1
|
Yadav GP, Annamalai M, Hagan DW, Cui L, Mathews C, Jiang QX. Molecular requirements of chromogranin B for the long-sought anion shunter of regulated secretion. Int J Biol Macromol 2025; 309:142180. [PMID: 40107558 DOI: 10.1016/j.ijbiomac.2025.142180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 03/02/2025] [Accepted: 03/14/2025] [Indexed: 03/22/2025]
Abstract
All eukaryotes utilize regulated secretion to release molecular signals packaged in secretory granules for local and remote signaling. An anion shunt conductance was first suggested in secretory granules of bovine chromaffin cells nearly five decades ago. Biochemical identity of this conductance remains undefined. CLC-3, an intracellular Cl-/H+ exchanger, was proposed as a candidate sixteen years ago, which, however, was contested experimentally. Here, we show that chromogranin B (CHGB) makes the kernel of the long-sought anion shunter in cultured and primary neuroendocrine cells and its channel functions are essential to proper granule maturation. Intragranular pH measurements and cargo maturation assays revealed that normal granular acidification, proinsulin-insulin conversion, and dopamine-loading in neuroendocrine cells all rely on functional CHGB+ channels. Primary β-cells from Chgb-/- mice exhibited persistent granule deacidification, which suffices to uplift plasma proinsulin level, diminish glucose-induced 2nd-phase insulin secretion and dwindle monoamine content in chromaffin granules from the knockout mice. Data from targeted genetic manipulations, dominant negativity of a deletion mutant lacking channel-forming parts and tests of CLC-3/5 and ANO-1/2 all exclude CHGB-less channels from anion shunting in secretory granules. The highly conserved CHGB+ channels thus function in regulated secretory pathways in neuronal, endocrine, exocrine and stem cells of probably all vertebrates.
Collapse
Affiliation(s)
- Gaya P Yadav
- Departments of Microbiology and Cell Science, and Medicinal Chemistry, University of Florida, Gainesville, FL 32611, USA; Departments of Materials Design and Innovation and HWI, State University of New York at Buffalo, Buffalo, NY 14201, USA; Currently at the Department of Biochemistry & Biophysics, Texas A&M University, 300 Olsen Blvd, College Station, TX 77843, USA
| | - Mani Annamalai
- Department of Pathology, College of Medicine, University of Florida, 1275 Center Drive, Gainesville, FL 32610, USA
| | - D Walker Hagan
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Drive, Gainesville, FL 32610, USA
| | - Lina Cui
- Department of Medicinal Chemistry, University of Florida, 1275 Center Drive, Gainesville, FL 32611, USA
| | - Clayton Mathews
- Department of Pathology, College of Medicine, University of Florida, 1275 Center Drive, Gainesville, FL 32610, USA
| | - Qiu-Xing Jiang
- Research Unit in Intelligent Utilization of Marine Biomacromolecules and Marine Cryo-EM Center, Laoshan Laboratory, Qingdao, Shandong 266200, China; Departments of Microbiology and Cell Science, and Medicinal Chemistry, University of Florida, Gainesville, FL 32611, USA; Departments of Materials Design and Innovation and HWI, State University of New York at Buffalo, Buffalo, NY 14201, USA; Department of Medicinal Chemistry, University of Florida, 1275 Center Drive, Gainesville, FL 32611, USA; Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, NY 14214, USA.
