1
|
Yang R, Han S, Yu Y, Li H, Helmann JD, Schaufler K, Johnson MDL, Yang QE, Rensing C. The Klebsiella pneumoniae tellurium resistance gene terC contributes to both tellurite and zinc resistance. Microbiol Spectr 2025; 13:e0263424. [PMID: 40202338 PMCID: PMC12054061 DOI: 10.1128/spectrum.02634-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 03/10/2025] [Indexed: 04/10/2025] Open
Abstract
Klebsiella pneumoniae is widely recognized as a pathogen responsible for hospital-acquired infections and community-acquired invasive infections. It has rapidly become a significant global public health threat due to the emergence of hypervirulent and multidrug-resistant strains, which have increased the challenges associated with treating life-threatening infections. Tellurium resistance genes are widespread on virulence plasmids in K. pneumoniae isolates. However, the core function of the ter operon (terZABCDEF) in K. pneumoniae remains unclear. In this study, the multidrug-resistant K. pneumoniae P1927 strain was isolated from the sputum of a hospitalized pneumonia patient. The ter operon, along with antimicrobial resistance and virulence genes, was identified on a large hybrid plasmid in K. pneumoniae P1927. We generated a terC deletion mutant and demonstrated that this mutant exhibited reduced virulence in a Galleria mellonella larva infection model. Further physiological functional analysis revealed that terC is not only important for Te(IV) resistance but also for resistance to Zn(II), Mn(II), and phage infection. All genes of the ter operon were highly inducible by Zn(II), which is a stronger inducer than Te(IV), and the terBCDE genes were also induced by Mn(II). Collectively, our study demonstrates novel physiological functions of TerC in Zn(II) resistance and virulence in K. pneumoniae.IMPORTANCEKlebsiella pneumoniae has rapidly become a global threat to public health. Although the ter operon is widely identified in clinical isolates, its physiological function remains unclear. It has been proposed that proteins encoded by the ter operon form a multi-site metal-binding complex, but its exact function is still unknown. TerC, a central component of the tellurium resistance determinant, was previously shown to interact with outer membrane proteins OmpA and KpsD in Escherichia coli, suggesting potential changes in outer membrane structure and properties. Here, we report that TerC confers resistance to Zn(II), Mn(II), and phage infection, and Zn(II) was shown to be a strong inducer of the ter operon. Furthermore, TerC was identified as a novel virulence factor. Taken together, our results expand our understanding of the physiological functions encoded by the ter operon and its role in the virulence of K. pneumoniae, providing deeper insights into the link between heavy metal(loid) resistance determinants and virulence in pathogenic bacteria.
Collapse
Affiliation(s)
- Ruixiang Yang
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Shuang Han
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yanshuang Yu
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Hongru Li
- Fujian Provincial Key Laboratory of Medical Big Data Engineering, Fujian Provincial Hospital, Shengli Clinical College of Fujian Medical University, Fuzhou, Fujian, China
- Department of Respiratory and Critical Care Medicine, Fujian Shengli Medical College, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - John D. Helmann
- Department of Microbiology, Cornell University, Ithaca, New York, USA
| | - Katharina Schaufler
- Department of Epidemiology and Ecology of Antimicrobial Resistance, Helmholtz Centre for Infection Research HZI, Helmholtz Institute for One Health, Greifswald, Mecklenburg-Vorpommern, Germany
| | - Michael D. L. Johnson
- Department of Immunobiology, The University of Arizona College of Medicine Tucson, Tucson, Arizona, USA
| | - Qiu E. Yang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Christopher Rensing
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| |
Collapse
|
2
|
Vávrová S, Grones J, Šoltys K, Celec P, Turňa J. The tellurite resistance gene cluster of pathogenic bacteria and its effect on oxidative stress response. Folia Microbiol (Praha) 2024; 69:433-444. [PMID: 38261148 PMCID: PMC11003894 DOI: 10.1007/s12223-024-01133-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 01/12/2024] [Indexed: 01/24/2024]
Abstract
Tellurite resistance gene clusters have been identified in numerous pathogenic bacteria, including clinical isolates of Escherichia coli. The rareness of tellurium in host organisms and the noncontaminated environment raises a question about the true functionality of tellurite resistance gene clusters in pathogenesis and their possible contribution to bacterial fitness. The study aims to point out the beneficial effects of the tellurite resistance gene cluster of pathogenic bacteria to survive in ROS-rich environments. Here, we analysed the bacterial response to oxidative stress conditions with and without tellurite resistance gene clusters, which are composed of terWY1XY2Y3 and terZABCDEF genes. By measuring the levels of protein carbonylation, lipid peroxidation, and expression changes of oxidative stress genes upon oxidative stress, we propose a tellurite resistance gene cluster contribution to the elimination of oxidative damage, potentially increasing fitness and resistance to reactive oxygen species during macrophage attack. We have shown a different beneficial effect of various truncated versions of the tellurite resistance gene cluster on cell survival. The terBCDEF genes increased the survival of E. coli strain MC4100 by 13.21%, terW and terZABCDEF by 10.09%, and terWY1XY2Y3 and terZABCDEF by 25.57%, respectively. The ability to survive tellurite treatment is the most significant at 44.8% in wild clinical strain KL53 compared to laboratory strain E. coli MC4100 due to a complete wild-type plasmid presence.
