1
|
Patel KI, Saha N, Dhameliya TM, Chakraborti AK. Recent advancements in the quest of benzazoles as anti-Mycobacterium tuberculosis agents. Bioorg Chem 2025; 155:108093. [PMID: 39764919 DOI: 10.1016/j.bioorg.2024.108093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/14/2024] [Accepted: 12/22/2024] [Indexed: 01/24/2025]
Abstract
Tuberculosis (TB) remains a global health challenge, claiming numerous lives each year, despite recent advancements in drug discovery and treatment strategies. Current TB treatment typically involves long-duration chemotherapy regimens that are often accompanied by adverse effects. The introduction of new anti-TB drugs, such as Bedaquiline, Delamanid, and Pretomanid, offers hope for more effective treatment, although challenges persist keeping the quest to find new anti-TB chemotypes an incessant exercise of medicinal chemists. Towards this initiative, the benzazoles continue to draw attention and have been recognised as new anti-TB scaffolds. Benzazole-containing compounds emerged as new chemotypes with potential to offer a versatile platform for new anti-TB drug design to generate new leads for further optimization. The elucidation of their chemical properties, biological effects, and potential mechanisms of action, would lead to identify innovative candidates for TB therapy. As medicinal chemists delve deeper into the SARs and mechanisms of action of benzazole derivatives, new opportunities for creating effective and safe anti-TB medications arise. This review highlights the potential impact of benzazole-based compounds on the search for new therapeutic agents against tuberculosis, emphasizing the importance of continued research and innovation in the field.
Collapse
Affiliation(s)
- Kshitij I Patel
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S. Nagar, Punjab 160 062, India
| | - Nirjhar Saha
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, West Bengal 700 032, India
| | - Tejas M Dhameliya
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382 481, India
| | - Asit K Chakraborti
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S. Nagar, Punjab 160 062, India; School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, West Bengal 700 032, India.
| |
Collapse
|
2
|
Chauhan M, Barot R, Yadav R, Joshi K, Mirza S, Chikhale R, Srivastava VK, Yadav MR, Murumkar PR. The Mycobacterium tuberculosis Cell Wall: An Alluring Drug Target for Developing Newer Anti-TB Drugs-A Perspective. Chem Biol Drug Des 2024; 104:e14612. [PMID: 39237482 DOI: 10.1111/cbdd.14612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 06/26/2024] [Accepted: 08/05/2024] [Indexed: 09/07/2024]
Abstract
The Mycobacterium cell wall is a capsule-like structure comprising of various layers of biomolecules such as mycolic acid, peptidoglycans, and arabinogalactans, which provide the Mycobacteria a sort of cellular shield. Drugs like isoniazid, ethambutol, cycloserine, delamanid, and pretomanid inhibit cell wall synthesis by inhibiting one or the other enzymes involved in cell wall synthesis. Many enzymes present across these layers serve as potential targets for the design and development of newer anti-TB drugs. Some of these targets are currently being exploited as the most druggable targets like DprE1, InhA, and MmpL3. Many of the anti-TB agents present in clinical trials inhibit cell wall synthesis. The present article covers a systematic perspective of developing cell wall inhibitors targeting various enzymes involved in cell wall biosynthesis as potential drug candidates for treating Mtb infection.
Collapse
Affiliation(s)
- Monica Chauhan
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - Rahul Barot
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - Rasana Yadav
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - Karan Joshi
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - Sadaf Mirza
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - Rupesh Chikhale
- The Cambridge Crystallography Data Center, Cambridge, UK
- School of Pharmacy, University College London, London, UK
| | | | - Mange Ram Yadav
- Centre of Research for Development, Parul University, Vadodara, Gujarat, India
| | - Prashant R Murumkar
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| |
Collapse
|
3
|
Aminu KS, Uzairu A, Chandra A, Singh N, Abechi SE, Shallangwa GA, Umar AB. Exploring the potential of 2-arylbenzimidazole scaffolds as novel α-amylase inhibitors: QSAR, molecular docking, simulation and pharmacokinetic studies. In Silico Pharmacol 2024; 12:29. [PMID: 38617707 PMCID: PMC11009192 DOI: 10.1007/s40203-024-00205-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 03/13/2024] [Indexed: 04/16/2024] Open
Abstract
Previous studies have shown that 2-arylbenzimidazole derivatives have a strong anti-diabetic effect. To further explore this potential, we develop new analogues of the compound using ligand-based drug design and tested their inhibitory and binding properties through QSAR analyses, molecular docking, dynamic simulations and pharmacokinetic studies. By using quantitative structure activity relationship and ligand-based modification, a highly precise predictive model and design of potent compounds was developed from the derivatives of 2-arylbenzimidazoles. Molecular docking and simulation studies were then conducted to identify the optimal binding poses and pharmacokinetic profiles of the newly generated therapeutic drugs. DFT was employed to optimize the chemical structures of 2-arylbenzimidazole derivatives using B3LYP/6-31G* as the basis set. The model with the highest R2trng set, R2adj, Q2cv, and R2test sets (0.926, 0.912, 0.903, and 0.709 respectively) was chosen to predict the inhibitory activities of the derivatives. Five analogues designed using ligand-based strategy had higher activity than the hit molecule. Additionally, the designed molecules had more favorable MolDock scores than the hit molecule and acarbose and simulation studies confirm on their stability and binding affinities towards the protein. The ADME and druglikeness properties of the analogues indicated that they are safe to consume orally and have a high potential for total clearance. The results of this study showed that the suggested analogues could act as α-amylase inhibitors, which could be used as a basis for the creation of new drugs to treat type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Khalifa Sunusi Aminu
- Department of Chemistry, Ahmadu Bello University, Zaria, Nigeria
- Department of Pure and Industrial Chemistry, Bayero University, Kano, Nigeria
| | - Adamu Uzairu
- Department of Chemistry, Ahmadu Bello University, Zaria, Nigeria
| | - Anshuman Chandra
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Nagendra Singh
- School of Biotechnology, Gautam Buddha University, Greater Noida, India
| | | | | | | |
Collapse
|
4
|
Yang J, Zhang L, Qiao W, Luo Y. Mycobacterium tuberculosis: Pathogenesis and therapeutic targets. MedComm (Beijing) 2023; 4:e353. [PMID: 37674971 PMCID: PMC10477518 DOI: 10.1002/mco2.353] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 09/08/2023] Open
Abstract
Tuberculosis (TB) remains a significant public health concern in the 21st century, especially due to drug resistance, coinfection with diseases like immunodeficiency syndrome (AIDS) and coronavirus disease 2019, and the lengthy and costly treatment protocols. In this review, we summarize the pathogenesis of TB infection, therapeutic targets, and corresponding modulators, including first-line medications, current clinical trial drugs and molecules in preclinical assessment. Understanding the mechanisms of Mycobacterium tuberculosis (Mtb) infection and important biological targets can lead to innovative treatments. While most antitubercular agents target pathogen-related processes, host-directed therapy (HDT) modalities addressing immune defense, survival mechanisms, and immunopathology also hold promise. Mtb's adaptation to the human host involves manipulating host cellular mechanisms, and HDT aims to disrupt this manipulation to enhance treatment effectiveness. Our review provides valuable insights for future anti-TB drug development efforts.
Collapse
Affiliation(s)
- Jiaxing Yang
- Center of Infectious Diseases and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Laiying Zhang
- Center of Infectious Diseases and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Wenliang Qiao
- Department of Thoracic Surgery, West China HospitalSichuan UniversityChengduSichuanChina
- Lung Cancer Center, West China HospitalSichuan UniversityChengduSichuanChina
| | - Youfu Luo
- Center of Infectious Diseases and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| |
Collapse
|
5
|
Beveridge J, Tran E, Deora GS, Huang F, Wang Y, Stockton K, Cotillo I, Martinez Martinez MS, Gonzalez S, Castañeda P, Sherman J, Rodriguez A, Kessler A, Baell JB. Novel Diarylthioether Compounds as Agents for the Treatment of Chagas Disease. J Med Chem 2023; 66:1522-1542. [PMID: 36626662 DOI: 10.1021/acs.jmedchem.2c01725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Herein, we describe the hit optimization of a novel diarylthioether chemical class found to be active against Trypanosoma cruzi; the parasite responsible for Chagas disease. The hit compound was discovered through a whole-cell phenotypic screen and as such, the mechanism of action for this chemical class is unknown. Our investigations led to clear structure-activity relationships and the discovery of several analogues with high in vitro potency. Furthermore, we observed excellent activity during acute in vivo efficacy studies in mice infected with transgenic T. cruzi. These diarylthioether compounds represent a promising new chemotype for Chagas disease drug discovery and merit further development to increase oral exposure without increasing toxicity.