| |
Collapse
|
2
|
Yadav GP, Annamalai M, Hagan DW, Cui L, Mathews C, Jiang QX. Molecular requirements of chromogranin B for the long-sought anion shunter of regulated secretion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.24.630220. [PMID: 39763853 PMCID: PMC11703155 DOI: 10.1101/2024.12.24.630220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
All eukaryotes utilize regulated secretion to release molecular signals packaged in secretory granules for local and remote signaling. An anion shunt conductance was first suggested in secretory granules of bovine chromaffin cells nearly five decades ago. Biochemical identity of this conductance remains undefined. CLC-3, an intracellular Cl - /H + exchanger, was proposed as a candidate sixteen years ago, which, however, was contested experimentally. Here, we show that chromogranin B (CHGB) makes the kernel of the long-sought anion shunter in cultured and primary neuroendocrine cells and its channel functions are essential to proper granule maturation. Intragranular pH measurements and cargo maturation assays revealed that normal granular acidification, proinsulin-insulin conversion, and dopamine-loading in neuroendocrine cells all rely on functional CHGB+ channels. Primary β-cells from Chgb-/- mice exhibited persistent granule deacidification, which suffices to uplift plasma proinsulin level, diminish glucose-induced 2 nd -phase insulin secretion and dwindle monoamine content in chromaffin granules from the knockout mice. Data from targeted genetic manipulations, dominant negativity of a deletion mutant lacking channel-forming parts and tests of CLC-3/5 and ANO-1/2 all exclude CHGB -less channels from anion shunting in secretory granules. The highly conserved CHGB+ channels thus function in regulated secretory pathways in neuronal, endocrine, exocrine and stem cells of probably all vertebrates. HIGHLIGHTS Loss of CHGB channel functions impairs secretory granule acidification in neuroendocrine cells, which necessitates anion shunt conduction. CHGBΔMIF, a mutant unable to form a functional Cl - channel, exerts negative dominance on endogenous CHGB and results in granule deacidification in cultured cells. Neither CLC-3 & -5 nor ANO-1 & -2 participate in the CHGB-mediated granule acidification. Clcn3 knockout effects on regulated secretion can be attributed to its functions in endosomal and endolysosomal compartments. Primary Chgb-/- β-cells exhibit persistent granule deacidification, presenting a unifying mechanism for disparate mouse phenotypes: hyperproinsulinemia, near abrogation of 2 nd phase insulin release after glucose challenge and diminution of monoamine contents in chromaffin granules.
Collapse
|
3
|
Doron G, Wood LB, Guldberg RE, Temenoff JS. Poly(ethylene glycol)-Based Hydrogel Microcarriers Alter Secretory Activity of Genetically Modified Mesenchymal Stromal Cells. ACS Biomater Sci Eng 2023; 9:6282-6292. [PMID: 37906515 PMCID: PMC10646834 DOI: 10.1021/acsbiomaterials.3c00954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/11/2023] [Accepted: 10/17/2023] [Indexed: 11/02/2023]
Abstract
In order to scale up culture therapeutic cells, such as mesenchymal stromal cells (MSCs), culture in suspension bioreactors using microcarriers (μCs) is preferred. However, the impact of microcarrier type on the resulting MSC secretory activity has not been investigated. In this study, two poly(ethylene glycol) hydrogel formulations with different swelling ratios (named "stiffer" and "softer") were fabricated as μC substrates to culture MSCs and MSCs genetically modified to express the interleukin-1 receptor antagonist (IL-1Ra-MSCs). Changes in cell number, secretory and angiogenic activity, and changes in MAPK signaling were evaluated when cultured on hydrogel μCs, as well as on tissue culture plastic-based Synthemax μCs. We demonstrated that culture on stiffer μCs increased secretion of IL-1Ra compared to culture on Synthemax μCs by IL-1Ra-MSCs by 1.2- to 1.6-fold, as well as their in vitro angiogenic activity, compared to culture on Synthemax μCs, while culture on both stiffer and softer μCs altered the secretion of several other factors compared to culture on Synthemax μCs. Changes in angiogenic activity corresponded with increased gene expression and secretion of hepatocyte growth factor by MSCs cultured on softer μCs by 2.5- to 6-fold compared to MSCs cultured on Synthemax μCs. Quantification of phosphoprotein signaling with the MAPK pathway revealed broad reduction of pathway activation by IL-1Ra-MSCs cultured on both stiffer and softer μCs compared to Synthemax, where phosphorylated c-Jun, ATF2, and MEK1 were reduced specifically on softer μCs. Overall, this study showed that μC surfaces can influence the secretory activity of genetically modified MSCs and identified associated changes in MAPK pathway signaling, which is a known central regulator of cytokine secretion.
