1
|
Oliver JL, Bernaola-Galván P, Carpena P, Perfectti F, Gómez-Martín C, Castiglione S, Raia P, Verdú M, Moya A. Strong evidence for the evolution of decreasing compositional heterogeneity in SARS-CoV-2 genomes during the pandemic. Sci Rep 2025; 15:12246. [PMID: 40210974 PMCID: PMC11985940 DOI: 10.1038/s41598-025-95893-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 03/25/2025] [Indexed: 04/12/2025] Open
Abstract
The rapid evolution of SARS-CoV-2 during the pandemic was characterized by the fixation of a plethora of mutations, many of which enable the virus to evade host resistance, likely altering the virus' genome compositional structure (i.e., the arrangement of compositional domains of varying lengths and nucleotide frequencies within the genome). To explore this hypothesis, we summarize the evolutionary effects of these mutations by computing the Sequence Compositional Complexity (SCC) in random stratified datasets of fully sequenced genomes. Phylogenetic ridge regression of SCC against time reveals a striking downward evolutionary trend, suggesting the ongoing adaptation of the virus's genome structure to the human host. Other genomic features, such as strand asymmetry, the effective number of K-mers, and the depletion of CpG dinucleotides, each linked to the virus's adaptation to its human host, also exhibit decreasing phylogenetic trends throughout the pandemic, along with strong phylogenetic correlations to SCC. We hypothesize that viral CpG depletion (throughout C➔U changes), promoted by directional mutational pressures exerted on the genome by the host antiviral defense systems, may play a key role in the decrease of SARS-CoV-2 genome compositional heterogeneity, with specific adaptation to the human host occurring as a form of genetic mimicry. Overall, our findings suggest a decelerating evolution of reduced compositional complexity in SCC, whereas the number of K-mers and the depletion of CpG dinucleotides are still increasing. These results indicate a genome-wide evolutionary trend toward a more symmetric and homogeneous genome compositional structure in SARS-CoV-2, which is partly still ongoing.
Collapse
Affiliation(s)
- José L Oliver
- Department of Genetics, Faculty of Sciences, University of Granada, 18071, Granada, Spain.
- Laboratory of Bioinformatics, Institute of Biotechnology, Center of Biomedical Research, 18100, Granada, Spain.
| | - Pedro Bernaola-Galván
- Department of Applied Physics II and Institute Carlos I for Theoretical and Computational Physics, University of Málaga, Málaga, 29071, Spain
| | - Pedro Carpena
- Department of Applied Physics II and Institute Carlos I for Theoretical and Computational Physics, University of Málaga, Málaga, 29071, Spain
| | - Francisco Perfectti
- Department of Genetics, Faculty of Sciences, University of Granada, 18071, Granada, Spain
- Research Unit Modeling Nature, Universidad de Granada, Granada, 18071, Spain
| | - Cristina Gómez-Martín
- Department of Genetics, Faculty of Sciences, University of Granada, 18071, Granada, Spain
- Laboratory of Bioinformatics, Institute of Biotechnology, Center of Biomedical Research, 18100, Granada, Spain
- Department of Pathology, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Silvia Castiglione
- Dipartimento di Scienze della Terra, dell'Ambiente e delle Risorse, Università di Napoli Federico II, Napoli, 80126, Italy
| | - Pasquale Raia
- Dipartimento di Scienze della Terra, dell'Ambiente e delle Risorse, Università di Napoli Federico II, Napoli, 80126, Italy
| | - Miguel Verdú
- Centro de Investigaciones sobre Desertificación, Consejo Superior de Investigaciones Científicas (CSIC), University of València and Generalitat Valenciana, 46113, Valencia, Spain
| | - Andrés Moya
- Institute of Integrative Systems Biology (I2sysbio), University of València and Consejo Superior de Investigaciones Científicas (CSIC), 46980, Valencia, Spain.
- Foundation for the Promotion of Sanitary and Biomedical Research of Valencian Community (FISABIO), 46020, Valencia, Spain.
- CIBER in Epidemiology and Public Health, Madrid, 28029, Spain.
| |
Collapse
|
2
|
Ren J, Li Q, Shen W, Tan X. Decoding Codon Usage Patterns in High-Risk Human Papillomavirus Genomes: A Comprehensive Analysis. Curr Microbiol 2025; 82:148. [PMID: 39987223 DOI: 10.1007/s00284-025-04131-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 02/13/2025] [Indexed: 02/24/2025]
Abstract
Human Papillomavirus (HPV) is a major contributor to various human cancers, particularly cervical cancer. Despite its significant impact, the codon usage bias in high-risk HPV types has not been extensively studied. Understanding this bias, however, could provide valuable insights into the virus itself and inform the optimization of vaccine design. This study explores codon usage bias within the genomes of 17 high-risk HPV types (HPV-16, 18, 26, 31, 33, 35, 39, 45, 51, 52, 53, 56, 58, 59, 66, 68, and 82) through comparative analysis. While overall codon usage preference across these genotypes is not highly significant, a notable trend emerges in the preference for codons ending in A or U, with 24 out of 26 favored codons (Relative Synonymous Codon Usage > 1) ending in A or U. Moreover, no common optimal codons are shared among the 17 genomes. The study also identifies the underrepresentation of CpG and ApA dinucleotides, alongside the overrepresentation of CpA and UpG, which likely contribute to codon usage preferences that may influence viral replication and immune evasion strategies. Integrated analysis further suggests that natural selection is the primary force driving codon usage bias in these high-risk HPV genomes. Additionally, these HPVs exhibit a limited set of favored codons shared with humans, potentially minimizing competition for translation resources. This study offers new insights into codon usage bias in high-risk HPVs and underscores the importance of this understanding for optimizing vaccine design.
