
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University of Medicine, Shanghai, 200072, People's Republic of China
| | - Xudong Yao
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University of Medicine, Shanghai, 200072, People's Republic of China
| |
Collapse
|
21
|
Guo L, Mao L, Lu W, Yang J. Identification of breast cancer prognostic modules via differential module selection based on weighted gene Co-expression network analysis. Biosystems 2020; 199:104317. [PMID: 33279569 DOI: 10.1016/j.biosystems.2020.104317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/30/2020] [Accepted: 11/30/2020] [Indexed: 02/06/2023]
Abstract
Breast cancer is a complex cancer which includes many different subtypes. Identifying prognostic modules, i.e., functionally related gene networks that play crucial roles in cancer development is essential in breast cancer study. Different subtypes of breast cancer correspond to different treatment methods. The purpose of this study is to use a new method to divide breast cancer into different prognostic modules, so as to provide scientific basis for improving clinical management. The method is based on comparing similarities between modules detected from different weighted gene co-expression networks. The method was applied on genomic data of breast cancer from The Cancer Genome Atlas database and was applied to select differential modules between two groups of patients with significant differences in survival times. It was compared with a previously proposed module selection method. The result shows that our method outperforms the previously proposed one. Moreover, within the identified two differential modules, the first one is highly enriched with genes involved in hormone responds, the second one is highly related with biological process engaged in M-phase. The two modules were further validated by log-rank test in the validation dataset GSE3494. Both of the two modules show significantly different with p-values less than 0.02. The identified two modules confirmed previous findings including importance of biological networks in breast cancer involved in hormone response and M-phase. Out of the top twenty hub genes in the two modules, fifteen genes were previously shown to be prognostic markers for breast cancer.
Collapse
Affiliation(s)
- Ling Guo
- Key Laboratory of China's Ethnic Languages and Information Technology of Ministry of Education, Northwest Minzu University, Lanzhou, China; College of Electrical Engineering, Northwest Minzu University, Lanzhou, China
| | - Leer Mao
- Key Laboratory of China's Ethnic Languages and Information Technology of Ministry of Education, Northwest Minzu University, Lanzhou, China.
| | - WenTing Lu
- College of Electrical Engineering, Northwest Minzu University, Lanzhou, China
| | - Jun Yang
- College of Electrical Engineering, Northwest Minzu University, Lanzhou, China
| |
Collapse
|
22
|
Zhang L, Dang Y, Wang Y, Fan X. Nucleolar and spindle-associated protein 1 accelerates cellular proliferation and invasion in nasopharyngeal carcinoma by potentiating Wnt/β-catenin signaling via modulation of GSK-3β. J Bioenerg Biomembr 2020; 52:441-451. [PMID: 33196964 DOI: 10.1007/s10863-020-09860-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/09/2020] [Indexed: 12/23/2022]
Abstract
Nucleolar and spindle-associated protein 1 (NUSAP1) is a pivotal tumor-related protein that has been implicated in the progression of broad spectrum of tumors. However, no detailed study of the role of NUSAP1 in nasopharyngeal carcinoma (NPC) has been reported. The aim of this work is to enhance our understanding of NUSAP1 in the progression of NPC. By analyzing data available within the Oncomine database, we found that NUSAP1 expression was elevated in NPC relative to normal tissues. Further, we showed that NUSAP1 expression in clinical specimens of NPC and several NPC cell lines was elevated. Down-regulation of NUSAP1 by gene silencing markedly depleted the capacity of NPC cells to proliferate and invade. Contrastingly, overexpression of NUSAP1 potentiated the proliferative and invasive abilities of NPC cells. Further mechanistic research revealed that NUSAP1 knockdown decreased levels of Wnt/β-catenin signaling in NPC cells via a mechanism associated with downregulation of glycogen synthase kinase-3β (GSK-3β) phosphorylation. However, suppression of GSK-3β markedly abolished the inhibitory effect of NUSAP1 knockdown on Wnt/β-catenin signaling. Further, inhibition of Wnt/β-catenin signaling partially reversed NUSAP1-mediated tumor growth in NPC cells. In addition, NUSAP1 knockdown restrained tumorigenesis of NPC in vivo, and was associated with down-regulation of Wnt/β-catenin signaling. In conclusion, these findings demonstrate that NUSAP1 is capable of accelerating proliferation and invasion in NPC cells by potentiating Wnt/β-catenin signaling. Our study unveils a potential role of NUSAP1 in promoting NPC tumors and suggests that the protein is an attractive antitumor target for NPC treatment.
Collapse
Affiliation(s)
- Ligang Zhang
- Department of Otolaryngology, Xianyang Hospital of Yan'an University, Xianyang City, 712000, Shaanxi Province, China
| | - Yabin Dang
- Department of Otolaryngology, Xianyang Hospital of Yan'an University, Xianyang City, 712000, Shaanxi Province, China
| | - Ying Wang
- Department of Otolaryngology, Xianyang First People's Hospital, 10 Biyuan Road, Xianyang City, 712000, Shaanxi Province, China
| | - Xin Fan
- Department of Otolaryngology, Xianyang First People's Hospital, 10 Biyuan Road, Xianyang City, 712000, Shaanxi Province, China.
| |
Collapse
|
23
|
Amjad E, Asnaashari S, Sokouti B, Dastmalchi S. Systems biology comprehensive analysis on breast cancer for identification of key gene modules and genes associated with TNM-based clinical stages. Sci Rep 2020; 10:10816. [PMID: 32616754 PMCID: PMC7331704 DOI: 10.1038/s41598-020-67643-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 06/12/2020] [Indexed: 12/11/2022] Open
Abstract
Breast cancer (BC), as one of the leading causes of death among women, comprises several subtypes with controversial and poor prognosis. Considering the TNM (tumor, lymph node, metastasis) based classification for staging of breast cancer, it is essential to diagnose the disease at early stages. The present study aims to take advantage of the systems biology approach on genome wide gene expression profiling datasets to identify the potential biomarkers involved at stage I, stage II, stage III, and stage IV as well as in the integrated group. Three HER2-negative breast cancer microarray datasets were retrieved from the GEO database, including normal, stage I, stage II, stage III, and stage IV samples. Additionally, one dataset was also extracted to test the developed predictive models trained on the three datasets. The analysis of gene expression profiles to identify differentially expressed genes (DEGs) was performed after preprocessing and normalization of data. Then, statistically significant prioritized DEGs were used to construct protein-protein interaction networks for the stages for module analysis and biomarker identification. Furthermore, the prioritized DEGs were used to determine the involved GO enrichment and KEGG signaling pathways at various stages of the breast cancer. The recurrence survival rate analysis of the identified gene biomarkers was conducted based on Kaplan-Meier methodology. Furthermore, the identified genes were validated not only by using several classification models but also through screening the experimental literature reports on the target genes. Fourteen (21 genes), nine (17 genes), eight (10 genes), four (7 genes), and six (8 genes) gene modules (total of 53 unique genes out of 63 genes with involving those with the same connectivity degree) were identified for stage I, stage II, stage III, stage IV, and the integrated group. Moreover, SMC4, FN1, FOS, JUN, and KIF11 and RACGAP1 genes with the highest connectivity degrees were in module 1 for abovementioned stages, respectively. The biological processes, cellular components, and molecular functions were demonstrated for outcomes of GO analysis and KEGG pathway assessment. Additionally, the Kaplan-Meier analysis revealed that 33 genes were found to be significant while considering the recurrence-free survival rate as an alternative to overall survival rate. Furthermore, the machine learning calcification models show good performance on the determined biomarkers. Moreover, the literature reports have confirmed all of the identified gene biomarkers for breast cancer. According to the literature evidence, the identified hub genes are highly correlated with HER2-negative breast cancer. The 53-mRNA signature might be a potential gene set for TNM based stages as well as possible therapeutics with potentially good performance in predicting and managing recurrence-free survival rates at stages I, II, III, and IV as well as in the integrated group. Moreover, the identified genes for the TNM-based stages can also be used as mRNA profile signatures to determine the current stage of the breast cancer.
Collapse
Affiliation(s)
- Elham Amjad
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Solmaz Asnaashari
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Babak Sokouti
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Siavoush Dastmalchi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
24
|
MCM2 and NUSAP1 Are Potential Biomarkers for the Diagnosis and Prognosis of Pancreatic Cancer. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8604340. [PMID: 32420375 PMCID: PMC7206867 DOI: 10.1155/2020/8604340] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/18/2020] [Accepted: 03/26/2020] [Indexed: 12/15/2022]
Abstract
Pancreatic cancer (PC) is one of the most malignant tumors. Despite considerable progress in the treatment of PC, the prognosis of patients with PC is poor. The aim of this study was to identify potential biomarkers for the diagnosis and prognosis of PC. First, the original data of three independent mRNA expression datasets were downloaded from the Gene Expression Omnibus and The Cancer Genome Atlas databases and screened for differentially expressed genes (DEGs) using the R software. Subsequently, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses of the DEGs were performed, and a protein-protein interaction (PPI) network was constructed to screen for hub genes. The hub genes were analyzed for genetic variations, as well as for survival, prognostic, and diagnostic value, using the cBioPortal and Gene Expression Profiling Interactive Analysis (GEPIA) databases and the pROC package. After screening for potential biomarkers, the mRNA and protein levels of the biomarkers were verified at the tissue and cellular levels using the Cancer Cell Line Encyclopedia, GEPIA, and the Human Protein Atlas. As a result, a total of 248 DEGs were identified. The GO terms enriched in DEGs were related to the separation of mitotic sister chromatids and the binding of the spindle to the extracellular matrix. The enriched pathways were associated with focal adhesion, ECM-receptor interaction, and phosphatidylinositol 3-kinase (PI3K)/AKT signaling. The top 20 genes were selected from the PPI network as hub genes, and based on the analysis of multiple databases, MCM2 and NUSAP1 were identified as potential biomarkers for the diagnosis and prognosis of PC. In conclusion, our results show that MCM2 and NUSAP1 can be used as potential biomarkers for the diagnosis and prognosis of PC. The study also provides new insights into the underlying molecular mechanisms of PC.