Collapse
Affiliation(s)
- Gilad Doron
- Wallace
H. Coulter Department of Biomedical Engineering, Georgia Tech and Emory University, 313 Ferst Dr. NW, Atlanta, Georgia 30332, United States
| | - Levi B. Wood
- Wallace
H. Coulter Department of Biomedical Engineering, Georgia Tech and Emory University, 313 Ferst Dr. NW, Atlanta, Georgia 30332, United States
- George
W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Dr. NW, Atlanta, Georgia 30318, United States
- Parker
H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Dr. NW, Atlanta, Georgia 30332, United States
| | - Robert E. Guldberg
- Knight
Campus for Accelerating Scientific Impact, University of Oregon, 6231 University of Oregon, Eugene, Oregon 97403, United States
| | - Johnna S. Temenoff
- Wallace
H. Coulter Department of Biomedical Engineering, Georgia Tech and Emory University, 313 Ferst Dr. NW, Atlanta, Georgia 30332, United States
- Parker
H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Dr. NW, Atlanta, Georgia 30332, United States
| |
Collapse
|
4
|
Yadav GP, Wang H, Ouwendijk J, Cross S, Wang Q, Qin F, Verkade P, Zhu MX, Jiang QX. Chromogranin B (CHGB) is dimorphic and responsible for dominant anion channels delivered to cell surface via regulated secretion. Front Mol Neurosci 2023; 16:1205516. [PMID: 37435575 PMCID: PMC10330821 DOI: 10.3389/fnmol.2023.1205516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 05/26/2023] [Indexed: 07/13/2023] Open
Abstract
Regulated secretion is conserved in all eukaryotes. In vertebrates granin family proteins function in all key steps of regulated secretion. Phase separation and amyloid-based storage of proteins and small molecules in secretory granules require ion homeostasis to maintain their steady states, and thus need ion conductances in granule membranes. But granular ion channels are still elusive. Here we show that granule exocytosis in neuroendocrine cells delivers to cell surface dominant anion channels, to which chromogranin B (CHGB) is critical. Biochemical fractionation shows that native CHGB distributes nearly equally in soluble and membrane-bound forms, and both reconstitute highly selective anion channels in membrane. Confocal imaging resolves granular membrane components including proton pumps and CHGB in puncta on the cell surface after stimulated exocytosis. High pressure freezing immuno-EM reveals a major fraction of CHGB at granule membranes in rat pancreatic β-cells. A cryo-EM structure of bCHGB dimer of a nominal 3.5 Å resolution delineates a central pore with end openings, physically sufficient for membrane-spanning and large single channel conductance. Together our data support that CHGB-containing (CHGB+) channels are characteristic of regulated secretion, and function in granule ion homeostasis near the plasma membrane or possibly in other intracellular processes.
Collapse
Affiliation(s)
- Gaya P. Yadav
- Departments of Microbiology and Cell Science and of Medicinal Chemistry, University of Florida, Gainesville, FL, United States
- Departments of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, NY, United States
- Laboratory of Molecular Physiology and Biophysics, Hauptman-Woodward Medical Research Institute, Buffalo, NY, United States
| | - Haiyuan Wang
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Joke Ouwendijk
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | - Stephen Cross
- Wolfson Bioimaging facility, University of Bristol, Bristol, United Kingdom
| | - Qiaochu Wang
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Feng Qin
- Departments of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, NY, United States
| | - Paul Verkade
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | - Michael X. Zhu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Qiu-Xing Jiang
- Departments of Microbiology and Cell Science and of Medicinal Chemistry, University of Florida, Gainesville, FL, United States
- Departments of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, NY, United States
- Laboratory of Molecular Physiology and Biophysics, Hauptman-Woodward Medical Research Institute, Buffalo, NY, United States
- Cryo-EM Center, Laoshan Laboratory, Qingdao, Shandong, China
| |
Collapse
|
5
|
Hsieh CC, Hsu SC, Yao M, Huang DM. CD9 Upregulation-Decreased CCL21 Secretion in Mesenchymal Stem Cells Reduces Cancer Cell Migration. Int J Mol Sci 2021; 22:ijms22041738. [PMID: 33572290 PMCID: PMC7915477 DOI: 10.3390/ijms22041738] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/30/2021] [Accepted: 02/05/2021] [Indexed: 12/12/2022] Open
Abstract
Tetraspanin CD9 is widely expressed on various cell types, such as cancer cells and mesenchymal stem cells (MSCs), and/or cell-released exosomes. It has been reported that exosomal CD9 plays an important role in intercellular communications involved in cancer cell migration and metastasis. However, reports on the effect of the CD9 of MSCs or MSC-derived exosomes on cancer cell migration are still lacking. In this study, using a transwell migration assay, we found that both dextran-coated iron oxide nanoparticles (dex-IO NPs) and ionomycin stimulated exosomal CD9 expression in human MSCs (hMSCs); however, hMSCs could not deliver them to melanoma cells to affect cell migration. Interestingly, a reduced migration of melanoma cell line was observed when the ionomycin-incubated hMSC-conditioned media but not dex-IO NP-labeled hMSC-conditioned media were in the bottom chamber. In addition, we found that dex-IO NPs decreased cellular CD9 expression in hMSCs but ionomycin increased this. Simultaneously, we found that ionomycin suppressed the expression and secretion of the chemokine CCL21 in hMSCs. The silencing of CD9 demonstrated an inhibitory role of cellular CD9 in CCL21 expression in hMSCs, suggesting that ionomycin could upregulate cellular CD9 to decrease CCL21 expression and secretion of hMSCs, which would reduce the migration of B16F10, A549 and U87MG cancer cell lines due to chemoattraction reduction of CCL21. The present study not only highlights the important role of bone marrow-derived hMSCs' CD9-mediated CCL21 regulation in cancer bone metastasis but also suggests a new distinct pharmaceutical strategy for prevention or/and therapy of cancer metastasis.