Collapse
Affiliation(s)
- Silvia Vávrová
- Faculty of Natural Sciences, Department of Molecular Biology, Comenius University in Bratislava, Bratislava, Slovak Republic.
| | - Jozef Grones
- Faculty of Natural Sciences, Department of Molecular Biology, Comenius University in Bratislava, Bratislava, Slovak Republic
| | - Katarína Šoltys
- Faculty of Natural Sciences, Department of Microbiology and Virology, Comenius University in Bratislava, Bratislava, Slovak Republic
| | - Peter Celec
- Faculty of Medicine, Institute of Molecular Biomedicine, Comenius University in Bratislava, Bratislava, Slovak Republic
- Faculty of Medicine, Institute of Pathophysiology, Comenius University in Bratislava, Bratislava, Slovak Republic
| | - Ján Turňa
- Faculty of Natural Sciences, Department of Molecular Biology, Comenius University in Bratislava, Bratislava, Slovak Republic
| |
Collapse
|
3
|
Peng W, Wang Y, Fu Y, Deng Z, Lin S, Liang R. Characterization of the Tellurite-Resistance Properties and Identification of the Core Function Genes for Tellurite Resistance in Pseudomonas citronellolis SJTE-3. Microorganisms 2022; 10:microorganisms10010095. [PMID: 35056544 PMCID: PMC8779313 DOI: 10.3390/microorganisms10010095] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/27/2021] [Accepted: 12/30/2021] [Indexed: 11/16/2022] Open
Abstract
Tellurite is highly toxic to bacteria and commonly used in the clinical screening for pathogens; it is speculated that there is a potential relationship between tellurite resistance and bacterial pathogenicity. Until now, the core function genes of tellurite resistance and their characteristics are still obscure. Pseudomonas citronellolis SJTE-3 was found able to resist high concentrations of tellurite (250 μg/mL) and formed vacuole-like tellurium nanostructures. The terZABCDE gene cluster located in the large plasmid pRBL16 endowed strain SJTE-3 with the tellurite resistance of high levels. Although the terC and terD genes were identified as the core function genes for tellurite reduction and resistance, the inhibition of cell growth was observed when they were used solely. Interestingly, co-expression of the terA gene or terZ gene could relieve the burden caused by the expression of the terCD genes and recover normal cell growth. TerC and TerD proteins commonly shared the conserved sequences and are widely distributed in many pathogenic bacteria, highly associated with the pathogenicity factors.
Collapse
Affiliation(s)
- Wanli Peng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (W.P.); (Y.W.); (Y.F.); (Z.D.); (S.L.)
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yanqiu Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (W.P.); (Y.W.); (Y.F.); (Z.D.); (S.L.)
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yali Fu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (W.P.); (Y.W.); (Y.F.); (Z.D.); (S.L.)
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (W.P.); (Y.W.); (Y.F.); (Z.D.); (S.L.)
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shuangjun Lin
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (W.P.); (Y.W.); (Y.F.); (Z.D.); (S.L.)
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Rubing Liang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (W.P.); (Y.W.); (Y.F.); (Z.D.); (S.L.)
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Correspondence: ; Tel./Fax: +86-21-34204192
| |
Collapse
|
4
|
Tellurium: A Rare Element with Influence on Prokaryotic and Eukaryotic Biological Systems. Int J Mol Sci 2021; 22:ijms22115924. [PMID: 34072929 PMCID: PMC8199023 DOI: 10.3390/ijms22115924] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 11/16/2022] Open
Abstract
Metalloid tellurium is characterized as a chemical element belonging to the chalcogen group without known biological function. However, its compounds, especially the oxyanions, exert numerous negative effects on both prokaryotic and eukaryotic organisms. Recent evidence suggests that increasing environmental pollution with tellurium has a causal link to autoimmune, neurodegenerative and oncological diseases. In this review, we provide an overview about the current knowledge on the mechanisms of tellurium compounds' toxicity in bacteria and humans and we summarise the various ways organisms cope and detoxify these compounds. Over the last decades, several gene clusters conferring resistance to tellurium compounds have been identified in a variety of bacterial species and strains. These genetic determinants exhibit great genetic and functional diversity. Besides the existence of specific resistance mechanisms, tellurium and its toxic compounds interact with molecular systems, mediating general detoxification and mitigation of oxidative stress. We also discuss the similarity of tellurium and selenium biochemistry and the impact of their compounds on humans.