Collapse
Affiliation(s)
- Julia Beveridge
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.,Australian Translational Medicinal Chemistry Facility (ATMCF), Monash University, Parkville, Victoria 3052, Australia
| | - Eric Tran
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.,Australian Translational Medicinal Chemistry Facility (ATMCF), Monash University, Parkville, Victoria 3052, Australia
| | - Girdhar Singh Deora
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.,Australian Translational Medicinal Chemistry Facility (ATMCF), Monash University, Parkville, Victoria 3052, Australia
| | - Fei Huang
- School of Pharmaceutical Sciences, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, China
| | - Yuzhi Wang
- School of Pharmaceutical Sciences, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, China
| | - Kieran Stockton
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.,Australian Translational Medicinal Chemistry Facility (ATMCF), Monash University, Parkville, Victoria 3052, Australia
| | | | | | | | | | - Julian Sherman
- Department of Microbiology, New York University School of Medicine, New York, New York 10016, United States
| | - Ana Rodriguez
- Department of Microbiology, New York University School of Medicine, New York, New York 10016, United States
| | | | - Jonathan B Baell
- School of Pharmaceutical Sciences, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, China.,Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.,Australian Translational Medicinal Chemistry Facility (ATMCF), Monash University, Parkville, Victoria 3052, Australia.,Institute of Drug Discovery Technology (IDDT), Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang 315211, China
| |
Collapse
|
6
|
Batt SM, Toth S, Rodriguez B, Abrahams KA, Veerapen N, Chiodarelli G, Cox LR, Moynihan PJ, Lelievre J, Fütterer K, Besra GS. Assay development and inhibition of the Mt-DprE2 essential reductase from Mycobacterium tuberculosis. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001288. [PMID: 36748627 PMCID: PMC9993113 DOI: 10.1099/mic.0.001288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
DprE2 is an essential enzyme in the synthesis of decaprenylphosphoryl-β-d-arabinofuranose (DPA) and subsequently arabinogalactan, and is a significant new drug target for M. tuberculosis. Two compounds from the GSK-177 box set, GSK301A and GSK032A, were identified through Mt-DprE2-target overexpression studies. The Mt-DprE1-DprE2 complex was co-purified and a new in vitro DprE2 assay developed, based on the oxidation of the reduced nicotinamide adenine dinucleotide cofactor of DprE2 (NADH/NADPH). The Mt-DprE1-DprE2 complex showed interesting kinetics in both the DprE1 resazurin-based assay, where Mt-DprE2 was found to enhance Mt-DprE1 activity and reduce substrate inhibition; and also in the DprE2 assay, which similarly exhibited substrate inhibition and a difference in kinetics of the two potential cofactors, NADH and NADPH. Although, no inhibition was observed in the DprE2 assay by the two GSK set compounds, spontaneous mutant generation indicated a possible explanation in the form of a pro-drug activation pathway, involving fgd1 and fbiC.
Collapse
Affiliation(s)
- Sarah M Batt
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Szilvi Toth
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Beatriz Rodriguez
- Diseases of the Developing World, GlaxoSmithKline, Severo Ochoa 2, 28760, Tres Cantos, Madrid, Spain
| | - Katherine A Abrahams
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Natacha Veerapen
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | | | - Liam R Cox
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, UK
| | - Patrick J Moynihan
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Joel Lelievre
- Diseases of the Developing World, GlaxoSmithKline, Severo Ochoa 2, 28760, Tres Cantos, Madrid, Spain
| | - Klaus Fütterer
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Gurdyal S Besra
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
7
|
Kwasi DA, Babalola CP, Olubiyi OO, Hoffmann J, Uzochukwu IC, Okeke IN. Antibiofilm agents with therapeutic potential against enteroaggregative Escherichia coli. PLoS Negl Trop Dis 2022; 16:e0010809. [PMID: 36201560 PMCID: PMC9578610 DOI: 10.1371/journal.pntd.0010809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 10/18/2022] [Accepted: 09/12/2022] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND Enteroaggregative Escherichia coli (EAEC) is a predominant but neglected enteric pathogen implicated in infantile diarrhoea and nutrient malabsorption. There are no non-antibiotic approaches to dealing with persistent infection by these exceptional colonizers, which form copious biofilms. We screened the Medicines for Malaria Venture Pathogen Box for chemical entities that inhibit EAEC biofilm formation. METHODOLOGY We used EAEC strains, 042 and MND005E in a medium-throughput crystal violet-based antibiofilm screen. Hits were confirmed in concentration-dependence, growth kinetic and time course assays and activity spectra were determined against a panel of 25 other EAEC strains. Antibiofilm activity against isogenic EAEC mutants, molecular docking simulations and comparative genomic analysis were used to identify the mechanism of action of one hit. PRINCIPAL FINDINGS In all, five compounds (1.25%) reproducibly inhibited biofilm accumulation by at least one strain by 30-85% while inhibiting growth by under 10%. Hits exhibited potent antibiofilm activity at concentrations at least 10-fold lower than those reported for nitazoxanide, the only known EAEC biofilm inhibitor. Reflective of known EAEC heterogeneity, only one hit was active against both screen isolates, but three hits showed broad antibiofilm activity against a larger panel of strains. Mechanism of action studies point to the EAEC anti-aggregation protein (Aap), dispersin, as the target of compound MMV687800. CONCLUSIONS This study identified five compounds, not previously described as anti-adhesins or Gram-negative antibacterials, with significant EAEC antibiofilm activity. Molecule, MMV687800 targets the EAEC Aap. In vitro small-molecule inhibition of EAEC colonization opens a way to new therapeutic approaches against EAEC infection.
Collapse
Affiliation(s)
- David A. Kwasi
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Ibadan, Oyo State, Nigeria
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Chinedum P. Babalola
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ibadan, Ibadan, Oyo State, Nigeria
- Center for Drug Discovery, Development and Production, Faculty of Pharmacy, University of Ibadan, Oyo State, Nigeria
| | - Olujide O. Olubiyi
- Department of Pharmaceutical and Medicinal Chemistry, College of Pharmacy, Afe Babalola University, Ado-Ekiti, Nigeria
| | - Jennifer Hoffmann
- Department of Biology, Haverford College, Haverford, Pennsylvania, United States of America
| | - Ikemefuna C. Uzochukwu
- Department of Pharmaceutical and Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Nnamdi Azikiwe University Awka, Anambra State, Nigeria
| | - Iruka N. Okeke
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Ibadan, Oyo State, Nigeria
- Department of Biology, Haverford College, Haverford, Pennsylvania, United States of America
| |
Collapse
|
8
|
Rudraraju RS, Daher SS, Gallardo-Macias R, Wang X, Neiditch MB, Freundlich JS. Mycobacterium tuberculosis KasA as a drug target: Structure-based inhibitor design. Front Cell Infect Microbiol 2022; 12:1008213. [PMID: 36189349 PMCID: PMC9519891 DOI: 10.3389/fcimb.2022.1008213] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
Recent studies have reported the β-ketoacyl-acyl carrier protein KasA as a druggable target for Mycobacterium tuberculosis. This review summarizes the current status of major classes of KasA inhibitors with an emphasis on significant contributions from structure-based design methods leveraging X-ray crystal structures of KasA alone and in complex with inhibitors. The issues addressed within each inhibitor class are discussed while detailing the characterized interactions with KasA and structure-activity relationships. A critical analysis of these findings should lay the foundation for new KasA inhibitors to study the basic biology of M. tuberculosis and to form the basis of new antitubercular molecules of clinical significance with activity against drug-sensitive and drug-resistant infections.
Collapse
Affiliation(s)
- Reshma S. Rudraraju
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, NJ, United States
| | - Samer S. Daher
- Department of Pharmacology, Physiology, and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ, United States
| | - Ricardo Gallardo-Macias
- Department of Pharmacology, Physiology, and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ, United States
| | - Xin Wang
- Department of Immunology and Infectious Diseases, Harvard University T.H. Chan School of Public Health, Boston, MA, United States
| | - Matthew B. Neiditch
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, NJ, United States,*Correspondence: Matthew B. Neiditch, ; Joel S. Freundlich,
| | - Joel S. Freundlich
- Department of Pharmacology, Physiology, and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ, United States,Department of Medicine, Center for Emerging and Re-emerging Pathogens, New Jersey Medical School, Rutgers University, Newark, NJ, United States,*Correspondence: Matthew B. Neiditch, ; Joel S. Freundlich,
| |
Collapse
|
9
|
Fernandes GFS, Thompson AM, Castagnolo D, Denny WA, Dos Santos JL. Tuberculosis Drug Discovery: Challenges and New Horizons. J Med Chem 2022; 65:7489-7531. [PMID: 35612311 DOI: 10.1021/acs.jmedchem.2c00227] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Over the past 2000 years, tuberculosis (TB) has claimed more lives than any other infectious disease. In 2020 alone, TB was responsible for 1.5 million deaths worldwide, comparable to the 1.8 million deaths caused by COVID-19. The World Health Organization has stated that new TB drugs must be developed to end this pandemic. After decades of neglect in this field, a renaissance era of TB drug discovery has arrived, in which many novel candidates have entered clinical trials. However, while hundreds of molecules are reported annually as promising anti-TB agents, very few successfully progress to clinical development. In this Perspective, we critically review those anti-TB compounds published in the last 6 years that demonstrate good in vivo efficacy against Mycobacterium tuberculosis. Additionally, we highlight the main challenges and strategies for developing new TB drugs and the current global pipeline of drug candidates in clinical studies to foment fresh research perspectives.
Collapse
Affiliation(s)
- Guilherme F S Fernandes
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
| | - Andrew M Thompson
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Daniele Castagnolo
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
| | - William A Denny
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Jean L Dos Santos
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800903, Brazil
| |
Collapse
|
10
|
Recent advancements and developments in search of anti-tuberculosis agents: A quinquennial update and future directions. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131473] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
11
|
Targeting Mycobacterial F-ATP Synthase C-Terminal α Subunit Interaction Motif on Rotary Subunit γ. Antibiotics (Basel) 2021; 10:antibiotics10121456. [PMID: 34943667 PMCID: PMC8698299 DOI: 10.3390/antibiotics10121456] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 12/03/2022] Open
Abstract
Mycobacteria regulate their energy (ATP) levels to sustain their survival even in stringent living conditions. Recent studies have shown that mycobacteria not only slow down their respiratory rate but also block ATP hydrolysis of the F-ATP synthase (α3:β3:γ:δ:ε:a:b:b’:c9) to maintain ATP homeostasis in situations not amenable for growth. The mycobacteria-specific α C-terminus (α533-545) has unraveled to be the major regulative of latent ATP hydrolysis. Its deletion stimulates ATPase activity while reducing ATP synthesis. In one of the six rotational states of F-ATP synthase, α533-545 has been visualized to dock deep into subunit γ, thereby blocking rotation of γ within the engine. The functional role(s) of this C-terminus in the other rotational states are not clarified yet and are being still pursued in structural studies. Based on the interaction pattern of the docked α533-545 region with subunit γ, we attempted to study the druggability of the α533-545 motif. In this direction, our computational work has led to the development of an eight-featured α533-545 peptide pharmacophore, followed by database screening, molecular docking, and pose selection, resulting in eleven hit molecules. ATP synthesis inhibition assays using recombinant ATP synthase as well as mycobacterial inverted membrane vesicles show that one of the hits, AlMF1, inhibited the mycobacterial F-ATP synthase in a micromolar range. The successful targeting of the α533-545-γ interaction motif demonstrates the potential to develop inhibitors targeting the α site to interrupt rotary coupling with ATP synthesis.