Collapse
Affiliation(s)
- Jiahuan Ren
- Emergency Department, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, People's Republic of China
| | - Qijia Li
- Department of Clinical Laboratory, Sichuan Provincial Women's and Children's Hospital / The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, China
| | - Weifeng Shen
- Department of Clinical Laboratory, The First Hospital of Jiaxing and The Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Xiaochun Tan
- Department of Clinical Laboratory, The First Hospital of Jiaxing and The Affiliated Hospital of Jiaxing University, Jiaxing, China.
| |
Collapse
|
3
|
Tan X, Bao S, Lu X, Lu B, Shen W, Jiang C. Comprehensive Analysis of Codon Usage Bias in Human Papillomavirus Type 51. Pol J Microbiol 2024; 73:455-465. [PMID: 39465910 PMCID: PMC11639286 DOI: 10.33073/pjm-2024-036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/03/2024] [Indexed: 10/29/2024] Open
Abstract
Human papillomavirus type 51 (HPV-51) is associated with various cancers, including cervical cancer. Examining the codon usage bias of the organism can offer valuable insights into its evolutionary patterns and its relationship with the host. This study comprehensively analyzed codon usage bias in HPV-51 by examining 64 complete genome sequences sourced from the NCBI GenBank database. Our analysis revealed no noteworthy preference for codon usage in HPV-51 overall. However, there was a noticeable bias towards A/T-ending codons, accompanied by GC3s below 32%. Dinucleotide frequency analysis revealed reduced frequencies for ApA, CpG, and TpC dinucleotides, while CpA and TpG dinucleotides were more frequent than others. Relative Synonymous Codon Usage analysis revealed 30 favored codons, primarily concluding with A/T nucleotides. Further analysis using Parity Rule 2, Effective Number of Codons plot, and neutrality plot indicated a balance between mutational pressure and natural selection, with natural selection being the primary force shaping codon usage bias. The Isoacceptor tRNA Pool analysis indicates that HPV-51 has a higher translation efficiency within the human cellular translational system. Moreover, the Codon Adaptation Index and Relative Codon Deoptimization Index analyses suggested a moderate adaptation of HPV-51 to human codon preferences. Our discoveries offer valuable perspectives on how HPV-51 evolves and uses genetic codes, contributing to a deeper comprehension of its endurance and disease-causing potential.
Collapse
Affiliation(s)
- Xiaochun Tan
- Department of Laboratory Medicine, The First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Siwen Bao
- Department of Laboratory Medicine, The First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Xiaolei Lu
- Department of Laboratory Medicine, The First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Binbin Lu
- Department of Laboratory Medicine, The First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Weifeng Shen
- Department of Laboratory Medicine, The First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Chaoyue Jiang
- Department of Laboratory Medicine, The First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, Jiaxing, China
| |
Collapse
|
4
|
Kumar A, Kaushal R, Sharma H, Sharma K, Menon MB, P V. Mapping of long stretches of highly conserved sequences in over 6 million SARS-CoV-2 genomes. Brief Funct Genomics 2024; 23:256-264. [PMID: 37461194 DOI: 10.1093/bfgp/elad027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 06/15/2023] [Accepted: 06/26/2023] [Indexed: 05/18/2024] Open
Abstract
We identified 11 conserved stretches in over 6.3 million SARS-CoV-2 genomes including all the major variants of concerns. Each conserved stretch is ≥100 nucleotides in length with ≥99.9% conservation at each nucleotide position. Interestingly, six of the eight conserved stretches in ORF1ab overlapped significantly with well-folded experimentally verified RNA secondary structures. Furthermore, two of the conserved stretches were mapped to regions within the S2-subunit that undergo dynamic structural rearrangements during viral fusion. In addition, the conserved stretches were significantly depleted for zinc-finger antiviral protein (ZAP) binding sites, which facilitated the recognition and degradation of viral RNA. These highly conserved stretches in the SARS-CoV-2 genome were poorly conserved at the nucleotide level among closely related β-coronaviruses, thus representing ideal targets for highly specific and discriminatory diagnostic assays. Our findings highlight the role of structural constraints at both RNA and protein levels that contribute to the sequence conservation of specific genomic regions in SARS-CoV-2.
Collapse
Affiliation(s)
- Akhil Kumar
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, India
| | - Rishika Kaushal
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, India
| | - Himanshi Sharma
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, India
| | - Khushboo Sharma
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, India
| | - Manoj B Menon
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, India
| | - Vivekanandan P
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, India
| |
Collapse
|
5
|
Molteni C, Forni D, Cagliani R, Bravo IG, Sironi M. Evolution and diversity of nucleotide and dinucleotide composition in poxviruses. J Gen Virol 2023; 104. [PMID: 37792576 DOI: 10.1099/jgv.0.001897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023] Open
Abstract
Poxviruses (family Poxviridae) have long dsDNA genomes and infect a wide range of hosts, including insects, birds, reptiles and mammals. These viruses have substantial incidence, prevalence and disease burden in humans and in other animals. Nucleotide and dinucleotide composition, mostly CpG and TpA, have been largely studied in viral genomes because of their evolutionary and functional implications. We analysed here the nucleotide and dinucleotide composition, as well as codon usage bias, of a set of representative poxvirus genomes, with a very diverse host spectrum. After correcting for overall nucleotide composition, entomopoxviruses displayed low overall GC content, no enrichment in TpA and large variation in CpG enrichment, while chordopoxviruses showed large variation in nucleotide composition, no obvious depletion in CpG and a weak trend for TpA depletion in GC-rich genomes. Overall, intergenome variation in dinucleotide composition in poxviruses is largely accounted for by variation in overall genomic GC levels. Nonetheless, using vaccinia virus as a model, we found that genes expressed at the earliest times in infection are more CpG-depleted than genes expressed at later stages. This observation has parallels in betahepesviruses (also large dsDNA viruses) and suggests an antiviral role for the innate immune system (e.g. via the zinc-finger antiviral protein ZAP) in the early phases of poxvirus infection. We also analysed codon usage bias in poxviruses and we observed that it is mostly determined by genomic GC content, and that stratification after host taxonomy does not contribute to explaining codon usage bias diversity. By analysis of within-species diversity, we show that genomic GC content is the result of mutational biases. Poxvirus genomes that encode a DNA ligase are significantly AT-richer than those that do not, suggesting that DNA repair systems shape mutation biases. Our data shed light on the evolution of poxviruses and inform strategies for their genetic manipulation for therapeutic purposes.