Collapse
|
5
|
Nguyen TTH, Kikuchi T, Tokunaga T, Iyoda S, Iguchi A. Diversity of the Tellurite Resistance Gene Operon in Escherichia coli. Front Microbiol 2021; 12:681175. [PMID: 34122392 PMCID: PMC8193136 DOI: 10.3389/fmicb.2021.681175] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 04/30/2021] [Indexed: 11/15/2022] Open
Abstract
Tellurite is highly toxic to most bacteria owing to its strong oxidative ability. However, some bacteria demonstrate tellurite resistance. In particular, some Escherichia coli strains, including Shiga toxin-producing E. coli O157:H7, are known to be resistant to tellurite. This resistance is involved in ter operon, which is usually located on a prophage-like element of the chromosome. The characteristics of the ter operon have been investigated mainly by genome analysis of pathogenic E. coli; however, the distribution and structural characteristics of the ter operon in other E. coli are almost unknown. To clarify these points, we examined 106 E. coli strains carrying the ter operon from various animals. The draft genomes of 34 representative strains revealed that ter operons were clearly classified into four subtypes, ter-type 1–4, at the nucleotide sequence level. Complete genomic sequences revealed that operons belonging to three ter-types (1, 3, and 4) were located on the prophage-like elements on the chromosome, whereas the ter-type 2 operon was located on the IncHI2 plasmid. The positions of the tRNASer, tRNAMet, and tRNAPhe indicated the insertion sites of elements carrying the ter operons. Using the PCR method developed in this study, 106 strains were classified as type 1 (n = 66), 2 (n = 13), 3 (n = 8), and 4 (n = 17), and two strains carried both types 1 and 2. Furthermore, significant differences in the minimum inhibitory concentration (MIC) of tellurite were observed between strains carrying ter-type 4 and the others (p < 0.05). The ter-type was also closely related to the isolation source, with types 2 and 4 associated with chickens and deer, respectively. This study provided new insights related not only to genetic characteristics of the ter operons, but also to phenotypic and ecological characteristics that may be related to the diversity of the operon.
Collapse
Affiliation(s)
- Thi Thu Huong Nguyen
- Department of Environment and Resource Sciences, University of Miyazaki, Miyazaki, Japan.,Thai Nguyen University of Agriculture and Forestry, Thai Nguyen, Vietnam
| | - Taisei Kikuchi
- Department of Infectious Disease, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Tadaaki Tokunaga
- Department of Environment and Resource Sciences, University of Miyazaki, Miyazaki, Japan
| | - Sunao Iyoda
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Atsushi Iguchi
- Department of Environment and Resource Sciences, University of Miyazaki, Miyazaki, Japan
| |
Collapse
|
6
|
Jánošíková L, Pálková L, Šalát D, Klepanec A, Soltys K. Response of Escherichia coli minimal ter operon to UVC and auto-aggregation: pilot study. PeerJ 2021; 9:e11197. [PMID: 34026346 PMCID: PMC8123226 DOI: 10.7717/peerj.11197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 03/09/2021] [Indexed: 11/20/2022] Open
Abstract
Aim The study of minimal ter operon as a determinant of tellurium resistance (TeR) is important for the purpose of confirming the relationship of these genes to the pathogenicity of microorganisms. The ter operon is widespread among bacterial species and pathogens, implicated also in phage inhibition, oxidative stress and colicin resistance. So far, there is no experimental evidence for the role of the Escherichia coli (E. coli) minimal ter operon in ultraviolet C (UVC) resistance, biofilm formation and auto-aggregation. To identify connection with UVC resistance of the minimal ter operon, matched pairs of Ter-positive and -negative E. coli cells were stressed and differences in survival and whole genome sequence analysis were performed. This study was aimed also to identify differences in phenotype of cells induced by environmental stress. Methods In the current study, a minimal ter operon(terBCDEΔF) originating from the uropathogenic strain E. coli KL53 was used. Clonogenic assay was the method of choice to determine cell reproductive death after treatment with UVC irradiation at certain time intervals. Bacterial suspensions were irradiated with 254 nm UVC-light (germicidal lamp in biological safety cabinet) in vitro. UVC irradiance output was 2.5 mW/cm2 (calculated at the UVC device aperture) and plate-lamp distance of 60 cm. DNA damage analysis was performed using shotgun sequencing on Illumina MiSeq platform. Biofilm formation was measured by a crystal violet retention assay. Auto-aggregation assay was performed according to the Ghane, Babaeekhou & Ketabi (2020). Results A large fraction of Ter-positive E. coli cells survived treatment with 120-s UVC light (300 mJ/cm2) compared to matched Ter-negative cells; ∼5-fold higher resistance of Ter-positive cells to UVC dose (p = 0.0007). Moreover, UVC surviving Ter-positive cells showed smaller mutation rate as Ter-negative cells. The study demonstrated that a 1200-s exposure to UVC (3,000 mJ/cm2) was sufficient for 100% inhibition of growth for all the Ter-positive and -negative E. coli cells. The Ter-positive strain exhibited of 26% higher auto-aggregation activities and was able to inhibit biofilm formation over than Ter- negative strain (**** P < 0.0001). Conclusion Our study shows that Ter-positive cells display lower sensitivity to UVC radiation, corresponding to a presence in minimal ter operon. In addition, our study suggests that also auto-aggregation ability is related to minimal ter operon. The role of the minimal ter operon (terBCDEΔF) in resistance behavior of E. coli under environmental stress is evident.
