1
|
Sharma M, Paudyal V, Syed SK, Thapa R, Kassam N, Surani S. Management of Pulmonary Arterial Hypertension: Current Strategies and Future Prospects. Life (Basel) 2025; 15:430. [PMID: 40141775 PMCID: PMC11943839 DOI: 10.3390/life15030430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/28/2025] [Accepted: 03/06/2025] [Indexed: 03/28/2025] Open
Abstract
Primary pulmonary hypertension (PPH), now known as pulmonary arterial hypertension (PAH), has induced significant treatment breakthroughs in the past decade. Treatment has focused on improving patient survival and quality of life, and delaying disease progression. Current therapies are categorized based on targeting different pathways known to contribute to PAH, including endothelin receptor antagonists (ERAs), phosphodiesterase-5 inhibitors (PDE-5 inhibitors), prostacyclin analogs, soluble guanylate cyclase stimulators, and activin signaling inhibitors such as Sotatercept. The latest addition to treatment options is soluble guanylate cyclase stimulators, such as Riociguat, which directly stimulates the nitric oxide pathway, facilitating vasodilation. Looking to the future, advancements in PAH treatment focus on precision medicine involving the sub-stratification of patients through a deep characterization of altered Transforming Growth Factor-β(TGF-β) signaling and molecular therapies. Gene therapy, targeting specific genetic mutations linked to PAH, and cell-based therapies, such as mesenchymal stem cells, are under investigation. Besides prevailing therapies, emerging PH treatments target growth factors and inflammation-modulating pathways, with ongoing trials assessing their long-term benefits and safety. Hence, this review explores current therapies that delay progression and improve survival, as well as future treatments with curative potential.
Collapse
Affiliation(s)
- Munish Sharma
- Division of Pulmonary, Critical Care and Sleep Medicine, Baylor Scott and White, Temple, TX 76508, USA;
| | - Vivek Paudyal
- Department of General Practice and Emergency Medicine, Karnali Academy of Health Sciences, Chandannath 21200, Jumla, Nepal; (V.P.); (R.T.)
| | - Saifullah Khalid Syed
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Rubi Thapa
- Department of General Practice and Emergency Medicine, Karnali Academy of Health Sciences, Chandannath 21200, Jumla, Nepal; (V.P.); (R.T.)
| | - Nadeem Kassam
- Department of Medicine, Aga Khan University, Nairobi 30270, Kenya;
| | - Salim Surani
- Department of Medicine and Pharmacy, Texas A&M, College Station, TX 77840, USA
| |
Collapse
|
2
|
Cober ND, Chaudhary KR, Deng Y, Lee CJ, Rowe K, Abdelwahab H, Courtman DW, Stewart DJ. Single-cell microencapsulation improves lung retention of endothelial colony-forming cells after intravascular delivery and unmasks therapeutic benefit in severe pulmonary arterial hypertension. Cytotherapy 2025:S1465-3249(25)00068-4. [PMID: 40088252 DOI: 10.1016/j.jcyt.2025.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 02/26/2025] [Accepted: 02/27/2025] [Indexed: 03/17/2025]
Abstract
Pulmonary arterial hypertension (PAH) is triggered by pulmonary vascular endothelial cell apoptosis and microvascular loss. Therefore, therapies that can regenerate lost vasculature may offer therapeutic benefit. Endothelial colony-forming cells (ECFCs) can directly repair damaged blood vessels and may have therapeutic potential for the treatment of PAH. However, poor retention of ECFCs in the lungs following intravenous delivery greatly limits their therapeutic application. Therefore, we studied whether cellular microencapsulation could enhance retention in the lung after systemic delivery and improve therapeutic efficacy of ECFCs in a rat monocrotaline (MCT) PAH model. ECFCs were encapsulated by vortex emulsion using various concentrations of agarose, and initial cell viability was assessed. Encapsulated and free ECFCs were transduced with luciferase and administered to Sprague-Dawley rats 3 days after injection of MCT. In vivo ECFC persistence and bio-distribution was assessed by bioluminescence imaging (BLI). At the end of the study, right ventricular systolic pressure (RVSP) and right ventricular hypertrophy were assessed for therapeutic efficacy. Microgel encapsulation using 3.5% agarose improved cell survival and supported cell migration from capsules. At 15 minutes after delivery, BLI radiance was similar for free and microencapsulated ECFCs. However, only encapsulated cells could be detected by BLI at 4 and 24 hours. Transplantation of microencapsulated ECFCs led to significant improvement in RVSP 3 weeks after delivery compared with nonencapsulated ECFCs. Together, microencapsulation increased retention of ECFCs within the lungs. Furthermore, even a modest increase in ECFC persistence over 24 hours can provide an important therapeutic benefit in the rat MCT model of PAH.
Collapse
Affiliation(s)
- Nicholas D Cober
- Sinclair Centre for Regenerative Medicine, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; University of Ottawa, Faculty of Medicine, Department of Cellular and Molecular Medicine, Ottawa, Ontario, Canada
| | - Ketul R Chaudhary
- Sinclair Centre for Regenerative Medicine, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Yupu Deng
- Sinclair Centre for Regenerative Medicine, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Chyan-Jang Lee
- Sinclair Centre for Regenerative Medicine, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Katelynn Rowe
- Sinclair Centre for Regenerative Medicine, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Haya Abdelwahab
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - David W Courtman
- Sinclair Centre for Regenerative Medicine, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Duncan J Stewart
- Sinclair Centre for Regenerative Medicine, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; University of Ottawa, Faculty of Medicine, Department of Cellular and Molecular Medicine, Ottawa, Ontario, Canada.
| |
Collapse
|
3
|
Liu Y, He C, Zhong Q, Shi X, Li H, Fu G, Guo L, Zhao C, Tian L, Li X, Jiao X, Shan L. Tadalafil Enhances the Therapeutic Efficacy of Mesenchymal Stem Cells-Derived Exosomes in Pulmonary Hypertension by Upregulating miR-29a-3p. Int J Nanomedicine 2024; 19:13525-13546. [PMID: 39720214 PMCID: PMC11668336 DOI: 10.2147/ijn.s493047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 12/10/2024] [Indexed: 12/26/2024] Open
Abstract
Introduction Pulmonary hypertension (PH) is a progressive and life-threatening condition. Recent research has demonstrated that exosomes derived from mesenchymal stem cells (MSC) exhibit significant therapeutic potential in the treatment of PH. The composition of these exosomes is often substantially influenced by the characteristics of their parental cells. This study aimed to identify an intervention strategy to enhance the efficacy of mesenchymal stem cell exosomes in treating PH. Methods Exosomes were isolated from control MSC and tadalafil-pretreated MSCs. In vitro and in vivo studies were conducted. Results MSCTAD-Exo attenuated macrophage inflammation and improved endothelial cell (EC) apoptosis while also reducing pulmonary arterial pressure in a hypoxia-induced rat model. Furthermore, MSC exosomes can mitigate hypoxia-induced proliferation and migration of smooth muscle cells (SMC) by influencing the secretion of endothelial exosomes. MiR-29a-3p has been identified as a crucial mediator in this process, with its expression regulated by cAMP responsive element binding protein 1 (CREB1). MiR-29a-3p exerts anti-inflammatory effects by modulating the expression of ectonucleotide pyrophosphatase/phosphodiesterase 2 (ENPP2). Notably, the anti-inflammatory and anti-vascular remodeling activities of exosomes were diminished following the depletion of MiR-29a-3p. Discussion MSC treated with tadalafil can secrete better exosomes. MSCTAD-Exo may enhance anti-inflammatory and anti-vascular remodeling properties by upregulating mir-29a-3p expression, providing a novel idea for PH therapy. Future studies could explore the clinical application of this finding.
Collapse
Affiliation(s)
- Yi Liu
- Department of Respiratory Disease, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou, 121000, People’s Republic of China
- Department of Critical Care Medicine, Panzhihua Central Hospital, Panzhihua, 61700, People’s Republic of China
| | - Changqing He
- Department of Respiratory Disease, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou, 121000, People’s Republic of China
| | - Quanhai Zhong
- Clinical Drug Laboratory, People’s Hospital of Yichun City, Yichun, Jiangxi, 336000, People’s Republic of China
| | - Xianbao Shi
- Department of Pharmacy, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, People’s Republic of China
| | - Hongyan Li
- Department of Respiratory Disease, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou, 121000, People’s Republic of China
| | - Gaoge Fu
- Department of Respiratory Disease, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou, 121000, People’s Republic of China
| | - Lixuan Guo
- Department of Respiratory Disease, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou, 121000, People’s Republic of China
| | - Churong Zhao
- Department of Respiratory Disease, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou, 121000, People’s Republic of China
| | - Lei Tian
- Department of Respiratory Disease, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou, 121000, People’s Republic of China
| | - Xin Li
- Department of Respiratory Disease, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou, 121000, People’s Republic of China
| | - Xue Jiao
- Department of Respiratory Disease, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou, 121000, People’s Republic of China
| | - Lina Shan
- Department of Respiratory Disease, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou, 121000, People’s Republic of China
| |
Collapse
|
4
|
Hu X, Liu J, Song X, Yuan P. Stem cells in pulmonary hypertension: Current understanding and future challenges. Animal Model Exp Med 2024; 7:961-963. [PMID: 39439226 DOI: 10.1002/ame2.12482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 07/23/2024] [Indexed: 10/25/2024] Open
Abstract
Stem cells possess the unique ability to develop into different cell types within the body. Researchers are exploring the use of different types of stem cells to potentially repair damaged blood vessels, reduce inflammation, and improve overall vascular function, all of which are crucial factors in pulmonary hypertension (PH). While it is important to acknowledge that further clinical studies and trials are necessary to fully understand the efficacy and safety of stem cell therapy for PH, ongoing research and initial findings present promising avenues for potentially developing new treatments or therapeutic strategies for PH.