Collapse
Affiliation(s)
- Chia-Chu Hsieh
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli 35053, Taiwan;
| | - Szu-Chun Hsu
- Department of Laboratory Medicine, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei 100225, Taiwan;
| | - Ming Yao
- Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei 100225, Taiwan;
| | - Dong-Ming Huang
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli 35053, Taiwan;
- Correspondence: ; Tel.: +886-37-246-166 (ext. 38105)
| |
Collapse
|
6
|
Aasebø E, Birkeland E, Selheim F, Berven F, Brenner AK, Bruserud Ø. The Extracellular Bone Marrow Microenvironment-A Proteomic Comparison of Constitutive Protein Release by In Vitro Cultured Osteoblasts and Mesenchymal Stem Cells. Cancers (Basel) 2020; 13:cancers13010062. [PMID: 33379263 PMCID: PMC7795818 DOI: 10.3390/cancers13010062] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Normal blood cells are formed in the bone marrow by a process called hematopoiesis. This process is supported by a network of non-hematopoietic cells including connective tissue cells, blood vessel cells and bone-forming cells. However, these cells can also support the growth of cancer cells, i.e., hematological malignancies (e.g., leukemias) and cancers that arise in another organ and spread to the bone marrow. Two of these cancer-supporting normal cells are bone-forming osteoblasts and a subset of connective tissue cells called mesenchymal stem cells. One mechanism for their cancer support is the release of proteins that support cancer cell proliferation and progression of the cancer disease. Our present study shows that both these normal cells release a wide range of proteins that support cancer cells, and inhibition of this protein-mediated cancer support may become a new strategy for cancer treatment. Abstract Mesenchymal stem cells (MSCs) and osteoblasts are bone marrow stromal cells that contribute to the formation of stem cell niches and support normal hematopoiesis, leukemogenesis and development of metastases from distant cancers. This support is mediated through cell–cell contact, release of soluble mediators and formation of extracellular matrix. By using a proteomic approach, we characterized the protein release by in vitro cultured human MSCs (10 donors) and osteoblasts (nine donors). We identified 1379 molecules released by these cells, including 340 proteins belonging to the GO-term Extracellular matrix. Both cell types released a wide range of functionally heterogeneous proteins including extracellular matrix molecules (especially collagens), several enzymes and especially proteases, cytokines and soluble adhesion molecules, but also several intracellular molecules including chaperones, cytoplasmic mediators, histones and non-histone nuclear molecules. The levels of most proteins did not differ between MSCs and osteoblasts, but 82 proteins were more abundant for MSC (especially extracellular matrix proteins and proteases) and 36 proteins more abundant for osteoblasts. Finally, a large number of exosomal proteins were identified. To conclude, MSCs and osteoblasts show extracellular release of a wide range of functionally diverse proteins, including several extracellular matrix molecules known to support cancer progression (e.g., metastases from distant tumors, increased relapse risk for hematological malignancies), and the large number of identified exosomal proteins suggests that exocytosis is an important mechanism of protein release.
Collapse
Affiliation(s)
- Elise Aasebø
- Department of Clinical Science, University of Bergen, N-5021 Bergen, Norway; (E.A.); (A.K.B.)
| | - Even Birkeland
- The Proteomics Facility of the University of Bergen (PROBE), University of Bergen, N-5021 Bergen, Norway; (E.B.); (F.S.); (F.B.)
| | - Frode Selheim
- The Proteomics Facility of the University of Bergen (PROBE), University of Bergen, N-5021 Bergen, Norway; (E.B.); (F.S.); (F.B.)
| | - Frode Berven
- The Proteomics Facility of the University of Bergen (PROBE), University of Bergen, N-5021 Bergen, Norway; (E.B.); (F.S.); (F.B.)
| | - Annette K. Brenner
- Department of Clinical Science, University of Bergen, N-5021 Bergen, Norway; (E.A.); (A.K.B.)
| | - Øystein Bruserud
- Department of Clinical Science, University of Bergen, N-5021 Bergen, Norway; (E.A.); (A.K.B.)
