1
|
Jiang Z, Wang J, Qian X, Zhang Z, Wang S. Oral microbiota may predict the presence of esophageal squamous cell carcinoma. J Cancer Res Clin Oncol 2023; 149:4731-4739. [PMID: 36222897 DOI: 10.1007/s00432-022-04393-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/03/2022] [Indexed: 10/17/2022]
Abstract
PURPOSE Microbial imbalances have been well elucidated in esophageal adenocarcinoma (EAC), but few studies address the oral microbiota in esophageal squamous cell carcinoma (ESCC). In view of the fact, we aimed to explore the associations of oral microbiota with these patients suffering from ESCC. METHODS In our study, a total of 109 individuals were enrolled (control = 53, ESCC = 56). We profiled the microbiota in oral swabs from individuals with control (ConT) and ESCC (ESCCT). 16S rRNA gene sequencing was applied to analyze the microbiome. The α and β diversity differences were tested by Tukey Test and Partial Least Squares Discriminant Analysis (PLS-DA) respectively. Linear discriminant analysis effect size (LEfSe) analysis was performed to assess taxonomic differences between the two groups. RESULTS Our results showed that the microbial richness and diversity was a slightly higher in ESCCT groups than that in ConT groups. Bacteroidota, Firmicutes, Proteobacteria, Fusobacteria, Actinobacteria and Patescibacteria were the six dominant bacteria of oral flora in the two groups. When compared with control group, increased Fusobacterioa at phylum level, Neisseriaceae at family level and Leptotrichia at genus level were detected. LEfSe analysis indicated a greater abundance of Leptotrichiaceae, Leptotrichia, Fusobacteriales, Fusobacteria and Fusobacteriota in ESCC groups. CONCLUSION Our study suggests a potential association between oral microbiome dysbiosis and ESCC and provides insights on a potential screening marker for esophageal cancer.
Collapse
Affiliation(s)
- Zongdan Jiang
- Department of Gastroenterology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, Jiangsu, China
| | - Jun Wang
- Department of Gastroenterology and Hepatology, Jinhu County People's Hospital, Huaian, China
| | - Xuetian Qian
- Department of Gastroenterology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, Jiangsu, China
| | - Zhenyu Zhang
- Department of Gastroenterology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, Jiangsu, China.
| | - Shukui Wang
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, Jiangsu, China.
| |
Collapse
|
2
|
Yang Z, Cai T, Li Y, Jiang D, Luo J, Zhou Z. Oral microbial communities in 5-year-old children with versus without dental caries. BMC Oral Health 2023; 23:400. [PMID: 37328866 PMCID: PMC10276436 DOI: 10.1186/s12903-023-03055-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/17/2023] [Indexed: 06/18/2023] Open
Abstract
BACKGROUND Caries in young children has received more and more attention. The study of the oral microbiota may help to understand the polymicrobial etiology of dental caries. OBJECTIVES To investigate the diversity and structure of microbial communities in saliva samples from 5-year-old children with versus without dental caries. METHODS A total of 36 saliva samples were collected from 18 children with high caries (HB group) and from 18 children without caries (NB group). Then, 16S rDNA was amplified from bacterial samples using polymerase chain reaction, and high-throughput sequencing was performed using Illumina Novaseq platforms. RESULTS Sequences were clustered into operational taxonomic units (OTUs), which were distributed among 16 phyla, 26 classes, 56 orders, 93 families, 173 genera, and 218 species. Firmicutes, Bacteroides, Proteobacteria, Actinobacteria, Fusobacteria, Patescibacteria, Epsilonbacteraeota, Cyanobacteria, Acidobacteria and Spirochaetes were basically the same in different groups, but their relative abundances were different. The core microbiome was defined as the species from 218 shared microbial taxa. The alpha diversity test showed that there were no significant differences in microbial abundance and diversity between the high caries and no caries groups. The results from principal coordinate analysis (PCoA) and hierarchical clustering showed that the two groups had similar microorganisms. The biomarkers of different groups were defined by LEfSe analysis to identify potential caries-related and health-related bacteria. Co-occurrence network analysis of dominant genera showed that oral microbial communities in the no caries group were more complex and aggregated than those in the high caries group. Finally, the PICRUSt algorithm was used to predict the function of the microbial communities from saliva samples. The obtained results showed that mineral absorption was greater in the no caries group than in the high caries group. BugBase was used to determine phenotypes present in microbial community samples. The obtained results showed that Streptococcus was greater in the high caries group than in the no caries group. CONCLUSION Findings of this study provide a comprehensive understanding of the microbiological etiology of dental caries in 5-year-old children and are expected to provide new methods for its prevention and treatment.
Collapse
Affiliation(s)
- Zhengyan Yang
- Stomatological Hospital of Chongqing Medical University, Chongqing, 400015, China
- Chongqing Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 400015, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, 400015, China
| | - Ting Cai
- Stomatological Hospital of Chongqing Medical University, Chongqing, 400015, China
- Chongqing Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 400015, China
| | - Yueheng Li
- Stomatological Hospital of Chongqing Medical University, Chongqing, 400015, China
- Chongqing Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 400015, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, 400015, China
| | - Dan Jiang
- Chongqing Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 400015, China
| | - Jun Luo
- Stomatological Hospital of Chongqing Medical University, Chongqing, 400015, China.
- Chongqing Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 400015, China.
| | - Zhi Zhou
- Stomatological Hospital of Chongqing Medical University, Chongqing, 400015, China.
- Chongqing Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 400015, China.
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, 400015, China.
| |
Collapse
|
3
|
Lin X, Wang Y, Ma Z, Xie M, Liu Z, Cheng J, Tian Y, Shi H. Correlation between caries activity and salivary microbiota in preschool children. Front Cell Infect Microbiol 2023; 13:1141474. [PMID: 37113131 PMCID: PMC10126836 DOI: 10.3389/fcimb.2023.1141474] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/17/2023] [Indexed: 04/29/2023] Open
Abstract
Early childhood caries (ECC) is the most common chronic infectious oral disease in preschool children worldwide. It is closely related to the caries activity (CA) of children. However, the distribution characteristics of oral saliva microbiomes in children with different CA are largely underexplored. The aim of this study was to investigate the microbial community in saliva of preschool children with different CA and caries status, and to analyze the difference of microbial community in saliva of children with different CA and its correlation with ECC. Subjects were divided into 3 groups based on the Cariostat caries activity test: Group H, high CA (n=30); Group M, medium CA (n = 30); Group L, low CA (n=30). Questionnaire survey was used to explore the related influencing factors of CA. According to the caries status (on the basis of decayed mising filled teeth), these subjects were divided into caries-free group (dmft=0, n=19), caries-low group (0 < dmft ≤ 4, n=27) and caries-high group (dmft > 4, n=44). Microbial profiles of oral saliva were analyzed using 16S rRNA gene sequencing. There were significant differences in the microbial structure (P < 0.05). Scardovia and Selenomonas were the biomarkers of both H group and high caries group. The genus Abiotrophia and Lautropia were the biomarkers of both the L group and the low caries group, while the Lactobacillus and Arthrospira spp. were significantly enriched in the M group. The area under the ROC curve of the combined application of dmft score, age, frequency of sugary beverage intake, and the genus Scardovia, Selenomonas, and Campylobacter in screening children with high CA was 0.842. Moreover, function prediction using the MetaCyc database showed that there were significant differences in 11 metabolic pathways of salivary microbiota among different CA groups. Certain bacteria genera in saliva such as Scardovia and Selenomonas may be helpful in screening children with high CA.