Collapse
|
25
|
Zhao Y, He J, Li Y, Lv S, Cui H. NUSAP1 potentiates chemoresistance in glioblastoma through its SAP domain to stabilize ATR. Signal Transduct Target Ther 2020; 5:44. [PMID: 32317623 PMCID: PMC7174393 DOI: 10.1038/s41392-020-0137-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 02/16/2020] [Accepted: 02/17/2020] [Indexed: 02/06/2023] Open
Abstract
NUSAP1, which is a microtubule-associated protein involved in mitosis, plays essential roles in diverse biological processes, especially in cancer biology. In this study, NUSAP1 was found to be overexpressed in GBM tissues in a grade-dependent manner compared with normal brain tissues. NUSAP1 was also highly expressed in GBM patients, dead patients, and GBM cells. In addition, NUSAP1 was found to participate in cell proliferation, apoptosis, and DNA damage in GBM cells. Ataxia telangiectasia and Rad3-related protein (ATR) are a primary sensor of DNA damage, and ATR is also a promising target in cancer therapy. Here, we found that NUSAP1 positively regulated the expression of ATR. Mechanistically, NUSAP1 suppressed the ubiquitin-dependent proteolysis of ATR. The SAP (SAF-A/B, Acinus, and PIAS) domain is a common motif of many SUMO (small ubiquitin-like modifier) E3 ligases, and this domain is involved in substrate recognition and ligase activity. This study further demonstrated that the SAP domain of NUSAP1 promoted the sumoylation of ATR, and thereby antagonized the ubiquitination of ATR. These results suggest that NUSAP1 stabilizes ATR by sumoylation. Moreover, NUSAP1 potentiated chemotherapeutic resistance to temozolomide (TMZ) and doxorubicin (DOX) through its SAP domain. Overall, this study indicates that NUSAP1 is a promising therapeutic target in GBM.
Collapse
Affiliation(s)
- Yuzu Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Jiang He
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Yongsen Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Shengqing Lv
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing, China.
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China. .,Cancer Center, Medical Research Institute, Southwest University, Chongqing, China.
| |
Collapse
|
26
|
Wang Y, Wei Y, Fan X, Zhang P, Wang P, Cheng S, Zhang J. MicroRNA-125b as a tumor suppressor by targeting MMP11 in breast cancer. Thorac Cancer 2020; 11:1613-1620. [PMID: 32291953 PMCID: PMC7262928 DOI: 10.1111/1759-7714.13441] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 03/30/2020] [Accepted: 04/01/2020] [Indexed: 12/17/2022] Open
Abstract
Background Breast cancer is a common type of tumor in women worldwide. MicroRNAs have been identified as regulators in many human cancers. The aim of this study was therefore to investigate the functional role of miR‐125b in regulating breast cancer progression. Methods We used the StarBase database to investigate the expression of miRNA‐125b in breast cancer and adjacent normal tissues. MMP11 3′‐UTR construct and luciferase reporter assays was performed for target genes. Cell proliferation was evaluated by CCK‐8 and colony formation assay. The migration and invasion were assessed by transwell assay. Results Luciferase reporter assays showed miRNA‐125b directly targeted MMP11. miRNA‐125b by transfection with its mimic in breast cancer cells significantly suppressed breast cancer cell proliferation and migration. Western blot revealed that overexpression of miRNA‐125b substantially reduced MMP11 protein expression. We used the UALCAN database to investigate the expression of MMP11 in human breast cancer and adjacent normal tissues. In addition, we found that miRNA‐125b spoiled MMP11 induced breast cancer cell proliferation and migration promotion effect. Conclusions miRNA‐125b mimic inhibited proliferation, migration, and invasion of breast cancer cells through targeting MMP11 protein.
Collapse
Affiliation(s)
- Yanan Wang
- Department of Pathology, Affiliated Hospital of Hebei University, Baoding, China
| | - Yaning Wei
- Department of Oncology, Affiliated Hospital of Hebei University, Baoding, China
| | - Xiangyu Fan
- Department of Pathology, Affiliated Hospital of Hebei University, Baoding, China
| | - Pei Zhang
- Department of Pathology, Affiliated Hospital of Hebei University, Baoding, China
| | - Pan Wang
- Department of Pathology, Affiliated Hospital of Hebei University, Baoding, China
| | - Shujie Cheng
- Department of Surgery, Affiliated Hospital of Hebei University, Baoding, China
| | - Jinku Zhang
- Department of Pathology, No.1 Central Hospital of Baoding, Baoding, China
| |
Collapse
|
27
|
Sun L, Shi C, Liu S, Zhang E, Yan L, Ji C, Zhao Y. Overexpression of NuSAP1 is predictive of an unfavourable prognosis and promotes proliferation and invasion of triple-negative breast cancer cells via the Wnt/β-catenin/EMT signalling axis. Gene 2020; 747:144657. [PMID: 32298762 DOI: 10.1016/j.gene.2020.144657] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 03/31/2020] [Accepted: 04/06/2020] [Indexed: 12/20/2022]
Abstract
OBJECTIVE We analysed the effect of expression of nucleolar spindle-associated protein 1 (NuSAP1) on the prognosis of breast cancer (BC) and investigated its potential mechanism of tumourigenicity in triple-negative breast cancer (TNBC) cell lines. MATERIALS AND METHODS We downloaded the RNA-seq breast cancer (BC) data from The Cancer Genome Atlas (TCGA) and screened for the NuSAP1 gene using R software. The clinical data for patients with BC were screened and analysed using R software. A survival curve was drawn using the Kaplan-Meier Plotter. Cell proliferation and invasion were verified by the Cell Counting Kit-8 and Transwell assays. Expression of NuSAP1, the Wnt/β-catenin pathway, and epithelial-mesenchymal-transition-related proteins in TNBC was detected using real-time quantitative polymerase chain reaction (qRT-PCR) and western blotting (WB). RESULTS Expression of NuSAP1 was upregulated in BC. The change in NuSAP1 expression levels was associated with multiple clinicopathological factors, and the higher the expression of NuSAP1 was, the shorter the survival time. In MDA-MB-231 and BT549 cells, knockdown of NuSAP1 expression resulted in a significant decrease in cell proliferation and invasion; a decrease in expression of cyclin D1, vimentin, Slug, Twist, wnt3a, and pβ-catenin; and an increase in expression of e-cadherin. The results of the sh-NuSAP1 + ov-NuSPA1 group were the opposite of the results of the sh-NuSAP1 group. CONCLUSION NuSAP1 is a carcinogen that facilitates progression of TNBC through the Wnt/β-catenin and epithelial-mesenchymal transition pathways.
Collapse
Affiliation(s)
- Li Sun
- Department of Breast Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Changlong Shi
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Shaozhuang Liu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Enchong Zhang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Long Yan
- Department of the Fifth General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ce Ji
- Department of the Third General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yi Zhao
- Department of Breast Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
28
|
Xie Q, Ou-Yang W, Zhang M, Wang H, Yue Q. Decreased Expression of NUSAP1 Predicts Poor Overall Survival in Cervical Cancer. J Cancer 2020; 11:2852-2863. [PMID: 32226503 PMCID: PMC7086256 DOI: 10.7150/jca.34640] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 01/04/2020] [Indexed: 02/01/2023] Open
Abstract
Background: Nucleolar and spindle-associated protein 1 (NUSAP1) was previously reported to be associated with poor prognosis in multiple cancers. In the present study, we comprehensively investigated the clinicopathological features and potential prognostic value of NUSAP1 in cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC). Methods: The expression profiles of the genes were extracted from Gene Expression Omnibus (GEO), The Cancer Genome Atlas (TCGA), International Cancer Genome Consortium (ICGC), Cancer Cell Line Encyclopedia (CCLE), Gene Expression Profiling Interactive Analysis (GEPIA), and The Human Protein Atlas databases. The association between clinicopathological characteristics and NUSAP1 was analyzed using logistic regression in TCGA patients and receiver operating characteristic (ROC) curve analysis for GSE7803, GSE9750, and GSE63514 datasets. The prognostic value of NUSAP1 in TCGA patients was evaluated using the Kaplan-Meier method and Cox regression. Gene set enrichment analysis (GSEA) was conducted using TCGA dataset. Results: A total of 68 differentially expressed genes (DEGs) were identified in CESC. ROC analysis of NUSAP1 suggested that the area under the ROC curve was 0.968. Kaplan-Meier survival analysis indicated that CESC with low expression of NUSAP1 has a worse prognosis than CESC with high NUSAP1 expression (P = 0.005). The logistic regression revealed that low NUSAP1 expression in CESC was related to advanced tumor stage in TCGA database. Moreover, Cox regression analysis showed that NUSAP1 expression correlated significantly with prognosis in the case of patients in TCGA database. GSEA demonstrated that CESC patients with high expression of NUSAP1 were enriched in the G2M checkpoint, MYC targets, and breast cancer ZNF217. Conclusion: The results suggest that identification of DEGs might enhance our understanding of the causes and molecular mechanisms underlying the development of CESC. Moreover, NUSAP1 may play an important role in CESC progression and prognosis and may serve as a valuable indicator of poor survival in CESC.