Collapse
Affiliation(s)
- Xiaoyi Hu
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Respiratory Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jinming Liu
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiao Song
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ping Yuan
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
5
|
Guo S, Wang D. Novel insights into the potential applications of stem cells in pulmonary hypertension therapy. Respir Res 2024; 25:237. [PMID: 38849894 PMCID: PMC11162078 DOI: 10.1186/s12931-024-02865-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 06/04/2024] [Indexed: 06/09/2024] Open
Abstract
Pulmonary hypertension (PH) refers to a group of deadly lung diseases characterized by vascular lesions in the microvasculature and a progressive increase in pulmonary vascular resistance. The prevalence of PH has increased over time. Currently, the treatment options available for PH patients have limited efficacy, and none of them can fundamentally reverse pulmonary vascular remodeling. Stem cells represent an ideal seed with proven efficacy in clinical studies focusing on liver, cardiovascular, and nerve diseases. Since the potential therapeutic effect of mesenchymal stem cells (MSCs) on PH was first reported in 2006, many studies have demonstrated the efficacy of stem cells in PH animal models and suggested that stem cells can help slow the deterioration of lung tissue. Existing PH treatment studies basically focus on the paracrine action of stem cells, including protein regulation, exosome pathway, and cell signaling; however, the specific mechanisms have not yet been clarified. Apoptotic and afunctional pulmonary microvascular endothelial cells (PMVECs) and alveolar epithelial cells (AECs) are two fundamental promoters of PH although they have not been extensively studied by researchers. This review mainly focuses on the supportive communication and interaction between PMVECs and AECs as well as the potential restorative effect of stem cells on their injury. In the future, more studies are needed to prove these effects and explore more radical cures for PH.
Collapse
Affiliation(s)
- Sijia Guo
- Stem Cell Laboratory, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China.
| | - Dachun Wang
- Stem Cell Laboratory, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
- The Brown Foundation Institute of Molecular Medicine for the prevention of Human Diseases, University of Texas Medical School at Houston, Houston, TX, USA
| |
Collapse
|
6
|
Goecke T, Ius F, Ruhparwar A, Martin U. Unlocking the Future: Pluripotent Stem Cell-Based Lung Repair. Cells 2024; 13:635. [PMID: 38607074 PMCID: PMC11012168 DOI: 10.3390/cells13070635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/18/2024] [Accepted: 03/26/2024] [Indexed: 04/13/2024] Open
Abstract
The human respiratory system is susceptible to a variety of diseases, ranging from chronic obstructive pulmonary disease (COPD) and pulmonary fibrosis to acute respiratory distress syndrome (ARDS). Today, lung diseases represent one of the major challenges to the health care sector and represent one of the leading causes of death worldwide. Current treatment options often focus on managing symptoms rather than addressing the underlying cause of the disease. The limitations of conventional therapies highlight the urgent clinical need for innovative solutions capable of repairing damaged lung tissue at a fundamental level. Pluripotent stem cell technologies have now reached clinical maturity and hold immense potential to revolutionize the landscape of lung repair and regenerative medicine. Meanwhile, human embryonic (HESCs) and human-induced pluripotent stem cells (hiPSCs) can be coaxed to differentiate into lung-specific cell types such as bronchial and alveolar epithelial cells, or pulmonary endothelial cells. This holds the promise of regenerating damaged lung tissue and restoring normal respiratory function. While methods for targeted genetic engineering of hPSCs and lung cell differentiation have substantially advanced, the required GMP-grade clinical-scale production technologies as well as the development of suitable preclinical animal models and cell application strategies are less advanced. This review provides an overview of current perspectives on PSC-based therapies for lung repair, explores key advances, and envisions future directions in this dynamic field.
Collapse
Affiliation(s)
- Tobias Goecke
- Leibniz Research Laboratories for Biotechnology and Artificial Organs, Lower Saxony Center for Biomedical Engineering, Implant Research and Development /Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (F.I.); (A.R.)
- REBIRTH-Research Center for Translational and Regenerative Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
- Biomedical Research in End-stage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Fabio Ius
- Leibniz Research Laboratories for Biotechnology and Artificial Organs, Lower Saxony Center for Biomedical Engineering, Implant Research and Development /Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (F.I.); (A.R.)
- REBIRTH-Research Center for Translational and Regenerative Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
- Biomedical Research in End-stage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Arjang Ruhparwar
- Leibniz Research Laboratories for Biotechnology and Artificial Organs, Lower Saxony Center for Biomedical Engineering, Implant Research and Development /Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (F.I.); (A.R.)
- REBIRTH-Research Center for Translational and Regenerative Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
- Biomedical Research in End-stage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Ulrich Martin
- Leibniz Research Laboratories for Biotechnology and Artificial Organs, Lower Saxony Center for Biomedical Engineering, Implant Research and Development /Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (F.I.); (A.R.)
- REBIRTH-Research Center for Translational and Regenerative Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
- Biomedical Research in End-stage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| |
Collapse
|
7
|
Chen CY, Mei-Tzu W, Sung SH, Wu YJ, Hsu CH, Ho WJ, Lin YH, Liu WS, Liu JC, Kao YT, Wu WS, Wu CH, Lei MH, Chen YW, Chen-Yu C, Chiu YW, Dai ZK, Lin TH, Lin L, Chung CC, Chung CM, Huang SH, Cheng CC, Wu YW, Chao TH, Hwang JJ, Jia-Yin Hou C, Huang WC. Exercise capacity-hemodynamics mismatch in elderly patients with pulmonary hypertension: A nationwide multicenter study from Taiwan Society of Cardiology Pulmonary Hypertension Registry (TAIPANS). Heliyon 2024; 10:e27537. [PMID: 38515682 PMCID: PMC10955243 DOI: 10.1016/j.heliyon.2024.e27537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/23/2024] Open
Abstract
Background Demographics of pulmonary hypertension (PH) has changed a lot over the past forty years. Several recent registries noted an increase in mean age of PH but only a few of them investigated the characteristics of elderly patients. Thus, we aimed to analyze the characteristics of PH in such a population in this study. Methods This multicenter study enrolled patients diagnosed with PH in group 1, 3, 4, and 5 consecutively from January 1, 2019 to December 31, 2020. A total of 490 patients was included, and patients were divided into three groups by age (≤45 years, 45-65 years, and >65 years). Results The mean age of PH patients diagnosed with PH was 55.3 ± 16.3 years of age. There was higher proportion of elderly patients classified as group 3 PH (≤45: 1.3, 45-65: 4.5, >65: 8.1 %; p = 0.0206) and group 4 PH (≤45: 8.4, 45-65: 14.5, >65: 31.6 %; p < 0.0001) than young patients. Elderly patients had shorter 6-min walking distance (6 MWD) (≤45 vs. >65, mean difference, 77.8 m [95% confidence interval (CI), 2.1-153.6 m]), lower mean pulmonary arterial pressure (mPAP) (≤45 vs. >65, mean difference, 10.8 mmHg [95% CI, 6.37-15.2 mmHg]), and higher pulmonary arterial wedge pressure (PAWP) (≤45 vs. 45-65, mean difference, -2.1 mmHg [95% CI, -3.9 to -0.3 mmHg]) compared to young patients. Elderly patients had a poorer exercise capacity despite lower mPAP level compared to young population, but they received combination therapy less frequently compared to young patients (triple therapy in group 1 PH, ≤45: 16.7, 45-65: 11.3, >65: 3.8 %; p = 0.0005). Age older than 65 years was an independent predictor of high mortality for PH patients. Conclusions Elderly PH patients possess unique hemodynamic profiles and epidemiologic patterns. They had higher PAWP, lower mPAP, and received combination therapy less frequently. Moreover, ageing is a predictor of high mortality for PH patients. Exercise capacity-hemodynamics mismatch and inadequate treatment are noteworthy in the approach of elderly population with PH.