Collapse
|
12
|
Kumar A, Karkara BB, Panda G. Novel candidates in the clinical development pipeline for TB drug development and their Synthetic Approaches. Chem Biol Drug Des 2021; 98:787-827. [PMID: 34397161 DOI: 10.1111/cbdd.13934] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 08/03/2021] [Accepted: 08/07/2021] [Indexed: 11/29/2022]
Abstract
Tuberculosis (TB) is an infection caused by Mycobacterium tuberculosis (Mtb) and one of the deadliest infectious diseases in the world. Mtb has the ability to become dormant within the host and to develop resistance. Hence, new antitubercular agents are required to overcome problems in the treatment of multidrug resistant-Tb (MDR-Tb) and extensively drug resistant-Tb (XDR-Tb) along with shortening the treatment time. Several efforts are being made to develop very effective new drugs for Tb, within the pharmaceutical industry, the academia, and through public private partnerships. This review will address the anti-tubercular activities, biological target, mode of action, synthetic approaches and thoughtful concept for the development of several new drugs currently in the clinical trial pipeline (up to October 2019) for tuberculosis. The aim of this review may be very useful in scheming new chemical entities (NCEs) for Mtb.
Collapse
Affiliation(s)
- Amit Kumar
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, UP, India
| | - Bidhu Bhusan Karkara
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, UP, India.,Department of Pharmaceutical Science, Vignan's Foundation for Science, Technology and Research University, Guntur, 522213, AP, India
| | - Gautam Panda
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, UP, India
| |
Collapse
|
13
|
Abstract
New, more-effective drugs for the treatment of lung disease caused by nontuberculous mycobacteria (NTM) are needed. Among NTM opportunistic pathogens, Mycobacterium abscessus is the most difficult to cure and intrinsically multidrug resistant. In a whole-cell screen of a compound collection active against Mycobacterium tuberculosis, we previously identified the piperidine-4-carboxamide (P4C) MMV688844 (844) as a hit against M. abscessus. Here, we identified a more potent analog of 844 and showed that both the parent and improved analog retain activity against strains representing all three subspecies of the M. abscessus complex. Furthermore, P4Cs showed bactericidal and antibiofilm activity. Spontaneous resistance against the P4Cs emerged at a frequency of 10−8/CFU and mapped to gyrA and gyrB encoding the subunits of DNA gyrase. Biochemical studies with recombinant M. abscessus DNA gyrase showed that P4Cs inhibit the wild-type enzyme but not the P4C-resistant mutant. P4C-resistant strains showed limited cross-resistance to the fluoroquinolone moxifloxacin, which is in clinical use for the treatment of macrolide-resistant M. abscessus disease, and no cross-resistance to the benzimidazole SPR719, a novel DNA gyrase inhibitor in clinical development for the treatment of mycobacterial diseases. Analyses of P4Cs in recA promoter-based DNA damage reporter strains showed induction of recA promoter activity in the wild type but not in the P4C-resistant mutant background. This indicates that P4Cs, similar to fluoroquinolones, cause DNA gyrase-mediated DNA damage. Together, our results show that P4Cs present a novel class of mycobacterial DNA gyrase inhibitors with attractive antimicrobial activities against the M. abscessus complex.
Collapse
|
14
|
Yuan T, Werman JM, Sampson NS. The pursuit of mechanism of action: uncovering drug complexity in TB drug discovery. RSC Chem Biol 2021; 2:423-440. [PMID: 33928253 PMCID: PMC8081351 DOI: 10.1039/d0cb00226g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 12/23/2020] [Indexed: 12/21/2022] Open
Abstract
Whole cell-based phenotypic screens have become the primary mode of hit generation in tuberculosis (TB) drug discovery during the last two decades. Different drug screening models have been developed to mirror the complexity of TB disease in the laboratory. As these culture conditions are becoming more and more sophisticated, unraveling the drug target and the identification of the mechanism of action (MOA) of compounds of interest have additionally become more challenging. A good understanding of MOA is essential for the successful delivery of drug candidates for TB treatment due to the high level of complexity in the interactions between Mycobacterium tuberculosis (Mtb) and the TB drug used to treat the disease. There is no single "standard" protocol to follow and no single approach that is sufficient to fully investigate how a drug restrains Mtb. However, with the recent advancements in -omics technologies, there are multiple strategies that have been developed generally in the field of drug discovery that have been adapted to comprehensively characterize the MOAs of TB drugs in the laboratory. These approaches have led to the successful development of preclinical TB drug candidates, and to a better understanding of the pathogenesis of Mtb infection. In this review, we describe a plethora of efforts based upon genetic, metabolomic, biochemical, and computational approaches to investigate TB drug MOAs. We assess these different platforms for their strengths and limitations in TB drug MOA elucidation in the context of Mtb pathogenesis. With an emphasis on the essentiality of MOA identification, we outline the unmet needs in delivering TB drug candidates and provide direction for further TB drug discovery.
Collapse
Affiliation(s)
- Tianao Yuan
- Department of Chemistry, Stony Brook UniversityStony BrookNY 11794-3400USA+1-631-632-5738+1-631-632-7952
| | - Joshua M. Werman
- Department of Chemistry, Stony Brook UniversityStony BrookNY 11794-3400USA+1-631-632-5738+1-631-632-7952
| | - Nicole S. Sampson
- Department of Chemistry, Stony Brook UniversityStony BrookNY 11794-3400USA+1-631-632-5738+1-631-632-7952
| |
Collapse
|
15
|
Egorova A, Jackson M, Gavrilyuk V, Makarov V. Pipeline of anti-Mycobacterium abscessus small molecules: Repurposable drugs and promising novel chemical entities. Med Res Rev 2021; 41:2350-2387. [PMID: 33645845 DOI: 10.1002/med.21798] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 02/01/2021] [Accepted: 02/17/2021] [Indexed: 12/13/2022]
Abstract
The Mycobacterium abscessus complex is a group of emerging pathogens that are difficult to treat. There are no effective drugs for successful M. abscessus pulmonary infection therapy, and existing drug regimens recommended by the British or the American Thoracic Societies are associated with poor clinical outcomes. Therefore, novel antibacterial drugs are urgently needed to contain this global threat. The current anti-M. abscessus small-molecule drug development process can be enhanced by two parallel strategies-discovery of compounds from new chemical classes and commercial drug repurposing. This review focuses on recent advances in the finding of novel small-molecule agents, and more particularly focuses on the activity, mode of action and structure-activity relationship of promising inhibitors from five different chemical classes-benzimidazoles, indole-2-carboxamides, benzothiazoles, 4-piperidinoles, and oxazolidionones. We further discuss some other interesting small molecules, such as thiacetazone derivatives and benzoboroxoles, that are in the early stages of drug development, and summarize current knowledge about the efficacy of repurposable drugs, such as rifabutin, tedizolid, bedaquiline, and others. We finally review targets of therapeutic interest in M. abscessus that may be worthy of future drug and adjunct therapeutic development.
Collapse
Affiliation(s)
- Anna Egorova
- Research Center of Biotechnology RAS, Moscow, Russia
| | - Mary Jackson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Colorado, Fort Collins, USA
| | | | - Vadim Makarov
- Research Center of Biotechnology RAS, Moscow, Russia
| |
Collapse
|
16
|
Grover S, Engelhart CA, Pérez-Herrán E, Li W, Abrahams KA, Papavinasasundaram K, Bean JM, Sassetti CM, Mendoza-Losana A, Besra GS, Jackson M, Schnappinger D. Two-Way Regulation of MmpL3 Expression Identifies and Validates Inhibitors of MmpL3 Function in Mycobacterium tuberculosis. ACS Infect Dis 2021; 7:141-152. [PMID: 33319550 PMCID: PMC7802072 DOI: 10.1021/acsinfecdis.0c00675] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
![]()
MmpL3,
an essential mycolate transporter in the inner membrane
of Mycobacterium tuberculosis (Mtb), has been identified as a target of multiple, chemically diverse
antitubercular drugs. However, several of these molecules seem to
have secondary targets and inhibit bacterial growth by more than one
mechanism. Here, we describe a cell-based assay that utilizes two-way
regulation of MmpL3 expression to readily identify MmpL3-specific
inhibitors. We successfully used this assay to identify a novel guanidine-based
MmpL3 inhibitor from a library of 220 compounds that inhibit growth
of Mtb by largely unknown mechanisms. We furthermore
identified inhibitors of cytochrome bc1-aa3 oxidase as one class of off-target hits in whole-cell screens for
MmpL3 inhibitors and report a novel sulfanylacetamide as a potential
QcrB inhibitor.