Collapse
Affiliation(s)
- Qiqi Xie
- Department of Orthopaedics, Second Hospital of Lanzhou University, Lanzhou, Gansu, 730030, People's Republic of China.,Morning Star Academic Cooperation, Shanghai
| | - Wen Ou-Yang
- The Second Clinical Medical College, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, People's Republic of China.,Morning Star Academic Cooperation, Shanghai
| | - Mingwei Zhang
- Department of Radiation Oncology, First Affiliated Hospital of Fujian Medical University Chazhong Road No. 20, Fuzhou, Fujian 350005, People's Republic of China.,Institute of Immunotherapy, Fujian Medical University, Fuzhou, Fujian 350122, People's Republic of China.,Fujian Medical University Union Hospital, Fuzhou, Fujian 350004, People's Republic of China.,Morning Star Academic Cooperation, Shanghai
| | - Huimei Wang
- Department of Integrative Medicine and Neurobiology, State Key Laboratory of Medical Neurobiology, Institute of Brain Science, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China.,Morning Star Academic Cooperation, Shanghai
| | - Qiuyuan Yue
- Department of Radiology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou, Fujian 350014, People's Republic of China
| |
Collapse
|
29
|
Chen Y, Zhang W, Kadier A, Zhang H, Yao X. MicroRNA-769-5p suppresses cell growth and migration via targeting NUSAP1 in bladder cancer. J Clin Lab Anal 2020; 34:e23193. [PMID: 31901150 PMCID: PMC7246360 DOI: 10.1002/jcla.23193] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/16/2019] [Accepted: 12/11/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Nucleolar and spindle-associated protein 1 (NUSAP1) has been identified to be strongly implicated in the carcinogenesis of cervical carcinoma, breast cancer, and liver cancer, and shows a high expression level in bladder cancer, indicating that NUSAP1 might be a potent target for cancer treatment. Using bioinformatics methods, we found that NUSAP1 was a putative target of miR-769-5p. Here, we aimed to explore whether miR-769-5p is involved in bladder cancer progression via targeting NUSAP1. METHODS MiR-769-5p expression patterns in bladder cancer tissues and cells were detected by RT-PCR. Kaplan-Meier was used to determine the clinical effects of miR-769-5p expression levels on the overall survival of bladder cancer patients. Bioinformatics methods were used to predict the binding sites between miR-769-5p and NUSAP1, which was verified by the luciferase gene reporter assay. CCK-8, flow cytometry, wound healing and transwell chamber experiments were performed to test cell growth, apoptosis, migration and invasion capacities. RESULTS miR-769-5p was lowly expressed in bladder cancer tissues and cells, which was closely associated with poor prognosis. Overexpression of miR-769-5p induced significant repressions in cell growth, migration, and invasion and caused an obvious increase in cell apoptosis, whereas these tendencies were reversed when NUSAP1 was upregulated. CONCLUSION This study demonstrates that miR-769-5p functions as a tumor suppressor in bladder cancer via targeting NUSAP1.
Collapse
Affiliation(s)
- Yifan Chen
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Wentao Zhang
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Aimaitiaji Kadier
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Haimin Zhang
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Xudong Yao
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| |
Collapse
|
30
|
Lin Y, Fu F, Lv J, Wang M, Li Y, Zhang J, Wang C. Identification of potential key genes for HER-2 positive breast cancer based on bioinformatics analysis. Medicine (Baltimore) 2020; 99:e18445. [PMID: 31895772 PMCID: PMC6946304 DOI: 10.1097/md.0000000000018445] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
BACKGROUNDS HER-2 positive breast cancer is a subtype of breast cancer with poor clinical outcome. The aim of this study was to identify differentially expressed genes (DEGs) for HER-2 positive breast cancer and elucidate the potential interactions among them. MATERIAL AND METHODS Three gene expression profiles (GSE29431, GSE45827, and GSE65194) were derived from the Gene Expression Omnibus (GEO) database. GEO2R tool was applied to obtain DEGs between HER-2 positive breast cancer and normal breast tissues. Gene ontology (GO) annotation analysis and Kyoto Encyclopedia of Genes and Genome (KEGG) pathway enrichment analysis was performed by the Database for Annotation, Visualization and Integrated Discovery (David) online tool. Protein-protein interaction (PPI) network, hub gene identification and module analysis was conducted by Cytoscape software. Online Kaplan-Meier plotter survival analysis tool was also used to investigate the prognostic values of hub genes in HER-2 positive breast cancer patients. RESULTS A total of 54 upregulated DEGs and 269 downregulated DEGs were identified. Among them, 10 hub genes including CCNB1, RAC1, TOP2A, KIF20A, RRM2, ASPM, NUSAP1, BIRC5, BUB1B, and CEP55 demonstrated by connectivity degree in the PPI network were screened out. In Kaplan-Meier plotter survival analysis, the overexpression of RAC1 and RRM2 were shown to be associated with an unfavorable prognosis in HER-2 positive breast cancer patients. CONCLUSIONS This present study identified a number of potential target genes and pathways which might impact the oncogenesis and progression of HER-2 positive breast cancer. These findings could provide new insights into the detection of novel diagnostic and therapeutic biomarkers for this disease.
Collapse
Affiliation(s)
- Yuxiang Lin
- Department of Breast Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
| | - Fangmeng Fu
- Department of Breast Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
| | - Jinxing Lv
- Department of Breast Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
| | - Mengchi Wang
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA
| | - Yan Li
- Department of Breast Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
| | - Jie Zhang
- Department of Breast Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
| | - Chuan Wang
- Department of Breast Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
| |
Collapse
|
31
|
Shen J, Yu S, Sun X, Yin M, Fei J, Zhou J. Identification of key biomarkers associated with development and prognosis in patients with ovarian carcinoma: evidence from bioinformatic analysis. J Ovarian Res 2019; 12:110. [PMID: 31729978 PMCID: PMC6857166 DOI: 10.1186/s13048-019-0578-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 10/03/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Ovarian cancer (OC) is the deadliest cause in the gynecological malignancies. Most OC patients are diagnosed in advanced stages with less than 40% of women cured. However, the possible mechanism underlying tumorigenesis and candidate biomarkers remain to be further elucidated. RESULTS Gene expression profiles of GSE18520, GSE54388, and GSE27651 were available from Gene Expression Omnibus (GEO) database with a total of 91 OC samples and 22 normal ovarian (OV) tissues. Three hundred forty-nine differentially expressed genes (DEGs) were screened between OC tissues and OV tissues via GEO2R and online Venn software, followed by KEGG pathway and gene ontology (GO) enrichment analysis. The enriched functions and pathways of these DEGs contain male gonad development, cellular response to transforming growth factor beta stimulus, positive regulation of transcription from RNA polymerase II promoter, calcium independent cell-cell adhesion via plasma membrane cell adhesion molecules, extracellular matrix organization, pathways in cancer, cell cycle, cell adhesion molecules, PI3K-AKT signaling pathway, and progesterone mediated oocyte maturation. The protein-protein network (PPI) was established and module analysis was carried out using STRING and Cytoscape. Next, with PPI network analyzed by four topological methods in Cytohubba plugin of Cytoscape, 6 overlapping genes (DTL, DLGAP5, KIF15, NUSAP1, RRM2, and TOP2A) were eventually selected. GEPIA and Oncomine were implemented for validating the gene expression and all the six hub genes were highly expressed in OC specimens compared to normal OV tissues. Furthermore, 5 of 6 genes except for DTL were associated with worse prognosis using Kaplan Meier-plotter online tool and 3 of 6 genes were significantly related to clinical stages, including RRM2, DTL, and KIF15. Additionally, cBioPortal showed that TOP2A and RRM2 were the targets of cancer drugs in patients with OC, indicating the other four genes may also be potential drug targets. CONCLUSION Six hub genes (DTL, DLGAP5, KIF15, NUSAP1, RRM2, and TOP2A) present promising predictive value for the development and prognosis of OC and may be used as candidate targets for diagnosis and treatment of OC.