Collapse
Affiliation(s)
- Chang-Ying Chen
- Department of Critical Care Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wang Mei-Tzu
- Department of Critical Care Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- School of Medicine, National Yang-Ming Chiao-Tung University, Taipei, Taiwan
| | - Shih-Hsien Sung
- School of Medicine, National Yang-Ming Chiao-Tung University, Taipei, Taiwan
- Division of Cardiology, Department of Internal Medicine, Taipei Veterans General Hospital, Taipei City, Taiwan
| | - Yih-Jer Wu
- Department of Medicine, MacKay Medical College, New Taipei, Taiwan
- Cardiovascular Center, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan
| | - Chih-Hsin Hsu
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wan-Jing Ho
- Department of Cardiology, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Yen-Hung Lin
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital, Taipei City, Taiwan
| | - Wei-Shin Liu
- Division of Cardiology, Tzu-Chi General Hospital, Hualien, Taiwan
| | - Ju-Chi Liu
- Division of Cardiology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Taipei Heart Institute, Taipei Medical University, Taipei, Taiwan
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yung-Ta Kao
- Taipei Heart Institute, Taipei Medical University, Taipei, Taiwan
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Cardiology, Department of Internal Medicine, Taipei Medical University Hospital, Taiwan
| | - Wen-Shiann Wu
- Department of Cardiology, Chi-Mei Medical Center, Tainan, Taiwan
| | - Chun-Hsien Wu
- Division of Cardiology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Meng-Huan Lei
- Cardiovascular Center, Lo-Tung Poh-Ai Hospital, YI-Lan, Taiwan
| | - Yu-Wei Chen
- Cardiovascular Center, Taichung Veterans General Hospital, Taichung, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Chien Chen-Yu
- Department of Internal Medicine, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
| | - Yu-Wei Chiu
- Division of Cardiology, Cardiovascular Medical Center, Far Eastern Memorial Hospital, New Taipei City, Taiwan
- Department of Computer Science and Engineering, Yuan Ze University, Taoyuan, Taiwan
| | - Zen-Kong Dai
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Pediatrics, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Tsung-Hsien Lin
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Taiwan
- Faculty of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Lin Lin
- Cardiovascular Center, National Taiwan University Hospital, Hsin-Chu Branch, Hsinchu, Taiwan
| | - Cheng-Chih Chung
- Taipei Heart Institute, Taipei Medical University, Taipei, Taiwan
- Division of Cardiology, Department of Internal Medicine, Taipei Medical University Hospital, Taiwan
- Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Chang-Min Chung
- Division of Cardiology, Department of Internal Medicine, Chiayi Chang Gung Medical Foundation, Chiayi County, Taiwan
- Medical Department, Chiayi Chang Gung Medical Foundation, Chiayi County, Taiwan
| | - Sung-Hao Huang
- Division of Cardiology, National Yang Ming Chiao Tung University Hospital, Yi-Lan, Taiwan
| | - Chin-Chang Cheng
- Department of Critical Care Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- Department of Physical Therapy, Fooyin University, Kaohsiung, Taiwan
| | - Yen-Wen Wu
- School of Medicine, National Yang-Ming Chiao-Tung University, Taipei, Taiwan
- Division of Cardiology, Cardiovascular Medical Center, Far Eastern Memorial Hospital, New Taipei City, Taiwan
- Graduate Institute of Medicine, Yuan Ze University, Taoyuan, Taiwan
| | - Ting-Hsing Chao
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Juey-Jen Hwang
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital, Taipei City, Taiwan
| | | | - Wei-Chun Huang
- Department of Critical Care Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- School of Medicine, National Yang-Ming Chiao-Tung University, Taipei, Taiwan
- Graduate Institute of Medicine, Yuan Ze University, Taoyuan, Taiwan
- National Sun Yat-sen University, Kaohsiung, Taiwan
| |
Collapse
|
8
|
Chi PL, Cheng CC, Wang MT, Liao JB, Kuo SH, Lin KC, Shen MC, Huang WC. Induced pluripotent stem cell-derived exosomes attenuate vascular remodelling in pulmonary arterial hypertension by targeting HIF-1α and Runx2. Cardiovasc Res 2024; 120:203-214. [PMID: 38252891 DOI: 10.1093/cvr/cvad185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/19/2023] [Accepted: 08/11/2023] [Indexed: 01/24/2024] Open
Abstract
AIMS Pulmonary arterial hypertension (PAH) is characterized by extensive pulmonary arterial remodelling. Although mesenchymal stem cell (MSC)-derived exosomes provide protective effects in PAH, MSCs exhibit limited senescence during in vitro expansion compared with the induced pluripotent stem cells (iPSCs). Moreover, the exact mechanism is not known. METHODS AND RESULTS In this study, we used murine iPSCs generated from mouse embryonic fibroblasts with triple factor (Oct4, Klf4, and Sox2) transduction to determine the efficacy and action mechanism of iPSC-derived exosomes (iPSC-Exo) in attenuating PAH in rats with monocrotaline (MCT)-induced pulmonary hypertension. Both early and late iPSC-Exo treatment effectively prevented the wall thickening and muscularization of pulmonary arterioles, improved the right ventricular systolic pressure, and alleviated the right ventricular hypertrophy in MCT-induced PAH rats. Pulmonary artery smooth muscle cells (PASMC) derived from MCT-treated rats (MCT-PASMC) developed more proliferative and pro-migratory phenotypes, which were attenuated by the iPSC-Exo treatment. Moreover, the proliferation and migration of MCT-PASMC were reduced by iPSC-Exo with suppression of PCNA, cyclin D1, MMP-1, and MMP-10, which are mediated via the HIF-1α and P21-activated kinase 1/AKT/Runx2 pathways. CONCLUSION IPSC-Exo are effective at reversing pulmonary hypertension by reducing pulmonary vascular remodelling and may provide an iPSC-free therapy for the treatment of PAH.
Collapse
Affiliation(s)
- Pei-Ling Chi
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- Department of Pathology and Laboratory Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Chin-Chang Cheng
- Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Mei-Tzu Wang
- Department of Critical Care Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Jia-Bin Liao
- Department of Pathology and Laboratory Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Shu-Hung Kuo
- Department of Critical Care Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Kun-Chang Lin
- Department of Critical Care Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Min-Ci Shen
- Department of Critical Care Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Wei-Chun Huang
- Department of Critical Care Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- Department of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Physical Therapy, Fooyin University, Kaohsiung, Taiwan
| |
Collapse
|
9
|
Zheng R, Xu T, Wang X, Yang L, Wang J, Huang X. Stem cell therapy in pulmonary hypertension: current practice and future opportunities. Eur Respir Rev 2023; 32:230112. [PMID: 37758272 PMCID: PMC10523152 DOI: 10.1183/16000617.0112-2023] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/13/2023] [Indexed: 09/30/2023] Open
Abstract
Pulmonary hypertension (PH) is a progressive disease characterised by elevated pulmonary arterial pressure and right-sided heart failure. While conventional drug therapies, including prostacyclin analogues, endothelin receptor antagonists and phosphodiesterase type 5 inhibitors, have been shown to improve the haemodynamic abnormalities of patients with PH, the 5-year mortality rate remains high. Thus, novel therapies are urgently required to prolong the survival of patients with PH. Stem cell therapies, including mesenchymal stem cells, endothelial progenitor cells and induced pluripotent stem cells, have shown therapeutic potential for the treatment of PH and clinical trials on stem cell therapies for PH are ongoing. This review aims to present the latest preclinical achievements of stem cell therapies, focusing on the therapeutic effects of clinical trials and discussing the challenges and future perspectives of large-scale applications.
Collapse
Affiliation(s)
- Ruixuan Zheng
- Division of Pulmonary Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, Wenzhou Key Laboratory of Heart and Lung, Wenzhou, China
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- These authors contributed equally to this work
| | - Tingting Xu
- Division of Pulmonary Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, Wenzhou Key Laboratory of Heart and Lung, Wenzhou, China
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- These authors contributed equally to this work
| | - Xinghong Wang
- Division of Pulmonary Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, Wenzhou Key Laboratory of Heart and Lung, Wenzhou, China
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lehe Yang
- Division of Pulmonary Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, Wenzhou Key Laboratory of Heart and Lung, Wenzhou, China
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jian Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Xiaoying Huang
- Division of Pulmonary Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, Wenzhou Key Laboratory of Heart and Lung, Wenzhou, China
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
10
|
Sánchez-Duffhues G, Hiepen C. Human iPSCs as Model Systems for BMP-Related Rare Diseases. Cells 2023; 12:2200. [PMID: 37681932 PMCID: PMC10487005 DOI: 10.3390/cells12172200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/17/2023] [Accepted: 08/23/2023] [Indexed: 09/09/2023] Open
Abstract
Disturbances in bone morphogenetic protein (BMP) signalling contribute to onset and development of a number of rare genetic diseases, including Fibrodysplasia ossificans progressiva (FOP), Pulmonary arterial hypertension (PAH), and Hereditary haemorrhagic telangiectasia (HHT). After decades of animal research to build a solid foundation in understanding the underlying molecular mechanisms, the progressive implementation of iPSC-based patient-derived models will improve drug development by addressing drug efficacy, specificity, and toxicity in a complex humanized environment. We will review the current state of literature on iPSC-derived model systems in this field, with special emphasis on the access to patient source material and the complications that may come with it. Given the essential role of BMPs during embryonic development and stem cell differentiation, gain- or loss-of-function mutations in the BMP signalling pathway may compromise iPSC generation, maintenance, and differentiation procedures. This review highlights the need for careful optimization of the protocols used. Finally, we will discuss recent developments towards complex in vitro culture models aiming to resemble specific tissue microenvironments with multi-faceted cellular inputs, such as cell mechanics and ECM together with organoids, organ-on-chip, and microfluidic technologies.
Collapse
Affiliation(s)
- Gonzalo Sánchez-Duffhues
- Nanomaterials and Nanotechnology Research Center (CINN-CSIC), ISPA-HUCA, Avda. de Roma, s/n, 33011 Oviedo, Spain
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Christian Hiepen
- Department of Engineering and Natural Sciences, Westphalian University of Applied Sciences, August-Schmidt-Ring 10, 45665 Recklinghausen, Germany
| |
Collapse
|
11
|
Kizub IV. Induced pluripotent stem cells for cardiovascular therapeutics: Progress and perspectives. REGULATORY MECHANISMS IN BIOSYSTEMS 2023; 14:451-468. [DOI: 10.15421/10.15421/022366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
Abstract
The discovery of methods for reprogramming adult somatic cells into induced pluripotent stem cells (iPSCs) opens up prospects of developing personalized cell-based therapy options for a variety of human diseases as well as disease modeling and new drug discovery. Like embryonic stem cells, iPSCs can give rise to various cell types of the human body and are amenable to genetic correction. This allows usage of iPSCs in the development of modern therapies for many virtually incurable human diseases. The review summarizes progress in iPSC research in the context of application in the cardiovascular field including modeling cardiovascular disease, drug study, tissue engineering, and perspectives for personalized cardiovascular medicine.