Collapse
Affiliation(s)
- Lenka Jánošíková
- Faculty of Health Sciences, University of St. Cyril and Methodius in Trnava, Trnava, Slovak Republic
| | | | - Dušan Šalát
- Faculty of Health Sciences, University of St. Cyril and Methodius in Trnava, Trnava, Slovak Republic
| | - Andrej Klepanec
- Faculty of Health Sciences, University of St. Cyril and Methodius in Trnava, Trnava, Slovak Republic
| | - Katarina Soltys
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovak Republic.,Comenius University Science Park, Comenius University in Bratislava, Bratislava, Slovak Republic
| |
Collapse
|
7
|
Vornhagen J, Bassis CM, Ramakrishnan S, Hein R, Mason S, Bergman Y, Sunshine N, Fan Y, Holmes CL, Timp W, Schatz MC, Young VB, Simner PJ, Bachman MA. A plasmid locus associated with Klebsiella clinical infections encodes a microbiome-dependent gut fitness factor. PLoS Pathog 2021; 17:e1009537. [PMID: 33930099 PMCID: PMC8115787 DOI: 10.1371/journal.ppat.1009537] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/12/2021] [Accepted: 04/07/2021] [Indexed: 02/07/2023] Open
Abstract
Klebsiella pneumoniae (Kp) is an important cause of healthcare-associated infections, which increases patient morbidity, mortality, and hospitalization costs. Gut colonization by Kp is consistently associated with subsequent Kp disease, and patients are predominantly infected with their colonizing strain. Our previous comparative genomics study, between disease-causing and asymptomatically colonizing Kp isolates, identified a plasmid-encoded tellurite (TeO3-2)-resistance (ter) operon as strongly associated with infection. However, TeO3-2 is extremely rare and toxic to humans. Thus, we used a multidisciplinary approach to determine the biological link between ter and Kp infection. First, we used a genomic and bioinformatic approach to extensively characterize Kp plasmids encoding the ter locus. These plasmids displayed substantial variation in plasmid incompatibility type and gene content. Moreover, the ter operon was genetically independent of other plasmid-encoded virulence and antibiotic resistance loci, both in our original patient cohort and in a large set (n = 88) of publicly available ter operon-encoding Kp plasmids, indicating that the ter operon is likely playing a direct, but yet undescribed role in Kp disease. Next, we employed multiple mouse models of infection and colonization to show that 1) the ter operon is dispensable during bacteremia, 2) the ter operon enhances fitness in the gut, 3) this phenotype is dependent on the colony of origin of mice, and 4) antibiotic disruption of the gut microbiota eliminates the requirement for ter. Furthermore, using 16S rRNA gene sequencing, we show that the ter operon enhances Kp fitness in the gut in the presence of specific indigenous microbiota, including those predicted to produce short chain fatty acids. Finally, administration of exogenous short-chain fatty acids in our mouse model of colonization was sufficient to reduce fitness of a ter mutant. These findings indicate that the ter operon, strongly associated with human infection, encodes factors that resist stress induced by the indigenous gut microbiota during colonization. This work represents a substantial advancement in our molecular understanding of Kp pathogenesis and gut colonization, directly relevant to Kp disease in healthcare settings.