Collapse
Affiliation(s)
- Xiuyan Lin
- Department of Pediatric Dentistry, Hospital of Stomatology and Hebei Provincial Key Laboratory of Stomatology, Hebei Medical University, Shijiazhuang, China
| | - Yuan Wang
- Department of Stomatology, Zhao County Maternal and Child Health Hospital, Shijiazhuang, China
| | - Zhe Ma
- Department of Preventive Dentistry, Hospital of Stomatology and Hebei Provincial Key Laboratory of Stomatology, Hebei Medical University, Shijiazhuang, China
| | - Meng Xie
- Department of Pediatric Dentistry, Hospital of Stomatology and Hebei Provincial Key Laboratory of Stomatology, Hebei Medical University, Shijiazhuang, China
| | - Zhuo Liu
- Department of Stomatology, Zhao County Maternal and Child Health Hospital, Shijiazhuang, China
| | - Jinghui Cheng
- Department of Stomatology, Zhao County Maternal and Child Health Hospital, Shijiazhuang, China
| | - Yuzhao Tian
- Department of Stomatology, Zhao County Maternal and Child Health Hospital, Shijiazhuang, China
| | - Hong Shi
- Department of Pediatric Dentistry, Hospital of Stomatology and Hebei Provincial Key Laboratory of Stomatology, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
4
|
Zhang Y, Fang J, Yang J, Gao X, Dong L, Zheng X, Sun L, Xia B, Zhao N, Ma Z, Wang Y. Streptococcus mutans-associated bacteria in dental plaque of severe early childhood caries. J Oral Microbiol 2022; 14:2046309. [PMID: 35251525 PMCID: PMC8896182 DOI: 10.1080/20002297.2022.2046309] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Background Streptococcus mutans (S. mutans) is a potential pathogenic bacteria of dental caries. However, the level of S. mutans is low in some children with severe early childhood caries (SECC) Aim To evaluate the effect of S. mutans level on dental microbiome and cariogenesis. Methods The oral microbiota was compared between caries-free group (CF) and SECC group.16S rRNA gene sequencing was used for S. mutans level bacterial community analysis. The candidate bacteria that were closely related with S. mutans abundance were identified and confirmed by absolute quantitative real-time PCR in clinical dental plaque samples from CF and SECC groups. Results Through in-depth analysis of dental plaque microorganism, Leptotrichia, Selenomonas and Prevotella_7 were found in the S. mutans-low group (p < 0.05) and Porphyromonas, Selenomonas_3 were found in the S. mutans-high group (p < 0.05). Through quantitative real-time PCR, Leptotrichia, Selenomonas and Prevotella_7 were identified as the potential biomarkers of SECC when S. mutans was at a low level. Conclusion Leptotrichia, Selenomonas and Prevotella_7 are identified as potential biomarkers in SECC with a low abundance or without S. mutans. Our study may shed light on the understanding of caries occurrence in SECC with low abundance of S. mutans. Abbreviations S. mutans, Streptococcus mutans; CF, caries-free; SECC, severe early childhood caries; ECC, early childhood caries; rRNA, ribosome RNA; qPCR, Quantitative real-time PCR; OTUs, operational taxonomic units; ANOVA, analysis of variance; LDA, Linear discriminant analysis; LEfSe, Linear discriminant analysis effect size; COG, Groups of proteins; NMDS, Non-MetricMulti-Dimensional Scaling; IL-1β, interleukin −1β; IL-6, interleukin-6; IL-8, interleukin-8; IL-10, interleukin-10.
Collapse
Affiliation(s)
- Yixin Zhang
- Central Laboratory Peking University School and Hospital of Stomatology, Beijing, China
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, Beijing, China
- Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, China
| | - Jiakun Fang
- Office of Operations Management, Peking University School and Hospital of Stomatology, Beijing, China
| | - Jingyi Yang
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Xiaolei Gao
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China
| | - Liying Dong
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China
| | - Xuan Zheng
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China
| | - Liangjie Sun
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China
| | - Bin Xia
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Na Zhao
- Department of Restorative Dentistry and Biomaterials Sciences, Harvard School of Dental Medicine, Boston, Massachusetts, USA
- Shanghai Stomatological Hospital, Fudan University, Shanghai, China
| | - Zeyun Ma
- Department of VIP Service, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yixiang Wang
- Central Laboratory Peking University School and Hospital of Stomatology, Beijing, China
| |
Collapse
|
5
|
Dinis M, Agnello M, Cen L, Shokeen B, He X, Shi W, Wong DTW, Lux R, Tran NC. Oral Microbiome: Streptococcus mutans/Caries Concordant-Discordant Children. Front Microbiol 2022; 13:782825. [PMID: 35250921 PMCID: PMC8891984 DOI: 10.3389/fmicb.2022.782825] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 01/13/2022] [Indexed: 01/13/2023] Open
Abstract
Dental caries remains the most common chronic disease in children, and the respective etiology is not fully understood. Though Streptococcus mutans is an important factor in the initiation and progression of caries, its presence is not always associated with the disease. The existence of caries discordant populations, in which S. mutans counts do not correlate with caries experience, poses a challenging problem. This study explored the possible correlation of S. mutans and other microorganism levels on caries-associated ecology of caries-concordant and discordant populations. A total of forty-seven children were analyzed in this study and stratified into four clinical groups based on their S. mutans levels in saliva (HS/LS: High/low S. mutans) and caries experience. Streptococcus mutans levels were determined by culture-based selective plating. The salivary microbiome of caries concordant and discordant populations was investigated by 16S rRNA gene sequencing and downstream bioinformatics analysis. The salivary microbial communities significantly clustered based on S. mutans levels and independent of their caries experience. In addition to S. mutans levels, significant differences in the abundance of other species were observed between HS and LS groups. Interestingly, disease-associated species such as Veillonella dispar, Streptococcus spp., and Prevotella spp. were significantly increased in HS groups and may contribute, in combination with S. mutans, to the caries progression. Furthermore, health-associated species exhibited higher abundance in the LS groups, such as Veillonella rogosae, Haemophilus sp., and Alloprevotella spp. but their possible contribution to the caries process remains to be elucidated. This study provides evidence that S. mutans may play a role in shaping the salivary microbial community. Our results highlight that future caries research should consider additional species as health/disease microbial markers in conjunction with S. mutans to improve diagnosis and caries management of the caries-discordant population.