Collapse
|
12
|
Tang BL, Liu Y, Zhang JL, Lu ML, Wang HX. Ginsenoside Rg1 ameliorates hypoxia-induced pulmonary arterial hypertension by inhibiting endothelial-to-mesenchymal transition and inflammation by regulating CCN1. Biomed Pharmacother 2023; 164:114920. [PMID: 37216706 DOI: 10.1016/j.biopha.2023.114920] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/10/2023] [Accepted: 05/13/2023] [Indexed: 05/24/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a chronic obstructive disease characterized by vascular remodeling. Studies have confirmed that ginsenoside Rg1 can improve pulmonary hypertension to a certain extent, but the potential mechanism by which it improves hypoxia-induced PAH remains unclear. The aim of this study was to investigate the therapeutic effect of ginsenoside Rg1 on hypoxia-induced PAH. The results showed that hypoxia promoted inflammation, EndMT, and vascular remodeling, which were accompanied by decreased CCN1 levels and increased p-NFκB p65, TGF-β1, and p-Smad 2/3 levels. Treatment with ginsenoside Rg1, recombinant CCN1, BAY-11-7082, and SB-431542 could prevent hypoxia-induced vascular remodeling, reduce the expression of the hypoxia-induced inflammatory cytokines TNF-α and IL-1β, inhibit the expression of the mesenchymal markers α-SMA and Vimentin and restore the expression of the endothelial markers CD31 and VE-cadherin to improve hypoxia-induced EndMT, which may be associated with the upregulation of CCN1 protein expression and downregulation of p-NFκB p65, TGF-β1, and p-Smad 2/3 in rats and cells. siRNA CCN1 transfection increased the expression of p-NFκB p65, TGF-β1, and p-Smad 2/3 and accelerated the occurrence and development of inflammation and EndMT after hypoxia. In summary, our study indicated that hypoxia-induced EndMT and inflammation play a role in hypoxic pulmonary hypertension (HPH). Ginsenoside Rg1 treatment could reverse hypoxia-induced EndMT and inflammation by regulating CCN1 and has potential value in the prevention and treatment of HPH.
Collapse
Affiliation(s)
- Bai-Lin Tang
- Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Jinzhou Medical University, Jinzhou 121000, China
| | - Yu Liu
- Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Jinzhou Medical University, Jinzhou 121000, China
| | - Jing-Liang Zhang
- Internal Medicine-Cardiovascular Department, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, China
| | - Mei-Li Lu
- Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Jinzhou Medical University, Jinzhou 121000, China
| | - Hong-Xin Wang
- Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Jinzhou Medical University, Jinzhou 121000, China.
| |
Collapse
|
13
|
Oh S, Jung JH, Ahn KJ, Jang AY, Byun K, Yang PC, Chung WJ. Stem Cell and Exosome Therapy in Pulmonary Hypertension. Korean Circ J 2022; 52:110-122. [PMID: 35128849 PMCID: PMC8819574 DOI: 10.4070/kcj.2021.0191] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 11/30/2021] [Accepted: 12/13/2021] [Indexed: 11/25/2022] Open
Abstract
Pulmonary hypertension (PH) is a disease that eventually causes right heart failure by remodeling pulmonary blood vessels. Based on the histopathological characteristics, PH is categorized into five subgroups. Rarely, a severe clinical entity is pulmonary arterial hypertension (PAH), subgroup 1. This disease process results in pulmonary vascular alterations through dysfunction of the pulmonary endothelium and disturbance of immune responses. Although medical treatments based on these pathophysiologic concepts have been applied for more than 30 years, PAH still cannot be cured. This review addresses the feasibility of and perspectives on stem cell therapy, including the role of exosomes in PAH. Pulmonary hypertension is a rare and progressive illness with a devastating prognosis. Promising research efforts have advanced the understanding and recognition of the pathobiology of pulmonary hypertension. Despite remarkable achievements in terms of improving the survival rate, reducing disease progression, and enhancing quality of life, pulmonary arterial hypertension (PAH) is not completely curable. Therefore, an effective treatment strategy is still needed. Recently, many studies of the underlying molecular mechanisms and technological developments have led to new approaches and paradigms for PAH treatment. Management based on stem cells and related paracrine effects, epigenetic drugs and gene therapies has yielded prospective results for PAH treatment in preclinical research. Further trials are ongoing to optimize these important insights into clinical circumstances.
Collapse
Affiliation(s)
- Seyeon Oh
- Gachon Cardiovascular Research Institute, Gachon University, Incheon, Korea
- Functional Cellular Networks Laboratory, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Korea
| | - Ji-Hye Jung
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Kyung-Jin Ahn
- Gachon Cardiovascular Research Institute, Gachon University, Incheon, Korea
- Division of Pediatric Cardiology, Department of Pediatrics, Gachon University Gil Medical Center, Incheon, Korea
| | - Albert Youngwoo Jang
- Gachon Cardiovascular Research Institute, Gachon University, Incheon, Korea
- Department of Cardiovascular Medicine, Gachon University Gil Medical Center, Incheon, Korea
| | - Kyunghee Byun
- Gachon Cardiovascular Research Institute, Gachon University, Incheon, Korea
- Functional Cellular Networks Laboratory, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Korea
- Department of Anatomy and Cell Biology, College of Medicine, Gachon University, Incheon, Korea
| | - Phillip C. Yang
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Stanford University School of Medicine, Palo Alto, CA, USA
| | - Wook-Jin Chung
- Gachon Cardiovascular Research Institute, Gachon University, Incheon, Korea
| |
Collapse
|
14
|
Wann SR, Chi PL, Huang WC, Cheng CC, Chang YT. Combination therapy of iPSC-derived conditioned medium with ceftriaxone alleviates bacteria-induced lung injury by targeting the NLRP3 inflammasome. J Cell Physiol 2021; 237:1299-1314. [PMID: 34612516 DOI: 10.1002/jcp.30596] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 09/16/2021] [Accepted: 09/20/2021] [Indexed: 01/14/2023]
Abstract
The lung is the first and most frequent organ to fail among sepsis patients. The mortality rate of sepsis-related acute lung injury (ALI) is high. Despite appropriate antimicrobial therapy, no treatment strategies are available for sepsis-induced ALI. Stem cell-mediated paracrine signaling is a potential treatment method for various diseases. This study aimed to examine the effects of induced pluripotent stem cell-derived conditioned medium (iPSC-CM) combined with antibiotics on ALI in a rat model of Escherichia coli-induced sepsis. Rats were administered either iPSC-CM or the vehicle (saline) with antibiotics (ceftriaxone). After 72 h, liquid biopsy, bronchoalveolar lavage fluid (BALF), and tissues were harvested for analysis. Survival rates were observed for up to 3 days. Furthermore, we examined the effects of iPSC-CM on cytokine production, metalloproteinase 9 (MMP-9) expression, and NLRP3-ASC interaction in RAW264.7 cells stimulated with lipopolysaccharide/interferon-γ (LPS/IFN-γ). Combined treatment of iPSC-CM with antibiotics significantly improved survival in E. coli-infected rats (p = 0.0006). iPSC-CM ameliorated E. coli-induced infiltration of macrophages, reducing the number of cells in BALF, and suppressing interleukin (IL)-1β, MIP-2, IL-6, and MMP-9 messenger RNA in lung sections. iPSC-CM treatment attenuated NLRP3 expression and inhibited NLRP3 inflammasome activation by disrupting NLRP3-mediated ASC complex formation in LPS/IFN-γ-primed RAW264.7 cells. This study reveals the mechanisms underlying iPSC-CM-conferred anti-inflammatory activity in ALI through the attenuation of macrophage recruitment to the lung, thus inactivating NLRP3 inflammasomes in macrophages. iPSC-CM therapy may be a useful adjuvant treatment to reduce sepsis-related mortality by ameliorating ALI.
Collapse
Affiliation(s)
- Shue-Ren Wann
- Department of Nursing, Shu-Zen Junior College of Medicine and Management, Kaohsiung City, Taiwan.,Department of Medicine, Kaohsiung Veterans General Hospital, Pingtung Branch, Pintung, Taiwan
| | - Pei-Ling Chi
- Department of Pathology and Laboratory Medicine, Kaohsiung Veterans General Hospital, Kaohsiung City, Taiwan
| | - Wei-Chun Huang
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei City, Taiwan.,Department of Critical Care Medicine, Kaohsiung Veterans General Hospital, Kaohsiung City, Taiwan.,Department of Physical Therapy, Fooyin University, Kaohsiung, Taiwan.,Graduate Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan
| | - Chin-Chang Cheng
- Department of Critical Care Medicine, Kaohsiung Veterans General Hospital, Kaohsiung City, Taiwan
| | - Yun-Te Chang
- Department of Nursing, Shu-Zen Junior College of Medicine and Management, Kaohsiung City, Taiwan.,School of Medicine, National Yang-Ming Chiao Tung University, Taipei City, Taiwan.,Department of Emergency Medicine, Kaohsiung Veterans General Hospital, Kaohsiung City, Taiwan.,Departement of Nursing, Yuh-Ing Junior College of Health Care and Management, Kaohsiung City, Taiwan
| |
Collapse
|
15
|
Kronstadt SM, Pottash AE, Levy D, Wang S, Chao W, Jay SM. Therapeutic Potential of Extracellular Vesicles for Sepsis Treatment. ADVANCED THERAPEUTICS 2021; 4:2000259. [PMID: 34423113 PMCID: PMC8378673 DOI: 10.1002/adtp.202000259] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Indexed: 12/14/2022]
Abstract
Sepsis is a deadly condition lacking a specific treatment despite decades of research. This has prompted the exploration of new approaches, with extracellular vesicles (EVs) emerging as a focal area. EVs are nanosized, cell-derived particles that transport bioactive components (i.e., proteins, DNA, and RNA) between cells, enabling both normal physiological functions and disease progression depending on context. In particular, EVs have been identified as critical mediators of sepsis pathophysiology. However, EVs are also thought to constitute the biologically active component of cell-based therapies and have demonstrated anti-inflammatory, anti-apoptotic, and immunomodulatory effects in sepsis models. The dual nature of EVs in sepsis is explored here, discussing their endogenous roles and highlighting their therapeutic properties and potential. Related to the latter component, prior studies involving EVs from mesenchymal stem/stromal cells (MSCs) and other sources are discussed and emerging producer cells that could play important roles in future EV-based sepsis therapies are identified. Further, how methodologies could impact therapeutic development toward sepsis treatment to enhance and control EV potency is described.