Collapse
Affiliation(s)
- Jiayu Shen
- Department of Gynecology, The second affiliated hospital of Zhejiang University School of Medicine, No88, Jiefang Road, Shangcheng District, Hangzhou, Zhengjiang, 310002, People's Republic of China
| | - Shuqian Yu
- Department of Gynecology, Tongde hospital of Zhejiang Province, No234, Gucui Road, Xihu District, Hangzhou, Zhejiang, 310012, People's Republic of China
| | - Xiwen Sun
- Department of Obstetrics, The Second Affiliated Hospital of Zhejiang University School of Medicine, No88, Jiefang Road, Shangcheng District, Hangzhou, Zhengjiang, 310002, People's Republic of China
| | - Meichen Yin
- Department of Gynecology, The second affiliated hospital of Zhejiang University School of Medicine, No88, Jiefang Road, Shangcheng District, Hangzhou, Zhengjiang, 310002, People's Republic of China
| | - Jing Fei
- Department of Gynecology, The second affiliated hospital of Zhejiang University School of Medicine, No88, Jiefang Road, Shangcheng District, Hangzhou, Zhengjiang, 310002, People's Republic of China
| | - Jianwei Zhou
- Department of Gynecology, The second affiliated hospital of Zhejiang University School of Medicine, No88, Jiefang Road, Shangcheng District, Hangzhou, Zhengjiang, 310002, People's Republic of China.
| |
Collapse
|
32
|
Ge Y, Li Q, Lin L, Jiang M, Shi L, Wang B, Yang L, Xu Z. Downregulation of NUSAP1 suppresses cell proliferation, migration, and invasion via inhibiting mTORC1 signalling pathway in gastric cancer. Cell Biochem Funct 2019; 38:28-37. [PMID: 31710389 DOI: 10.1002/cbf.3444] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 08/26/2019] [Accepted: 09/22/2019] [Indexed: 01/02/2023]
Abstract
Gastric cancer (GC) is one of the most common causes of cancer-related death worldwide, and outstanding biomarkers for therapeutic targets or predicting GC survival are still lacking. Increasing evidence indicated that nucleolar and spindle associated protein 1 (NUSAP1) involved in regulating the progression of various cancers; however, its specific role in GC remained unclear. In this study, we found that NUSAP1 was upregulated in the GC tissues and cell lines via analysing data from The Cancer Genome Atlas (TCGA), gene expression omnibus (GEO), qRT-PCR, and western blot assays. Patients with high NUSAP1 expression levels showed shorter free-progression survival (FPS), larger tumour size, and higher lymphatic metastasis rate compared with those with low NUSAP1 expression. Further functional experiments revealed knockdown of NUSAP1 could inhibit the growth, migration, and invasion of GC cells in vitro and vivo. Additionally, silencing NUSAP1 induced G0/G1 phase arrest, apoptosis, and suppressed the epithelial-mesenchymal transition (EMT) process. Finally, we performed gene set enrichment analysis (GSEA) and observed NUSAP1 was positive with mTORC1 signalling pathway, which was verified by the subsequent immunoblotting. In conclusion, our findings suggested that NUSAP1 contributed to GC progression and may act as a potential therapeutic target for GC. SIGNIFICANCE OF THE STUDY: Our results firstly illuminated that NUSAP1 expression was significantly upregulated in GC tissues and predicted poor FPS. Silencing it could attenuate GC progression via inhibiting mTORC1 signalling pathway. Hence, NUSAP1 may act as a promising therapy target for GC.
Collapse
Affiliation(s)
- Yugang Ge
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Qiang Li
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Linling Lin
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Mingkun Jiang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Liang Shi
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Biao Wang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Li Yang
- Department of General Surgery, Liyang People's Hospital, Liyang Branch Hospital of Jiangsu Province Hospital, Liyang, Jiangsu Province, China.,Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Zekuan Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| |
Collapse
|
33
|
Zhang M, Di CY, Guo P, Meng LB, Shan MJ, Qiu Y, Guo PY, Dong KQ, Xie Q, Wang Q. Screening and Identification of Key Biomarkers in Pancreatic Cancer: Evidence from Bioinformatic Analysis. J Comput Biol 2019; 27:1079-1091. [PMID: 31638423 DOI: 10.1089/cmb.2019.0189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Pancreatic cancer (PC) whose mortality is comparable to morbidity is a highly fatal disease. Early approaches of diagnosis and treatment for PC are quite limited, so it is of great urgency to figure out the exact tumorigenesis and development mechanism of PC. To identify the related molecular markers of pancreatic oncogenesis, we downloaded three microarray datasets (GSE63111, GSE101448, and GSE107610) from Gene Expression Omnibus (GEO) database. The common differentially expressed genes (DEGs) among them were identified, and the corresponding function enrichment analyses were accomplished. The protein-protein interaction network was conducted by Search Tool for the Retrieval of Interacting Genes (STRING), and the corresponding module analysis was accomplished by Cytoscape. There were 55 DEGs found in total. The molecular function and biological processes (BP) of these DEGs mainly include cytokinesis, mitotic nuclear division, cell division, cell proliferation, microtubule-based movement, and mineral absorption. Among the 55 DEGs, 14 hub genes were further confirmed and it was concluded that they mainly function in mitotic cytokinesis, microtubule-based movement, mitotic chromosome condensation, and mitotic spindle assembly from the BP analysis. The survival analysis showed that all the 14 hub genes, especially nucleolar and spindle associated protein 1 and abnormal spindle microtubule assembly, may involve in the tumorigenesis and development of PC. And they might be used as new biomarkers for auxiliary diagnosis and potential targets for immunotherapy of PC.
Collapse
Affiliation(s)
- Meng Zhang
- Hepatological Surgery Department, The Fourth Hospital of Hebei Medical University, Shijiazhuang, P.R. China
| | - Chen-Yi Di
- School of Basic Medicine, Peking University, Beijing, P.R. China
| | - Peng Guo
- Department of Orthopedics, The Fourth Hospital of Hebei Medical University, Shijiazhuang, P.R. China
| | - Ling-Bing Meng
- Neurology Department, Beijing Hospital, National Center of Gerontology, Beijing, P.R. China
| | - Meng-Jie Shan
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | - Yong Qiu
- Anesthesiology Department, Beijing Hospital, National Center of Gerontology, Beijing, P.R. China
| | - Pei-Yuan Guo
- Basic Medical Institute of Hebei Medical University, Shijiazhuang, P.R. China
| | - Ke-Qin Dong
- Basic Medical Institute of Hebei Medical University, Shijiazhuang, P.R. China
| | - Qi Xie
- Department of Nutrition, The Fourth Hospital of Hebei Medical University, Shijiazhuang, P.R. China
| | - Qiang Wang
- Department of Thoracic Surgery, The First Hospital of Hebei Medical University, Shijiazhuang, P.R. China
| |
Collapse
|
34
|
Guan C, Liu Z, Lu C, Xiao M, Shi H, Ni R, Bian Z. Nucleolar spindle-associated protein 1 promotes tumorigenesis and predicts poor prognosis in human esophageal squamous cell carcinoma. J Cell Biochem 2019; 120:11726-11737. [PMID: 30793360 DOI: 10.1002/jcb.28452] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 01/23/2019] [Accepted: 01/24/2019] [Indexed: 01/24/2023]
Abstract
The microtubule binding protein, nucleolar spindle-associated protein 1 (NUSAP1), has a crucial function in mitosis and its expression is closely associated with carcinogenesis. Herein, we aimed to determine the function of NUSAP1 in the development of human esophageal squamous cell carcinoma (ESCC), and the association of NUSAP1 expression with ESCC. Immunohistochemical staining of ESCC tissue sections indicated that NUSAP1 was expressed to a higher degree in tumor tissues than in adjacent nontumor tissues. NUSAP1 levels were relevant closely to histological differentiation (P = 0.049). Overall survival was longer in patients with lower NUSAP1 levels ( P < 0.001). NUSAP1 expression ( P = 0.002), histological differentiation ( P < 0.001), tumor depth ( P = 0.045), lymph node metastases ( P < 0.001), and tumor-node-metastasis staging ( P = 0.008) were greatly associated with overall survival using univariate analysis. Multivariate analysis suggested that histological differentiation ( P = 0.014) and NUSAP1 expression ( P = 0.026) could be independent prognostic markers for ESCC. Additionally, the biological behavior of ESCC cells was investigated in vitro and in vivo. Suppression of NUSAP1 inhibited cellular proliferation and invasion, and induced cell cycle arrest and apoptosis in vitro. More importantly, knockdown of NUSAP1 led to inhibition of tumor formation in nude mice. These findings indicated that NUSAP1 is a potential prognostic biomarker in ESCC, and is an ESCC oncogene. Thus, NUSAP1 could represent a therapeutic target for ESCC.