Collapse
Affiliation(s)
- Márcia Dinis
- Section of Pediatric Dentistry, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, United States
| | - Melissa Agnello
- Section of Oral Biology, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, United States
- M2Biome LLC, San Francisco, CA, United States
| | - Lujia Cen
- Microbiology, The Forsyth Institute, Cambridge, MA, United States
| | - Bhumika Shokeen
- Section of Periodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, United States
| | - Xuesong He
- Microbiology, The Forsyth Institute, Cambridge, MA, United States
| | - Wenyuan Shi
- Microbiology, The Forsyth Institute, Cambridge, MA, United States
| | - David T. W. Wong
- Center for Oral/Head and Neck Oncology Research, Laboratory of Salivary Diagnostics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, United States
| | - Renate Lux
- Section of Periodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, United States
| | - Nini Chaichanasakul Tran
- Section of Pediatric Dentistry, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, United States
- *Correspondence: Nini Chaichanasakul Tran,
| |
Collapse
|
6
|
Dame-Teixeira N, de Lima AKA, Do T, Stefani CM. Meta-Analysis Using NGS Data: The Veillonella Species in Dental Caries. FRONTIERS IN ORAL HEALTH 2022; 2:770917. [PMID: 35048071 PMCID: PMC8757819 DOI: 10.3389/froh.2021.770917] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 09/22/2021] [Indexed: 02/01/2023] Open
Abstract
Objectives: In light of recent technological advances in Next-generation sequencing (NGS) and the accumulation of large, publicly available oral microbiome datasets, the need for meta-analysing data on caries microbiome is becoming feasible and essential. A consensus on the identification of enriched organisms in cariogenic dysbiotic biofilms would be reached. For example, members of the Veillonella genus have been detected in caries biofilms, and may have an underestimated contribution to the dysbiotic process. Hence, we aimed to determine the abundance of Veillonella species in dental caries in studies using NGS data. Materials and Methods: Analysis was performed according to the Preferred Reporting Items for Systematic Review and Meta-Analysis (registered at PROSPERO: CRD42020204150). Studies investigating microbial composition in saliva, dental biofilm, or carious dentin were included. Six databases and grey literature were searched. Two independent reviewers selected the papers and assessed the methodological quality. Results: Searches retrieved 1,323 titles, from which 38 studies were included in a qualitative synthesis, comprising a total of 1,374 caries and 745 caries-free individuals. Most studies analysed 16S rRNA amplicons, and only 5 studies used shotgun metagenomics and metatranscriptomics. A geographical bias was observed. The methodological quality was downrated in 81.5% of the studies due to the lack of criteria for defining cases and standard criteria used for measurement of the condition in a reliable way. Six studies on early childhood caries (ECC) were meta-analysed, confirming a significant enrichment of Veillonella spp. in caries-associated biofilms (but not saliva) when compared to caries-free controls [mean difference: 2.22 (0.54–3.90); p = 0.01]. Conclusions:Veillonella spp. is more abundant in individuals suffering with ECC when compared to caries-free controls (very low evidence certainty), and should be considered for further studies to observe their metabolism in dental caries. There is an urgent need for a consensus in methodologies used to allow for more rigorous comparison between NGS studies, particularly including clinical data and details of caries diagnosis, as they are currently scarce. Inconsistent reporting on the NGS data affected the cross-study comparison and the biological connexions of the relative abundances on caries microbiome.
Collapse
Affiliation(s)
- Naile Dame-Teixeira
- Department of Dentistry, School of Health Sciences, University of Brasilia, Brasilia, Brazil.,Division of Oral Biology, School of Dentistry, University of Leeds, Leeds, United Kingdom
| | | | - Thuy Do
- Division of Oral Biology, School of Dentistry, University of Leeds, Leeds, United Kingdom
| | - Cristine Miron Stefani
- Department of Dentistry, School of Health Sciences, University of Brasilia, Brasilia, Brazil
| |
Collapse
|
7
|
Bhaumik D, Manikandan D, Foxman B. Cariogenic and oral health taxa in the oral cavity among children and adults: A scoping review. Arch Oral Biol 2021; 129:105204. [PMID: 34246103 PMCID: PMC8364507 DOI: 10.1016/j.archoralbio.2021.105204] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/08/2021] [Accepted: 06/26/2021] [Indexed: 02/08/2023]
Abstract
OBJECTIVE To review published oral microbiome studies and create a comprehensive list of bacterial species found in saliva and dental plaque among healthy children and adults associated with presence of carious lesions and caries-free state (oral health). DESIGN This review followed PRISMA-ScR guidelines. We searched published studies querying PUBMED and EMBASE using the following keywords: (plaque OR saliva) AND caries AND (next generation sequencing OR checkerboard OR 16s rRNA or qPCR). Studies were limited to human studies published in English between January 1, 2010 and June 24, 2020 that included > 10 caries-active and > 10 caries-free participants, and assessed the entire bacterial community. RESULTS Our search strategy identified 298 articles. After exclusion criteria, 22 articles remained; we considered 2 studies that examined saliva and plaque as separate studies, for a total of 24 studies. Species associated with caries or oral health varied widely among studies reviewed, with notable differences by age and biologic sample type. No bacterial species was associated with caries in all studies. Streptococcus mutans was found more frequently among those with caries (14/24 (58.3 %)) and Fusobacterium periodonticum was found more frequently among those that were caries-free (5/24 (20.8 %)). CONCLUSION No bacterial species was associated with caries or oral health across all studies supporting multiple pathways to cariogenesis. However, the variation may be due to sampling at different time points during caries development, varying methods of specimen sampling, storage, sequencing or analysis or differences in host factors such as age.