- Department of Medicine, Haukeland University Hospital, N-5021 Bergen, Norway
- Correspondence: or ; Tel.: +47-5597-2997
| |
Collapse
|
7
|
Agostini F, Vicinanza C, Di Cintio F, Battiston M, Lombardi E, Golinelli G, Durante C, Toffoli G, Dominici M, Mazzucato M. Adipose mesenchymal stromal/stem cells expanded by a GMP compatible protocol displayed improved adhesion on cancer cells in flow conditions. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:533. [PMID: 32411756 PMCID: PMC7214883 DOI: 10.21037/atm.2020.04.25] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Background Adipose tissue derived mesenchymal stromal/stem cells (ASC) can be expanded using supernatant rich in growth factors (SRGF) as Good Manufacturing Practice compatible additive, instead of fetal bovine serum (FBS). After transendothelial migration, ASC can migrate to cancer masses where they can release active substances. Due to their homing and secretion properties ASC can be used as targeted drug delivery vehicles. Nevertheless, the fraction of ASC actually reaching the tumor target is limited. The impact of culture conditions on ASC homing potential on cancer cells is unknown. Methods In dynamic in vitro conditions, we perfused FBS or SRGF ASC in flow chambers coated with collagen type I and fibronectin or seeded with endothelial cells or with HT1080, T98G and Huh7 cancer cells. Expression of selected adhesion molecules was evaluated by standard cytofluorimetry. Dynamic intracellular calcium concentration changes were evaluated in microfluidic and static conditions. Results When compared to FBS ASC, not specific adhesion of SRGF ASC on collagen type I and fibronectin was lower (−33.9%±12.2% and −45.3%±16.9%), while on-target binding on HT1080 and T98G was enhanced (+147%±8% and 120.5%±5.2%). Adhesion of both FBS and SRGF ASC on Huh7 cells was negligible. As confirmed by citofluorimetry and by function-blocking antibody, SRGF mediated decrease of CD49a expression accounted for lower SRGF-ASC avidity for matrix proteins. Upon stimulation with calcium ionophore in static conditions, mobilization of intracellular calcium in SRGF ASC was greater than in FBS ASC. In dynamic conditions, upon adhesion on matrix proteins and HT1080 cells, SRGF ASC showed marked oscillatory calcium concentration changes. Conclusions SRGF can enhance specific ASC binding capacity on selected cancer cells as HT1080 (fibrosarcoma) and T98G (glioblastoma) cells. Upon cell-cell adhesion, SRGF ASC activate intracellular responses potentially improving cell secretion functions. SRGF ASC could be considered as suitable drug delivery vehicle for cancer therapy.