Collapse
Affiliation(s)
- Chengqi Guan
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Zhaoxiu Liu
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Cuihua Lu
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Mingbing Xiao
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Hui Shi
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Runzhou Ni
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Zhaolian Bian
- Department of Gastroenterology and Hepatology, Nantong Institute of Liver Disease, Nantong Third People's Hospital Affiliated to Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
35
|
Yang H, Zhou L, Chen J, Su J, Shen W, Liu B, Zhou J, Yu S, Qian J. A four-gene signature for prognosis in breast cancer patients with hypermethylated IL15RA. Oncol Lett 2019; 17:4245-4254. [PMID: 30988805 PMCID: PMC6447940 DOI: 10.3892/ol.2019.10137] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 12/13/2018] [Indexed: 12/12/2022] Open
Abstract
Previous studies have revealed that upregulation of interleukin 15 receptor α (IL15RA) contributes to improved prognosis of breast cancer. The present study aimed to elucidate the molecular mechanisms underlying the antitumor effect induced by IL15RA upregulation, and to identify a gene signature capable of predicting the survival of patients with breast cancer. Using paired gene expression and methylation data of breast cancer samples from The Cancer Genome Atlas data portal, differentially expressed genes (DEGs) were identified in hypermethylated and hypomethylated IL15RA breast cancer samples. Furthermore, a gene signature-based risk-scoring model was developed according to the Cox regression coefficients of survival-associated DEGS. The gene signature was applied to classify patients with breast cancer and hypermethylated IL15RA into two risk groups via Kaplan-Meier survival analysis of overall survival (OS) time. Functional enrichment analysis was conducted to decipher the biological roles of the DEGs between the two risk groups. A total of 326 DEGs were present in the hypomethylation and hypermethylation samples compared with in the normal samples. A four-gene signature [SH3 and cysteine rich domain 2 (STAC2), proline rich 11 (PRR11), homeobox C11 (HOXC11) and nucleolar and spindle associated protein 1 (NUSAP1)] was identified as able to successfully separate patients with breast cancer and hypermethylated IL15RA into two risk groups with significantly different OS time. The signature revealed similar predictive performance in an independent set. Significant enrichment of the ‘receptor interaction’ and ‘cell adhesion molecules (CAM)’ pathways, which involved the DEGs, occurred between the two risk groups. These findings suggested that IL15RA may participate in the regulation of STAC2, PRR11, HOXC11, NUSAP1, and ‘ECM-receptor interaction’ and ‘cell adhesion molecules’ pathways, and therefore in the suppression of breast cancer development and progression. The four-gene signature may have potential prognostic value for breast cancer.
Collapse
Affiliation(s)
- Hui Yang
- Department of Medical Oncology, Nanjing Medical University Suzhou Hospital, Suzhou Cancer Center, Suzhou, Jiangsu 215001, P.R. China
| | - Li Zhou
- Department of Medical Oncology, Nanjing Medical University Suzhou Hospital, Suzhou Cancer Center, Suzhou, Jiangsu 215001, P.R. China
| | - Jianhua Chen
- Department of Surgical Oncology, Nanjing Medical University Suzhou Hospital, Suzhou Cancer Center, Suzhou, Jiangsu 215001, P.R. China
| | - Jiang Su
- Department of Surgical Oncology, Nanjing Medical University Suzhou Hospital, Suzhou Cancer Center, Suzhou, Jiangsu 215001, P.R. China
| | - Wei Shen
- Department of Surgical Oncology, Nanjing Medical University Suzhou Hospital, Suzhou Cancer Center, Suzhou, Jiangsu 215001, P.R. China
| | - Biao Liu
- Department of Pathology, Nanjing Medical University Suzhou Hospital, Suzhou Cancer Center, Suzhou, Jiangsu 215001, P.R. China
| | - Jundong Zhou
- Department of Radiotherapy, Nanjing Medical University Suzhou Hospital, Suzhou Cancer Center, Suzhou, Jiangsu 215001, P.R. China
| | - Shiyou Yu
- Department of Surgical Oncology, Nanjing Medical University Suzhou Hospital, Suzhou Cancer Center, Suzhou, Jiangsu 215001, P.R. China
| | - Jun Qian
- Department of Medical Oncology, Nanjing Medical University Suzhou Hospital, Suzhou Cancer Center, Suzhou, Jiangsu 215001, P.R. China
| |
Collapse
|
36
|
Peng F, Li Q, Niu SQ, Shen GP, Luo Y, Chen M, Bao Y. ZWINT is the next potential target for lung cancer therapy. J Cancer Res Clin Oncol 2019; 145:661-673. [PMID: 30643969 DOI: 10.1007/s00432-018-2823-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 12/12/2018] [Indexed: 11/30/2022]
Abstract
PURPOSE We aimed to analyze the expression of ZWINT, NUSAP1, DLGAP5, and PRC1 in tumor tissues and adjacent tissues with public data. METHODS The expression patterns of four genes were detected in cancer tissues and adjacent tissues by qRT-PCR. The overall survival analysis was used to explore these genes in lung adenocarcinoma and squamous cell carcinoma patients. Knockdown assays were used to select the most suitable gene among these four genes. Cell function assays with the knockdown gene were conducted in A549 and NCL H226 cells. The role of the knockdown gene in lung cancer was dissected in a mice tumor model. Transcriptome sequencing analyses with the knockdown gene were analyzed. RESULTS Overexpression of these genes was significantly detected in cancer tissues (P < 0.01). Overall survival revealed that high expression of these genes is closely related with poor prognosis of lung adenocarcinoma patients (P < 0.05). Knockdown of ZWINT reduced proliferation in NCI H226 and A549 cells (P < 0.05). Knockdown also inhibited cell migration, invasion, apoptosis, and colony formation (P < 0.05). ZWINT knockdown reduced tumor volume (P < 0.05). Transcriptome sequencing of ZWINT knockdown-treated A549 and NCI H226 cells indicated that 100 and 426 differentially expressed genes were obtained, respectively. Gene ontology analysis suggested that binding, biological regulation, and multicellular organismal processes were the most enriched. KEGG analysis revealed that TNF, P53, and PI3K signal networks would be the most potential ZWINT-related pathways and were identified by Western blot analysis. CONCLUSIONS ZWINT may be a novel target for lung cancer therapy.
Collapse
Affiliation(s)
- Fang Peng
- Department of Radiation Oncology, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Qiang Li
- Department of Organ Transplantation and General Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People's Republic of China
| | - Shao-Qing Niu
- Department of Radiation Oncology, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Guo-Ping Shen
- Department of Radiation Oncology, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Ying Luo
- Department of Clinical Laboratory, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Ming Chen
- Department of Radiation Oncology, Zhejiang Key Laboratory of Radiation Oncology, Zhejiang Cancer Hospital, 1 East Banshan Road, Hangzhou, 310022, Zhejiang, People's Republic of China.
| | - Yong Bao
- Department of Radiation Oncology, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080, Guangdong, People's Republic of China.
| |
Collapse
|
37
|
Wang Y, Ju L, Xiao F, Liu H, Luo X, Chen L, Lu Z, Bian Z. Downregulation of nucleolar and spindle-associated protein 1 expression suppresses liver cancer cell function. Exp Ther Med 2019; 17:2969-2978. [PMID: 30936967 PMCID: PMC6434240 DOI: 10.3892/etm.2019.7314] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 01/10/2019] [Indexed: 02/07/2023] Open
Abstract
The aim of the present study was to determine the role of nucleolar and spindle-associated protein 1 (NuSAP1) in human liver cancer. NuSAP1 expression was determined by reverse transcription-quantitative polymerase chain reaction (RT-qPCR), western blotting and immunohistochemistry in hepatocellular carcinoma (HCC) and adjacent tissues. The expression of NuSAP1 gene was detected by RT-qPCR in liver cancer cell lines. Expression information for NuSAP1 was determined using the UALCAN and Oncomine databases. The Kaplan-Meier plotter and The Cancer Genome Atlas databases were used to obtain overall survival data for liver cancer. Liver cancer cell lines HepG2 and Huh-7 were transfected with lentiviral particles to silence the endogenous NuSAP1 gene expression. RT-qPCR and western blotting were performed to confirm the silencing efficiency. Cell Counting Kit-8 was used to estimate the effects of NuSAP1 silencing on HepG2 and Huh-7 cell proliferation. Cell cycle and apoptosis analyses were performed using flow cytometry. Cell invasion was assessed using the Transwell assay with microscopy imaging. The results revealed that the NuSAP1 expression levels in HCC tissues were significantly increased compared with the adjacent tissues. The survival time of patients with HCC with a high NuSAP1 expression was markedly decreased compared with that of patients with HCC with a low expression level of NuSAP1. Functional studies revealed that NuSAP1 silencing significantly reduced HepG2 and Huh-7 cell proliferation and invasion. Increased apoptosis and cell cycle arrest at the G1 phase were observed following NuSAP1 knockdown. NuSAP1 silencing significantly inhibited the mRNA expression of DNA methyltransferase but not glioma-associated oncogene. NuSAP1 contributed to liver cancer development by reducing apoptosis and promoting cell cycle progression. The abnormal expression level of NuSAP1 may serve a role in promoting liver cancer progression.