Collapse
Affiliation(s)
- Cristian Molteni
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, Bosisio Parini, Italy
| | - Diego Forni
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, Bosisio Parini, Italy
| | - Rachele Cagliani
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, Bosisio Parini, Italy
| | - Ignacio G Bravo
- Laboratoire MIVEGEC (Univ Montpellier CNRS, IRD), Centre National de la Recherche Scientifique, Montpellier, France
| | - Manuela Sironi
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, Bosisio Parini, Italy
| |
Collapse
|
6
|
Khandia R, Khan AA, Karuvantevida N, Gurjar P, Rzhepakovsky IV, Legaz I. Insights into Synonymous Codon Usage Bias in Hepatitis C Virus and Its Adaptation to Hosts. Pathogens 2023; 12:pathogens12020325. [PMID: 36839597 PMCID: PMC9961758 DOI: 10.3390/pathogens12020325] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/25/2023] [Accepted: 02/02/2023] [Indexed: 02/17/2023] Open
Abstract
Hepatitis C virus (HCV) is enveloped RNA virus, encoding for a polyprotein that is processed by cellular proteases. The virus is responsible for liver cirrhosis, allograft rejection, and human hepatocellular carcinoma. Based on studies including compositional analysis, odds ratio analysis, parity analysis, skew analysis, relative synonymous codon usage, codon bias, and protein properties, it was evident that codon usage bias in HCV is dependent upon the nucleotide composition. Codon context analysis revealed CTC-CTG as a preferred codon pair. While CGA and CGT codons were rare, none of the codons were rare in HCV-like viruses envisaged in the present study. Many of the preferred codon pairs were valine amino acid-initiated, which possibly infers viral infectivity; hence the role of selection forces appears to act on the HCV genome, which was further validated by neutrality analysis where selection accounted for 87.28%, while mutation accounted for 12.72% force shaping codon usage. Furthermore, codon usage was correlated with the length of the genome. HCV viruses prefer valine-initiated codon pairs, while HCV-like viruses prefer alanine-initiated codon pairs. The HCV host range is very narrow and is confined to only humans and chimpanzees. Based on indices including codon usage correlation analysis, similarity index, and relative codon deoptimization index, it is evident in the study that the chimpanzee is the primary host of the virus. The present study helped elucidate the preferred host for HCV. The information presented in the study paved the way for generating an attenuated vaccine candidate through viral recoding, with finely tuned nucleotide composition and a perfect balance of preferred and rare codons.
Collapse
Affiliation(s)
- Rekha Khandia
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal 462026, India
- Correspondence: (R.K.); (I.L.)
| | - Azmat Ali Khan
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Noushad Karuvantevida
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai P.O. Box 505055, United Arab Emirates
| | - Pankaj Gurjar
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW 2770, Australia
| | | | - Isabel Legaz
- Department of Legal and Forensic Medicine, Biomedical Research Institute (IMIB), Regional Campus of International Excellence “Campus Mare Nostrum”, Faculty of Medicine, University of Murcia, 30120 Murcia, Spain
- Correspondence: (R.K.); (I.L.)
| |
Collapse
|
7
|
Selective Depletion of ZAP-Binding CpG Motifs in HCV Evolution. Pathogens 2022; 12:pathogens12010043. [PMID: 36678391 PMCID: PMC9866289 DOI: 10.3390/pathogens12010043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/08/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
Hepatitis C virus (HCV) is a bloodborne pathogen that can cause chronic liver disease and hepatocellular carcinoma. The loss of CpGs from virus genomes allows escape from restriction by the host zinc-finger antiviral protein (ZAP). The evolution of HCV in the human host has not been explored in the context of CpG depletion. We analysed 2616 full-length HCV genomes from 1977 to 2021. During the four decades of evolution in humans, we found that HCV genomes have become significantly depleted in (a) CpG numbers, (b) CpG O/E ratios (i.e., relative abundance of CpGs), and (c) the number of ZAP-binding motifs. Interestingly, our data suggests that the loss of CpGs in HCV genomes over time is primarily driven by the loss of ZAP-binding motifs; thus suggesting a yet unknown role for ZAP-mediated selection pressures in HCV evolution. The HCV core gene is significantly enriched for the number of CpGs and ZAP-binding motifs. In contrast to the rest of the HCV genome, the loss of CpGs from the core gene does not appear to be driven by ZAP-mediated selection. This work highlights CpG depletion in HCV genomes during their evolution in humans and the role of ZAP-mediated selection in HCV evolution.
Collapse
|
8
|
King KM, Rajadhyaksha EV, Tobey IG, Van Doorslaer K. Synonymous nucleotide changes drive papillomavirus evolution. Tumour Virus Res 2022; 14:200248. [PMID: 36265836 PMCID: PMC9589209 DOI: 10.1016/j.tvr.2022.200248] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022] Open
Abstract
Papillomaviruses have been evolving alongside their hosts for at least 450 million years. This review will discuss some of the insights gained into the evolution of this diverse family of viruses. Papillomavirus evolution is constrained by pervasive purifying selection to maximize viral fitness. Yet these viruses need to adapt to changes in their environment, e.g., the host immune system. It has long been known that these viruses evolved a codon usage that doesn't match the infected host. Here we discuss how papillomavirus genomes evolve by acquiring synonymous changes that allow the virus to avoid detection by the host innate immune system without changing the encoded proteins and associated fitness loss. We discuss the implications of studying viral evolution, lifecycle, and cancer progression.