Collapse
Affiliation(s)
- Jay Vornhagen
- Department of Pathology, University of Michigan, Ann Arbor, MI, United States of America
- Department of Microbiology & Immunology, University of Michigan, Ann Arbor, MI, United States of America
| | - Christine M. Bassis
- Department of Internal Medicine/Infectious Diseases Division, University of Michigan, Ann Arbor, MI, United States of America
| | - Srividya Ramakrishnan
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, United States of America
| | - Robert Hein
- Department of Internal Medicine/Infectious Diseases Division, University of Michigan, Ann Arbor, MI, United States of America
| | - Sophia Mason
- Department of Pathology, University of Michigan, Ann Arbor, MI, United States of America
| | - Yehudit Bergman
- Division of Medical Microbiology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Nicole Sunshine
- Department of Pathology, University of Michigan, Ann Arbor, MI, United States of America
| | - Yunfan Fan
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States of America
| | - Caitlyn L. Holmes
- Department of Pathology, University of Michigan, Ann Arbor, MI, United States of America
- Department of Microbiology & Immunology, University of Michigan, Ann Arbor, MI, United States of America
| | - Winston Timp
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States of America
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
- Department of Medicine, Division of Infectious Disease, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Michael C. Schatz
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, United States of America
- Department of Biology, Johns Hopkins University, Baltimore, MD, United States of America
- Simons Center for Quantitative Biology, Cold Spring Harbor, NY, United States of America
| | - Vincent B. Young
- Department of Microbiology & Immunology, University of Michigan, Ann Arbor, MI, United States of America
- Department of Internal Medicine/Infectious Diseases Division, University of Michigan, Ann Arbor, MI, United States of America
| | - Patricia J. Simner
- Division of Medical Microbiology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Michael A. Bachman
- Department of Pathology, University of Michigan, Ann Arbor, MI, United States of America
- Department of Microbiology & Immunology, University of Michigan, Ann Arbor, MI, United States of America
| |
Collapse
|
8
|
W Figueira L, de Oliveira JR, Netto AA, S Zamarioli LD, Marcucci MC, Camargo SE, de Oliveira LD. Curcuma longa L. helps macrophages to control opportunistic micro-organisms during host-microbe interactions. Future Microbiol 2020; 15:1237-1248. [PMID: 33026878 DOI: 10.2217/fmb-2019-0297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: Plant products have been evaluated to control opportunistic micro-organisms, as well as fortify immune system cells. Thus, Curcuma longa L. (turmeric) extract was evaluated in interactions of murine macrophages (RAW 264.7) with Staphylococcus aureus, Pseudomonas aeruginosa and Candida albicans, in order to establish cooperation with defense cells. Materials & methods: Effects of minimal inhibitory concentrations (MIC) of the plant extract were analyzed on phagocytosis, cell viability of RAW 264.7 and production of inflammation-related molecules (IL-1β, TNF-α, IL-10 and NO). Results: The plant extract was cytocompatible and promoted significant reductions of micro-organisms, and synthesis of inflammation-related molecules, during interactions. Conclusion: C. longa L. extract showed significant antimicrobial response and cooperation with macrophages, by fighting bacteria and yeasts during host-microbe interactions.
Collapse
Affiliation(s)
- Leandro W Figueira
- Department of Biosciences & Oral Diagnosis, São Paulo State University (UNESP), Institute of Science & Technology, Av. Engenheiro Francisco José Longo, 777, São José dos Campos, SP 2245-000, Brazil
| | - Jonatas R de Oliveira
- Department of Biosciences & Oral Diagnosis, São Paulo State University (UNESP), Institute of Science & Technology, Av. Engenheiro Francisco José Longo, 777, São José dos Campos, SP 2245-000, Brazil.,School of Medicine, Anhembi Morumbi University, Av. Dep. Benedito Matarazzo, 4050, São José dos Campos, SP 12230-002, Brazil
| | - Amandio Al Netto
- Anhanguera University, Av. Raimundo Pereira de Magalhães, 3305. São Paulo, SP 05145-200, Brazil
| | - Lucas Dos S Zamarioli
- Department of Mode of Drug Action, Federal University of São Paulo (UNIFESP), Institute of Pharmacology & Molecular Biology, Rua Três de Maio, 100 São Paulo, SP 04044-020, Brazil
| | - Maria C Marcucci
- Anhanguera University, Av. Raimundo Pereira de Magalhães, 3305. São Paulo, SP 05145-200, Brazil
| | - Samira Ea Camargo
- Department of Restorative Dental Sciences, College of Dentistry, University of Florida, 1395 Center Drive, Gainesville, FL 32610, USA
| | - Luciane D de Oliveira
- Department of Biosciences & Oral Diagnosis, São Paulo State University (UNESP), Institute of Science & Technology, Av. Engenheiro Francisco José Longo, 777, São José dos Campos, SP 2245-000, Brazil
| |
Collapse
|
9
|
Figueira LW, de Oliveira JR, Camargo SEA, de Oliveira LD. Curcuma longa L. (turmeric), Rosmarinus officinalis L. (rosemary), and Thymus vulgaris L. (thyme) extracts aid murine macrophages (RAW 264.7) to fight Streptococcus mutans during in vitro infection. Arch Microbiol 2020; 202:2269-2277. [PMID: 32535791 DOI: 10.1007/s00203-020-01945-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 12/21/2019] [Accepted: 06/05/2020] [Indexed: 12/12/2022]
Abstract
Finding an effective alternative way to aid defense cells to fight Streptococcus mutans was the main goal of this study. The effect of plant extracts from Curcuma longa L. (turmeric), Rosmarinus officinalis L. (rosemary), and Thymus vulgaris L. (thyme) was evaluated on murine macrophages (RAW 264.7) infected by S. mutans. Minimum inhibitory concentration (MIC) of the extracts was determined. Macrophages were infected by S. mutans and treated with each extract. From the supernatants, it was measured nitric oxide (NO) level. Posteriorly, RAW 264.7 were lysed to expose living and phagocytosed bacteria. Cytotoxicity was checked by lysosomal activity analysis, using neutral red assay. Each extract helped RAW 264.7 to eliminate S. mutans during infection, as observed by a significant bacterial reduction. Significant cell viability was also found. Besides, an increased production of NO was verified using R. officinalis L. and T. vulgaris L. extracts. The evaluated extracts demonstrated an effective action to assist RAW 264.7 to fight S. mutans during infection.