Collapse
Affiliation(s)
- Shipra Grover
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York 10065, United States
| | - Curtis A. Engelhart
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York 10065, United States
| | - Esther Pérez-Herrán
- TB Research Unit, Global Health R&D, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, Madrid 28760, Spain
| | - Wei Li
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Katherine A. Abrahams
- Institute of Microbiology and Infection, School of Biological Sciences, University of Birmingham, Birmingham B15 2TT, U.K
| | - Kadamba Papavinasasundaram
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts 01655, United States
| | - James M. Bean
- Sloan Kettering Institute, New York, New York 10065, United States
| | - Christopher M. Sassetti
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts 01655, United States
| | - Alfonso Mendoza-Losana
- TB Research Unit, Global Health R&D, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, Madrid 28760, Spain
| | - Gurdyal S. Besra
- Institute of Microbiology and Infection, School of Biological Sciences, University of Birmingham, Birmingham B15 2TT, U.K
| | - Mary Jackson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Dirk Schnappinger
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York 10065, United States
| |
Collapse
|
17
|
Satish S, Chitral R, Kori A, Sharma B, Puttur J, Khan AA, Desle D, Raikuvar K, Korkegian A, Martis EAF, Iyer KR, Coutinho EC, Parish T, Nandan S. Design, synthesis and SAR of antitubercular benzylpiperazine ureas. Mol Divers 2021; 26:73-96. [PMID: 33385288 DOI: 10.1007/s11030-020-10158-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/17/2020] [Indexed: 10/22/2022]
Abstract
N-furfuryl piperazine ureas disclosed by scientists at GSK Tres Cantos were chosen as antimycobacterial hits from a phenotypic whole-cell screen. Bioisosteric replacement of the furan ring in the GSK Tres Cantos molecules with a phenyl ring led to molecule (I) with an MIC of 1 μM against Mtb H37Rv, low cellular toxicity (HepG2 IC50 ~ 80 μM), good DMPK properties and specificity for Mtb. With the aim of delineating the SAR associated with (I), fifty-five analogs were synthesized and screened against Mtb. The SAR suggests that the piperazine ring, benzyl urea and piperonyl moieties are essential signatures of this series. Active compounds in this series are metabolically stable, have low cellular toxicity and are valuable leads for optimization. Molecular docking suggests these molecules occupy the Q0 site of QcrB like Q203. Bioisosteric replacement of N-furfuryl piperazine-1-carboxamides yielded molecule (I) a novel lead with satisfactory PD, metabolism, and toxicity profiles.
Collapse
Affiliation(s)
- Sohal Satish
- Ambernath Organics Pvt. Ltd., 222, The Summit Business Bay, Andheri (E), Mumbai, 400 093, India
| | - Rohan Chitral
- Ambernath Organics Pvt. Ltd., 222, The Summit Business Bay, Andheri (E), Mumbai, 400 093, India
| | - Amitkumar Kori
- Ambernath Organics Pvt. Ltd., 222, The Summit Business Bay, Andheri (E), Mumbai, 400 093, India
| | - Basantkumar Sharma
- Ambernath Organics Pvt. Ltd., 222, The Summit Business Bay, Andheri (E), Mumbai, 400 093, India
| | - Jayashree Puttur
- Ambernath Organics Pvt. Ltd., 222, The Summit Business Bay, Andheri (E), Mumbai, 400 093, India
| | - Afreen A Khan
- Department of Pharmaceutical Chemistry, Bombay College of Pharmacy, Kalina, Santacruz (E), Mumbai, 400 098, India
| | - Deepali Desle
- Department of Pharmaceutical Chemistry, Bombay College of Pharmacy, Kalina, Santacruz (E), Mumbai, 400 098, India
| | - Kavita Raikuvar
- Department of Pharmaceutical Chemistry, Bombay College of Pharmacy, Kalina, Santacruz (E), Mumbai, 400 098, India
| | - Aaron Korkegian
- TB Discovery Research, Infectious Disease Research Institute, 1616 Eastlake Avenue E, Suite 400, Seattle, WA, 98102, USA
| | - Elvis A F Martis
- Department of Pharmaceutical Chemistry, Bombay College of Pharmacy, Kalina, Santacruz (E), Mumbai, 400 098, India
| | - Krishna R Iyer
- Department of Pharmaceutical Chemistry, Bombay College of Pharmacy, Kalina, Santacruz (E), Mumbai, 400 098, India
| | - Evans C Coutinho
- Department of Pharmaceutical Chemistry, Bombay College of Pharmacy, Kalina, Santacruz (E), Mumbai, 400 098, India
| | - Tanya Parish
- TB Discovery Research, Infectious Disease Research Institute, 1616 Eastlake Avenue E, Suite 400, Seattle, WA, 98102, USA
| | - Santosh Nandan
- Ambernath Organics Pvt. Ltd., 222, The Summit Business Bay, Andheri (E), Mumbai, 400 093, India.
| |
Collapse
|
18
|
Lack of Specificity of Phenotypic Screens for Inhibitors of the Mycobacterium tuberculosis FAS-II System. Antimicrob Agents Chemother 2020; 65:AAC.01914-20. [PMID: 33139282 DOI: 10.1128/aac.01914-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 10/26/2020] [Indexed: 11/20/2022] Open
Abstract
Phenotypic screening of inhibitors of the essential Mycobacterium tuberculosis FAS-II dehydratase HadAB led to the identification of GSK3011724A, a compound previously reported to inhibit the condensation step of FAS-II. Whole-cell-based and cell-free assays confirmed the lack of activity of GSK3011724A against the dehydratase despite evidence of cross-resistance between GSK3011724A and HadAB inhibitors. The nature of the resistance mechanisms is suggestive of alterations in the FAS-II interactome reducing access of GSK3011724A to KasA.
Collapse
|
19
|
Fullam E, Young RJ. Physicochemical properties and Mycobacterium tuberculosis transporters: keys to efficacious antitubercular drugs? RSC Med Chem 2020; 12:43-56. [PMID: 34041481 PMCID: PMC8130550 DOI: 10.1039/d0md00265h] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/15/2020] [Indexed: 12/14/2022] Open
Abstract
Securing novel, safe, and effective medicines to treat Mycobacterium tuberculosis remains an elusive goal, particularly influenced by the largely impervious Mtb envelope that limits exposure and thus efficacy of inhibitors at their cellular and periplasmic targets. The impact of physicochemical properties on pharmacokinetic parameters that govern oral absorption and exposure at sites of infection is considered alongside how these properties influence penetration of the Mtb envelope, with the likely influence of transporter proteins. The findings are discussed to benchmark current drugs and the emerging pipeline, whilst considering tactics for future rational and targeted design strategies, based around emerging data on Mtb transporters and their structures and functions.
Collapse
Affiliation(s)
- Elizabeth Fullam
- School of Life Sciences, University of Warwick Coventry CV4 7AL UK
| | | |
Collapse
|
20
|
Abstract
Mycobacterium tuberculosis is the causative pathogen of the pulmonary disease tuberculosis. Despite the availability of effective treatment programs, there is a global pursuit of new anti-tubercular agents to respond to the developing threat of drug resistance, in addition to reducing the extensive duration of chemotherapy and any associated toxicity. The route to mycobacterial drug discovery can be considered from two directions: target-to-drug and drug-to-target. The former approach uses conventional methods including biochemical assays along with innovative computational screens, but is yet to yield any drug candidates to the clinic, with a high attrition rate owing to lack of whole cell activity. In the latter approach, compound libraries are screened for efficacy against the bacilli or model organisms, ensuring whole cell activity, but here subsequent target identification is the rate-limiting step. Advances in a variety of scientific fields have enabled the amalgamation of aspects of both approaches in the development of novel drug discovery tools, which are now primed to accelerate the discovery of novel hits and leads with known targets and whole cell activity. This review discusses these traditional and innovative techniques, which are widely used in the quest for new anti-tubercular compounds. Innovations in mycobacterial drug discovery to accelerate the identification of new drug candidates with confirmed targets and whole cell activity.![]()
Collapse
Affiliation(s)
- Katherine A Abrahams
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham Edgbaston Birmingham B15 2TT UK +44 (0)121 41 45925 +44 (0)121 41 58125
| | - Gurdyal S Besra
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham Edgbaston Birmingham B15 2TT UK +44 (0)121 41 45925 +44 (0)121 41 58125
| |
Collapse
|
21
|
Burke C, Jankute M, Moynihan P, Gonzalez Del Rio R, Li X, Esquivias J, Lelièvre J, Cox JAG, Sacchettini J, Besra GS. Development of a novel secondary phenotypic screen to identify hits within the mycobacterial protein synthesis pipeline. FASEB Bioadv 2020; 2:600-612. [PMID: 33089076 PMCID: PMC7566049 DOI: 10.1096/fba.2020-00022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 04/17/2020] [Accepted: 07/31/2020] [Indexed: 12/03/2022] Open
Abstract
Background Whole‐cell phenotypic screening is the driving force behind modern anti‐tubercular drug discovery efforts. Focus has shifted from screening for bactericidal scaffolds to screens incorporating target deconvolution. Target‐based screening aims to direct drug discovery toward known effective targets and avoid investing resources into unproductive lines of enquiry. The protein synthesis pipeline, including RNA polymerase and the ribosome, is a clinically proven target in Mycobacterium tuberculosis. Screening for new hits of this effective target pathway is an invaluable tool in the drug discovery arsenal. Methods Using M. tuberculosis H37Rv augmented with anhydrotetracycline‐inducible expression of mCherry, a phenotypic screen was developed for the identification of protein synthesis inhibitors in a medium throughput screening format. Results The assay was validated using known inhibitors of protein synthesis to show a dose‐dependent reduction in mCherry fluorescence. This was expanded to a proprietary screen of hypothetical protein synthesis hits and modified to include quantitative viability measurement of cells using resazurin. Conclusion Following the success of the proprietary screen, a larger scale screen of the GlaxoSmithKline anti‐tubercular library containing 2799 compounds was conducted. Combined single shot and dose‐response screening yielded 18 hits, 0.64% of all screened compounds.