Collapse
Affiliation(s)
- Stephanie M Kronstadt
- Fischell Department of Bioengineering, University of Maryland, 3102 A. James Clark Hall, College Park, MD 20742, USA
| | - Alex E Pottash
- Fischell Department of Bioengineering, University of Maryland, 3102 A. James Clark Hall, College Park, MD 20742, USA
| | - Daniel Levy
- Fischell Department of Bioengineering, University of Maryland, 3102 A. James Clark Hall, College Park, MD 20742, USA
| | - Sheng Wang
- Translational Research Program, Department of Anesthesiology and Center for Shock Trauma and Anesthesiology Research, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Wei Chao
- Translational Research Program, Department of Anesthesiology and Center for Shock Trauma and Anesthesiology Research, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Steven M Jay
- Fischell Department of Bioengineering and Program in Molecular and, Cell Biology, University of Maryland, 3102 A. James Clark Hall, College Park, MD 20742, USA
| |
Collapse
|
16
|
Haller C, Friedberg MK, Laflamme MA. The role of regenerative therapy in the treatment of right ventricular failure: a literature review. Stem Cell Res Ther 2020; 11:502. [PMID: 33239066 PMCID: PMC7687832 DOI: 10.1186/s13287-020-02022-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/09/2020] [Indexed: 01/13/2023] Open
Abstract
Right ventricular (RV) failure is a commonly encountered problem in patients with congenital heart disease but can also be a consequence of left ventricular disease, primary pulmonary hypertension, or RV-specific cardiomyopathies. Improved survival of the aforementioned pathologies has led to increasing numbers of patients suffering from RV dysfunction, making it a key contributor to morbidity and mortality in this population. Currently available therapies for heart failure were developed for the left ventricle (LV), and there is clear evidence that LV-specific strategies are insufficient or inadequate for the RV. New therapeutic strategies are needed to address this growing clinical problem, and stem cells show significant promise. However, to properly evaluate the prospects of a potential stem cell-based therapy for RV failure, one needs to understand the unique pathophysiology of RV dysfunction and carefully consider available data from animal models and human clinical trials. In this review, we provide a comprehensive overview of the molecular mechanisms involved in RV failure such as hypertrophy, fibrosis, inflammation, changes in energy metabolism, calcium handling, decreasing RV contractility, and apoptosis. We also summarize the available preclinical and clinical experience with RV-specific stem cell therapies, covering the broad spectrum of stem cell sources used to date. We describe two different scientific rationales for stem cell transplantation, one of which seeks to add contractile units to the failing myocardium, while the other aims to augment endogenous repair mechanisms and/or attenuate harmful remodeling. We emphasize the limitations and challenges of regenerative strategies, but also highlight the characteristics of the failing RV myocardium that make it a promising target for stem cell therapy.
Collapse
Affiliation(s)
- Christoph Haller
- Division of Cardiovascular Surgery, The Labatt Family Heart Centre, The Hospital for Sick Children, Toronto, Canada.,Department of Surgery, University of Toronto, Toronto, Canada.,McEwen Stem Cell Institute, Peter Munk Cardiac Centre, University Health Network, Toronto, Canada
| | - Mark K Friedberg
- Division of Cardiology, The Labatt Family Heart Centre, The Hospital for Sick Children, Toronto, Canada.,Department of Pediatrics, University of Toronto, Toronto, Canada.,Department of Physiology, University of Toronto, Toronto, Canada
| | - Michael A Laflamme
- McEwen Stem Cell Institute, Peter Munk Cardiac Centre, University Health Network, Toronto, Canada. .,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada. .,McEwen Stem Cell Institute, Toronto Medical Discovery Tower, 101 College Street, Toronto, Ontario, M5G 1L7, Canada.
| |
Collapse
|
17
|
Spaczyńska M, Rocha SF, Oliver E. Pharmacology of Pulmonary Arterial Hypertension: An Overview of Current and Emerging Therapies. ACS Pharmacol Transl Sci 2020; 3:598-612. [PMID: 32832865 DOI: 10.1021/acsptsci.0c00048] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Indexed: 12/21/2022]
Abstract
Pulmonary arterial hypertension is a rare and devastating disease characterized by an abnormal chronic increase in pulmonary arterial pressure above 20 mmHg at rest, with a poor prognosis if not treated. Currently, there is not a single fully effective therapy, even though a dozen of drugs have been developed in the last decades. Pulmonary arterial hypertension is a multifactorial disease, meaning that several molecular mechanisms are implicated in its pathology. The main molecular pathways regulating the pulmonary vasomotor tone-endothelin, nitric oxide, and prostacyclin-are the most biologically and therapeutically explored to date. However, drugs targeting these pathways have already found their limitations. In the last years, translational research and clinical trials have made a strong effort in suggesting and testing novel therapeutic strategies for this disease. These approaches involve targeting the main molecular pathways with novel drugs, drug repurposing for novel targets, and also using combinatorial therapies. In this review, we summarize current strategies and drugs targeting the endothelin, nitric oxide, and prostacyclin pathways, as well as, the emerging new drugs proposed to cope with vascular remodelling, metabolic switch, perivascular inflammation, epigenetic modifications, estrogen deregulation, serotonin, and other neurohumoral mechanisms characteristic of this disease. Nowadays, pulmonary arterial hypertension remains an incurable disease; however, the incoming new knowledge makes us believe that new promising therapies are coming to the clinical arena soon.
Collapse
Affiliation(s)
- Monika Spaczyńska
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, 28029, Spain
| | - Susana F Rocha
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, 28029, Spain
| | - Eduardo Oliver
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, 28029, Spain.,Centro de Investigaciones Biomédicas en Red Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, 28029, Spain
| |
Collapse
|
18
|
Bisserier M, Pradhan N, Hadri L. Current and emerging therapeutic approaches to pulmonary hypertension. Rev Cardiovasc Med 2020; 21:163-179. [PMID: 32706206 PMCID: PMC7389678 DOI: 10.31083/j.rcm.2020.02.597] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 05/25/2020] [Indexed: 12/15/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive and fatal lung disease of multifactorial etiology. Most of the available drugs and FDA-approved therapies for treating pulmonary hypertension attempt to overcome the imbalance between vasoactive and vasodilator mediators, and restore the endothelial cell function. Traditional medications for treating PAH include the prostacyclin analogs and receptor agonists, phosphodiesterase 5 inhibitors, endothelin-receptor antagonists, and cGMP activators. While the current FDA-approved drugs showed improvements in quality of life and hemodynamic parameters, they have shown only very limited beneficial effects on survival and disease progression. None of them offers a cure against PAH, and the median survival rate remains less than three years from diagnosis. Extensive research efforts have led to the emergence of innovative therapeutic approaches in the area of PAH. In this review, we provide an overview of the current FDA-approved therapies in PAH and discuss the associated clinical trials and reported-side effects. As recent studies have led to the emergence of innovative therapeutic approaches in the area of PAH, we also focus on the latest promising therapies in preclinical studies such as stem cell-based therapies, gene transfer, and epigenetic therapies.
Collapse
Affiliation(s)
- Malik Bisserier
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Natasha Pradhan
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Lahouaria Hadri
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
19
|
Amini A, Chien S, Bayat M. Impact of Ultrasound Therapy on Stem Cell Differentiation - A Systematic Review. Curr Stem Cell Res Ther 2020; 15:462-472. [PMID: 32096749 DOI: 10.2174/1574888x15666200225124934] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 01/08/2020] [Accepted: 01/10/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVE This is a systematic review of the effects of low-intensity pulsed ultrasound (LIPUS) on stem cell differentiation. BACKGROUND DATA Recent studies have investigated several types of stem cells from different sources in the body. These stem cells should strictly be certified and promoted for cell therapies before being used in medical applications. LIPUS has been used extensively in treatment centers and in research to promote stem cell differentiation, function, and proliferation. MATERIALS AND METHODS The databases of PubMed, Google Scholar, and Scopus were searched for abstracts and full-text scientific papers published from 1989-2019 that reported the application of LIPUS on stem cell differentiation. Related English language articles were found using the following defined keywords: low-intensity pulsed ultrasound, stem cell, differentiation. Criteria for inclusion in the review were: LIPUS with frequencies of 1-3 MHz and pulsed ultrasound intensity of <500 mW/cm2. Duration, exposure time, and cell sources were taken into consideration. RESULTS Fifty-two articles were selected based on the inclusion criteria. Most articles demonstrated that the application of LIPUS had positive effects on stem cell differentiation. However, some authors recommended that LIPUS combined with other physical therapy aides was more effective in stem cell differentiation. CONCLUSION LIPUS significantly increases the level of stem cell differentiation in cells derived mainly from bone marrow mesenchymal stem cells. There is a need for further studies to analyze the effect of LIPUS on cells derived from other sources, particularly adipose tissue-derived mesenchymal stem cells, for treating hard diseases, such as osteoporosis and diabetic foot ulcer. Due to a lack of reporting on standard LIPUS parameters in the field, more experiments comparing the protocols for standardization of LIPUS parameters are needed to establish the best protocol, which would allow for the best results.