Collapse
Affiliation(s)
- Yifan Wang
- Nantong Institute of Liver Disease, Nantong Third People's Hospital, Nantong University, Nantong, Jiangsu 226006, P.R. China
| | - Linling Ju
- Nantong Institute of Liver Disease, Nantong Third People's Hospital, Nantong University, Nantong, Jiangsu 226006, P.R. China
| | - Feng Xiao
- Department of Pathology, Nantong Third People's Hospital, Nantong University, Nantong, Jiangsu 226000, P.R. China
| | - Hui Liu
- Department of Gerontology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, P.R. China
| | - Xi Luo
- Department of Clinical Laboratory, Nantong Third People's Hospital, Nantong University, Nantong, Jiangsu 226000, P.R. China
| | - Lin Chen
- Nantong Institute of Liver Disease, Nantong Third People's Hospital, Nantong University, Nantong, Jiangsu 226006, P.R. China
| | - Zhonghua Lu
- Department of Liver Disease, Wuxi Fifth People's Hospital, Jiangnan University, Wuxi, Jiangsu 214013, P.R. China
| | - Zhaolian Bian
- Nantong Institute of Liver Disease, Nantong Third People's Hospital, Nantong University, Nantong, Jiangsu 226006, P.R. China
| |
Collapse
|
38
|
SWATH proteomic profiling of prostate cancer cells identifies NUSAP1 as a potential molecular target for Galiellalactone. J Proteomics 2019; 193:217-229. [DOI: 10.1016/j.jprot.2018.10.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/22/2018] [Accepted: 10/23/2018] [Indexed: 12/13/2022]
|
39
|
Li H, Zhang W, Yan M, Qiu J, Chen J, Sun X, Chen X, Song L, Zhang Y. Nucleolar and spindle associated protein 1 promotes metastasis of cervical carcinoma cells by activating Wnt/β-catenin signaling. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:33. [PMID: 30678687 PMCID: PMC6346521 DOI: 10.1186/s13046-019-1037-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/13/2019] [Indexed: 01/06/2023]
Abstract
Background The primary obstacle to treat cervical cancer is its high prevalence of metastasis, which severely affects patients’ quality of life and survival time. Nucleolar and spindle associated protein 1 (NUSAP1) has been implicated in the development, progression, and metastasis in several types of cancer. However, its oncogenic role in cervical cancer remains unclear. Methods Western blot assay and immunohistochemistry were used to determine the expression of NUSAP1 in 21 clinical fresh Cervical cancer tissues and 233 clinicopathologically characterized cervical cancer specimens. The biological roles of NUSAP1 in the metastasis of cervical cancer were investigated both in vitro by EMT, Side population analysis and Transwell assays and so on, and in vivo using a mouse 4w model of hematogenous metastasis and lymph node metastasis. Bioinformatics analysis, luciferase reporter analysis, immunoprecipitation and immunoblotting of nuclear and cytoplasmic cellular fractions were applied to discern and examine the relationshipbetween NUSAP1 and its potential targets. Results The results demonstrated that NUSAP1 was upregulated in cervical cancer cells and tissues, correlated positively with metastasis and poor clinical outcome of patients. High expression of NUSAP1 promoted metastasis by enhancing cancer stem cell (CSC) traits and epithelial-mesenchyme transition (EMT) progression, while silencing of NUSAP1 reduced CSC traits and EMT progression. Mechanistically, upregulation of NUSAP1 induced SUMOylation of TCF4 via interacting with SUMO E3 ligase Ran-binding protein 2 (RanBP2) and hyperactivated Wnt/β-catenin signaling in cervical cancer cells. Additionally, NUSAP1-induced cervical cancer cells metastasis and the cancer stem cell phenotype were abrogated with the Wnt/β-catenin signaling inhibitor XAV-939 treatment. Importantly, co-therapy of conventional treatment and XAV-939 will provide a novel and effective treatment for NUSAP1-ovexpressed cervical cancer patients. Conclusions Our results demonstrate thatNUSAP1 upregulation contributes to metastasis of cervical cancer by promoting CSC properties and EMT via Wnt/β-catenin signaling and XAV-939 might serve as a potential tailored therapeutic option for patients with NUSAP1-ovexpressed cervical cancer. Electronic supplementary material The online version of this article (10.1186/s13046-019-1037-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Han Li
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Weijing Zhang
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Ming Yan
- Department of Obstetrics Gynecology, The First Pepole's Hospital, Foshan, Guangdong, China
| | - Jiaqi Qiu
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Jueming Chen
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Xiaoying Sun
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Xiangfu Chen
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Libing Song
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Yanna Zhang
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
40
|
Yang Z, Li J, Feng G, Wang Y, Yang G, Liu Y, Zhang S, Feng J, Zhang X. Hepatitis B virus X protein enhances hepatocarcinogenesis by depressing the targeting of NUSAP1 mRNA by miR- 18b. Cancer Biol Med 2019; 16:276-287. [PMID: 31516748 PMCID: PMC6713641 DOI: 10.20892/j.issn.2095-3941.2018.0283] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Objective The aim of this study was to investigate the underlying mechanism whereby HBx modulates the targeting of NUSAP1 by miR-18b to enhance hepatocarcinogenesis. Methods We employed an integrated approach of bioinformatics analysis and molecular experiments in hepatoma cells, HBV transgenic mice, and clinical liver cancer tissues to investigate the role of HBx-regulated miR-18b in the development of liver cancer. Results In this study, we report that the HBx-mediated tumor suppressor miR-18b modulates hepatocarcinogenesis during the host-HBV interaction. The expression levels of miR-18b were lower in clinical HBV-positive liver cancer tissues and liver tissues of HBV-transgenic mice. Interestingly, HBx inhibited miR-18b expression by inducing the methylation of CpG islands in its promoter. Accordingly, we tested the hypothesis that HBx enhanced hepatocarcinogenesis by increasing the expression of target genes of miR-18b. Moreover, we identified nucleolar spindle-associated protein 1 (NUSAP1) as one of the target genes of miR-18b. NUSAP1 was expressed at high levels in liver cancer tissues. Interestingly, HBx up-regulated NUSAP1 by suppressing miR-18b. Functionally, miR-18b significantly inhibited the proliferation of hepatoma cells by depressing NUSAP1 levels in vivo and in vitro. Conclusions Thus, we conclude that the targeting of NUSAP1 mRNA by the tumor suppressor miR-18b is controlled by HBx-modulated promoter methylation during the host-virus interaction, leading to hepatocarcinogenesis. Our findings provide new insights into the mechanism by which HBx-mediated miRNAs modulate hepatocarcinogenesis.
Collapse
Affiliation(s)
- Zhe Yang
- Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jiong Li
- Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Guoxing Feng
- Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yuan Wang
- Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Guang Yang
- Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yunxia Liu
- Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Shuqin Zhang
- Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jinyan Feng
- Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xiaodong Zhang
- Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin 300071, China
| |
Collapse
|
41
|
Zhang X, Pan Y, Fu H, Zhang J. Nucleolar and Spindle Associated Protein 1 (NUSAP1) Inhibits Cell Proliferation and Enhances Susceptibility to Epirubicin In Invasive Breast Cancer Cells by Regulating Cyclin D Kinase (CDK1) and DLGAP5 Expression. Med Sci Monit 2018; 24:8553-8564. [PMID: 30476929 PMCID: PMC6278864 DOI: 10.12659/msm.910364] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 06/11/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Differentially expressed genes (DEGs) of IBC were selected from the Gene Expression Omnibus (GEO) chip data: GSE21422 and GSE21974. Network analysis of the DEGs and IBC-related genes was performed in STRING database to find the core gene. Thus, this study aimed to determine the role of NUSAP1 in invasive breast cancer (IBC) and to investigate its effect on drug susceptibility to epirubicin (E-ADM). MATERIAL AND METHODS The mRNA expression of NUSAP1 was determined by quantitative polymerase chain reaction (q-PCR). The protein expression was detected by Western blotting. Cell growth and growth cycle were detected by MTT assay and flow cytometry, respectively. Cell migration and invasion were tested by Transwell assay. RESULTS Through use of gene network analysis, we found that NUSAP1 interacts with IBC-related genes. NUSAP1 presented high expression in IBC tissue samples and MCF-7 cells. NUSAP1 overexpression promoted the growth, migration, and invasion of MCF-7 cells. While NUSAP1 gene silencing downregulated the expression of genes associated with cell cycle progression in G2/M phase, cyclin D kinase (CDK1) and DLGAP5 arrested cells in G2/M phase and significantly inhibited the growth, migration, and invasion of MCF-7 cells. si-NUSAP1 increased the susceptibility of MCF-7 cells to E-ADM-induced apoptosis. CONCLUSIONS Our study provides evidence that downregulation of NUSAP1 can inhibit the proliferation, migration, and invasion of IBC cells by regulating CDK1 and DLGAP5 expression and enhances the drug susceptibility to E-ADM.