Collapse
Affiliation(s)
- Francesco Agostini
- Stem Cell Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano (PN), Italy
| | - Carla Vicinanza
- Stem Cell Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano (PN), Italy
| | - Federica Di Cintio
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano (PN), Italy.,Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Monica Battiston
- Stem Cell Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano (PN), Italy
| | - Elisabetta Lombardi
- Stem Cell Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano (PN), Italy
| | - Giulia Golinelli
- Division of Medical Oncology, Laboratory of Cellular Therapies, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Cristina Durante
- Stem Cell Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano (PN), Italy
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano (PN), Italy
| | - Massimo Dominici
- Division of Medical Oncology, Laboratory of Cellular Therapies, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Mario Mazzucato
- Stem Cell Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano (PN), Italy
| |
Collapse
|
8
|
Maffioli E, Nonnis S, Angioni R, Santagata F, Calì B, Zanotti L, Negri A, Viola A, Tedeschi G. Proteomic analysis of the secretome of human bone marrow-derived mesenchymal stem cells primed by pro-inflammatory cytokines. J Proteomics 2017; 166:115-126. [DOI: 10.1016/j.jprot.2017.07.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 06/07/2017] [Accepted: 07/17/2017] [Indexed: 02/07/2023]
|
9
|
Ferland DJ, Darios ES, Neubig RR, Sjögren B, Truong N, Torres R, Dexheimer TS, Thompson JM, Watts SW. Chemerin-induced arterial contraction is G i- and calcium-dependent. Vascul Pharmacol 2016; 88:30-41. [PMID: 27890480 DOI: 10.1016/j.vph.2016.11.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 10/27/2016] [Accepted: 11/21/2016] [Indexed: 12/12/2022]
Abstract
Chemerin is an adipokine associated with increased blood pressure, and may link obesity with hypertension. We tested the hypothesis that chemerin-induced contraction of the vasculature occurs via calcium flux in smooth muscle cells. Isometric contraction of rat aortic rings was performed in parallel with calcium kinetics of rat aortic smooth muscle cells to assess the possible signaling pathway. Chemerin-9 (nonapeptide of the chemerin S157 isoform) caused a concentration-dependent contraction of isolated aorta (EC50 100nM) and elicited a concentration-dependent intracellular calcium response (EC50 10nM). Pertussis toxin (Gi inhibitor), verapamil (L-type Ca2+ channel inhibitor), PP1 (Src inhibitor), and Y27632 (Rho kinase inhibitor) reduced both calcium influx and isometric contraction to chemerin-9 but PD098059 (Erk MAPK inhibitor) and U73122 (PLC inhibitor) had little to no effect on either measure of chemerin signaling. Although our primary aim was to examine chemerin signaling, we also highlight differences in the mechanisms of chemerin-9 and recombinant chemerin S157. These data support a chemerin-induced contractile mechanism in vascular smooth muscle that functions through Gi proteins to activate L-type Ca2+ channels, Src, and Rho kinase. There is mounting evidence linking chemerin to hypertension and this mechanism brings us closer to targeting chemerin as a form of therapy.
Collapse
MESH Headings
- Animals
- Aorta/drug effects
- Aorta/metabolism
- Calcium/metabolism
- Calcium Channels, L-Type/metabolism
- Chemokines/administration & dosage
- Chemokines/metabolism
- Dose-Response Relationship, Drug
- GTP-Binding Protein alpha Subunits, Gi-Go/metabolism
- Hypertension/physiopathology
- Intercellular Signaling Peptides and Proteins/administration & dosage
- Intercellular Signaling Peptides and Proteins/metabolism
- Male
- Muscle Contraction/drug effects
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Rats
- Rats, Sprague-Dawley
- Signal Transduction/drug effects
- rho-Associated Kinases/metabolism
Collapse
Affiliation(s)
- David J Ferland
- Department of Pharmacology and Toxicology, 1355 Bogue Street Rm B445, Michigan State University, East Lansing, MI 48824-1317, United States.
| | - Emma S Darios
- Department of Pharmacology and Toxicology, 1355 Bogue Street Rm B445, Michigan State University, East Lansing, MI 48824-1317, United States
| | - Richard R Neubig
- Department of Pharmacology and Toxicology, 1355 Bogue Street Rm B445, Michigan State University, East Lansing, MI 48824-1317, United States
| | - Benita Sjögren
- Department of Pharmacology and Toxicology, 1355 Bogue Street Rm B445, Michigan State University, East Lansing, MI 48824-1317, United States
| | - Nguyen Truong
- Department of Pharmacology and Toxicology, 1355 Bogue Street Rm B445, Michigan State University, East Lansing, MI 48824-1317, United States
| | - Rosa Torres
- Department of Pharmacology and Toxicology, 1355 Bogue Street Rm B445, Michigan State University, East Lansing, MI 48824-1317, United States
| | - Thomas S Dexheimer