Collapse
Affiliation(s)
- Abdollah Amini
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sufan Chien
- Price Institute of Surgical Research, University of Louisville, Louisville, KY, United States
| | - Mohammad Bayat
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Price Institute of Surgical Research, University of Louisville, Louisville, KY, United States
| |
Collapse
|
20
|
Suen CM, Stewart DJ, Montroy J, Welsh C, Levac B, Wesch N, Zhai A, Fergusson D, McIntyre L, Lalu MM. Regenerative cell therapy for pulmonary arterial hypertension in animal models: a systematic review. Stem Cell Res Ther 2019; 10:75. [PMID: 30841915 PMCID: PMC6404277 DOI: 10.1186/s13287-019-1172-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/30/2019] [Accepted: 02/11/2019] [Indexed: 12/21/2022] Open
Abstract
Background Pulmonary arterial hypertension (PAH) is a rare disease characterized by widespread loss of the pulmonary microcirculation and elevated pulmonary arterial pressures leading to pathological right ventricular remodeling and ultimately right heart failure. Regenerative cell therapies could potentially restore the effective lung microcirculation and provide a curative therapy for PAH. The objective of this systematic review was to compare the efficacy of regenerative cell therapies in preclinical models of PAH. Methods A systematic search strategy was developed and executed. We included preclinical animal studies using regenerative cell therapy in experimental models of PAH. Primary outcomes were right ventricular systolic pressure (RVSP) and mean pulmonary arterial pressure (mPAP). The secondary outcome was right ventricle/left ventricle + septum weight ratio (RV/LV+S). Pooled effect sizes were undertaken using random effects inverse variance models. Risk of bias and publication bias were assessed. Results The systematic search yielded 1285 studies, of which 44 met eligibility criteria. Treatment with regenerative cell therapy was associated with decreased RVSP (SMD − 2.10; 95% CI − 2.59 to − 1.60), mPAP (SMD − 2.16; 95% CI − 2.97 to − 1.35), and RV/LV+S (SMD − 1.31, 95% CI − 1.64 to − 0.97). Subgroup analysis demonstrated that cell modification resulted in greater reduction in RVSP. The effects on RVSP and mPAP remained statistically significant even after adjustment for publication bias. The majority of studies had an unclear risk of bias. Conclusions Preclinical studies of regenerative cell therapy demonstrated efficacy in animal models of PAH; however, future studies should consider incorporating design elements to reduce the risk of bias. Systematic review registration Suen CM, Zhai A, Lalu MM, Welsh C, Levac BM, Fergusson D, McIntyre L and Stewart DJ. Efficacy and safety of regenerative cell therapy for pulmonary arterial hypertension in animal models: a preclinical systematic review protocol. Syst Rev. 2016;5:89. Trial registration CAMARADES-NC3Rs Preclinical Systematic Review & Meta-analysis Facility (SyRF). http://syrf.org.uk/protocols/. Syst Rev 5:89, 2016 Electronic supplementary material The online version of this article (10.1186/s13287-019-1172-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Colin M Suen
- Regenerative Medicine Program, The Ottawa Hospital Research Institute, 501 Smyth Road, PO Box 201B, Ottawa, ON, K1H 8L6, Canada.,Department of Cell and Molecular Medicine, University of Ottawa, Ottawa, Canada
| | - Duncan J Stewart
- Regenerative Medicine Program, The Ottawa Hospital Research Institute, 501 Smyth Road, PO Box 201B, Ottawa, ON, K1H 8L6, Canada.,Department of Cell and Molecular Medicine, University of Ottawa, Ottawa, Canada.,Department of Medicine, University of Ottawa, Ottawa, Canada
| | - Joshua Montroy
- Clinical Epidemiology Program, Ottawa, Canada.,Blueprint Translational Research Group, The Ottawa Hospital Research Institute, Ottawa, Canada
| | | | - Brendan Levac
- Department of Medicine, University of Ottawa, Ottawa, Canada
| | - Neil Wesch
- Clinical Epidemiology Program, Ottawa, Canada.,Blueprint Translational Research Group, The Ottawa Hospital Research Institute, Ottawa, Canada
| | - Alexander Zhai
- Regenerative Medicine Program, The Ottawa Hospital Research Institute, 501 Smyth Road, PO Box 201B, Ottawa, ON, K1H 8L6, Canada
| | - Dean Fergusson
- Clinical Epidemiology Program, Ottawa, Canada.,Blueprint Translational Research Group, The Ottawa Hospital Research Institute, Ottawa, Canada.,Department of Medicine, University of Ottawa, Ottawa, Canada.,Depatrment of Surgery, University of Ottawa, Ottawa, Canada.,Department of Epidemiology and Community Medicine, University of Ottawa, Ottawa, Canada
| | - Lauralyn McIntyre
- Clinical Epidemiology Program, Ottawa, Canada.,Blueprint Translational Research Group, The Ottawa Hospital Research Institute, Ottawa, Canada
| | - Manoj M Lalu
- Regenerative Medicine Program, The Ottawa Hospital Research Institute, 501 Smyth Road, PO Box 201B, Ottawa, ON, K1H 8L6, Canada. .,Department of Cell and Molecular Medicine, University of Ottawa, Ottawa, Canada. .,Department of Anesthesiology and Pain Medicine, The Ottawa Hospital, The Ottawa Hospital Research Institute, Ottawa, Canada. .,Clinical Epidemiology Program, Ottawa, Canada. .,Blueprint Translational Research Group, The Ottawa Hospital Research Institute, Ottawa, Canada.
| |
Collapse
|
21
|
Deng Y, Guo SL, Wei B, Gao XC, Zhou YC, Li JQ. Activation of Nicotinic Acetylcholine α7 Receptor Attenuates Progression of Monocrotaline-Induced Pulmonary Hypertension in Rats by Downregulating the NLRP3 Inflammasome. Front Pharmacol 2019; 10:128. [PMID: 30863307 PMCID: PMC6399137 DOI: 10.3389/fphar.2019.00128] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 02/05/2019] [Indexed: 12/11/2022] Open
Abstract
Background: Inflammation and altered immunity contribute to the development of pulmonary arterial hypertension (PH). The alpha 7 nicotinic acetylcholine receptor (α7nAChR) possesses anti-inflammatory activities. The current study was performed to investigate the effects of a selective α7nAChR agonist, PNU-282987, on controlling a monocrotaline (MCT)-induced rat model of PH and explored the underlying mechanisms. Methods: Sprague-Dawley rats were injected with MCT and treated with PNU-282987 at the prevention (starting 1 week before MCT) and treatment (starting 2 weeks after MCT) settings. Four weeks after MCT injection, hemodynamic changes, right ventricular structure, and lung morphological features were assessed. Enzyme-linked immunosorbent assay, Western blot and qRT-PCR were performed to assess levels of inflammatory cytokines and NLRP3 (Nod-like receptor family pyrin domain-containing 3) inflammasome pathway in the rat lung tissues. In addition, the lung macrophage line NR8383 was used to confirm the in vivo data. Results: Monocrotaline injection produced PH in rats and downregulated α7nAChR mRNA and protein expression in rat lung tissues compared to sham controls. Pharmacological activation of α7nAChR by PNU-282987 therapy improved the rat survival rate, attenuated the development of PH as assessed by remodeling of pulmonary arterioles, reduced the right ventricular (RV) systolic pressure, and ameliorated the hypertrophy and fibrosis of the RV in rats with MCT-induced PH. The expression of TNF-α, IL-6, IL-1β, and IL-18 were downregulated in rat lung tissues, which implied that PNU-282987 therapy may help regulate inflammation. These protective effects involved the inhibition of the NLRP3 inflammasome. In vitro assays of cultured rat lung macrophages confirmed that the anti-inflammation effect of PNU-282987 therapy may contribute to the disturbance of NLRP3 inflammasome activation. Conclusion: Targeting α7nAChR with PNU-282987 could effectively prevent and treat PH with benefits for preventing ongoing inflammation in the lungs of rats with MCT-induced PH by inhibiting NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Yan Deng
- Department of Ultrasound, The Cardiovascular Disease Institute, The First Affiliated Hospital to Guangxi Medical University, Nanning, China
| | - Sheng-Lan Guo
- Department of Ultrasound, The Cardiovascular Disease Institute, The First Affiliated Hospital to Guangxi Medical University, Nanning, China
| | - Bin Wei
- Department of Cardiology, The First Affiliated Hospital to Guangxi Medical University, Nanning, China
| | - Xing-Cui Gao
- Department of Cardiology, The First Affiliated Hospital to Guangxi Medical University, Nanning, China
| | - Ying-Chuan Zhou
- Department of Pathology, The First Affiliated Hospital to Guangxi Medical University, Nanning, China
| | - Jia-Quan Li
- The Experimental Center of Guangxi Medical University, Nanning, China
| |
Collapse
|
22
|
Ding XF, Liang HY, Yuan B, Li LF, Wang T, Kan QC, Wang LX, Sun TW. Efficacy of stem cell therapy for pulmonary arterial hypertension: a systematic review and meta-analysis of preclinical studies. Stem Cell Res Ther 2019; 10:55. [PMID: 30760312 PMCID: PMC6374914 DOI: 10.1186/s13287-019-1162-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 01/06/2019] [Accepted: 02/04/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Despite significant progress in drug treatment, the prognosis of patients with advanced pulmonary arterial hypertension (PAH) remains extremely poor. Many preclinical studies have reported the efficacy of stem cell (SC) therapy for PAH; however, this approach remains controversial. The aim of this systematic review and meta-analysis is to assess the potential efficacy of SC therapy for PAH. METHODS The Medline, EMBASE, Cochrane Library, and Web of Science databases were searched from inception to August 12, 2018. Preclinical studies that evaluated the use of SC therapy for PAH were included. The primary outcome was pulmonary haemodynamics, as assessed by measurement of the right ventricular systolic pressure (RVSP), mean pulmonary arterial pressure (mPAP), and/or mean right ventricle pressure (mRVP). The secondary outcomes included the weight ratio of the right ventricle to the left ventricle plus septum (RV/LV+S), the right ventricle to body weight ratio (RV/BW), the percentage of pulmonary arteriole area index (WA), and/or the percentage of medial wall thickness of the pulmonary arteriole (WT). The quality of outcomes was evaluated using the SYstematic Review Centre for Laboratory animal Experimentation (SYRCLE) bias risk tool. The inverse-variance method with random-effects modelling was used to calculate pooled weighted mean differences (WMDs) and 95% CIs. Statistical analysis was performed with STATA 14.0. RESULTS Twenty-eight eligible articles (722 animals) were included. SC therapy reduced the pooled WMDs (95% CIs) of RVSP, mPAP, mRVP, RV/LV+S, RV/BW, WA, and WT for animals with PAH, with values of - 14.12 (- 14.63, - 13.61), - 11.86 (- 12.35, - 11.36), - 17.33 (- 18.10, - 16.56), - 0.10 (- 0.10, - 0.09), 0.23 (0.21, 0.24), - 13.66 (- 15.71, - 11.62), and - 7.96 (- 7.99, - 7.93), respectively. CONCLUSIONS SC therapy is effective for PAH in preclinical studies. These results may help to standardise preclinical animal studies and provide a theoretical basis for clinical trial design in the future. SYSTEMATIC REVIEW REGISTRATION PROSPERO ( http://www.crd.york.ac.uk/PROSPERO ).