Collapse
Affiliation(s)
- Leandro Wagner Figueira
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), Av. Engenheiro Francisco José Longo, 777, Jardim São Dimas, São José dos Campos, SP, 12245-000, Brazil
| | - Jonatas Rafael de Oliveira
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), Av. Engenheiro Francisco José Longo, 777, Jardim São Dimas, São José dos Campos, SP, 12245-000, Brazil.
- Anhembi Morumbi University, School of Medicine, Av. Dep. Benedito Matarazzo, 4050, São José dos Campos, SP, 12230-002, Brazil.
| | | | - Luciane Dias de Oliveira
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), Av. Engenheiro Francisco José Longo, 777, Jardim São Dimas, São José dos Campos, SP, 12245-000, Brazil
| |
Collapse
|
10
|
Chen J, Tan W, Wang W, Hou S, Chen G, Xia L, Lu Y. Identification of common antigens of three pathogenic Nocardia species and development of DNA vaccine against fish nocardiosis. FISH & SHELLFISH IMMUNOLOGY 2019; 95:357-367. [PMID: 31678532 DOI: 10.1016/j.fsi.2019.09.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/06/2019] [Accepted: 09/14/2019] [Indexed: 06/10/2023]
Abstract
Fish nocardiosis is a chronic granulomatous bacterial disease and three pathogens have been reported so far, including Nocardia asteroids, N. seriolae and N. salmonicida. However, the absence of antigen markers is a bottleneck for developing effective vaccines against fish nocardiosis. In this study, the antigenicity of whole-cell protein of these three pathogenic Nocardia species were profiled by immunoproteomic analysis and 7 common immunogenic proteins were identified as follows: molecular chaperone DnaK (DnaK), molecular chaperone GroEL (GroEL), 30 S ribosomal protein S1 (RpsA), TerD family protein (TerD), FHA domain-containing protein (FHA), 50 S ribosomal protein L7/L12 (RplL) and PspA/IM30 family protein (PspA). Furthermore, the DNA vaccine encoding FHA gene against fish nocardiosis was developed and its efficacy was investigated in hybrid snakehead. The results suggested that it needed at least 7 d to transport pcDNA-FHA DNA vaccine from injected muscle to head kidney, spleen and liver and stimulate host's immune system for later protection. In addition, non-specific immunity paraments (serum lysozyme (LYZ), peroxidase (POD), acid phosphatase (ACP), alkaline phosphatase (AKP) and superoxide dismutase (SOD) activities), specific antibody (IgM) titers production and immune-related genes (MHCIα, MHCIIα, CD4, CD8α, IL-1β and TNFα) were used to evaluate the immune response induced in pcDNA-FHA vaccinated hybrid snakehead, it proved that all these mentioned immune activities were significantly enhanced after immunization. The results also showed hybrid snakehead vaccinated with pcDNA-FHA had higher survival rate (79.33%) compared with the controls after challenge with N. seriolae, indicating that the pcDNA-FHA DNA vaccine can supply immune protection against N. seriolae infection. Taken together, this study may warrant further development of these common immunogenic proteins as the antigens for vaccine or diagnosis and facilitate the prevention and treatment of fish nocardiosis.
Collapse
Affiliation(s)
- Jianlin Chen
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong, China; Fisheries College of Guangdong Ocean University, Zhanjiang, Guangdong, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, Guangdong, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, Guangdong, China
| | - Wanchun Tan
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong, China; Fisheries College of Guangdong Ocean University, Zhanjiang, Guangdong, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, Guangdong, China
| | - Wenji Wang
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong, China; Fisheries College of Guangdong Ocean University, Zhanjiang, Guangdong, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, Guangdong, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, Guangdong, China
| | - Suying Hou
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong, China; Fisheries College of Guangdong Ocean University, Zhanjiang, Guangdong, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, Guangdong, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, Guangdong, China
| | - Guoquan Chen
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong, China; Fisheries College of Guangdong Ocean University, Zhanjiang, Guangdong, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, Guangdong, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, Guangdong, China
| | - Liqun Xia
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong, China; Fisheries College of Guangdong Ocean University, Zhanjiang, Guangdong, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, Guangdong, China; Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen, Guangdong, China.
| | - Yishan Lu
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong, China; Fisheries College of Guangdong Ocean University, Zhanjiang, Guangdong, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, Guangdong, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, Guangdong, China; Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen, Guangdong, China.