Collapse
|
42
|
Liu Z, Guan C, Lu C, Liu Y, Ni R, Xiao M, Bian Z. High NUSAP1 expression predicts poor prognosis in colon cancer. Pathol Res Pract 2018; 214:968-973. [DOI: 10.1016/j.prp.2018.05.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 05/09/2018] [Accepted: 05/18/2018] [Indexed: 02/07/2023]
|
43
|
Yao L, Liu Y, Cao Z, Li J, Huang Y, Hu X, Shao Z. MicroRNA-493 is a prognostic factor in triple-negative breast cancer. Cancer Sci 2018; 109:2294-2301. [PMID: 29777630 PMCID: PMC6029816 DOI: 10.1111/cas.13644] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/10/2018] [Accepted: 05/14/2018] [Indexed: 01/22/2023] Open
Abstract
Breast cancer is one of the most common malignant diseases in women. Triple‐negative breast cancer (TNBC) shows higher aggressiveness and recurrence rates than other subtypes, and there are no effective targets or tailored treatments for TNBC patients. Thus, finding effective prognostic markers for TNBC could help clinicians in their ability to care for their patients. We used tissue microarrays (TMAs) to detect microRNA‐493 (miR‐493) expression in breast cancer samples. A miRCURY LNA detection probe specific for miR‐493 was used in in situ hybridization assays. Staining results were reviewed by two independent pathologists and classified as high or low expression of miR‐493. Kaplan–Meier survival plots and multivariate Cox analysis were carried out to clarify the relationship between miR‐493 and survival. In the Kaplan–Meier analysis, patients with high miR‐493 expression had better disease‐free survival than patients with low miR‐493 expression. After adjusting for common clinicopathological factors in breast cancer, the expression level of miR‐493 was still a significant prognostic factor in breast cancer. Further subtype analysis revealed that miR‐493 expression levels were only significantly prognostic in TNBC patients. These results were validated in the Molecular Taxonomy of Breast Cancer International Consortium database for overall survival. We proved the prognostic role of miR‐493 in TNBC by using one of the largest breast cancer TMAs available and validated it in a large public RNA sequencing database.
Collapse
Affiliation(s)
- Ling Yao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yirong Liu
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Zhigang Cao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Junjing Li
- Department of Breast Surgery, Affiliated Union Hospital, Fujian Medical University, Fuzhou, China
| | - Yanni Huang
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Xin Hu
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Zhiming Shao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| |
Collapse
|
44
|
Gordon CA, Gong X, Ganesh D, Brooks JD. NUSAP1 promotes invasion and metastasis of prostate cancer. Oncotarget 2018; 8:29935-29950. [PMID: 28404898 PMCID: PMC5444715 DOI: 10.18632/oncotarget.15604] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 01/25/2017] [Indexed: 01/22/2023] Open
Abstract
We have previously identified nucleolar and spindle associated protein 1 (NUSAP1) as a prognostic biomarker in early stage prostate cancer. To better understand the role of NUSAP1 in prostate cancer progression, we tested the effects of increased and decreased NUSAP1 expression in cell lines, in vivo models, and patient samples. NUSAP1 promotes invasion, migration, and metastasis, possibly by modulating family with sequence similarity 101 member B (FAM101B), a transforming growth factor beta 1 (TGFβ1) signaling effector involved in the epithelial to mesenchymal transition. Our findings provide insights into the importance of NUSAP1 in prostate cancer progression and provide a rationale for further study of NUSAP1 function, regulation, and clinical utility.
Collapse
Affiliation(s)
- Catherine A Gordon
- Department of Urology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Xue Gong
- Department of Urology, Stanford University School of Medicine, Stanford, CA, 94305, USA.,Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Durga Ganesh
- Department of Urology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - James D Brooks
- Department of Urology, Stanford University School of Medicine, Stanford, CA, 94305, USA.,Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA
| |
Collapse
|
45
|
Yang ZX, Zhang B, Wei J, Jiang GQ, Wu YL, Leng BJ, Xing CG. MiR-539 inhibits proliferation and migration of triple-negative breast cancer cells by down-regulating LAMA4 expression. Cancer Cell Int 2018; 18:16. [PMID: 29434522 PMCID: PMC5791727 DOI: 10.1186/s12935-018-0512-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 01/22/2018] [Indexed: 01/18/2023] Open
Abstract
Background Recent studies have shown that laminin subunit alpha 4 (LAMA4) plays an important role in carcinogenesis. However, its molecular biological function in triple-negative breast cancer (TNBC) has not been entirely clarified. This study investigated the expression of LAMA4 in TNBC and its effect on cell proliferation, migration and invasion. Furthermore, we also identified the potential miRNA directly targeting LAMA4. Methods Western blot, Real-time quantitative PCR (qPCR) and immunohistochemical staining (IHC) were used to detect the expression of LAMA4 in TNBC. The effects of LAMA4 on TNBC cell proliferation, migration and invasion were also explored in vitro. The potential miRNA that targets LAMA4 was determined by dual luciferase reporter assay and verified by qPCR and western blot analysis. Results Our study showed LAMA4 mRNA (p = 0.001) and protein (p = 0.005) expression in TNBC tissue samples were elevated compared with adjacent normal tissue samples, and LAMA4 was mainly expressed in the cytoplasm of breast carcinoma cells. Knockdown of LAMA4 inhibited TNBC cell proliferation, migration and invasion in vitro. Moreover, further study revealed that LAMA4 was a putative target of miR-539, and miR-539 negatively regulated LAMA4 expression by directly targeting its 3′-UTR. Conclusions Our study suggested that miR-539 suppressed the expression of LAMA4. LAMA4 plays an important role in tumor progression and may be an important target in treatment of TNBC.
Collapse
Affiliation(s)
- Zhi-Xue Yang
- 1Department of General Surgery, The Second Affiliated Hospital, Soochow University, Suzhou, 215004 Jiangsu China
| | - Bo Zhang
- 2Department of Radiology, The Second Affiliated Hospital, Soochow University, Suzhou, 215004 Jiangsu China
| | - Jinrong Wei
- 1Department of General Surgery, The Second Affiliated Hospital, Soochow University, Suzhou, 215004 Jiangsu China
| | - Guo-Qin Jiang
- 1Department of General Surgery, The Second Affiliated Hospital, Soochow University, Suzhou, 215004 Jiangsu China
| | - Yan-Lin Wu
- 1Department of General Surgery, The Second Affiliated Hospital, Soochow University, Suzhou, 215004 Jiangsu China
| | - Bing-Jing Leng
- 1Department of General Surgery, The Second Affiliated Hospital, Soochow University, Suzhou, 215004 Jiangsu China
| | - Chun-Gen Xing
- 1Department of General Surgery, The Second Affiliated Hospital, Soochow University, Suzhou, 215004 Jiangsu China
| |
Collapse
|
46
|
Mills CA, Suzuki A, Arceci A, Mo JY, Duncan A, Salmon ED, Emanuele MJ. Nucleolar and spindle-associated protein 1 (NUSAP1) interacts with a SUMO E3 ligase complex during chromosome segregation. J Biol Chem 2017; 292:17178-17189. [PMID: 28900032 DOI: 10.1074/jbc.m117.796045] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 07/19/2017] [Indexed: 01/10/2023] Open
Abstract
The mitotic spindle is composed of dynamic microtubules and associated proteins that together direct chromosome movement during mitosis. The spindle plays a vital role in accurate chromosome segregation fidelity and is a therapeutic target in cancer. Nevertheless, the molecular mechanisms by which many spindle-associated proteins function remains unknown. The nucleolar and spindle-associated protein NUSAP1 is a microtubule-binding protein implicated in spindle stability and chromosome segregation. We show here that NUSAP1 localizes to dynamic spindle microtubules in a unique chromosome-centric pattern, in the vicinity of overlapping microtubules, during metaphase and anaphase of mitosis. Mass spectrometry-based analysis of endogenous NUSAP1 interacting proteins uncovered a cell cycle-regulated interaction between the RanBP2-RanGAP1-UBC9 SUMO E3 ligase complex and NUSAP1. Like NUSAP1 depletion, RanBP2 depletion impaired the response of cells to the microtubule poison Taxol. NUSAP1 contains a conserved SAP domain (SAF-A/B, Acinus, and PIAS). SAP domains are common among many other SUMO E3s, and are implicated in substrate recognition and ligase activity. We speculate that NUSAP1 contributes to accurate chromosome segregation by acting as a co-factor for RanBP2-RanGAP1-UBC9 during cell division.