Collapse
Affiliation(s)
- Christopher Burke
- Institute of Microbiology and Infection School of Biosciences University of Birmingham Birmingham UK
| | - Monika Jankute
- Institute of Microbiology and Infection School of Biosciences University of Birmingham Birmingham UK
| | - Patrick Moynihan
- Institute of Microbiology and Infection School of Biosciences University of Birmingham Birmingham UK
| | | | - Xiaojun Li
- Department of Biochemistry and Biophysics Texas A&M University College Station Texas United States
| | - Jorge Esquivias
- Diseases of the Developing World GlaxoSmithKline Tres Cantos Madrid Spain
| | - Joël Lelièvre
- Diseases of the Developing World GlaxoSmithKline Tres Cantos Madrid Spain
| | | | - James Sacchettini
- Department of Biochemistry and Biophysics Texas A&M University College Station Texas United States
| | - Gurdyal S Besra
- Institute of Microbiology and Infection School of Biosciences University of Birmingham Birmingham UK
| |
Collapse
|
22
|
Burke C, Abrahams KA, Richardson EJ, Loman NJ, Alemparte C, Lelievre J, Besra GS. Development of a whole-cell high-throughput phenotypic screen to identify inhibitors of mycobacterial amino acid biosynthesis. FASEB Bioadv 2019; 1:246-254. [PMID: 32123830 PMCID: PMC6996392 DOI: 10.1096/fba.2018-00048] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/17/2018] [Accepted: 12/20/2018] [Indexed: 01/08/2023] Open
Abstract
Anti-tubercular drug discovery continues to be dominated by whole-cell high-throughput screening campaigns, enabling the rapid discovery of new inhibitory chemical scaffolds. Target-based screening is a popular approach to direct inhibitor discovery with a specified mode of action, eliminating the discovery of anti-tubercular agents against unsuitable targets. Herein, a screening method has been developed using Mycobacterium bovis BCG to identify inhibitors of amino acid biosynthesis. The methodology was initially optimized using the known branched-chain amino acid biosynthetic inhibitors metsulfuron-methyl (MSM) and sulfometuron-methyl (SMM), and subsequently, whole genome sequencing of resistant mutants and the use of over-expressor strains confirming their mode of action. The GlaxoSmithKline compound library of small molecule inhibitors with known activity against Mycobacterium tuberculosis was then used to validate the screen. In this paper, we have shown that media supplementation with amino acids can rescue M bovis BCG from known amino acid synthesis inhibitors, MSM and SMM, in a pathway specific manner. The therapeutic potential of amino acid biosynthesis inhibitors emphasizes the importance of this innovative screen, enabling the discovery of compounds targeting a multitude of related essential biochemical pathways, without limiting drug discovery toward a single target.
Collapse
Affiliation(s)
| | | | | | | | | | - Joel Lelievre
- Diseases of the Developing World, GlaxoSmithKlineMadridSpain
| | | |
Collapse
|
23
|
Veale CGL. Unpacking the Pathogen Box-An Open Source Tool for Fighting Neglected Tropical Disease. ChemMedChem 2019; 14:386-453. [PMID: 30614200 DOI: 10.1002/cmdc.201800755] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Indexed: 12/13/2022]
Abstract
The Pathogen Box is a 400-strong collection of drug-like compounds, selected for their potential against several of the world's most important neglected tropical diseases, including trypanosomiasis, leishmaniasis, cryptosporidiosis, toxoplasmosis, filariasis, schistosomiasis, dengue virus and trichuriasis, in addition to malaria and tuberculosis. This library represents an ensemble of numerous successful drug discovery programmes from around the globe, aimed at providing a powerful resource to stimulate open source drug discovery for diseases threatening the most vulnerable communities in the world. This review seeks to provide an in-depth analysis of the literature pertaining to the compounds in the Pathogen Box, including structure-activity relationship highlights, mechanisms of action, related compounds with reported activity against different diseases, and, where appropriate, discussion on the known and putative targets of compounds, thereby providing context and increasing the accessibility of the Pathogen Box to the drug discovery community.
Collapse
Affiliation(s)
- Clinton G L Veale
- School of Chemistry and Physics, Pietermaritzburg Campus, University of KwaZulu-Natal, Private Bag X01, Scottsville, 3209, South Africa
| |
Collapse
|
24
|
Fraga H, Rodriguez B, Bardera A, Cid C, Akopian T, Kandror O, Park A, Colmenarejo G, Lelievre J, Goldberg A. Development of high throughput screening methods for inhibitors of ClpC1P1P2 from Mycobacteria tuberculosis. Anal Biochem 2018; 567:30-37. [PMID: 30543804 DOI: 10.1016/j.ab.2018.12.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 12/03/2018] [Indexed: 01/10/2023]
Abstract
Tuberculosis affects about 100 million people worldwide and causes nearly 2 million deaths annually. It has been estimated that one third of all humans is infected with latent Mycobacterium tuberculosis (Mtb). Moreover, Mtb has become increasingly resistant to available antibiotics. Consequently, it is important to identify and characterize new therapeutic targets in Mtb and to synthesize selective inhibitors. ClpP1, ClpP2 and their associated regulatory ATPases, ClpX and ClpC1 are required for the growth of Mtb and for its virulence during murine infection and are highly attractive drug targets, especially since they are not present in the cytosol of mammalian cells, and they differ markedly from the mitochondrial ClpP complex. The importance of these proteins in Mtb is emphasized by the existence of several natural antibiotics targeting this system. In order to find new inhibitors of ClpC1P1P2 system, we developed an assay based on the ATP-dependent degradation of a fluorescent protein substrate. The hits obtained were further characterized with a set of secondary assays to identify precise targets within a complex. A large library of compounds was screened and led to the identification of a ClpC1 ATPase inhibitor demonstrating that this approach can be used in future searches for anti-TB agents.
Collapse
Affiliation(s)
- Hugo Fraga
- Diseases of the Developing World, Global Health R&D, GlaxoSmithKline, Severo Ochoa 2, 28760, Tres Cantos, Spain; Department Cell Biology, Harvard Medical School, USA; Institut de Biologie Structurale, Grenoble, France; Departamento de Bioquímica, Faculdade de Medicina da Universidade do Porto, Portugal.
| | - Beatriz Rodriguez
- Diseases of the Developing World, Global Health R&D, GlaxoSmithKline, Severo Ochoa 2, 28760, Tres Cantos, Spain
| | - Ana Bardera
- Diseases of the Developing World, Global Health R&D, GlaxoSmithKline, Severo Ochoa 2, 28760, Tres Cantos, Spain
| | - Concha Cid
- Diseases of the Developing World, Global Health R&D, GlaxoSmithKline, Severo Ochoa 2, 28760, Tres Cantos, Spain
| | - Tatos Akopian
- School of Public Health, Harvard Medical School, USA
| | - Olga Kandror
- School of Public Health, Harvard Medical School, USA
| | - Annie Park
- School of Public Health, Harvard Medical School, USA
| | - Gonzalo Colmenarejo
- Diseases of the Developing World, Global Health R&D, GlaxoSmithKline, Severo Ochoa 2, 28760, Tres Cantos, Spain; Biostatisics and Bioinformatics Unit, IMDEA Food Institute, Madrid, Spain
| | - Joel Lelievre
- Diseases of the Developing World, Global Health R&D, GlaxoSmithKline, Severo Ochoa 2, 28760, Tres Cantos, Spain
| | | |
Collapse
|
25
|
Jagadeb M, Rath SN, Sonawane A. In silico discovery of potential drug molecules to improve the treatment of isoniazid-resistant Mycobacterium tuberculosis. J Biomol Struct Dyn 2018; 37:3388-3398. [DOI: 10.1080/07391102.2018.1515116] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Manaswini Jagadeb
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India
| | - Surya Narayan Rath
- Department of Bioinformatics, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha, India
| | - Avinash Sonawane
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore (IIT Indore), Simrol, Madhya Pradesh, India
| |
Collapse
|
26
|
Richter A, Strauch A, Chao J, Ko M, Av-Gay Y. Screening of Preselected Libraries Targeting Mycobacterium abscessus for Drug Discovery. Antimicrob Agents Chemother 2018; 62:e00828-18. [PMID: 30012760 PMCID: PMC6125491 DOI: 10.1128/aac.00828-18] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 07/08/2018] [Indexed: 12/23/2022] Open
Abstract
Mycobacterium abscessus is intrinsically resistant to many antimycobacterial antibiotics, which presents serious problems in therapy. Here, we describe the development of a novel phenotype-based microscopic and computerized imaging drug screening approach. A pilot screen of 568 compounds from two libraries identified 17 hits. Eleven of these compounds are described for the first time as active against M. abscessus The impact of growth media on the activity of these compounds was tested, revealing that cation-adjusted Mueller-Hinton broth (MHII) supports better growth of actively replicating M. abscessus and improves the activity of associated compounds.
Collapse
Affiliation(s)
- Adrian Richter
- Division of Infectious Diseases, Department of Medicine, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Angelika Strauch
- Division of Infectious Diseases, Department of Medicine, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Joseph Chao
- Division of Infectious Diseases, Department of Medicine, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Mary Ko
- Division of Infectious Diseases, Department of Medicine, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Yossef Av-Gay
- Division of Infectious Diseases, Department of Medicine, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
27
|
Accelerating Early Antituberculosis Drug Discovery by Creating Mycobacterial Indicator Strains That Predict Mode of Action. Antimicrob Agents Chemother 2018; 62:AAC.00083-18. [PMID: 29661879 DOI: 10.1128/aac.00083-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 03/27/2018] [Indexed: 12/14/2022] Open
Abstract
Due to the rise of drug-resistant forms of tuberculosis, there is an urgent need for novel antibiotics to effectively combat these cases and shorten treatment regimens. Recently, drug screens using whole-cell analyses have been shown to be successful. However, current high-throughput screens focus mostly on stricto sensu life/death screening that give little qualitative information. In doing so, promising compound scaffolds or nonoptimized compounds that fail to reach inhibitory concentrations are missed. To accelerate early tuberculosis (TB) drug discovery, we performed RNA sequencing on Mycobacterium tuberculosis and Mycobacterium marinum to map the stress responses that follow upon exposure to subinhibitory concentrations of antibiotics with known targets, ciprofloxacin, ethambutol, isoniazid, streptomycin, and rifampin. The resulting data set comprises the first overview of transcriptional stress responses of mycobacteria to different antibiotics. We show that antibiotics can be distinguished based on their specific transcriptional stress fingerprint. Notably, this fingerprint was more distinctive in M. marinum We decided to use this to our advantage and continue with this model organism. A selection of diverse antibiotic stress genes was used to construct stress reporters. In total, three functional reporters were constructed to respond to DNA damage, cell wall damage, and ribosomal inhibition. Subsequently, these reporter strains were used to screen a small anti-TB compound library to predict the mode of action. In doing so, we identified the putative modes of action for three novel compounds, which confirms the utility of our approach.