Collapse
Affiliation(s)
- Kelly M King
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA
| | - Esha Vikram Rajadhyaksha
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA; Department of Physiology and Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| | - Isabelle G Tobey
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ, USA
| | - Koenraad Van Doorslaer
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA; Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ, USA; The BIO5 Institute, The Department of Immunobiology, Genetics Graduate Interdisciplinary Program, UA Cancer Center, University of Arizona Tucson, Arizona, USA.
| |
Collapse
|
9
|
Fan Y, Guo D, Zhao S, Wei Q, Li Y, Lin T. Human genes with relative synonymous codon usage analogous to that of polyomaviruses are involved in the mechanism of polyomavirus nephropathy. Front Cell Infect Microbiol 2022; 12:992201. [PMID: 36159639 PMCID: PMC9492876 DOI: 10.3389/fcimb.2022.992201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/12/2022] [Indexed: 11/28/2022] Open
Abstract
Human polyomaviruses (HPyVs) can cause serious and deleterious infections in human. Yet, the molecular mechanism underlying these infections, particularly in polyomavirus nephropathy (PVAN), is not well-defined. In the present study, we aimed to identify human genes with codon usage bias (CUB) similar to that of HPyV genes and explore their potential involvement in the pathogenesis of PVAN. The relative synonymous codon usage (RSCU) values of genes of HPyVs and those of human genes were computed and used for Pearson correlation analysis. The involvement of the identified correlation genes in PVAN was analyzed by validating their differential expression in publicly available transcriptomics data. Functional enrichment was performed to uncover the role of sets of genes. The RSCU analysis indicated that the A- and T-ending codons are preferentially used in HPyV genes. In total, 5400 human genes were correlated to the HPyV genes. The protein-protein interaction (PPI) network indicated strong interactions between these proteins. Gene expression analysis indicated that 229 of these genes were consistently and differentially expressed between normal kidney tissues and kidney tissues from PVAN patients. Functional enrichment analysis indicated that these genes were involved in biological processes related to transcription and in pathways related to protein ubiquitination pathway, apoptosis, cellular response to stress, inflammation and immune system. The identified genes may serve as diagnostic biomarkers and potential therapeutic targets for HPyV associated diseases, especially PVAN.
Collapse
Affiliation(s)
- Yu Fan
- Department of Urology, National Clinical Research Center for Geriatrics and Organ Transplantation Center, West China Hospital of Sichuan University, Chengdu, China
| | - Duan Guo
- Department of Palliative Medicine, West China School of Public Health and West China fourth Hospital, Sichuan University, Chengdu, China
- Palliative Medicine Research Center, West China−Peking Union Medical College, Chen Zhiqian (PUMC C.C). Chen Institute of Health, Sichuan University, Chengdu, China
| | - Shangping Zhao
- Department of Urology, West China School of Nursing and Organ Transplantation Center, West China Hospital of Sichuan University, Chengdu, China
| | - Qiang Wei
- Department of Urology, National Clinical Research Center for Geriatrics and Organ Transplantation Center, West China Hospital of Sichuan University, Chengdu, China
| | - Yi Li
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Tao Lin, ; ; Yi Li,
| | - Tao Lin
- Department of Urology, National Clinical Research Center for Geriatrics and Organ Transplantation Center, West China Hospital of Sichuan University, Chengdu, China
- *Correspondence: Tao Lin, ; ; Yi Li,
| |
Collapse
|
10
|
Moody CA. Regulation of the Innate Immune Response during the Human Papillomavirus Life Cycle. Viruses 2022; 14:v14081797. [PMID: 36016419 PMCID: PMC9412305 DOI: 10.3390/v14081797] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/11/2022] [Accepted: 08/15/2022] [Indexed: 12/12/2022] Open
Abstract
High-risk human papillomaviruses (HR HPVs) are associated with multiple human cancers and comprise 5% of the human cancer burden. Although most infections are transient, persistent infections are a major risk factor for cancer development. The life cycle of HPV is intimately linked to epithelial differentiation. HPVs establish infection at a low copy number in the proliferating basal keratinocytes of the stratified epithelium. In contrast, the productive phase of the viral life cycle is activated upon epithelial differentiation, resulting in viral genome amplification, high levels of late gene expression, and the assembly of virions that are shed from the epithelial surface. Avoiding activation of an innate immune response during the course of infection plays a key role in promoting viral persistence as well as completion of the viral life cycle in differentiating epithelial cells. This review highlights the recent advances in our understanding of how HPVs manipulate the host cell environment, often in a type-specific manner, to suppress activation of an innate immune response to establish conditions supportive of viral replication.
Collapse
Affiliation(s)
- Cary A. Moody
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
11
|
Abstract
Upon infection, DNA viruses can be sensed by pattern recognition receptors (PRRs), leading to the activation of type I and III interferons to block infection. Therefore, viruses must inhibit these signaling pathways, avoid being detected, or both. Papillomavirus virions are trafficked from early endosomes to the Golgi apparatus and wait for the onset of mitosis to complete nuclear entry. This unique subcellular trafficking strategy avoids detection by cytoplasmic PRRs, a property that may contribute to the establishment of infection. However, as the capsid uncoats within acidic endosomal compartments, the viral DNA may be exposed to detection by Toll-like receptor 9 (TLR9). In this study, we characterized two new papillomaviruses from bats and used molecular archeology to demonstrate that their genomes altered their nucleotide compositions to avoid detection by TLR9, providing evidence that TLR9 acts as a PRR during papillomavirus infection. Furthermore, we showed that TLR9, like other components of the innate immune system, is under evolutionary selection in bats, providing the first direct evidence for coevolution between papillomaviruses and their hosts. Finally, we demonstrated that the cancer-associated human papillomaviruses show a reduction in CpG dinucleotides within a TLR9 recognition complex.