Collapse
Affiliation(s)
- Christine A Mills
- From the Lineberger Comprehensive Cancer Center.,Departments of Pharmacology and
| | | | - Anthony Arceci
- From the Lineberger Comprehensive Cancer Center.,Curriculum in Genetics and Molecular Biology, and
| | - Jin Yao Mo
- Department of Medicine and Division of Infectious Diseases, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Alex Duncan
- From the Lineberger Comprehensive Cancer Center.,Department of Medicine and Division of Infectious Diseases, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | | | - Michael J Emanuele
- From the Lineberger Comprehensive Cancer Center, .,Departments of Pharmacology and.,Curriculum in Genetics and Molecular Biology, and
| |
Collapse
|
47
|
The role of BRCA status on prognosis in patients with triple-negative breast cancer. Oncotarget 2017; 8:87151-87162. [PMID: 29152070 PMCID: PMC5675622 DOI: 10.18632/oncotarget.19895] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 07/18/2017] [Indexed: 02/05/2023] Open
Abstract
Studies have showed that dysfunction in the breast cancer susceptibility gene (BRCA) is associated with triple-negative breast cancer (TNBC); however, its effect on patient survival remains controversial. We investigated the distribution of BRCA1/2 mutations in unselected Chinese patients with TNBC and explored their roles in prognosis. Then a systematic review and meta-analysis were performed to evaluate the prognostic role of BRCA dysfunction, including BRCA1/2 germline/somatic mutations, BRCA1 promoter methylation, and low BRCA1 protein expression in TNBC patients. Pooled hazard ratios with 95% confidence intervals were estimated to determine the association between BRCA dysfunction and survival. Our results showed a high frequency of BRCA1/2 mutations, especially germline BRCA1 variants, were associated with bilateral breast cancer. Although no correlations were found between BRCA1/2 mutations and recurrence-free survival (RFS) or overall survival (OS). In the meta-analysis, patients with BRCA1 promoter methylation showed poor OS. However, there was a favorable impact on disease free survival (DFS) for TNBC patients with BRCA1 promoter methylation when received adjuvant-chemotherapy. In conclusion, BRCA1/2 mutations were associated with bilateral breast cancer and BRCA1 promoter methylation may have a prognostic effect on TNBC.
Collapse
|
48
|
Mangia A, Scarpi E, Partipilo G, Schirosi L, Opinto G, Giotta F, Simone G. NHERF1 together with PARP1 and BRCA1 expression as a new potential biomarker to stratify breast cancer patients. Oncotarget 2017; 8:65730-65742. [PMID: 29029467 PMCID: PMC5630367 DOI: 10.18632/oncotarget.19444] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 04/27/2017] [Indexed: 12/31/2022] Open
Abstract
It has been recognized that Na+/H+ Exchanger Regulatory Factor 1 (NHERF1) in breast cancer (BC) acts as a tumor suppressor or as an oncogenic protein, depending on its subcellular localization. This study aims to correlate NHERF1 expression to BRCA1 and PARP1 proteins, to investigate their relationship, and their biological and clinical significance. Using immunohistochemistry on tissue microarrays, we evaluated subcellular NHERF1, BRCA1 and PARP1 expression in 308 BCs including a subgroup (n=80) of triple negative BCs (TNBCs). Herein, we show that nuclear NHERF1 (nNHERF1) expression was significantly associated with nuclear BRCA1 (nBRCA1) expression (p=0.0008), and an association was also found between nuclear PARP1 (nPARP1) and nBRCA1 (p<0.0001). Cytoplasmic NHERF1 (cNHERF1) was correlated to nPARP1 (p<0.0001). Survival analyses showed that the patients with positive nPARP1 and nNHERF1 tended toward a shorter 5-year overall survival (OS) (p=0.057). In TNBCs, the association between nBRCA1 and nPARP1 was maintained (p<0.0001), and an association between nNHERF1 and nPARP1 was observed (p=0.010). Univariate analysis revealed that TNBCs with positive cNHERF1 and nPARP1 had a shorter 5-year OS (p=0.048). Our data suggest that NHERF1 could be a new potential biomarker in combination with PARP1 and BRCA1 expression to stratify BC patients. In particular, in TNBCs, cNHERF1 associated with nPARP1 expression identified a patient subgroup with a shorter survival, for whom it may be useful to develop novel therapeutic strategies.
Collapse
Affiliation(s)
- Anita Mangia
- Functional Biomorphology Laboratory, IRCCS-Istituto Tumori "Giovanni Paolo II", Bari 70124, Italy
| | - Emanuela Scarpi
- Unit of Biostatistics and Clinical Trials, (IRST)-IRCCS-Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori, Meldola (FC) 47014, Italy
| | - Giulia Partipilo
- Functional Biomorphology Laboratory, IRCCS-Istituto Tumori "Giovanni Paolo II", Bari 70124, Italy
| | - Laura Schirosi
- Functional Biomorphology Laboratory, IRCCS-Istituto Tumori "Giovanni Paolo II", Bari 70124, Italy
| | - Giuseppina Opinto
- Functional Biomorphology Laboratory, IRCCS-Istituto Tumori "Giovanni Paolo II", Bari 70124, Italy
| | - Francesco Giotta
- Medical Oncology Unit, IRCCS-Istituto Tumori "Giovanni Paolo II", Bari 70124, Italy
| | - Giovanni Simone
- Pathology Department, IRCCS-Istituto Tumori "Giovanni Paolo II", Bari 70124, Italy
| |
Collapse
|
49
|
Simon M, Mesmar F, Helguero L, Williams C. Genome-wide effects of MELK-inhibitor in triple-negative breast cancer cells indicate context-dependent response with p53 as a key determinant. PLoS One 2017; 12:e0172832. [PMID: 28235006 PMCID: PMC5325553 DOI: 10.1371/journal.pone.0172832] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 02/10/2017] [Indexed: 12/18/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive, highly recurrent breast cancer subtype, affecting approximately one-fifth of all breast cancer patients. Subpopulations of treatment-resistant cancer stem cells within the tumors are considered to contribute to disease recurrence. A potential druggable target for such cells is the maternal embryonic leucine-zipper kinase (MELK). MELK expression is upregulated in mammary stem cells and in undifferentiated cancers, where it correlates with poor prognosis and potentially mediates treatment resistance. Several MELK inhibitors have been developed, of which one, OTSSP167, is currently in clinical trials. In order to better understand how MELK and its inhibition influence TNBC, we verified its anti-proliferative and apoptotic effects in claudin-low TNBC cell lines MDA-MB-231 and SUM-159 using MTS assays and/or trypan blue viability assays together with analysis of PARP cleavage. Then, using microarrays, we explored which genes were affected by OTSSP167. We demonstrate that different sets of genes are regulated in MDA-MB-231 and SUM-159, but in both cell lines genes involved in cell cycle, mitosis and protein metabolism and folding were regulated. We identified p53 (TP53) as a potential upstream regulator of the regulated genes. Using western blot we found that OTSSP167 downregulates mutant p53 in all tested TNBC cell lines (MDA-MB-231, SUM-159, and BT-549), but upregulates wild-type p53 in the luminal A subtype MCF-7 cell line. We propose that OTSSP167 might have context-dependent or off-target effects, but that one consistent mechanism of action could involve the destabilization of mutant p53.
Collapse
Affiliation(s)
- Marisa Simon
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Texas, United States of America
| | - Fahmi Mesmar
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Texas, United States of America
| | - Luisa Helguero
- Institute for Research in Biomedicine, Department of Biosciences, University of Aveiro, Aveiro, Portugal
| | - Cecilia Williams
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Texas, United States of America
- Division of Proteomics, SciLifeLab, School of Biotechnology, KTH – Royal Institute of Technology, Solna, Sweden
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
50
|
Hong L, Pan F, Jiang H, Zhang L, Liu Y, Cai C, Hua C, Luo X, Sun J, Chen Z. miR-125b inhibited epithelial-mesenchymal transition of triple-negative breast cancer by targeting MAP2K7. Onco Targets Ther 2016; 9:2639-48. [PMID: 27226726 PMCID: PMC4863692 DOI: 10.2147/ott.s102713] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
MicroRNAs (miRNAs) play important roles in diverse biological processes and are emerging as key regulators of tumorigenesis and tumor progression. Among the differentially expressed miRNAs in breast cancer, miR-125b was revealed to be deregulated and associated with poor prognosis and chemoresistance in triple-negative breast cancer (TNBC), but the mechanism is still unknown. In our study, we showed downregulated expression of miR-125b in TNBC tissues and decreased migration and invasion in miR-125b-expressing Hs578T cells. MAP2K7 was then detected to be a novel target of miR-125b, and downregulation of MAP2K7 by miR-125b was similar to transient knockdown of MAP2K7 which hindered epithelial–mesenchymal transition (EMT) of Hs578T cells. Upregulation of MAP2K7 in miR-125b-overexpressing Hs578T cells partly rescued the migration and invasion suppression of miR-125b. Furthermore, MAP2K7 was overexpressed in TNBC samples compared with normal tissues and negatively correlated with miR-125b expression. In light of these findings, miR-125b emerged as a tumor suppressor in TNBC by targeting MAP2K7 to inhibit EMT.
Collapse
Affiliation(s)
- Liquan Hong
- Department of Clinical Laboratory, Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Feng Pan
- Department of Clinical Laboratory, Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Huifen Jiang
- Zhejiang Provincial Tumor Hospital, Hangzhou, Zhejiang Province, People's Republic of China
| | - Lahong Zhang
- Department of Clinical Laboratory, Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Yuhua Liu
- Department of Clinical Laboratory, Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Chengsong Cai
- Department of Clinical Laboratory, Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Chunzhen Hua
- Zhejiang Provincial Children's Hospital, Hangzhou, Zhejiang Province, People's Republic of China
| | - Xian Luo
- Department of Clinical Laboratory, Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Jinhua Sun
- Technology Department, Hangzhou Joingenome Diagnostics, Hangzhou, Zhejiang Province, People's Republic of China
| | - Zhaojun Chen
- Department of Clinical Laboratory, Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, People's Republic of China
| |
Collapse
|