- Department of Pharmacology and Toxicology, 1355 Bogue Street Rm B445, Michigan State University, East Lansing, MI 48824-1317, United States
| | - Janice M Thompson
- Department of Pharmacology and Toxicology, 1355 Bogue Street Rm B445, Michigan State University, East Lansing, MI 48824-1317, United States
| | - Stephanie W Watts
- Department of Pharmacology and Toxicology, 1355 Bogue Street Rm B445, Michigan State University, East Lansing, MI 48824-1317, United States
| |
Collapse
|
10
|
Lin S, Teng J, Li J, Sun F, Yuan D, Chang J. Association of Chemerin and Vascular Endothelial Growth Factor (VEGF) with Diabetic Nephropathy. Med Sci Monit 2016; 22:3209-14. [PMID: 27612613 PMCID: PMC5021019 DOI: 10.12659/msm.896781] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Background Diabetic nephropathy (DN) is a common complication of diabetes, caused by diabetic microvascular lesions. The pathogenesis of DN is complicated, involving genetics, physics, chemistry, and environmental factors. Chemerin is a fat cell factor that participates in regulating inflammation. Vascular endothelial growth factor (VEGF) promotes vascular endothelial cell proliferation, differentiation, and angiogenesis. The relationship role of Chemerin and VEGF in DN is not fully understood. Material/Methods SD rats were randomly divided into 2 groups: the control group and the DN group. Streptozotocin was used to construct the DN model. Serum creatinine (Scr), blood urea nitrogen (BUN), and urine microalbumin (UAlb) were detected. Real-time PCR and Western blot were used to test Chemerin and VEGF mRNA and protein expression in kidney tissue. ELISA was performed to test TGF-β1, TNF-α, and INF-γ levels. The correlation of Chemerin and VEGF with renal function and inflammatory factors was analyzed. Results DN group rats showed obviously increased Scr and BUN levels, and elevated TGF-β1, TNF-α, and INF-γ secretion (P<0.05). Compared with controls, Chemerin and VEGF were clearly overexpressed in the DN group (P<0.05). Chemerin and VEGF expression were positively correlated with inflammatory factors and renal function. Conclusions Chemerin and VEGF play important roles in DN by regulating inflammatory factors and renal function. They may be treated as indicators of DN.
Collapse
Affiliation(s)
- Shuhua Lin
- Department of Nephrology, Yantaishan Hospital, Yantai, Shandong, China (mainland)
| | - Jian Teng
- Department of Nephrology, Yantaishan Hospital, Yantai, Shandong, China (mainland)
| | - Jixia Li
- Labouratory, Yantaishan Hospital, Yantai, Shandong, China (mainland)
| | - Fang Sun
- Department of Nephrology, Yantaishan Hospital, Yantai, Shandong, China (mainland)
| | - Dong Yuan
- Department of Nephrology, Yantaishan Hospital, Yantai, Shandong, China (mainland)
| | - Jing Chang
- Department of Nephrology, Yantaishan Hospital, Yantai, Shandong, China (mainland)
| |
Collapse
|
11
|
The role of chemerin and ChemR23 in stimulating the invasion of squamous oesophageal cancer cells. Br J Cancer 2016; 114:1152-9. [PMID: 27092781 PMCID: PMC4865978 DOI: 10.1038/bjc.2016.93] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 03/07/2016] [Accepted: 03/11/2016] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Stromal cells, including cancer-associated myofibroblasts (CAMs), are recognised to be determinants of cancer progression, but the mechanisms remain uncertain. The chemokine-like protein, chemerin, is upregulated in oesophageal squamous cancer (OSC) CAMs compared with adjacent tissue myofibroblasts (ATMs). In this study, we hypothesised that chemerin stimulates OSC cell invasion. METHODS Expression of the chemerin receptor, ChemR23, in OSC was examined by immunohistochemistry. The invasion of OSC cells was studied using Boyden chambers and organotypic assays, and the role of chemerin was explored using siRNA, immunoneutralisation and a ChemR23 receptor antagonist. Matrix metalloproteinases (MMPs) were detected by western blot, enzyme assays or immunohistochemistry. RESULTS Immunohistochemistry indicated expression of the putative chemerin receptor ChemR23 in OSC. It was also expressed in the OSC cell line, OE21. Chemerin stimulated OE21 cell migration and invasion in Boyden chambers. Conditioned medium (CM) from OSC CAMs also stimulated OE21 cell invasion and this was inhibited by chemerin immunoneutralisation, the ChemR23 antagonist CCX832, and by pretreatment of CAMs with chemerin siRNA. In organotypic cultures of OE21 cells on Matrigel seeded with either CAMs or ATMs, there was increased OE21 cell invasion by CAMs that was again inhibited by CCX832. Chemerin increased MMP-1, MMP-2 and MMP-3 abundance, and activity in OE21 cell media, and this was decreased by inhibiting protein kinase C and p44/42 MAPK kinase but not PI-3 kinase. CONCLUSIONS The data indicate that OSC myofibroblasts release chemerin that stimulates OSC cell invasion. Treatments directed at inhibiting chemerin-ChemR23 interactions might be therapeutically useful in delaying progression in OSC.
Collapse
|