Collapse
Affiliation(s)
- Xian-Fei Ding
- General ICU, Henan Key Laboratory of Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
| | - Huo-Yan Liang
- General ICU, Henan Key Laboratory of Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
| | - Bo Yuan
- General ICU, Henan Key Laboratory of Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
| | - Li-Feng Li
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
| | - Tian Wang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
| | - Quan-Cheng Kan
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
| | - Le-Xin Wang
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW 2650 Australia
| | - Tong-Wen Sun
- General ICU, Henan Key Laboratory of Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
| |
Collapse
|
23
|
van Uden D, Boomars K, Kool M. Dendritic Cell Subsets and Effector Function in Idiopathic and Connective Tissue Disease-Associated Pulmonary Arterial Hypertension. Front Immunol 2019; 10:11. [PMID: 30723471 PMCID: PMC6349774 DOI: 10.3389/fimmu.2019.00011] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 01/04/2019] [Indexed: 01/11/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a cardiopulmonary disease characterized by an incurable condition of the pulmonary vasculature, leading to increased pulmonary vascular resistance, elevated pulmonary arterial pressure resulting in progressive right ventricular failure and ultimately death. PAH has different underlying causes. In approximately 30–40% of the patients no underlying risk factor or cause can be found, so-called idiopathic PAH (IPAH). Patients with an autoimmune connective tissue disease (CTD) can develop PAH [CTD-associated PAH (CTD-PAH)], suggesting a prominent role of immune cell activation in PAH pathophysiology. This is further supported by the presence of tertiary lymphoid organs (TLOs) near pulmonary blood vessels in IPAH and CTD-PAH. TLOs consist of myeloid cells, like monocytes and dendritic cells (DCs), T-cells, and B-cells. Next to their T-cell activating function, DCs are crucial for the preservation of TLOs. Multiple DC subsets can be found in steady state, such as conventional DCs (cDCs), including type 1 cDCs (cDC1s), and type 2 cDCs (cDC2s), AXL+Siglec6+ DCs (AS-DCs), and plasmacytoid DCs (pDCs). Under inflammatory conditions monocytes can differentiate into monocyte-derived-DCs (mo-DCs). DC subset distribution and activation status play an important role in the pathobiology of autoimmune diseases and most likely in the development of IPAH and CTD-PAH. DCs can contribute to pathology by activating T-cells (production of pro-inflammatory cytokines) and B-cells (pathogenic antibody secretion). In this review we therefore describe the latest knowledge about DC subset distribution, activation status, and effector functions, and polymorphisms involved in DC function in IPAH and CTD-PAH to gain a better understanding of PAH pathology.
Collapse
Affiliation(s)
- Denise van Uden
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, Netherlands
| | - Karin Boomars
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, Netherlands
| | - Mirjam Kool
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, Netherlands
| |
Collapse
|
24
|
Balsam LB. Endothelial progenitor cells to the rescue? J Thorac Cardiovasc Surg 2018; 157:667-668. [PMID: 30269973 DOI: 10.1016/j.jtcvs.2018.08.041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 08/21/2018] [Indexed: 11/17/2022]
Affiliation(s)
- Leora B Balsam
- Division of Cardiac Surgery, UMass Memorial Medical Center, Worcester, Mass.
| |
Collapse
|
25
|
Willis GR, Fernandez-Gonzalez A, Reis M, Mitsialis SA, Kourembanas S. Macrophage Immunomodulation: The Gatekeeper for Mesenchymal Stem Cell Derived-Exosomes in Pulmonary Arterial Hypertension? Int J Mol Sci 2018; 19:ijms19092534. [PMID: 30150544 PMCID: PMC6164282 DOI: 10.3390/ijms19092534] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 08/21/2018] [Accepted: 08/22/2018] [Indexed: 12/13/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive disease characterized by remodeling of the pulmonary arteries, increased pulmonary infiltrates, loss of vascular cross-sectional area, and elevated pulmonary vascular resistance. Despite recent advances in the management of PAH, there is a pressing need for the development of new tools to effectively treat and reduce the risk of further complications. Dysregulated immunity underlies the development of PAH, and macrophages orchestrate both the initiation and resolution of pulmonary inflammation, thus, manipulation of lung macrophage function represents an attractive target for emerging immunomodulatory therapies, including cell-based approaches. Indeed, mesenchymal stem cell (MSC)-based therapies have shown promise, effectively modulating the macrophage fulcrum to favor an anti-inflammatory, pro-resolving phenotype, which is associated with both histological and functional benefits in preclinical models of pulmonary hypertension (PH). The complex interplay between immune system homeostasis and MSCs remains incompletely understood. Here, we highlight the importance of macrophage function in models of PH and summarize the development of MSC-based therapies, focusing on the significance of MSC exosomes (MEx) and the immunomodulatory and homeostatic mechanisms by which such therapies may afford their beneficial effects.
Collapse
Affiliation(s)
- Gareth R Willis
- Division of Newborn Medicine, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA.
| | - Angeles Fernandez-Gonzalez
- Division of Newborn Medicine, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA.
| | - Monica Reis
- Division of Newborn Medicine, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA.
| | - S Alex Mitsialis
- Division of Newborn Medicine, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA.
| | - Stella Kourembanas
- Division of Newborn Medicine, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
26
|
Myeloid-Derived Suppressor Cells and Pulmonary Hypertension. Int J Mol Sci 2018; 19:ijms19082277. [PMID: 30081463 PMCID: PMC6121540 DOI: 10.3390/ijms19082277] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 07/31/2018] [Accepted: 08/01/2018] [Indexed: 01/04/2023] Open
Abstract
Myeloid–derived suppressor cells (MDSCs) comprised a heterogeneous subset of bone marrow–derived myeloid cells, best studied in cancer research, that are increasingly implicated in the pathogenesis of pulmonary vascular remodeling and the development of pulmonary hypertension. Stem cell transplantation represents one extreme interventional strategy for ablating the myeloid compartment but poses a number of translational challenges. There remains an outstanding need for additional therapeutic targets to impact MDSC function, including the potential to alter interactions with innate and adaptive immune subsets, or alternatively, alter trafficking receptors, metabolic pathways, and transcription factor signaling with readily available and safe drugs. In this review, we summarize the current literature on the role of myeloid cells in the development of pulmonary hypertension, first in pulmonary circulation changes associated with myelodysplastic syndromes, and then by examining intrinsic myeloid cell changes that contribute to disease progression in pulmonary hypertension. We then outline several tractable targets and pathways relevant to pulmonary hypertension via MDSC regulation. Identifying these MDSC-regulated effectors is part of an ongoing effort to impact the field of pulmonary hypertension research through identification of myeloid compartment-specific therapeutic applications in the treatment of pulmonary vasculopathies.
Collapse
|
27
|
Loisel F, Provost B, Haddad F, Guihaire J, Amsallem M, Vrtovec B, Fadel E, Uzan G, Mercier O. Stem cell therapy targeting the right ventricle in pulmonary arterial hypertension: is it a potential avenue of therapy? Pulm Circ 2018; 8:2045893218755979. [PMID: 29480154 PMCID: PMC5844533 DOI: 10.1177/2045893218755979] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is an incurable disease characterized by an increase in pulmonary arterial pressure due to pathological changes to the pulmonary vascular bed. As a result, the right ventricle (RV) is subject to an increased afterload and undergoes multiple changes, including a decrease in capillary density. All of these dysfunctions lead to RV failure. A number of studies have shown that RV function is one of the main prognostic factors for PAH patients. Many stem cell therapies targeting the left ventricle are currently undergoing development. The promising results observed in animal models have led to clinical trials that have shown an improvement of cardiac function. In contrast to left heart disease, stem cell therapy applied to the RV has remained poorly studied, even though it too may provide a therapeutic benefit. In this review, we discuss stem cell therapy as a treatment for RV failure in PAH. We provide an overview of the results of preclinical and clinical studies for RV cell therapies. Although a large number of studies have targeted the pulmonary circulation rather than the RV directly, there are nonetheless encouraging results in the literature that indicate that cell therapies may have a direct beneficial effect on RV function. This cell therapy strategy may therefore hold great promise and warrants further studies in PAH patients.