Collapse
|
28
|
Pathogen Box screening for hit identification against Mycobacterium abscessus. PLoS One 2018; 13:e0195595. [PMID: 29698397 PMCID: PMC5919404 DOI: 10.1371/journal.pone.0195595] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 03/26/2018] [Indexed: 12/22/2022] Open
Abstract
Mycobacterium abscessus is a rapidly growing life-threatening mycobacterium with multiple drug-resistance mechanisms. However, there is no official regimen for M. abscessus therapy. In this study, we screened the Pathogen Box, which contains 400 drug-like molecules active against neglected diseases, to identify active molecules targeting Mycobacterium abscessus using resazurin live/dead assays. In this screening assay, the Z-factor was 0.7, as an indicator of the statistical confidence of the assay. A cut-off of 80% growth inhibition in the screening resulted in the identification of four different compounds at a single concentration (20 μM). Dose-response curves identified three different hit candidates, i.e., MMV688508, MMV688844, and MMV688845, which generated good inhibitory curves. All hit candidates were expected to have different molecular targets. Among them, MMV688844 showed the best minimum inhibitory concentration value for not only wild-type M. abscessus but also for nine different R and S morphotype clinical isolates. Thus, we found that MMV688844, identified from the Pathogen Box screen, may be a promising candidate in the M. abscessus drug discovery pipeline.
Collapse
|
29
|
Zampieri M, Szappanos B, Buchieri MV, Trauner A, Piazza I, Picotti P, Gagneux S, Borrell S, Gicquel B, Lelievre J, Papp B, Sauer U. High-throughput metabolomic analysis predicts mode of action of uncharacterized antimicrobial compounds. Sci Transl Med 2018; 10:eaal3973. [PMID: 29467300 PMCID: PMC6544516 DOI: 10.1126/scitranslmed.aal3973] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 04/11/2017] [Accepted: 09/27/2017] [Indexed: 12/19/2022]
Abstract
Rapidly spreading antibiotic resistance and the low discovery rate of new antimicrobial compounds demand more effective strategies for early drug discovery. One bottleneck in the drug discovery pipeline is the identification of the modes of action (MoAs) of new compounds. We have developed a rapid systematic metabolome profiling strategy to classify the MoAs of bioactive compounds. The method predicted MoA-specific metabolic responses in the nonpathogenic bacterium Mycobacterium smegmatis after treatment with 62 reference compounds with known MoAs and different metabolic and nonmetabolic targets. We then analyzed a library of 212 new antimycobacterial compounds with unknown MoAs from a drug discovery effort by the pharmaceutical company GlaxoSmithKline (GSK). More than 70% of these new compounds induced metabolic responses in M. smegmatis indicative of known MoAs, seven of which were experimentally validated. Only 8% (16) of the compounds appeared to target unconventional cellular processes, illustrating the difficulty in discovering new antibiotics with different MoAs among compounds used as monotherapies. For six of the GSK compounds with potentially new MoAs, the metabolome profiles suggested their ability to interfere with trehalose and lipid metabolism. This was supported by whole-genome sequencing of spontaneous drug-resistant mutants of the pathogen Mycobacterium tuberculosis and in vitro compound-proteome interaction analysis for one of these compounds. Our compendium of drug-metabolome profiles can be used to rapidly query the MoAs of uncharacterized antimicrobial compounds and should be a useful resource for the drug discovery community.
Collapse
Affiliation(s)
- Mattia Zampieri
- Institute of Molecular Systems Biology, ETH Zürich, Zürich, Switzerland.
| | - Balazs Szappanos
- Institute of Molecular Systems Biology, ETH Zürich, Zürich, Switzerland
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Maria Virginia Buchieri
- Mycobacterial Genetics Unit, Institut Pasteur, 25-28 Rue du Docteur Roux, 75015 Paris, France
| | - Andrej Trauner
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Ilaria Piazza
- Institute of Biochemistry, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Paola Picotti
- Institute of Biochemistry, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Sébastien Gagneux
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Sonia Borrell
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Brigitte Gicquel
- Mycobacterial Genetics Unit, Institut Pasteur, 25-28 Rue du Docteur Roux, 75015 Paris, France
| | - Joel Lelievre
- Disease of the Developing World, GlaxoSmithKline, Severo Ochoa, Tres Cantos, Madrid 28760, Spain
| | - Balazs Papp
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Uwe Sauer
- Institute of Molecular Systems Biology, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
30
|
Abstract
![]()
Current tuberculosis
(TB) drug development efforts are not sufficient
to end the global TB epidemic. Recent efforts have focused on the
development of whole-cell screening assays because biochemical, target-based
inhibitor screens during the last two decades have not delivered new
TB drugs. Mycobacterium tuberculosis (Mtb), the causative
agent of TB, encounters diverse microenvironments and can be found
in a variety of metabolic states in the human host. Due to the complexity
and heterogeneity of Mtb infection, no single model can fully recapitulate
the in vivo conditions in which Mtb is found in TB patients, and there
is no single “standard” screening condition to generate
hit compounds for TB drug development. However, current screening
assays have become more sophisticated as researchers attempt to mirror
the complexity of TB disease in the laboratory. In this review, we
describe efforts using surrogates and engineered strains of Mtb to
focus screens on specific targets. We explain model culture systems
ranging from carbon starvation to hypoxia, and combinations thereof,
designed to represent the microenvironment which Mtb encounters in
the human body. We outline ongoing efforts to model Mtb infection
in the lung granuloma. We assess these different models, their ability
to generate hit compounds, and needs for further TB drug development,
to provide direction for future TB drug discovery.
Collapse
Affiliation(s)
- Tianao Yuan
- Department of Chemistry, Stony Brook University , Stony Brook, New York 11794-3400, United States
| | - Nicole S Sampson
- Department of Chemistry, Stony Brook University , Stony Brook, New York 11794-3400, United States.,Stellenbosch Institute for Advanced Study (STIAS), Wallenberg Research Centre at Stellenbosch University , Stellenbosch 7600, South Africa
| |
Collapse
|
31
|
Mugumbate G, Mendes V, Blaszczyk M, Sabbah M, Papadatos G, Lelievre J, Ballell L, Barros D, Abell C, Blundell TL, Overington JP. Target Identification of Mycobacterium tuberculosis Phenotypic Hits Using a Concerted Chemogenomic, Biophysical, and Structural Approach. Front Pharmacol 2017; 8:681. [PMID: 29018348 PMCID: PMC5623190 DOI: 10.3389/fphar.2017.00681] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 09/12/2017] [Indexed: 11/13/2022] Open
Abstract
Mycobacterium phenotypic hits are a good reservoir for new chemotypes for the treatment of tuberculosis. However, the absence of defined molecular targets and modes of action could lead to failure in drug development. Therefore, a combination of ligand-based and structure-based chemogenomic approaches followed by biophysical and biochemical validation have been used to identify targets for Mycobacterium tuberculosis phenotypic hits. Our approach identified EthR and InhA as targets for several hits, with some showing dual activity against these proteins. From the 35 predicted EthR inhibitors, eight exhibited an IC50 below 50 μM against M. tuberculosis EthR and three were confirmed to be also simultaneously active against InhA. Further hit validation was performed using X-ray crystallography yielding eight new crystal structures of EthR inhibitors. Although the EthR inhibitors attain their activity against M. tuberculosis by hitting yet undefined targets, these results provide new lead compounds that could be further developed to be used to potentiate the effect of EthA activated pro-drugs, such as ethionamide, thus enhancing their bactericidal effect.
Collapse
Affiliation(s)
- Grace Mugumbate
- European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge, United Kingdom.,Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Vitor Mendes
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Michal Blaszczyk
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Mohamad Sabbah
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - George Papadatos
- European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge, United Kingdom
| | - Joel Lelievre
- Diseases of the Developing World, GlaxoSmithKline, Madrid, Spain
| | - Lluis Ballell
- Diseases of the Developing World, GlaxoSmithKline, Madrid, Spain
| | - David Barros
- Diseases of the Developing World, GlaxoSmithKline, Madrid, Spain
| | - Chris Abell
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Tom L Blundell
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - John P Overington
- European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge, United Kingdom.,Medicines Discovery Catapult, Alderley Edge, United Kingdom
| |
Collapse
|
32
|
Abrahams KA, Cox JAG, Fütterer K, Rullas J, Ortega-Muro F, Loman NJ, Moynihan PJ, Pérez-Herrán E, Jiménez E, Esquivias J, Barros D, Ballell L, Alemparte C, Besra GS. Inhibiting mycobacterial tryptophan synthase by targeting the inter-subunit interface. Sci Rep 2017; 7:9430. [PMID: 28842600 PMCID: PMC5573416 DOI: 10.1038/s41598-017-09642-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 07/25/2017] [Indexed: 01/22/2023] Open
Abstract
Drug discovery efforts against the pathogen Mycobacterium tuberculosis (Mtb) have been advanced through phenotypic screens of extensive compound libraries. Such a screen revealed sulfolane 1 and indoline-5-sulfonamides 2 and 3 as potent inhibitors of mycobacterial growth. Optimization in the sulfolane series led to compound 4, which has proven activity in an in vivo murine model of Mtb infection. Here we identify the target and mode of inhibition of these compounds based on whole genome sequencing of spontaneous resistant mutants, which identified mutations locating to the essential α- and β-subunits of tryptophan synthase. Over-expression studies confirmed tryptophan synthase as the biological target. Biochemical techniques probed the mechanism of inhibition, revealing the mutant enzyme complex incurs a fitness cost but does not prevent inhibitor binding. Mapping of the resistance conferring mutations onto a low-resolution crystal structure of Mtb tryptophan synthase showed they locate to the interface between the α- and β-subunits. The discovery of anti-tubercular agents inhibiting tryptophan synthase highlights the therapeutic potential of this enzyme and draws attention to the prospect of other amino acid biosynthetic pathways as future Mtb drug targets.