Collapse
Affiliation(s)
- Deesha Bhaumik
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, United States.
| | - Divya Manikandan
- University of Michigan College of Literature, Science, and the Arts, Ann Arbor, MI, United States.
| | - Betsy Foxman
- Center of Molecular and Clinical Epidemiology of Infectious Diseases, Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, United States.
| |
Collapse
|
8
|
Weyrich LS. The evolutionary history of the human oral microbiota and its implications for modern health. Periodontol 2000 2020; 85:90-100. [PMID: 33226710 DOI: 10.1111/prd.12353] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Numerous biological and cultural factors influence the microbial communities (microbiota) that inhabit the human mouth, including diet, environment, hygiene, physiology, health status, genetics, and lifestyle. As oral microbiota can underpin oral and systemic diseases, tracing the evolutionary history of oral microbiota and the factors that shape its origins will unlock information to mitigate disease today. Despite this, the origins of many oral microbes remain unknown, and the key factors in the past that shaped our oral microbiota are only now emerging. High throughput DNA sequencing of oral microbiota using ancient DNA and comparative anthropological methodologies has been employed to investigate oral microbiota origins, revealing a complex, rich history. Here, I review the current literature on the factors that shaped and guided oral microbiota evolution, both in Europe and globally. In Europe, oral microbiota evolution was shaped by interactions with Neandertals, the adaptation of farming, widespread integration of industrialization, and postindustrial lifestyles that emerged after World War II. Globally, evidence for a multitude of different oral microbiota histories is emerging, likely supporting dissimilarities in modern oral health across discrete human populations. I highlight how these evolutionary changes are linked to the development of modern oral diseases and discuss the remaining factors that need to be addressed to improve this embryonic field of research. I argue that understanding the evolutionary history of our oral microbiota is necessary to identify new treatment and prevention options to improve oral and systemic health in the future.
Collapse
Affiliation(s)
- Laura S Weyrich
- Department of Anthropology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA.,School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
9
|
Chen W, Jiang Q, Yan G, Yang D. The oral microbiome and salivary proteins influence caries in children aged 6 to 8 years. BMC Oral Health 2020; 20:295. [PMID: 33115458 PMCID: PMC7592381 DOI: 10.1186/s12903-020-01262-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 09/23/2020] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Oral microbiome and salivary proteins play a critical role in the occurrence and development of caries. In this study, we used metagenomic and metaproteomic analyses to explore the microbiological and proteinic biomarkers and investigate the etiology of caries in 6-8 years old children. Our study aims to offer a better comprehension of these factors and the relationship with caries, and these findings might facilitate caries risk assessment and provide a basis for future prevention strategies. METHODS Children 6 to 8 years old living in rural isolated areas including 40 caries-active subjects and 40 caries-free subjects were recruited. Supragingival plaque and unstimulated saliva were collected for 16S rDNA pyrosequencing and isobaric tags for relative and absolute quantitation (iTRAQ) technique coupled with quantitative nano-flow liquid chromatography-tandem mass spectrometry (LC-MS/MS), respectively. RESULTS We found 6 phyla and 13 genera predominant in all the samples, and differences in relative abundances can be observed. The Alpha diversity analysis demonstrated that the richness and diversity of the bacterial communities were similar between children with caries-free and caries-active groups; LEfSe detected differences in the bacterial community including Dialister, Selenomonas, Actinomyces, and Mogibacterium in the caries-active group (P < 0.05) and Capnocytophaga, Fusobacterium, Desulfuromonadales, Haemophilus, and Porphyromonas in the caries-free group(P < 0.05). The core microbiome was defined as 18 predominant genera in children with caries. The results of the salivary proteome identified 9135 unique peptides and 1662 proteins group from 20 salivary samples. Two hundred fifty-eight proteins were differentially expressed between the caries-free and caries-active groups. CONCLUSIONS The diversity of the microbial community has little effect on caries but some bacteria with different relative abundance between the caries-active and caries-free group could be considered as potential biomarkers for children with caries. In addition, as a critical host factor of caries, the salivary proteins are different in caries-free and caries-active groups.
Collapse
Affiliation(s)
- Wang Chen
- College of Stomatology, Chongqing Medical University, Chongqing, China.,Chongqing key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
| | - Qian Jiang
- College of Stomatology, Chongqing Medical University, Chongqing, China.,Chongqing key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
| | - Guowei Yan
- College of Stomatology, Chongqing Medical University, Chongqing, China.,Chongqing key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
| | - Deqin Yang
- College of Stomatology, Chongqing Medical University, Chongqing, China. .,Chongqing key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.
| |
Collapse
|
10
|
Luo YX, Sun ML, Shi PL, Liu P, Chen YY, Peng X. [Research progress in the relationship between Veillonella and oral diseases]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2020; 38:576-582. [PMID: 33085245 DOI: 10.7518/hxkq.2020.05.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Veillonella species, known as the early colonizer of oral biofilm, are prevalent in oral microbiota. Seven Veillonella species have been isolated from oral cavity. Their distribution varies not only with different people but also with different sites in the oral cavity. Oral Veillonella are associated with oral diseases. They contribute to the adhesion of Streptococcus mutans and consume the lactate generated by streptococci. Veillonella species play an important role in the occurrence and development of periodontal diseases by providing adhesion sites for Porphyromonas gingivalis and boosting immune responses. The production of lipopolysaccharide and H2S is related to other oral diseases, such as pulpitis, periapical periodontitis, and halitosis. Several studies have been conducted on the relationship between Veillonella and oral diseases and the interaction between Veillonella and other pathological microorganisms, but limited knowledge is available at the molecular level. This article reviews the research progress in the relationship between Veillonella and oral infectious diseases, such as dental caries and periodontal diseases.
Collapse
Affiliation(s)
- Yu-Xue Luo
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Dental Basic Medicine, West China School of Stomatology, Chengdu 610041, China
| | - Man-Lin Sun
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Dental Basic Medicine, West China School of Stomatology, Chengdu 610041, China
| | - Pei-Lei Shi
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Dental Basic Medicine, West China School of Stomatology, Chengdu 610041, China
| | - Pan Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Dental Basic Medicine, West China School of Stomatology, Chengdu 610041, China
| | - Yi-Yin Chen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Dental Basic Medicine, West China School of Stomatology, Chengdu 610041, China
| | - Xian Peng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Dental Basic Medicine, West China School of Stomatology, Chengdu 610041, China
| |
Collapse
|
11
|
Ibrahim MS, Garcia IM, Vila T, Balhaddad AA, Collares FM, Weir MD, Xu HHK, Melo MAS. Multifunctional antibacterial dental sealants suppress biofilms derived from children at high risk of caries. Biomater Sci 2020; 8:3472-3484. [DOI: 10.1039/d0bm00370k] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Dental sealant containing antibacterial and bioactive agents decreased biofilm formation due to the saliva of children at low and high risk of caries.