Collapse
Affiliation(s)
- Fanny Loisel
- 1 36705 Research and Innovation Unit, Inserm UMR-S 999, Marie Lannelongue Hospital, Universite Paris Sud, Paris-Saclay University, Le Plessis Robinson, France.,2 Inserm 1197 Research Unit, Universite Paris Sud, Paris-Saclay University, Villejuif, France
| | - Bastien Provost
- 1 36705 Research and Innovation Unit, Inserm UMR-S 999, Marie Lannelongue Hospital, Universite Paris Sud, Paris-Saclay University, Le Plessis Robinson, France
| | - François Haddad
- 3 Cardiovascular Medicine, Stanford Hospital, Stanford University, CA, USA
| | - Julien Guihaire
- 1 36705 Research and Innovation Unit, Inserm UMR-S 999, Marie Lannelongue Hospital, Universite Paris Sud, Paris-Saclay University, Le Plessis Robinson, France
| | - Myriam Amsallem
- 1 36705 Research and Innovation Unit, Inserm UMR-S 999, Marie Lannelongue Hospital, Universite Paris Sud, Paris-Saclay University, Le Plessis Robinson, France
| | - Bojan Vrtovec
- 4 Department of Cardiology, Advanced Heart Failure and Transplantation Center, University Medical Center Ljubljana, Ljubljana, Slovenia
| | - Elie Fadel
- 1 36705 Research and Innovation Unit, Inserm UMR-S 999, Marie Lannelongue Hospital, Universite Paris Sud, Paris-Saclay University, Le Plessis Robinson, France.,5 Department of Thoracic and Vascular Surgery and Heart-Lung Transplantation, Marie Lannelongue Hospital, Universite Paris Sud, Paris-Saclay University, Le Plessis Robinson, France
| | - Georges Uzan
- 2 Inserm 1197 Research Unit, Universite Paris Sud, Paris-Saclay University, Villejuif, France
| | - Olaf Mercier
- 1 36705 Research and Innovation Unit, Inserm UMR-S 999, Marie Lannelongue Hospital, Universite Paris Sud, Paris-Saclay University, Le Plessis Robinson, France.,5 Department of Thoracic and Vascular Surgery and Heart-Lung Transplantation, Marie Lannelongue Hospital, Universite Paris Sud, Paris-Saclay University, Le Plessis Robinson, France
| |
Collapse
|
28
|
de Mendonça L, Felix NS, Blanco NG, Da Silva JS, Ferreira TP, Abreu SC, Cruz FF, Rocha N, Silva PM, Martins V, Capelozzi VL, Zapata-Sudo G, Rocco PRM, Silva PL. Mesenchymal stromal cell therapy reduces lung inflammation and vascular remodeling and improves hemodynamics in experimental pulmonary arterial hypertension. Stem Cell Res Ther 2017; 8:220. [PMID: 28974252 PMCID: PMC5627397 DOI: 10.1186/s13287-017-0669-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 08/29/2017] [Accepted: 09/12/2017] [Indexed: 12/30/2022] Open
Abstract
Background Experimental research has reported beneficial effects of mesenchymal stromal cell (MSC) therapy in pulmonary arterial hypertension (PAH). However, these studies either were based on prophylactic protocols or assessed basic remodeling features without evaluating possible mechanisms. We analyzed the effects of MSC therapy on lung vascular remodeling and hemodynamics and its possible mechanisms of action in monocrotaline (MCT)-induced PAH. Methods Twenty-eight Wistar rats were randomly divided into two groups. In the PAH group, animals received MCT 60 mg/kg intraperitoneally, while a control group received saline (SAL) instead. On day 14, both groups were further randomized to receive 105 adipose-derived MSCs or SAL intravenously (n = 7/group). On day 28, right ventricular systolic pressure (RVSP) and the gene expression of mediators associated with apoptosis, inflammation, fibrosis, Smad-1 levels, cell proliferation, and endothelial–mesenchymal transition were determined. In addition, lung histology (smooth muscle cell proliferation and plexiform-like injuries), CD68+ and CD163+ macrophages, and plasma levels of vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF) were evaluated. Results In the PAH group, adipose-derived MSCs, compared to SAL, reduced mean RVSP (29 ± 1 vs 39 ± 2 mmHg, p < 0.001), lung tissue collagen fiber content, smooth muscle cell proliferation, CD68+ macrophages, interleukin-6 expression, and the antiapoptotic mediators Bcl-2 and survivin. Conversely, expression of the proapoptotic mediator procaspase-3 and plasma VEGF increased, with no changes in PDGF. In the pulmonary artery, MSCs dampened the endothelial–mesenchymal transition. Conclusion In MCT-induced PAH, MSC therapy reduced lung vascular remodeling, thus improving hemodynamics. These beneficial effects were associated with increased levels of proapoptotic markers, mesenchymal-to-endothelial transition, reduced cell proliferation markers, and inflammation due to a shift away from the M1 phenotype. Electronic supplementary material The online version of this article (doi:10.1186/s13287-017-0669-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lucas de Mendonça
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Centro de Ciências da Saúde, Avenida Carlos Chagas Filho, s/n, Bloco G-014, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil.,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, RJ, Brazil
| | - Nathane S Felix
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Centro de Ciências da Saúde, Avenida Carlos Chagas Filho, s/n, Bloco G-014, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil.,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, RJ, Brazil
| | - Natália G Blanco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Centro de Ciências da Saúde, Avenida Carlos Chagas Filho, s/n, Bloco G-014, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil.,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, RJ, Brazil
| | - Jaqueline S Da Silva
- Laboratory of Cardiovascular Pharmacology, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Tatiana P Ferreira
- Laboratory of Inflammation, Oswaldo Cruz Institute-Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - Soraia C Abreu
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Centro de Ciências da Saúde, Avenida Carlos Chagas Filho, s/n, Bloco G-014, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil.,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, RJ, Brazil
| | - Fernanda F Cruz
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Centro de Ciências da Saúde, Avenida Carlos Chagas Filho, s/n, Bloco G-014, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil.,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, RJ, Brazil
| | - Nazareth Rocha
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Centro de Ciências da Saúde, Avenida Carlos Chagas Filho, s/n, Bloco G-014, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil.,Department of Physiology, Fluminense Federal University, Niterói, RJ, Brazil
| | - Patrícia M Silva
- Laboratory of Inflammation, Oswaldo Cruz Institute-Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - Vanessa Martins
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Centro de Ciências da Saúde, Avenida Carlos Chagas Filho, s/n, Bloco G-014, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil.,Laboratory of Histomorphometry and Lung Genomics, University of São Paulo Faculty of Medicine, São Paulo, SP, Brazil
| | - Vera L Capelozzi
- Laboratory of Histomorphometry and Lung Genomics, University of São Paulo Faculty of Medicine, São Paulo, SP, Brazil
| | - Gizele Zapata-Sudo
- Laboratory of Cardiovascular Pharmacology, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Centro de Ciências da Saúde, Avenida Carlos Chagas Filho, s/n, Bloco G-014, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil.,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, RJ, Brazil
| | - Pedro L Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Centro de Ciências da Saúde, Avenida Carlos Chagas Filho, s/n, Bloco G-014, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil. .,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
29
|
Middleton RC, Fournier M, Xu X, Marbán E, Lewis MI. Therapeutic benefits of intravenous cardiosphere-derived cell therapy in rats with pulmonary hypertension. PLoS One 2017; 12:e0183557. [PMID: 28837618 PMCID: PMC5570343 DOI: 10.1371/journal.pone.0183557] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 08/07/2017] [Indexed: 11/24/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive condition characterized by occlusive pulmonary arteriopathy, in which survival remains poor despite pharmacologic advances. The aim of this study was to evaluate the ability of cardiosphere-derived cells (CDCs), cardiac progenitor cells with potent anti-inflammatory and immunomodulatory properties, to attenuate hemodynamic and morphometric remodeling of the right ventricle (RV) and pulmonary arterioles in rats with established monocrotaline (MCT)-induced PAH. Animals were divided into 3 groups: 1) Control (CTL), 2) PAH in which CDCs were centrally infused (CDC) and 3) PAH in which saline was given (Sham). Significant increments in RV systolic pressure (RVSP) and RV hypertrophy were noted in Sham animals compared to CTL. In CDC rats at day 35, RSVP fell (- 38%; p< 0.001) and RV hypertrophy decreased (-26%; p< 0.01). TAPSE and cardiac output were preserved in all 3 groups at day 35. Pulmonary arteriolar wall thickness was greater in Sham rats compared to CTL, and reduced in CDC animals for vessels 20–50 μm (P<0.01; back to CTL levels) and 50–80μm (P<0.01) in diameter. The macrophage population was increased in Sham animals compared to CTL (P< 0.001), but markedly reduced in CDC rats. In conclusion, infusion of CDCs markedly attenuated several key pathophysiologic features of PAH. As adjunctive therapy to PAH-specific agents, CDCs have the potential to impact on the pathobiology of adverse pulmonary arteriolar remodeling, by acting on multiple mechanisms simultaneously.
Collapse
Affiliation(s)
- Ryan C. Middleton
- Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States of America
| | - Mario Fournier
- Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States of America
- Division of Pulmonary/Critical Care Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States of America
| | - Xuan Xu
- Division of Pulmonary/Critical Care Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States of America
| | - Eduardo Marbán
- Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States of America
| | - Michael I. Lewis
- Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States of America
- Division of Pulmonary/Critical Care Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States of America
- * E-mail:
| |
Collapse
|