| |
Collapse
|
11
|
Wallner A, King E, Ngonkeu ELM, Moulin L, Béna G. Genomic analyses of Burkholderia cenocepacia reveal multiple species with differential host-adaptation to plants and humans. BMC Genomics 2019; 20:803. [PMID: 31684866 PMCID: PMC6829993 DOI: 10.1186/s12864-019-6186-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 10/15/2019] [Indexed: 12/17/2022] Open
Abstract
Background Burkholderia cenocepacia is a human opportunistic pathogen causing devastating symptoms in patients suffering from immunodeficiency and cystic fibrosis. Out of the 303 B. cenocepacia strains with available genomes, the large majority were isolated from a clinical context. However, several isolates originate from other environmental sources ranging from aerosols to plant endosphere. Plants can represent reservoirs for human infections as some pathogens can survive and sometimes proliferate in the rhizosphere. We therefore investigated if B. cenocepacia had the same potential. Results We selected genome sequences from 31 different strains, representative of the diversity of ecological niches of B. cenocepacia, and conducted comparative genomic analyses in the aim of finding specific niche or host-related genetic determinants. Phylogenetic analyses and whole genome average nucleotide identity suggest that strains, registered as B. cenocepacia, belong to at least two different species. Core-genome analyses show that the clade enriched in environmental isolates lacks multiple key virulence factors, which are conserved in the sister clade where most clinical isolates fall, including the highly virulent ET12 lineage. Similarly, several plant associated genes display an opposite distribution between the two clades. Finally, we suggest that B. cenocepacia underwent a host jump from plants/environment to animals, as supported by the phylogenetic analysis. We eventually propose a name for the new species that lacks several genetic traits involved in human virulence. Conclusion Regardless of the method used, our studies resulted in a disunited perspective of the B. cenocepacia species. Strains currently affiliated to this taxon belong to at least two distinct species, one having lost several determining animal virulence factors.
Collapse
Affiliation(s)
- Adrian Wallner
- IRD, CIRAD, University of Montpellier, IPME; 911 avenue Agropolis, BP 64501, 34394, Montpellier, France
| | - Eoghan King
- IRD, CIRAD, University of Montpellier, IPME; 911 avenue Agropolis, BP 64501, 34394, Montpellier, France
| | - Eddy L M Ngonkeu
- Institute of Agronomic Research for Development (IRAD), PO Box 2123, Yaoundé, Cameroon
| | - Lionel Moulin
- IRD, CIRAD, University of Montpellier, IPME; 911 avenue Agropolis, BP 64501, 34394, Montpellier, France
| | - Gilles Béna
- IRD, CIRAD, University of Montpellier, IPME; 911 avenue Agropolis, BP 64501, 34394, Montpellier, France.
| |
Collapse
|
12
|
Paterson ML, Ranasinghe D, Blom J, Dover LG, Sutcliffe IC, Lopes B, Sangal V. Genomic analysis of a novel Rhodococcus (Prescottella) equi isolate from a bovine host. Arch Microbiol 2019; 201:1317-1321. [PMID: 31302711 PMCID: PMC6790187 DOI: 10.1007/s00203-019-01695-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 06/06/2019] [Accepted: 06/20/2019] [Indexed: 01/02/2023]
Abstract
Rhodococcus (Prescottella) equi causes pneumonia-like infections in foals with high mortality rates and can also infect a number of other animals. R. equi is also emerging as an opportunistic human pathogen. In this study, we have sequenced the genome of a novel R. equi isolate, B0269, isolated from the faeces of a bovine host. Comparative genomic analyses with seven other published R. equi genomes, including those from equine or human sources, revealed a pangenome comprising of 6876 genes with 4141 genes in the core genome. Two hundred and 75 genes were specific to the bovine isolate, mostly encoding hypothetical proteins of unknown function. However, these genes include four copies of terA and five copies of terD genes that may be involved in responding to chemical stress. Virulence characteristics in R. equi are associated with the presence of large plasmids carrying a pathogenicity island, including genes from the vap multigene family. A BLAST search of the protein sequences from known virulence-associated plasmids (pVAPA, pVAPB and pVAPN) revealed a similar plasmid backbone on two contigs in bovine isolate B0269; however, no homologues of the main virulence-associated genes, vapA, vapB or vapN, were identified. In summary, this study confirms that R. equi genomes are highly conserved and reports the presence of an apparently novel plasmid in the bovine isolate B0269 that needs further characterisation to understand its potential involvement in virulence properties.