Collapse
Affiliation(s)
- Maria Salem Ibrahim
- Ph.D. Program in Biomedical Sciences
- Biomaterials and Tissue Engineering Division
- University of Maryland School of Dentistry
- Baltimore
- USA
| | - Isadora Martini Garcia
- Ph.D. Program in Biomedical Sciences
- Biomaterials and Tissue Engineering Division
- University of Maryland School of Dentistry
- Baltimore
- USA
| | - Taissa Vila
- Ph.D. Program in Biomedical Sciences
- Biomaterials and Tissue Engineering Division
- University of Maryland School of Dentistry
- Baltimore
- USA
| | - Abdulrahman A. Balhaddad
- Ph.D. Program in Biomedical Sciences
- Biomaterials and Tissue Engineering Division
- University of Maryland School of Dentistry
- Baltimore
- USA
| | - Fabrício Mezzomo Collares
- Dental Materials Laboratory
- School of Dentistry
- Federal University of Rio Grande do Sul
- Porto Alegre
- Brazil
| | - Michael D. Weir
- Ph.D. Program in Biomedical Sciences
- Biomaterials and Tissue Engineering Division
- University of Maryland School of Dentistry
- Baltimore
- USA
| | - Hockin H. K. Xu
- Ph.D. Program in Biomedical Sciences
- Biomaterials and Tissue Engineering Division
- University of Maryland School of Dentistry
- Baltimore
- USA
| | - Mary Anne S. Melo
- Ph.D. Program in Biomedical Sciences
- Biomaterials and Tissue Engineering Division
- University of Maryland School of Dentistry
- Baltimore
- USA
| |
Collapse
|
12
|
Hu X, Huang Z, Zhang Y, Hong Y, Zheng Y. Effects of a probiotic drink containing Lactobacillus casei strain Shirota on dental plaque microbiota. J Int Med Res 2019; 47:3190-3202. [PMID: 31208252 PMCID: PMC6683909 DOI: 10.1177/0300060519853655] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Objective To investigate the effects of a probiotic drink containing Lactobacillus casei strain Shirota on dental plaque microbiota. Methods Caries-free young adults were administered a probiotic drink containing L. casei Shirota (Yakult) three times on day 1, then once daily for 28 days. Dental plaque samples were collected and analysed by 16S rRNA sequencing before (day 1), during (day 2), and one day following intervention (day 30). Results Out of samples from 10 included participants, 256 814 sequences passed through quality control, clustered into 170–234 different ‘species-level’ phylotypes. Actinobacteria, Bacteroidetes, Firmicutes, Fusobacteria and Proteobacteria were the most abundant phyla. Dental plaque microbiota composition significantly changed at different taxonomic levels following probiotic consumption. At genus level, the relative abundance of Veillonella and Kingella increased significantly following intervention, while that of Leptotrichia reduced significantly during intervention, but recovered to baseline level at day 30. Alpha diversity and overall structure of the dental plaque microbiota was not significantly impacted by the probiotic. Conclusion Yakult intake changed the abundance of some bacteria related to caries, suggesting that the change of composition may be beneficial to oral health, while the overall microbiota structure remained unaffected.
Collapse
Affiliation(s)
- Xiaoli Hu
- 1 Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhuwei Huang
- 1 Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yuejiao Zhang
- 1 Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yubing Hong
- 2 Department of Prosthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yuan Zheng
- 3 Diagnoa Biotech Company, Shenzhen, Guangdong, China
| |
Collapse
|
13
|
Li F, Tao D, Feng X, Wong MCM, Lu H. Establishment and Development of Oral Microflora in 12-24 Month-Old Toddlers Monitored by High-Throughput Sequencing. Front Cell Infect Microbiol 2018; 8:422. [PMID: 30564560 PMCID: PMC6288402 DOI: 10.3389/fcimb.2018.00422] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 11/20/2018] [Indexed: 12/18/2022] Open
Abstract
A cohort study was conducted to evaluate oral microbial diversity among toddlers aged 12-24 months, and to describe the dynamic processes of colonization, development, and stabilization of the oral microflora during tooth eruption using high-throughput sequencing technology. A total of 20 healthy toddlers aged 12 months were included at baseline and followed up through 18-24 months. Clinical oral examinations of dental caries status and visible plaque index were carried out at three follow-up time points. Pooled supragingival plaque biofilm samples were also collected at ages 12, 18, and 24 months. Plaque biofilm DNA was extracted and analyzed by MiSeq sequencing. A total of 18 toddlers completed three follow-ups. At 12 months of age, all the toddlers only had eruption of the anterior teeth, without dental caries. At ages 18 and 24 months, one and two toddlers showed two and three teeth with carious white spots, respectively. Depth, Good's coverage, and sample size of sequencing were reasonable. The dominant bacterial genera in the oral cavity of 12-month-old toddlers were Capnocytophaga, Neisseria, Streptococcus, Kingella, and Leptotrichia; the oral microflora composition was relatively stable by 18 months of age and included unclassified Enterobacteriaceae, Selenomonas, Prevotella, Leptotrichia, and Veillonella as the dominant genera; unclassified Enterobacteriaceae, Streptococcus, Neisseria, Leptotrichia, and Selenomonas were the dominant genera by 24 months. There were significant differences among microbial compositions in the oral cavities of 12, 18, and 24-month-old toddlers, with relatively small differences observed between the 18 and 24 months samples. In conclusion, oral microbial community of toddlers showed a trend of dynamic development. Significant differences in oral microbial diversity among toddlers aged 12-24 months were observed, while the microbial diversity differences among toddlers aged 18-24 months tended to be more similar. The findings indicated that the oral microbial community gradually matures and tends to stabilize with the growth and development of toddlers.