Collapse
Affiliation(s)
- Katherine A Abrahams
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Jonathan A G Cox
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK
| | - Klaus Fütterer
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Joaquín Rullas
- Tres Cantos Medicines Development Campus, GlaxoSmithKline, Severo Ochoa 2, 28760, Tres Cantos, Madrid, Spain
| | - Fátima Ortega-Muro
- Tres Cantos Medicines Development Campus, GlaxoSmithKline, Severo Ochoa 2, 28760, Tres Cantos, Madrid, Spain
| | - Nicholas J Loman
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Patrick J Moynihan
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Esther Pérez-Herrán
- Tres Cantos Medicines Development Campus, GlaxoSmithKline, Severo Ochoa 2, 28760, Tres Cantos, Madrid, Spain
| | - Elena Jiménez
- Tres Cantos Medicines Development Campus, GlaxoSmithKline, Severo Ochoa 2, 28760, Tres Cantos, Madrid, Spain
| | - Jorge Esquivias
- Tres Cantos Medicines Development Campus, GlaxoSmithKline, Severo Ochoa 2, 28760, Tres Cantos, Madrid, Spain
| | - David Barros
- Tres Cantos Medicines Development Campus, GlaxoSmithKline, Severo Ochoa 2, 28760, Tres Cantos, Madrid, Spain
| | - Lluís Ballell
- Tres Cantos Medicines Development Campus, GlaxoSmithKline, Severo Ochoa 2, 28760, Tres Cantos, Madrid, Spain
| | - Carlos Alemparte
- Tres Cantos Medicines Development Campus, GlaxoSmithKline, Severo Ochoa 2, 28760, Tres Cantos, Madrid, Spain.
| | - Gurdyal S Besra
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
33
|
Low JL, Wu ML, Aziz DB, Laleu B, Dick T. Screening of TB Actives for Activity against Nontuberculous Mycobacteria Delivers High Hit Rates. Front Microbiol 2017; 8:1539. [PMID: 28861054 PMCID: PMC5559473 DOI: 10.3389/fmicb.2017.01539] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 07/31/2017] [Indexed: 12/19/2022] Open
Abstract
The prevalence of lung disease due to infections with nontuberculous mycobacteria (NTM) has been increasing and surpassed tuberculosis (TB) in some countries. Treatment outcomes are often unsatisfactory, highlighting an urgent need for new anti-NTM medications. Although NTM in general do not respond well to TB specific drugs, the similarities between NTM and Mycobacterium tuberculosis at the molecular and cell structural level suggest that compound libraries active against TB could be leveraged for NTM drug discovery. Here we tested this hypothesis. The Pathogen Box from the Medicines for Malaria Venture (MMV) is a collection of 400 diverse drug-like compounds, among which 129 are known to be active against M. tuberculosis. By screening this compound collection against two NTM species, Mycobacterium abscessus and Mycobacterium avium, we showed that indeed the hit rates for NTM among TB active compounds is significantly higher compared to compounds that are not active against TB. MIC/dose response confirmation identified 10 top hits. Bactericidal activity determination demonstrated attractive potency for a subset of the confirmed hits. In vivo pharmacokinetic profiling showed that some of the compounds present reasonable starting points for medicinal chemistry programs. Three of the top hits were oxazolidinones, suggesting the potential for repositioning this class of protein synthesis inhibitors to replace linezolid which suffers from low potency. Two hits were inhibitors of the trehalose monomycolate transporter MmpL3, suggesting that this transmembrane protein may be an attractive target for NTM. Other hits are predicted to target a range of functions, including cell division (FtsZ), DNA gyrase (GyrB), dihydrofolate reductase, RNA polymerase and ABC transporters. In conclusion, our study showed that screening TB active compounds for activity against NTM resulted in high hit rates, suggesting that this may be an attractive approach to kick start NTM drug discovery projects. In addition, the work identified a series of novel high value NTM hits with associated candidate targets which can be followed up in hit-to-lead projects for the discovery of new NTM antibiotics.
Collapse
Affiliation(s)
- Jian Liang Low
- Department of Medicine, Yong Loo Lin School of Medicine, National University of SingaporeSingapore, Singapore
| | - Mu-Lu Wu
- Department of Medicine, Yong Loo Lin School of Medicine, National University of SingaporeSingapore, Singapore
| | - Dinah Binte Aziz
- Department of Medicine, Yong Loo Lin School of Medicine, National University of SingaporeSingapore, Singapore
| | - Benoît Laleu
- Medicines for Malaria VentureGeneva, Switzerland
| | - Thomas Dick
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of SingaporeSingapore.,New Jersey Medical School, Public Health Research Institute, Rutgers, The State University of New JerseyNewark, NJ, United States
| |
Collapse
|
34
|
Ryan A, Polycarpou E, Lack NA, Evangelopoulos D, Sieg C, Halman A, Bhakta S, Eleftheriadou O, McHugh TD, Keany S, Lowe ED, Ballet R, Abuhammad A, Jacobs WR, Ciulli A, Sim E. Investigation of the mycobacterial enzyme HsaD as a potential novel target for anti-tubercular agents using a fragment-based drug design approach. Br J Pharmacol 2017; 174:2209-2224. [PMID: 28380256 PMCID: PMC5481647 DOI: 10.1111/bph.13810] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 03/22/2017] [Accepted: 03/24/2017] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE With the emergence of extensively drug-resistant tuberculosis, there is a need for new anti-tubercular drugs that work through novel mechanisms of action. The meta cleavage product hydrolase, HsaD, has been demonstrated to be critical for the survival of Mycobacterium tuberculosis in macrophages and is encoded in an operon involved in cholesterol catabolism, which is identical in M. tuberculosis and M. bovis BCG. EXPERIMENTAL APPROACH We generated a mutant strain of M. bovis BCG with a deletion of hsaD and tested its growth on cholesterol. Using a fragment based approach, over 1000 compounds were screened by a combination of differential scanning fluorimetry, NMR spectroscopy and enzymatic assay with pure recombinant HsaD to identify potential inhibitors. We used enzymological and structural studies to investigate derivatives of the inhibitors identified and to test their effects on growth of M. bovis BCG and M. tuberculosis. KEY RESULTS The hsaD deleted strain was unable to grow on cholesterol as sole carbon source but did grow on glucose. Of seven chemically distinct 'hits' from the library, two chemical classes of fragments were found to bind in the vicinity of the active site of HsaD by X-ray crystallography. The compounds also inhibited growth of M. tuberculosis on cholesterol. The most potent inhibitor of HsaD was also found to be the best inhibitor of mycobacterial growth on cholesterol-supplemented minimal medium. CONCLUSIONS AND IMPLICATIONS We propose that HsaD is a novel therapeutic target, which should be fully exploited in order to design and discover new anti-tubercular drugs. LINKED ARTICLES This article is part of a themed section on Drug Metabolism and Antibiotic Resistance in Micro-organisms. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.14/issuetoc.
Collapse
Affiliation(s)
- Ali Ryan
- Faculty of Science, Engineering and ComputingKingston University LondonKingston upon ThamesUK
| | - Elena Polycarpou
- Faculty of Science, Engineering and ComputingKingston University LondonKingston upon ThamesUK
| | - Nathan A Lack
- Department of PharmacologyUniversity of OxfordOxfordUK
- School of MedicineKoç UniversityIstanbulTurkey
| | - Dimitrios Evangelopoulos
- Mycobacteria Research Laboratory, Institute of Structural and Molecular Biology, Department of Biological SciencesBirkbeck, University of LondonLondonUK
- Centre for Clinical MicrobiologyUniversity College London, Royal Free CampusLondonUK
- Mycobacterial Metabolism and Antibiotic Research LaboratoryThe Francis Crick Institute, Mill Hill LaboratoryLondonUK
| | - Christian Sieg
- Faculty of Science, Engineering and ComputingKingston University LondonKingston upon ThamesUK
| | - Alice Halman
- Faculty of Science, Engineering and ComputingKingston University LondonKingston upon ThamesUK
| | - Sanjib Bhakta
- Mycobacteria Research Laboratory, Institute of Structural and Molecular Biology, Department of Biological SciencesBirkbeck, University of LondonLondonUK
| | - Olga Eleftheriadou
- Faculty of Science, Engineering and ComputingKingston University LondonKingston upon ThamesUK
| | - Timothy D McHugh
- Centre for Clinical MicrobiologyUniversity College London, Royal Free CampusLondonUK
| | | | - Edward D Lowe
- Department of BiochemistryUniversity of OxfordOxfordUK
| | - Romain Ballet
- Department of PharmacologyUniversity of OxfordOxfordUK
| | | | - William R Jacobs
- Department of Microbiology and ImmunologyHoward Hughes Medical Institute, Albert Einstein College of MedicineBronxNew YorkUSA
| | - Alessio Ciulli
- Department of ChemistryUniversity of CambridgeCambridgeUK
- Division of Biological Chemistry & Drug Discovery, School of Life SciencesUniversity of Dundee, James Black CentreDundeeUK
| | - Edith Sim
- Faculty of Science, Engineering and ComputingKingston University LondonKingston upon ThamesUK
- Department of PharmacologyUniversity of OxfordOxfordUK
| |
Collapse
|
35
|
Esposito M, Szadocka S, Degiacomi G, Orena BS, Mori G, Piano V, Boldrin F, Zemanová J, Huszár S, Barros D, Ekins S, Lelièvre J, Manganelli R, Mattevi A, Pasca MR, Riccardi G, Ballell L, Mikušová K, Chiarelli LR. A Phenotypic Based Target Screening Approach Delivers New Antitubercular CTP Synthetase Inhibitors. ACS Infect Dis 2017; 3:428-437. [PMID: 28475832 DOI: 10.1021/acsinfecdis.7b00006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Despite its great potential, the target-based approach has been mostly unsuccessful in tuberculosis drug discovery, while whole cell phenotypic screening has delivered several active compounds. However, for many of these hits, the cellular target has not yet been identified, thus preventing further target-based optimization of the compounds. In this context, the newly validated drug target CTP synthetase PyrG was exploited to assess a target-based approach of already known, but untargeted, antimycobacterial compounds. To this purpose the publically available GlaxoSmithKline antimycobacterial compound set was assayed, uncovering a series of 4-(pyridin-2-yl)thiazole derivatives which efficiently inhibit the Mycobacterium tuberculosis PyrG enzyme activity, one of them showing low activity against the human CTP synthetase. The three best compounds were ATP binding site competitive inhibitors, with Ki values ranging from 3 to 20 μM, but did not show any activity against a small panel of different prokaryotic and eukaryotic kinases, thus demonstrating specificity for the CTP synthetases. Metabolic labeling experiments demonstrated that the compounds directly interfere not only with CTP biosynthesis, but also with other CTP dependent biochemical pathways, such as lipid biosynthesis. Moreover, using a M. tuberculosis pyrG conditional knock-down strain, it was shown that the activity of two compounds is dependent on the intracellular concentration of the CTP synthetase. All these results strongly suggest a role of PyrG as a target of these compounds, thus strengthening the value of this kind of approach for the identification of new scaffolds for drug development.