Collapse
|
12
|
Bias at the third nucleotide of codon pairs in virus and host genomes. Sci Rep 2022; 12:4522. [PMID: 35296743 PMCID: PMC8927144 DOI: 10.1038/s41598-022-08570-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 03/09/2022] [Indexed: 11/29/2022] Open
Abstract
Genomes of different sizes and complexity can be compared using common features. Most genomes contain open reading frames, and most genomes use the same genetic code. Redundancy in the genetic code means that different biases in the third nucleotide position of a codon exist in different genomes. However, the nucleotide composition of viruses can be quite different from host nucleotide composition making it difficult to assess the relevance of these biases. Here we show that grouping codons of a codon-pair according to the GC content of the first two nucleotide positions of each codon reveals patterns in nucleotide usage at the third position of the 1st codon. Differences between the observed and expected biases occur predominantly when the first two nucleotides of the 2nd codon are both S (strong, G or C) or both W (weak, A or T), not a mixture of strong and weak. The data indicates that some codon pairs are preferred because of the strength of the interactions between the codon and anticodon, the adjacent tRNAs and the ribosome. Using base-pairing strength and third position bias facilitates the comparison of genomes of different size and nucleotide composition and reveals patterns not previously described.
Collapse
|
13
|
Kumar A, Goyal N, Saranathan N, Dhamija S, Saraswat S, Menon MB, Vivekanandan P. The slowing rate of CpG depletion in SARS-CoV-2 genomes is consistent with adaptations to the human host. Mol Biol Evol 2022; 39:6521032. [PMID: 35134218 PMCID: PMC8892944 DOI: 10.1093/molbev/msac029] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Depletion of CpG dinucleotides in SARS-CoV-2 genomes has been linked to virus evolution, host-switching, virus replication, and innate immune responses. Temporal variations, if any, in the rate of CpG depletion during virus evolution in the host remain poorly understood. Here, we analysed the CpG content of over 1.4 million full-length SARS-CoV-2 genomes representing over 170 million documented infections during the first 17 months of the pandemic. Our findings suggest that the extent of CpG depletion in SARS-CoV-2 genomes is modest. Interestingly, the rate of CpG depletion is highest during early evolution in humans and it gradually tapers off almost reaching an equilibrium; this is consistent with adaptations to the human host. Furthermore, within the coding regions, CpG depletion occurs predominantly at codon positions 2-3 and 3-1. Loss of ZAP-binding motifs in SARS-CoV-2 genomes is primarily driven by the loss of the terminal CpG in the motifs. Nonetheless, majority of the CpG depletion in SARS-CoV-2 genomes occurs outside ZAP-binding motifs. SARS-CoV-2 genomes selectively lose CpGs-motifs from a U-rich context; this may help avoid immune recognition by TLR7. SARS-CoV-2 alpha-, beta- and delta-variants of concern have reduced CpG content compared to sequences from the beginning of the pandemic. In sum, we provide evidence that the rate of CpG depletion in virus genomes is not uniform and it greatly varies over time and during adaptations to the host. This work highlights how temporal variations in selection pressures during virus adaption may impact the rate and the extent of CpG depletion in virus genomes.
Collapse
Affiliation(s)
- Akhil Kumar
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi-110016, India
| | - Nishank Goyal
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi-110016, India
| | - Nandhini Saranathan
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi-110016, India
| | - Sonam Dhamija
- CSIR-Institute of Genomics and Integrative Biology, New Delhi-110025, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
| | - Saurabh Saraswat
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi-110016, India
| | - Manoj B Menon
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi-110016, India
| | - Perumal Vivekanandan
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi-110016, India
| |
Collapse
|
14
|
Chen Z, Utro F, Platt D, DeSalle R, Parida L, Chan PKS, Burk RD. K-Mer Analyses Reveal Different Evolutionary Histories of Alpha, Beta, and Gamma Papillomaviruses. Int J Mol Sci 2021; 22:9657. [PMID: 34502564 PMCID: PMC8432194 DOI: 10.3390/ijms22179657] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/04/2021] [Accepted: 09/05/2021] [Indexed: 12/31/2022] Open
Abstract
Papillomaviruses (PVs) are a heterogeneous group of DNA viruses that can infect fish, birds, reptiles, and mammals. PVs infecting humans (HPVs) phylogenetically cluster into five genera (Alpha-, Beta-, Gamma-, Mu- and Nu-PV), with differences in tissue tropism and carcinogenicity. The evolutionary features associated with the divergence of Papillomaviridae are not well understood. Using a combination of k-mer distributions, genetic metrics, and phylogenetic algorithms, we sought to evaluate the characteristics and differences of Alpha-, Beta- and Gamma-PVs constituting the majority of HPV genomes. A total of 640 PVs including 442 HPV types, 27 non-human primate PV types, and 171 non-primate animal PV types were evaluated. Our analyses revealed the highest genetic diversity amongst Gamma-PVs compared to the Alpha and Beta PVs, suggesting reduced selective pressures on Gamma-PVs. Using a sequence alignment-free trimer (k = 3) phylogeny algorithm, we reconstructed a phylogeny that grouped most HPV types into a monophyletic clade that was further split into three branches similar to alignment-based classifications. Interestingly, a subset of low-risk Alpha HPVs (the species Alpha-2, 3, 4, and 14) split from other HPVs and were clustered with non-human primate PVs. Surprisingly, the trimer-constructed phylogeny grouped the Gamma-6 species types originally isolated from the cervicovaginal region with the main Alpha-HPV clade. These data indicate that characterization of papillomavirus heterogeneity via orthogonal approaches reveals novel insights into the biological understanding of HPV genomes.