Collapse
Affiliation(s)
- Fei Li
- Department of Preventive Dentistry, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Danying Tao
- Department of Preventive Dentistry, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Xiping Feng
- Department of Preventive Dentistry, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - May Chun Mei Wong
- Dental Public Health, Faculty of Dentistry, University of Hong Kong, Hong Kong, China
| | - Haixia Lu
- Department of Preventive Dentistry, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| |
Collapse
|
14
|
Xu L, Chen X, Wang Y, Jiang W, Wang S, Ling Z, Chen H. Dynamic Alterations in Salivary Microbiota Related to Dental Caries and Age in Preschool Children With Deciduous Dentition: A 2-Year Follow-Up Study. Front Physiol 2018; 9:342. [PMID: 29670544 PMCID: PMC5893825 DOI: 10.3389/fphys.2018.00342] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 03/20/2018] [Indexed: 12/16/2022] Open
Abstract
Dynamic alterations in oral microbiota are closely related to the development of dental caries;however, changes in salivary microbiota during this process have not been extensively studied. In addition, increasing evidence suggests that oral microbiome profiles differ according to dentition stages, but it is unclear whether they change with age during the same dentition, such as deciduous dentition. These two aspects were investigated in a 2-year follow-up study, and caries-free preschool children with complete deciduous dentition were enrolled. Saliva was collected and oral examination was conducted at the beginning of this trial, and then every subsequent 6 months for a total of five time points (T0, T1, T2, T3, and T4). Based on the clinical examination of teeth at the end of the trial, subjects were divided into health-to-health (H-H, N = 11) and health-to-caries (H-C, N = 12) groups at every time point. A total of 115 saliva samples from 23 subjects was detected by sequencing 16S rDNA V3-V4 hypervariable regions with the Illumina MiSeq platform to obtain microbiome profiles, and 100 samples finally passed quality control for further analyses. A total of 4,328,852 high-quality sequencing reads passed quality-control testing, representing 14 phyla, 27 classes, 43 orders, 67 families, and 127 genera. An α diversity analysis showed that salivary microbial diversity was similar in all groups, and a β diversity analysis showed that salivary microbial community structure changed with dental caries. Linear discriminant analysis effect size (LEfSe) analysis revealed that the abundance of the genera Atopobium, Megasphaera, and Veillonella increased significantly, while that of the genera Shuttleworthia and Rothia decreased significantly with the development of dental caries. Megasphaera and Veillonella were enriched at the early stage of deciduous dentition whereas Peptococcus, Rothia, and Treponema were enriched at the later stage. The core microbiome in the H-H and H-C groups comprised 26 and 29 genera, respectively, with statistical differences observed in 11 shared core genera. These results provide new insights into variations in the salivary microbiome related to dental caries and age in the deciduous dentition period.
Collapse
Affiliation(s)
- Lei Xu
- Department of Conservative Dentistry and Periodontics, The Affiliated Hospital of Stomatology, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xi Chen
- Department of Conservative Dentistry and Periodontics, The Affiliated Hospital of Stomatology, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yuan Wang
- Department of Conservative Dentistry and Periodontics, The Affiliated Hospital of Stomatology, College of Medicine, Zhejiang University, Hangzhou, China
| | - Wen Jiang
- Department of Conservative Dentistry and Periodontics, The Affiliated Hospital of Stomatology, College of Medicine, Zhejiang University, Hangzhou, China
| | - Sa Wang
- Department of Conservative Dentistry and Periodontics, The Affiliated Hospital of Stomatology, College of Medicine, Zhejiang University, Hangzhou, China
| | - Zongxin Ling
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Hui Chen
- Department of Conservative Dentistry and Periodontics, The Affiliated Hospital of Stomatology, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
15
|
Abstract
The microbiome is defined as the total of cellular microorganisms of baczerial, viral or e. g., parasite origin living on the surface of a body. Within the anatomical areas of otorhinolaryngology, a significant divergence and variance can be demonstrated. For ear, nose, throat, larynx and cutis different interactions of microbiome and common factors like age, diet and live style factors (e. g., smoking) have been detected in recent years. Besides, new insights hint at a passible pathognomic role of the microbiome towards diseases in the ENT area. This review article resumes the present findings of this rapidly devloping scientific area.
Collapse
Affiliation(s)
- Achim G Beule
- HNO-Uniklinik Münster.,Klinik und Poliklinik für Hals-Nasen-Ohrenkrankheiten der Universitätsmedizin Greifswald
| |
Collapse
|
16
|
Zhang M, Zheng Y, Li Y, Jiang H, Huang Y, Du M. Acid-resistant genes of oral plaque microbiome from the functional metagenomics. J Oral Microbiol 2018; 10:1424455. [PMID: 29503702 PMCID: PMC5795652 DOI: 10.1080/20002297.2018.1424455] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 01/03/2018] [Indexed: 02/05/2023] Open
Abstract
Acid resistance is one of key properties assisting the survival of cariogenic bacteria in a dental caries environment, but only a few genes conferring acid resistance have been identified to data. Functional metagenomics provides a systematic method for investigating commensal DNA to identify genes that encode target functions. Here, the host strain Escherichia coli DH10B and a constructed bidirectional transcription vector pSKII+-lacZ contributed to the construction of a metagenomic library, and 46.6 Mb of metagenomic DNA was cloned from carious supragingival plaque of 8children along with screening for lethal functionality. The screen identified 2 positive clones that exhibited a similar aciduric phenotype to that of the positive controls. Bioinformatic analysis revealed that these two genes encoded an ATP/GTP-binding protein and a malate dehydrogenase. Moreover, we also performed functional screening of Streptococcus mutans, since it is one of the predominant cariogenic strains but was not identified in our initial screening. Five positive clones were retrieved. In conclusion, our improved functional metagenomics screening method helped in the identification of important acid resistance genes, thereby providing new insights into the mechanism underlying caries formation as well as in the prevention and treatment of early childhood caries (ECC).
Collapse
Affiliation(s)
- Meng Zhang
- MOST KLOS & KLOBM, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yuqiao Zheng
- MOST KLOS & KLOBM, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yuhong Li
- MOST KLOS & KLOBM, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Han Jiang
- MOST KLOS & KLOBM, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yuping Huang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Minquan Du
- MOST KLOS & KLOBM, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
17
|
Mashima I, Theodorea CF, Thaweboon B, Thaweboon S, Scannapieco FA, Nakazawa F. Exploring the salivary microbiome of children stratified by the oral hygiene index. PLoS One 2017; 12:e0185274. [PMID: 28934367 PMCID: PMC5608389 DOI: 10.1371/journal.pone.0185274] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 09/08/2017] [Indexed: 01/01/2023] Open
Abstract
Poor oral hygiene often leads to chronic diseases such as periodontitis and dental caries resulting in substantial economic costs and diminished quality of life in not only adults but also in children. In this study, the salivary microbiome was characterized in a group of children stratified by the Simplified Oral Hygiene Index (OHI-S). Illumina MiSeq high-throughput sequencing based on the 16S rRNA was utilized to analyze 90 salivary samples (24 Good, 31 Moderate and 35 Poor oral hygiene) from a cohort of Thai children. A total of 38,521 OTUs (Operational Taxonomic Units) with a 97% similarity were characterized in all of the salivary samples. Twenty taxonomic groups (Seventeen genera, two families and one class; Streptococcus, Veillonella, Gemellaceae, Prevotella, Rothia, Porphyromonas, Granulicatella, Actinomyces, TM-7-3, Leptotrichia, Haemophilus, Selenomonas, Neisseria, Megasphaera, Capnocytophaga, Oribacterium, Abiotrophia, Lachnospiraceae, Peptostreptococcus, and Atopobium) were found in all subjects and constituted 94.5-96.5% of the microbiome. Of these twenty genera, the proportion of Streptococcus decreased while Veillonella increased with poor oral hygiene status (P < 0.05). Furthermore, an unassigned species of Veillonella, Veillonella dispar and Veillonella parvula tended to be elevated in the Poor oral hygiene group. This is the first study demonstrating an important association between increase of Veillonella and poor oral hygiene status in children. However, further studies are required to identify the majority of Veillonella at species level in salivary microbiome of the Poor oral hygiene group.