Collapse
Affiliation(s)
- Megan L Paterson
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
| | - Diyanath Ranasinghe
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
| | - Jochen Blom
- Bioinformatics and Systems Biology, Justus-Liebig-Universität, Giessen, Germany
| | - Lynn G Dover
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
| | - Iain C Sutcliffe
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
| | - Bruno Lopes
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Vartul Sangal
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK.
| |
Collapse
|
13
|
Martínez-Romero E, Rodríguez-Medina N, Beltrán-Rojel M, Toribio-Jiménez J, Garza-Ramos U. Klebsiella variicola and Klebsiella quasipneumoniae with capacity to adapt to clinical and plant settings. SALUD PUBLICA DE MEXICO 2018; 60:29-40. [PMID: 29689654 DOI: 10.21149/8156] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 02/24/2017] [Indexed: 11/06/2022] Open
Abstract
OBJECTIVE To compare the genetic determinants involved in plant colonization or virulence in the reported genomes of K. variicola, K. quasipneumoniae and K. pneumoniae. MATERIALS AND METHODS In silico comparisons and Jaccard analysis of genomic data were used. Fimbrial genes were detected by PCR. Biological assays were performed with plant and clinical isolates. RESULTS Plant colonization genes such as cellulases, catalases and hemagglutinins were mainly present in K. variicola genomes. Chromosomal β-lactamases were characteristic of this species and had been previously misclassified. K. variicola and K. pneumoniae isolates produced plant hormones. CONCLUSIONS A mosaic distribution of different virulence- and plant-associated genes was found in K. variicola and in K. quasipneumoniae genomes. Some plant colonizing genes were found mainly in K. variicola genomes. The term plantanosis is proposed for plant-borne human infections.
Collapse
Affiliation(s)
| | - Nadia Rodríguez-Medina
- Laboratorio de Resistencia Bacteriana, Centro de Investigación sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública. Cuernavaca, Morelos, México
| | - Marilú Beltrán-Rojel
- Laboratorio de Resistencia Bacteriana, Centro de Investigación sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública. Cuernavaca, Morelos, México
| | - Jeiry Toribio-Jiménez
- Laboratorio de Biotecnología y Genética Microbiana, Unidad Académica de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero. Chilpancingo, Guerrero, México
| | - Ulises Garza-Ramos
- Laboratorio de Resistencia Bacteriana, Centro de Investigación sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública. Cuernavaca, Morelos, México
| |
Collapse
|
14
|
Abstract
Here, we report the draft genome sequence of a clinical isolate of the uropathogenic strain Escherichia coli KL53. A total of 5,083,632 bp was de novo assembled into 170 contigs containing 89 RNAs and 5,034 protein-coding genes. Remarkable is the presence of the tellurite resistance (ter) operon on a plasmid.
Collapse
|
15
|
Thymus vulgaris L. and thymol assist murine macrophages (RAW 264.7) in the control of in vitro infections by Staphylococcus aureus, Pseudomonas aeruginosa, and Candida albicans. Immunol Res 2017; 65:932-943. [DOI: 10.1007/s12026-017-8933-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
16
|
Tan SY, Tan IKP, Tan MF, Dutta A, Choo SW. Evolutionary study of Yersinia genomes deciphers emergence of human pathogenic species. Sci Rep 2016; 6:36116. [PMID: 27796355 PMCID: PMC5086877 DOI: 10.1038/srep36116] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 10/11/2016] [Indexed: 12/25/2022] Open
Abstract
On record, there are 17 species in the Yersinia genus, of which three are known to be pathogenic to human. While the chromosomal and pYV (or pCD1) plasmid-borne virulence genes as well as pathogenesis of these three species are well studied, their genomic evolution is poorly understood. Our study aims to predict the key evolutionary events that led to the emergence of pathogenic Yersinia species by analyzing gene gain-and-loss, virulence genes, and “Clustered regularly-interspaced short palindromic repeats”. Our results suggest that the most recent ancestor shared by the human pathogenic Yersinia was most probably an environmental species that had adapted to the human body. This might have led to ecological specialization that diverged Yersinia into ecotypes and distinct lineages based on differential gene gain-and-loss in different niches. Our data also suggest that Y. pseudotuberculosis group might be the donor of the ail virulence gene to Y. enterocolitica. Hence, we postulate that evolution of human pathogenic Yersinia might not be totally in parallel, but instead, there were lateral gene transfer events. Furthermore, the presence of virulence genes seems to be important for the positive selection of virulence plasmid. Our studies provide better insights into the evolutionary biology of these bacteria.
Collapse
Affiliation(s)
- Shi Yang Tan
- Department of Oral and Craniofacial Sciences, Faculty of Dentistry, University of Malaya, 50603 Kuala Lumpur, Malaysia.,Genome Informatics Research Laboratory, High Impact Research Building, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Irene Kit Ping Tan
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Mui Fern Tan
- Genome Informatics Research Laboratory, High Impact Research Building, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Avirup Dutta
- Genome Informatics Research Laboratory, High Impact Research Building, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Siew Woh Choo
- Department of Oral and Craniofacial Sciences, Faculty of Dentistry, University of Malaya, 50603 Kuala Lumpur, Malaysia.,Genome Informatics Research Laboratory, High Impact Research Building, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|