Collapse
Affiliation(s)
- Zigui Chen
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China;
- Centre for Emerging Infectious Diseases, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Filippo Utro
- Computational Genomics, IBM T. J. Watson Research, Yorktown Heights, NY 10598, USA; (F.U.); (D.P.); (L.P.)
| | - Daniel Platt
- Computational Genomics, IBM T. J. Watson Research, Yorktown Heights, NY 10598, USA; (F.U.); (D.P.); (L.P.)
| | - Rob DeSalle
- Sackler Institute of Comparative Genomics, American Museum of Natural History, New York, NY 10024, USA;
| | - Laxmi Parida
- Computational Genomics, IBM T. J. Watson Research, Yorktown Heights, NY 10598, USA; (F.U.); (D.P.); (L.P.)
| | - Paul K. S. Chan
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China;
- Centre for Emerging Infectious Diseases, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Robert D. Burk
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Obstetrics, Gynecology and Woman’s Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
15
|
Habib O, Mohd Sakri R, Ghazalli N, Chau DM, Ling KH, Abdullah S. Limited expression of non-integrating CpG-free plasmid is associated with increased nucleosome enrichment. PLoS One 2020; 15:e0244386. [PMID: 33347482 PMCID: PMC7751972 DOI: 10.1371/journal.pone.0244386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 12/08/2020] [Indexed: 11/18/2022] Open
Abstract
CpG-free pDNA was reported to facilitate sustained transgene expression with minimal inflammation in vivo as compared to CpG-containing pDNA. However, the expression potential and impact of CpG-free pDNA in in vitro model have never been described. Hence, in this study, we analyzed the transgene expression profiles of CpG-free pDNA in vitro to determine the influence of CpG depletion from the transgene. We found that in contrast to the published in vivo studies, CpG-free pDNA expressed a significantly lower level of luciferase than CpG-rich pDNA in several human cell lines. By comparing novel CpG-free pDNA carrying CpG-free GFP (pZGFP: 0 CpG) to CpG-rich GFP (pRGFP: 60 CpGs), we further showed that the discrepancy was not influenced by external factors such as gene transfer agent, cell species, cell type, and cytotoxicity. Moreover, pZGFP exhibited reduced expression despite having equal gene dosage as pRGFP. Analysis of mRNA distribution revealed that the mRNA export of pZGFP and pRGFP was similar; however, the steady state mRNA level of pZGFP was significantly lower. Upon further investigation, we found that the CpG-free transgene in non-integrating CpG-free pDNA backbone acquired increased nucleosome enrichment as compared with CpG-rich transgene, which may explain the observed reduced level of steady state mRNA. Our findings suggest that nucleosome enrichment could regulate non-integrating CpG-free pDNA expression and has implications on pDNA design.
Collapse
Affiliation(s)
- Omar Habib
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang, Selangor, Malaysia
- Genetics and Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang, Selangor, Malaysia
| | - Rozita Mohd Sakri
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang, Selangor, Malaysia
- Genetics and Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang, Selangor, Malaysia
- Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), Shah Alam, Selangor, Malaysia
| | - Nadiah Ghazalli
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang, Selangor, Malaysia
- Genetics and Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang, Selangor, Malaysia
| | - De-Ming Chau
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang, Selangor, Malaysia
- Genetics and Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang, Selangor, Malaysia
| | - King-Hwa Ling
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang, Selangor, Malaysia
- Genetics and Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang, Selangor, Malaysia
| | - Syahril Abdullah
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang, Selangor, Malaysia
- Genetics and Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang, Selangor, Malaysia
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia (UPM), Serdang, Selangor, Malaysia
- * E-mail:
| |
Collapse
|
16
|
Matyášek R, Kovařík A. Mutation Patterns of Human SARS-CoV-2 and Bat RaTG13 Coronavirus Genomes Are Strongly Biased Towards C>U Transitions, Indicating Rapid Evolution in Their Hosts. Genes (Basel) 2020; 11:E761. [PMID: 32646049 PMCID: PMC7397057 DOI: 10.3390/genes11070761] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/22/2020] [Accepted: 06/29/2020] [Indexed: 12/17/2022] Open
Abstract
The pandemic caused by the spread of SARS-CoV-2 has led to considerable interest in its evolutionary origin and genome structure. Here, we analyzed mutation patterns in 34 human SARS-CoV-2 isolates and a closely related RaTG13 isolated from Rhinolophus affinis (a horseshoe bat). We also evaluated the CpG dinucleotide contents in SARS-CoV-2 and other human and animal coronavirus genomes. Out of 1136 single nucleotide variations (~4% divergence) between human SARS-CoV-2 and bat RaTG13, 682 (60%) can be attributed to C>U and U>C substitutions, far exceeding other types of substitutions. An accumulation of C>U mutations was also observed in SARS-CoV2 variants that arose within the human population. Globally, the C>U substitutions increased the frequency of codons for hydrophobic amino acids in SARS-CoV-2 peptides, while U>C substitutions decreased it. In contrast to most other coronaviruses, both SARS-CoV-2 and RaTG13 exhibited CpG depletion in their genomes. The data suggest that C-to-U conversion mediated by C deamination played a significant role in the evolution of the SARS-CoV-2 coronavirus. We hypothesize that the high frequency C>U transitions reflect virus adaptation processes in their hosts, and that SARS-CoV-2 could have been evolving for a relatively long period in humans following the transfer from animals before spreading worldwide.