Collapse
Affiliation(s)
- Izumi Mashima
- Japan Society for the Promotion of Science, Chiyoda-ku, Tokyo, Japan
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York, Buffalo, New York, United States of America
- Department of Microbiology, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| | - Citra F. Theodorea
- Department of Microbiology, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
- Department of Oral Biology, Faculty of Dentistry, Universitas Indonesia, Jakarta, Indonesia
| | - Boonyanit Thaweboon
- Department of Oral Microbiology, Faculty of Dentistry, Mahidol University, Bangkok, Thailand
| | - Sroisiri Thaweboon
- Department of Oral Microbiology, Faculty of Dentistry, Mahidol University, Bangkok, Thailand
| | - Frank A. Scannapieco
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York, Buffalo, New York, United States of America
| | - Futoshi Nakazawa
- Department of Microbiology, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| |
Collapse
|
18
|
Eribe ERK, Olsen I. Leptotrichia species in human infections II. J Oral Microbiol 2017; 9:1368848. [PMID: 29081911 PMCID: PMC5646626 DOI: 10.1080/20002297.2017.1368848] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 08/15/2017] [Indexed: 12/19/2022] Open
Abstract
Leptotrichia species are non-motile facultative anaerobic/anaerobic bacteria that are found mostly in the oral cavity and some other parts of the human body, in animals, and even in ocean sediments. Valid species include L. buccalis, L. goodfellowii, L. hofstadii, L. honkongensis, L. shahii, L. trevisanii, and L. wadei. Some species require serum or blood for growth. All species ferment carbohydrates and produce lactic acid that may be involved with tooth decay. Acting as opportunistic pathogens, they are involved in a variety of diseases, and have been isolated from immunocompromised but also immunocompetent individuals. Mucositis, oral lesions, wounds, and abscesses may predispose to Leptotrichia septicemia. Because identification of Leptotrichia species by phenotypic features occasionally lead to misidentification, genetic techniques such as 16S rRNA gene sequencing is recommended. Early diagnosis and treatment of leptotrichia infections is important for positive outcomes. Over the last years, Leptotrichia species have been associated with several changes in taxonomy and new associations with clinical diseases. Such changes are reported in this updated review.
Collapse
Affiliation(s)
- Emenike R K Eribe
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Ingar Olsen
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| |
Collapse
|
19
|
Carrera CA, Li Y, Chen R, Aparicio C, Fok A, Rudney J. Interfacial degradation of adhesive composite restorations mediated by oral biofilms and mechanical challenge in an extracted tooth model of secondary caries. J Dent 2017; 66:62-70. [PMID: 28843960 DOI: 10.1016/j.jdent.2017.08.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 08/13/2017] [Accepted: 08/16/2017] [Indexed: 01/05/2023] Open
Abstract
OBJECTIVE To study the combined effect of simulated occlusal loading and plaque-derived biofilm on the interfacial integrity of dental composite restorations, and to explore whether the effects are modulated by the incorporation of sucrose. METHODS MOD-class-II restorations were prepared in third molars. Half of the specimens (n=27) were subjected to 200,000 cycles of mechanical loading using an artificial oral environment (ART). Then, both groups of specimens (fatigued and non-fatigued) were divided into three subgroups for testing in CDC-reactors under the following conditions: no biofilm (Control), biofilm with no sucrose (BNS) and biofilm pulsed with sucrose (BWS). BNS and BWS reactors were incubated with a multispecies inoculum from a single plaque donor whereas the control reactor was not. The BWS reactor was pulsed with sucrose five times a day. The biofilm challenges were repeated sequentially for 12 weeks. pH was recorded for each run. Specimens were examined for demineralization with micro-CT and load capacity by fast fracture test. RESULTS Demineralization next to the restorations was only detectable in BWS teeth. Fracture loads were significantly reduced by the concomitant presence of biofilm and sucrose, regardless of whether cyclic mechanical loading was applied. Cyclic loading reduced fracture loads under all reactor conditions, but the reduction was not statistically significant. CONCLUSIONS Sucrose pulsing was required to induce biofilm-mediated degradation of the adhesive interface. We have presented a comprehensive and clinically relevant model to study the effects of mechanical loading and microbial challenge on the interfacial integrity of dental restorations.
Collapse
Affiliation(s)
- Carola A Carrera
- Minnesota Dental Research Center for Biomaterials and Biomechanics, School of Dentistry, University of Minnesota, Minneapolis, MN, USA.
| | - Yuping Li
- Minnesota Dental Research Center for Biomaterials and Biomechanics, School of Dentistry, University of Minnesota, Minneapolis, MN, USA
| | - Ruoquiong Chen
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, USA
| | - Conrado Aparicio
- Minnesota Dental Research Center for Biomaterials and Biomechanics, School of Dentistry, University of Minnesota, Minneapolis, MN, USA
| | - Alex Fok
- Minnesota Dental Research Center for Biomaterials and Biomechanics, School of Dentistry, University of Minnesota, Minneapolis, MN, USA
| | - Joel Rudney
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
20
|
Kuppan A, Rodrigues S, Samuel V, Ramakrishnan M, Halawany HS, Abraham NB, Jacob V, Anil S. Prevalence and Heritability of Early Childhood Caries Among Monozygotic and Dizygotic Twins. Twin Res Hum Genet 2017; 20:43-52. [PMID: 28105963 DOI: 10.1017/thg.2016.96] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Deciphering the relative importance of genetic and environmental factors, which play a major role in the prevalence of early childhood caries (ECC), can help clinicians with planning a long-term preventive treatment. The objective of the study was to determine the prevalence and heritability of ECC among monozygotic (MZ) and dizygotic (DZ) twins in Chennai, India, in the year 2013. A cross-sectional study was designed to estimate the prevalence of ECC among twins. Zygosity classification for the survey framework was adapted from a highly accurate parental report questionnaire pertaining to the physical similarity between twins. The associated heritability index was estimated. The Decayed, Missing, Filled Surface (DMFS) Index was used as the diagnostic criterion for dental caries. The prevalence of ECC was estimated at 18.7%. The correlation coefficient between the twin pair showed significant correlation. The heritability index for ECC was estimated at 15% higher prevalence of ECC found among children in the age group 25-36 months. The heritability estimate indicated a relatively low genetic influence for early childhood caries among twins. There was no significant difference detected in the concordance rate for the MZ and DZ twins. Further research could be directed toward the prevalence of ECC among higher age group children to explore the role of genetic and environmental factors.