Collapse
Affiliation(s)
- Marta Esposito
- Department
of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, via Ferrata 9, 27100 Pavia, Italy
| | - Sára Szadocka
- Department
of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina CH1, 84215 Bratislava, Slovakia
| | - Giulia Degiacomi
- Department
of Molecular Medicine, University of Padova, via Gabelli 63, 35121 Padova, Italy
| | - Beatrice S. Orena
- Department
of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, via Ferrata 9, 27100 Pavia, Italy
| | - Giorgia Mori
- Department
of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, via Ferrata 9, 27100 Pavia, Italy
| | - Valentina Piano
- Department
of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, via Ferrata 9, 27100 Pavia, Italy
| | - Francesca Boldrin
- Department
of Molecular Medicine, University of Padova, via Gabelli 63, 35121 Padova, Italy
| | - Júlia Zemanová
- Department
of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina CH1, 84215 Bratislava, Slovakia
| | - Stanislav Huszár
- Department
of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina CH1, 84215 Bratislava, Slovakia
| | - David Barros
- Diseases
of the Developing World, GlaxoSmithKline, Calle Severo Ochoa 2, 28760 Tres Cantos, Madrid, Spain
| | - Sean Ekins
- Collaborative Drug Discovery Inc., 1633 Bayshore Highway, Suite 342, Burlingame, California 94010, United States
| | - Joel Lelièvre
- Diseases
of the Developing World, GlaxoSmithKline, Calle Severo Ochoa 2, 28760 Tres Cantos, Madrid, Spain
| | - Riccardo Manganelli
- Department
of Molecular Medicine, University of Padova, via Gabelli 63, 35121 Padova, Italy
| | - Andrea Mattevi
- Department
of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, via Ferrata 9, 27100 Pavia, Italy
| | - Maria Rosalia Pasca
- Department
of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, via Ferrata 9, 27100 Pavia, Italy
| | - Giovanna Riccardi
- Department
of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, via Ferrata 9, 27100 Pavia, Italy
| | - Lluis Ballell
- Diseases
of the Developing World, GlaxoSmithKline, Calle Severo Ochoa 2, 28760 Tres Cantos, Madrid, Spain
| | - Katarína Mikušová
- Department
of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina CH1, 84215 Bratislava, Slovakia
| | - Laurent R. Chiarelli
- Department
of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, via Ferrata 9, 27100 Pavia, Italy
| |
Collapse
|
36
|
Gold B, Roberts J, Ling Y, Lopez Quezada L, Glasheen J, Ballinger E, Somersan-Karakaya S, Warrier T, Nathan C. Visualization of the Charcoal Agar Resazurin Assay for Semi-quantitative, Medium-throughput Enumeration of Mycobacteria. J Vis Exp 2016. [PMID: 28060290 PMCID: PMC5226417 DOI: 10.3791/54690] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
There is an urgent need to discover and progress anti-infectives that shorten the duration of tuberculosis (TB) treatment. Mycobacterium tuberculosis, the etiological agent of TB, is refractory to rapid and lasting chemotherapy due to the presence of bacilli exhibiting phenotypic drug resistance. The charcoal agar resazurin assay (CARA) was developed as a tool to characterize active molecules discovered by high-throughput screening campaigns against replicating and non-replicating M. tuberculosis. Inclusion of activated charcoal in bacteriologic agar medium helps mitigate the impact of compound carry-over, and eliminates the requirement to pre-dilute cells prior to spotting on CARA microplates. After a 7-10 day incubation period at 37 °C, the reduction of resazurin by mycobacterial microcolonies growing on the surface of CARA microplate wells permits semi-quantitative assessment of bacterial numbers via fluorometry. The CARA detects approximately a 2-3 log10 difference in bacterial numbers and predicts a minimal bactericidal concentration leading to ≥99% bacterial kill (MBC≥99). The CARA helps determine whether a molecule is active on bacilli that are replicating, non-replicating, or both. Pilot experiments using the CARA facilitate the identification of which concentration of test agent and time of compound exposure require further evaluation by colony forming unit (CFU) assays. In addition, the CARA can predict if replicating actives are bactericidal or bacteriostatic.
Collapse
Affiliation(s)
- Ben Gold
- Departments of Microbiology & Immunology, Weill Cornell Medical College;
| | - Julia Roberts
- Departments of Microbiology & Immunology, Weill Cornell Medical College
| | - Yan Ling
- Departments of Microbiology & Immunology, Weill Cornell Medical College
| | | | - Jou Glasheen
- Departments of Microbiology & Immunology, Weill Cornell Medical College
| | - Elaine Ballinger
- Departments of Microbiology & Immunology, Weill Cornell Medical College
| | | | - Thulasi Warrier
- Departments of Microbiology & Immunology, Weill Cornell Medical College
| | - Carl Nathan
- Departments of Microbiology & Immunology, Weill Cornell Medical College
| |
Collapse
|
37
|
Abrahams KA, Chung CW, Ghidelli-Disse S, Rullas J, Rebollo-López MJ, Gurcha SS, Cox JAG, Mendoza A, Jiménez-Navarro E, Martínez-Martínez MS, Neu M, Shillings A, Homes P, Argyrou A, Casanueva R, Loman NJ, Moynihan PJ, Lelièvre J, Selenski C, Axtman M, Kremer L, Bantscheff M, Angulo-Barturen I, Izquierdo MC, Cammack NC, Drewes G, Ballell L, Barros D, Besra GS, Bates RH. Identification of KasA as the cellular target of an anti-tubercular scaffold. Nat Commun 2016; 7:12581. [PMID: 27581223 PMCID: PMC5025758 DOI: 10.1038/ncomms12581] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 07/14/2016] [Indexed: 12/12/2022] Open
Abstract
Phenotypic screens for bactericidal compounds are starting to yield promising hits against tuberculosis. In this regard, whole-genome sequencing of spontaneous resistant mutants generated against an indazole sulfonamide (GSK3011724A) identifies several specific single-nucleotide polymorphisms in the essential Mycobacterium tuberculosis β-ketoacyl synthase (kas) A gene. Here, this genomic-based target assignment is confirmed by biochemical assays, chemical proteomics and structural resolution of a KasA-GSK3011724A complex by X-ray crystallography. Finally, M. tuberculosis GSK3011724A-resistant mutants increase the in vitro minimum inhibitory concentration and the in vivo 99% effective dose in mice, establishing in vitro and in vivo target engagement. Surprisingly, the lack of target engagement of the related β-ketoacyl synthases (FabH and KasB) suggests a different mode of inhibition when compared with other Kas inhibitors of fatty acid biosynthesis in bacteria. These results clearly identify KasA as the biological target of GSK3011724A and validate this enzyme for further drug discovery efforts against tuberculosis.
Collapse
Affiliation(s)
- Katherine A. Abrahams
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Chun-wa Chung
- GlaxoSmithKline, Gunnels Wood Road, Stevenage SG1 2NY, UK
| | | | - Joaquín Rullas
- Diseases of the Developing World, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, 28760 Madrid, Spain
| | - María José Rebollo-López
- Diseases of the Developing World, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, 28760 Madrid, Spain
| | - Sudagar S. Gurcha
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Jonathan A. G. Cox
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Alfonso Mendoza
- Diseases of the Developing World, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, 28760 Madrid, Spain
| | - Elena Jiménez-Navarro
- Diseases of the Developing World, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, 28760 Madrid, Spain
| | | | - Margarete Neu
- GlaxoSmithKline, Gunnels Wood Road, Stevenage SG1 2NY, UK
| | | | - Paul Homes
- GlaxoSmithKline, Gunnels Wood Road, Stevenage SG1 2NY, UK
| | | | - Ruth Casanueva
- Diseases of the Developing World, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, 28760 Madrid, Spain
| | - Nicholas J. Loman
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Patrick J. Moynihan
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Joël Lelièvre
- Diseases of the Developing World, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, 28760 Madrid, Spain
| | - Carolyn Selenski
- GlaxoSmithKline, 709 Swedeland Road, PO Box 1539, King of Prussia, Pennsylvania 19406-0939, USA
| | - Matthew Axtman
- GlaxoSmithKline, 709 Swedeland Road, PO Box 1539, King of Prussia, Pennsylvania 19406-0939, USA
| | - Laurent Kremer
- Centre National de la Recherche Scientifique FRE 3689, Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé, Université de Montpellier, 1919 route de Mende, 34293 Montpellier, France
- INSERM, CPBS, 34293 Montpellier, France
| | - Marcus Bantscheff
- Cellzome—a GSK Company, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Iñigo Angulo-Barturen
- Diseases of the Developing World, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, 28760 Madrid, Spain
| | - Mónica Cacho Izquierdo
- Diseases of the Developing World, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, 28760 Madrid, Spain
| | - Nicholas C. Cammack
- Diseases of the Developing World, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, 28760 Madrid, Spain
| | - Gerard Drewes
- Cellzome—a GSK Company, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Lluis Ballell
- Diseases of the Developing World, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, 28760 Madrid, Spain
| | - David Barros
- Diseases of the Developing World, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, 28760 Madrid, Spain
| | - Gurdyal S. Besra
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Robert H. Bates
- Diseases of the Developing World, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, 28760 Madrid, Spain
| |
Collapse
|