Collapse
Affiliation(s)
| | - Aleš Kovařík
- Laboratory of Molecular Epigenetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 61265 Brno, Czech Republic;
| |
Collapse
|
17
|
Tian HF, Hu QM, Xiao HB, Zeng LB, Meng Y, Li Z. Genetic and codon usage bias analyses of major capsid protein gene in Ranavirus. INFECTION GENETICS AND EVOLUTION 2020; 84:104379. [PMID: 32497680 DOI: 10.1016/j.meegid.2020.104379] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 05/07/2020] [Accepted: 05/22/2020] [Indexed: 12/29/2022]
Abstract
The Ranavirus (one genus of Iridovidae family) is an emerging pathogen that infects fish, amphibian, and reptiles, and causes great economical loss and ecological threat to farmed and wild animals globally. The major capsid protein (MCP) has been used as genetic typing marker and as target to design vaccines. Herein, the codon usage pattern of 73 MCP genes of Ranavirus and Lymphocystivirus are studied by calculating effective number of codons (ENC), relative synonymous codon usage (RSCU), codon adaptation index (CAI), and relative codon deoptimization index (RCDI), and similarity index (SiD). The Ranavirus are confirmed to be classified into five groups by using phylogenetic analysis, and varied nucleotide compositions and hierarchical cluster analysis based on RSCU. The results revealed different codon usage patterns among Lymphocystivirus and five groups of Ranavirus. Ranavirus had six over-represented codons ended with G/C nucleotide, while Lymphocystivirus had six over-represented codons ended with A/T nucleotide. A comparative analysis of parameters that define virus and host relatedness in terms of codon usage were analyzed indicated that Amphibian-like ranaviruses (ALRVs) seem to possess lower ENC values and higher CAIs in contrast to other ranaviruses isolated from fishes, and two groups (FV3-like and CMTV-like group) of them had received higher selection pressure from their hosts as having higher relative codon deoptimization index (RCDI) and similarity index (SiD). The correspondence analysis (COA) and Spearman's rank correlation analyses revealed that nucleotide compositions, relative dinucleotide frequency, mutation pressure, and natural translational selection shape the codon usage pattern in MCP genes and the ENC-GC3S and neutrality plots indicated that the natural selection is the predominant factor. These results contribute to understanding the evolution of Ranavirus and their adaptions to their hosts.
Collapse
Affiliation(s)
- Hai-Feng Tian
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Qiao-Mu Hu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Han-Bing Xiao
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Ling-Bing Zeng
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Yan Meng
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China.
| | - Zhong Li
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China.
| |
Collapse
|
18
|
Kamuju V, Kumar S, Khan WH, Vivekanandan P. Hypervirulent Clostridium difficile ribotypes are CpG depleted. Virulence 2019; 9:1422-1425. [PMID: 30176154 PMCID: PMC6141142 DOI: 10.1080/21505594.2018.1509669] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Affiliation(s)
- Vinay Kamuju
- a Department of Biochemical Engineering and Biotechnology , Indian Institute of Technology Delhi , New Delhi , India
| | - Santosh Kumar
- a Department of Biochemical Engineering and Biotechnology , Indian Institute of Technology Delhi , New Delhi , India
| | - Wajihul Hasan Khan
- b Kusuma School of Biological Sciences , Indian Institute of Technology Delhi , New Delhi , India
| | - Perumal Vivekanandan
- b Kusuma School of Biological Sciences , Indian Institute of Technology Delhi , New Delhi , India
| |
Collapse
|
19
|
Truchado DA, Williams RA, Benítez L. Natural history of avian papillomaviruses. Virus Res 2018; 252:58-67. [DOI: 10.1016/j.virusres.2018.05.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/12/2018] [Accepted: 05/13/2018] [Indexed: 11/27/2022]
|
20
|
Truchado DA, Moens MAJ, Callejas S, Pérez-Tris J, Benítez L. Genomic characterization of the first oral avian papillomavirus in a colony of breeding canaries (Serinus canaria). Vet Res Commun 2018; 42:111-120. [PMID: 29446002 DOI: 10.1007/s11259-018-9713-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 01/31/2018] [Indexed: 01/08/2023]
Abstract
Papillomaviruses are non-enveloped, DNA viruses that infect skin and mucosa of a wide variety of vertebrates, causing neoplasias or simply persisting asymptomatically. Avian papillomaviruses, with six fully sequenced genomes, are the second most studied group after mammalian papillomaviruses. In this study, we describe the first oral avian papillomavirus, detected in the tongue of a dead Yorkshire canary (Serinus canaria) and in oral swabs of the same bird and other two live canaries from an aviary in Madrid, Spain. Its genome is 8,071 bp and presents the canonical papillomavirus architecture with six early (E6, E7, E1, E9, E2, E4) and two late open reading frames (L1 and L2) and a long control region between L1 and E6. This new avian papillomavirus L1 gene shares a 64% pairwise identity with FcPV1 L1, so it has been classified as a new species (ScPV1) within the Ethapapillomavirus genus. Although the canary died after showing breathing problems, there is no evidence that the papillomavirus caused those symptoms so it could be part of the oral microbiota of the birds. Hence, future investigations are needed to evaluate the clinical relevance of the virus.
Collapse
Affiliation(s)
- Daniel A Truchado
- Departamento de Biodiversidad, Ecología y Evolución, Facultad de Biología, Universidad Complutense de Madrid, Calle José Antonio Novais 12, 28040, Madrid, Spain. .,Departamento de Fisiología, Genética y Microbiología, Facultad de Biología, Calle José Antonio Novais 12, 28040, Madrid, Spain.