Collapse
Affiliation(s)
- Anuradha Kuppan
- Department of Pediatric Dentistry,Saveetha Dental College,Saveetha University,Chennai,India
| | - Steven Rodrigues
- Department of Pediatric Dentistry,Saveetha Dental College,Saveetha University,Chennai,India
| | - Victor Samuel
- Department of Pedodontics,Dental College,SRM University,Chennai,India
| | - Mahesh Ramakrishnan
- Department of Pediatric Dentistry,Saveetha Dental College,Saveetha University,Chennai,India
| | - Hassan S Halawany
- Department of Periodontics and Community Dentistry,College of Dentistry,King Saud University,Riyadh,Saudi Arabia
| | - Nimmi B Abraham
- Dental Caries Research Chair,College of Dentistry,King Saud University,Riyadh,Saudi Arabia
| | - Vimal Jacob
- Dental Caries Research Chair,College of Dentistry,King Saud University,Riyadh,Saudi Arabia
| | - Sukumaran Anil
- Department of Preventive Dental Sciences,College of Dentistry,Prince Sattam Bin Abdulaziz University,AI-Kharj,Saudi Arabia
| |
Collapse
|
21
|
Rostami N, Shields RC, Yassin SA, Hawkins AR, Bowen L, Luo TL, Rickard AH, Holliday R, Preshaw PM, Jakubovics NS. A Critical Role for Extracellular DNA in Dental Plaque Formation. J Dent Res 2016; 96:208-216. [PMID: 27770039 DOI: 10.1177/0022034516675849] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Extracellular DNA (eDNA) has been identified in the matrix of many different monospecies biofilms in vitro, including some of those produced by oral bacteria. In many cases, eDNA stabilizes the structure of monospecies biofilms. Here, the authors aimed to determine whether eDNA is an important component of natural, mixed-species oral biofilms, such as plaque on natural teeth or dental implants. To visualize eDNA in oral biofilms, approaches for fluorescently stained eDNA with either anti-DNA antibodies or an ultrasensitive cell-impermeant dye, YOYO-1, were first developed using Enterococcus faecalis, an organism that has previously been shown to produce extensive eDNA structures within biofilms. Oral biofilms were modelled as in vitro "microcosms" on glass coverslips inoculated with the natural microbial population of human saliva and cultured statically in artificial saliva medium. Using antibodies and YOYO-1, eDNA was found to be distributed throughout microcosm biofilms, and was particularly abundant in the immediate vicinity of cells. Similar arrangements of eDNA were detected in biofilms on crowns and overdenture abutments of dental implants that had been recovered from patients during the restorative phase of treatment, and in subgingival dental plaque of periodontitis patients, indicating that eDNA is a common component of natural oral biofilms. In model oral biofilms, treatment with a DNA-degrading enzyme, NucB from Bacillus licheniformis, strongly inhibited the accumulation of biofilms. The bacterial species diversity was significantly reduced by treatment with NucB and particularly strong reductions were observed in the abundance of anaerobic, proteolytic bacteria such as Peptostreptococcus, Porphyromonas and Prevotella. Preformed biofilms were not significantly reduced by NucB treatment, indicating that eDNA is more important or more exposed during the early stages of biofilm formation. Overall, these data demonstrate that dental plaque eDNA is potentially an important target for oral biofilm control.
Collapse
Affiliation(s)
- N Rostami
- 1 School of Dental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - R C Shields
- 1 School of Dental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - S A Yassin
- 1 School of Dental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - A R Hawkins
- 2 Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
| | - L Bowen
- 3 Department of Physics, Durham University, Durham, UK
| | - T L Luo
- 4 Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - A H Rickard
- 4 Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - R Holliday
- 1 School of Dental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - P M Preshaw
- 1 School of Dental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - N S Jakubovics
- 1 School of Dental Sciences, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
22
|
Ziganshina EE, Sharifullina DM, Lozhkin AP, Khayrullin RN, Ignatyev IM, Ziganshin AM. Bacterial Communities Associated with Atherosclerotic Plaques from Russian Individuals with Atherosclerosis. PLoS One 2016; 11:e0164836. [PMID: 27736997 PMCID: PMC5063344 DOI: 10.1371/journal.pone.0164836] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 09/30/2016] [Indexed: 12/17/2022] Open
Abstract
Atherosclerosis is considered a chronic disease of the arterial wall and is the major cause of severe disease and death among individuals all over the world. Some recent studies have established the presence of bacteria in atherosclerotic plaque samples and suggested their possible contribution to the development of cardiovascular disease. The main objective of this preliminary pilot study was to better understand the bacterial diversity and abundance in human atherosclerotic plaques derived from common carotid arteries of individuals with atherosclerosis (Russian nationwide group) and contribute towards the further identification of a main group of atherosclerotic plaque bacteria by 454 pyrosequencing their 16S ribosomal RNA (16S rRNA) genes. The applied approach enabled the detection of bacterial DNA in all atherosclerotic plaques. We found that distinct members of the order Burkholderiales were present at high levels in all atherosclerotic plaques obtained from patients with atherosclerosis with the genus Curvibacter being predominant in all plaque samples. Moreover, unclassified Burkholderiales as well as members of the genera Propionibacterium and Ralstonia were typically the most significant taxa for all atherosclerotic plaques. Other genera such as Burkholderia, Corynebacterium and Sediminibacterium as well as unclassified Comamonadaceae, Oxalobacteraceae, Rhodospirillaceae, Bradyrhizobiaceae and Burkholderiaceae were always found but at low relative abundances of the total 16S rRNA gene population derived from all samples. Also, we found that some bacteria found in plaque samples correlated with some clinical parameters, including total cholesterol, alanine aminotransferase and fibrinogen levels. Finally, our study indicates that some bacterial agents at least partially may be involved in affecting the development of cardiovascular disease through different mechanisms.
Collapse
Affiliation(s)
- Elvira E. Ziganshina
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan 420008, The Republic of Tatarstan, Russia
| | - Dilyara M. Sharifullina
- Interregional Clinical and Diagnostic Center, Kazan 420101, The Republic of Tatarstan, Russia
| | - Andrey P. Lozhkin
- Interregional Clinical and Diagnostic Center, Kazan 420101, The Republic of Tatarstan, Russia
| | - Rustem N. Khayrullin
- Interregional Clinical and Diagnostic Center, Kazan 420101, The Republic of Tatarstan, Russia
| | - Igor M. Ignatyev
- Interregional Clinical and Diagnostic Center, Kazan 420101, The Republic of Tatarstan, Russia
| | - Ayrat M. Ziganshin
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan 420008, The Republic of Tatarstan, Russia
- * E-mail:
| |
Collapse
|