| | - Michaël A J Moens
- Fundación de Conservación Jocotoco, Lizardo García E9-104 y Andrés Xaura, 170143, Quito, Ecuador
| | - Sergio Callejas
- Unidad de Genómica, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Calle Melchor Fernández Almagro, 3, 28029, Madrid, Spain
| | - Javier Pérez-Tris
- Departamento de Biodiversidad, Ecología y Evolución, Facultad de Biología, Universidad Complutense de Madrid, Calle José Antonio Novais 12, 28040, Madrid, Spain
| | - Laura Benítez
- Departamento de Fisiología, Genética y Microbiología, Facultad de Biología, Calle José Antonio Novais 12, 28040, Madrid, Spain
| |
Collapse
|
21
|
DNA Tumor Virus Regulation of Host DNA Methylation and Its Implications for Immune Evasion and Oncogenesis. Viruses 2018; 10:v10020082. [PMID: 29438328 PMCID: PMC5850389 DOI: 10.3390/v10020082] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 02/07/2018] [Accepted: 02/07/2018] [Indexed: 12/11/2022] Open
Abstract
Viruses have evolved various mechanisms to evade host immunity and ensure efficient viral replication and persistence. Several DNA tumor viruses modulate host DNA methyltransferases for epigenetic dysregulation of immune-related gene expression in host cells. The host immune responses suppressed by virus-induced aberrant DNA methylation are also frequently involved in antitumor immune responses. Here, we describe viral mechanisms and virus–host interactions by which DNA tumor viruses regulate host DNA methylation to evade antiviral immunity, which may contribute to the generation of an immunosuppressive microenvironment during cancer development. Recent trials of immunotherapies have shown promising results to treat multiple cancers; however, a significant number of non-responders necessitate identifying additional targets for cancer immunotherapies. Thus, understanding immune evasion mechanisms of cancer-causing viruses may provide great insights for reversing immune suppression to prevent and treat associated cancers.
Collapse
|
22
|
Roles of APOBEC3A and APOBEC3B in Human Papillomavirus Infection and Disease Progression. Viruses 2017; 9:v9080233. [PMID: 28825669 PMCID: PMC5580490 DOI: 10.3390/v9080233] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 08/16/2017] [Accepted: 08/16/2017] [Indexed: 02/06/2023] Open
Abstract
The apolipoprotein B messenger RNA-editing, enzyme-catalytic, polypeptide-like 3 (APOBEC3) family of cytidine deaminases plays an important role in the innate immune response to viral infections by editing viral genomes. However, the cytidine deaminase activity of APOBEC3 enzymes also induces somatic mutations in host genomes, which may drive cancer progression. Recent studies of human papillomavirus (HPV) infection and disease outcome highlight this duality. HPV infection is potently inhibited by one family member, APOBEC3A. Expression of APOBEC3A and APOBEC3B is highly elevated by the HPV oncoproteins E6 and E7 during persistent virus infection and disease progression. Furthermore, there is a high prevalence of APOBEC3A and APOBEC3B mutation signatures in HPV-associated cancers. These findings suggest that induction of an APOBEC3-mediated antiviral response during HPV infection may inadvertently contribute to cancer mutagenesis and virus evolution. Here, we discuss current understanding of APOBEC3A and APOBEC3B biology in HPV restriction, evolution, and associated cancer mutagenesis.
Collapse
|
23
|
The CpG dinucleotide content of the HIV-1 envelope gene may predict disease progression. Sci Rep 2017; 7:8162. [PMID: 28811638 PMCID: PMC5557942 DOI: 10.1038/s41598-017-08716-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 07/12/2017] [Indexed: 11/28/2022] Open
Abstract
The clinical course of HIV-1 varies greatly among infected individuals. Despite extensive research, virus factors associated with slow-progression remain poorly understood. Identification of unique HIV-1 genomic signatures linked to slow-progression remains elusive. We investigated CpG dinucleotide content in HIV-1 envelope gene as a potential virus factor in disease progression. We analysed 1808 HIV-1 envelope gene sequences from three independent longitudinal studies; this included 1280 sequences from twelve typical-progressors and 528 sequences from six slow-progressors. Relative abundance of CpG dinucleotides and relative synonymous codon usage (RSCU) for CpG-containing codons among HIV-1 envelope gene sequences from typical-progressors and slow-progressors were analysed. HIV-1 envelope gene sequences from slow-progressors have high-CpG dinucleotide content and increased number of CpG-containing codons as compared to typical-progressors. Our findings suggest that observed differences in CpG-content between typical-progressors and slow-progressors is not explained by differences in the mononucleotide content. Our results also highlight that the high-CpG content in HIV-1 envelope gene from slow-progressors is observed immediately after seroconversion. Thus CpG dinucleotide content of HIV-1 envelope gene is a potential virus-related factor that is linked to disease progression. The CpG dinucleotide content of HIV-1 envelope gene may help predict HIV-1 disease progression at early stages after seroconversion.
Collapse
|
24
|
Westrich JA, Warren CJ, Pyeon D. Evasion of host immune defenses by human papillomavirus. Virus Res 2017; 231:21-33. [PMID: 27890631 PMCID: PMC5325784 DOI: 10.1016/j.virusres.2016.11.023] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 11/10/2016] [Accepted: 11/12/2016] [Indexed: 12/13/2022]
Abstract
A majority of human papillomavirus (HPV) infections are asymptomatic and self-resolving in the absence of medical interventions. Various innate and adaptive immune responses, as well as physical barriers, have been implicated in controlling early HPV infections. However, if HPV overcomes these host immune defenses and establishes persistence in basal keratinocytes, it becomes very difficult for the host to eliminate the infection. The HPV oncoproteins E5, E6, and E7 are important in regulating host immune responses. These oncoproteins dysregulate gene expression, protein-protein interactions, posttranslational modifications, and cellular trafficking of critical host immune modulators. In addition to the HPV oncoproteins, sequence variation and dinucleotide depletion in papillomavirus genomes has been suggested as an alternative strategy for evasion of host immune defenses. Since anti-HPV host immune responses are also considered to be important for antitumor immunity, immune dysregulation by HPV during virus persistence may contribute to immune suppression essential for HPV-associated cancer progression. Here, we discuss cellular pathways dysregulated by HPV that allow the virus to evade various host immune defenses.
Collapse
Affiliation(s)
- Joseph A Westrich
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Cody J Warren
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA; Current address: BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Dohun Pyeon
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA; Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| |
Collapse
|