1
|
Kim S, Jang S, Lee O. Muscle structure assessment using synchrotron radiation X-ray micro-computed tomography in murine with cerebral ischemia. Sci Rep 2024; 14:26825. [PMID: 39501018 PMCID: PMC11538359 DOI: 10.1038/s41598-024-78324-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 10/30/2024] [Indexed: 11/08/2024] Open
Abstract
Muscles are crucial for balance and walking, activities which depend specifically on the lower extremity muscles. Therefore, the evaluation of stroke induced atrophy and paralysis is essential; however, determining the extent of damage in the days after its occurrence remains challenging. In this study, we evaluated ischemic stroke-induced soleus muscle damage in gerbils using synchrotron radiation X-ray micro-computed tomography (SR-µCT), comparing a control group (n = 3), animals 7 days after stroke (7 d, n = 3), and animals 14 days after stroke (14 d, n = 3). The left muscle was paralyzed, whereas the right muscle was not. Subsequently, we quantified the assessment by segmenting the soleus muscle based on the extracellular space/matrix and fiber region to determine the degree of damage. The muscle fiber-to-extracellular space/matrix ratio were significantly damaged due to paralysis on the left side (control vs. 14 d, P = 0.040). Muscle area was significantly different at 14 d between the left and right sides (P = 0.010). Additionally, the left local fascicle surface area, thickness, global pennation angle, and local fascicle angle were significantly different between the control and 14 d groups (P = 0.002, P = 0.007, P = 0.005, and P = 0.014 respectively). These findings underscore the potential of post-stroke animal studies in improving rehabilitation treatment for the central nervous system by assessing the degree of muscle recovery.
Collapse
Affiliation(s)
- Subok Kim
- Department of Software Convergence, Graduate School, Soonchunhyang University, 22, Soonchunhyang-ro, 31538, Asan City, Chungnam, Republic of Korea
| | - Sanghun Jang
- Department of Physical Therapy, College of Health and Life Sciences, Korea National University of Transportation, 61, Daehak-ro, 27909, Jeungpyeong-eup, Chungbuk, Republic of Korea
| | - Onseok Lee
- Department of Software Convergence, Graduate School, Soonchunhyang University, 22, Soonchunhyang-ro, 31538, Asan City, Chungnam, Republic of Korea.
- Department of Medical IT Engineering, College of Medical Sciences, Soonchunhyang University, 22, Soonchunhyang-ro, 31538, Asan City, Chungnam, Republic of Korea.
| |
Collapse
|
2
|
Jie HW, Jie W, Jianxiong M, Xin Z, Runnan X, Yijia F, Bodong L, Jie H. Mechanism of denervation muscle atrophy mediated by Ach/p38/MAPK pathway in rats with erectile dysfunction caused by nerve injury. Exp Cell Res 2024; 442:114283. [PMID: 39419339 DOI: 10.1016/j.yexcr.2024.114283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/06/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Peripheral nerve injury can result in penile cavernosal denervation muscle atrophy, a primary factor in nerve injury erectile dysfunction (NED). While acetylcholine (Ach) is integral to erectile function, its role and mechanisms in NED need further exploration. OBJECTIVE To investigate the inhibition of CCMSCs Apoptosis and Protein Degradation Pathway by Ach in NED rat model. METHODS We investigated changes in Ach secretion and receptor expression in an NED rat model, followed by the evaluation of apoptosis and ubiquitin proteasome activation in hypoxic Cavernous smooth muscle cells (CCMSCs) and their co-cultures with Schwann cells (SWCs), under Ach influence. Further, key pathways in NED were identified via high-throughput sequencing, focusing on the p38/MAPK signaling pathway. We examined gene alterations related to this pathway using hypoxic cell models and employed p38 inhibitors to verify protein changes. Our findings in vitro were then confirmed in the NED rat model. RESULTS Nerve injury led to reduced Ach receptors and associated gene expression. Experimentally, Ach was shown to counteract CCMSC apoptosis and muscle protein degradation via the p38/MAPK pathway. Inhibition of the Ach degradation pathway demonstrated a capacity to slow NED progression in vivo. DISCUSSION AND CONCLUSION Activation of Ach receptors may decelerate denervation-induced cavernosal muscle atrophy, suggesting a potential therapeutic approach for NED. This study highlights the crucial role of the Ach/p38/MAPK axis in the pathophysiology of penis smooth muscle atrophy and its broader implications in managing NED and male erectile dysfunction.
Collapse
Affiliation(s)
- Huang Wen Jie
- Department of Urology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang, China
| | - Wang Jie
- Department of Urology, Zhejiang Hospital Affiliated to Zhejiang University School of Medicine, Zhejiang, China
| | - Ma Jianxiong
- The Second Affiliated Clinical Medical College of Zhejiang University of Traditional Chinese Medicine, Zhejiang, China
| | - Zhang Xin
- The Second Affiliated Clinical Medical College of Zhejiang University of Traditional Chinese Medicine, Zhejiang, China
| | - Xu Runnan
- The Second Affiliated Clinical Medical College of Zhejiang University of Traditional Chinese Medicine, Zhejiang, China
| | - Fu Yijia
- The Second Affiliated Clinical Medical College of Zhejiang University of Traditional Chinese Medicine, Zhejiang, China
| | - Lv Bodong
- Department of Urology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang, China; Zhejiang Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Sexual Dysfunction, Zhejiang, China.
| | - Huang Jie
- Department of Anesthesiology, the First Affiliated Hospital of Zhejiang University School of Medicine Zhejiang, China.
| |
Collapse
|
3
|
Minegishi Y, Ozone K, Oka Y, Kano T, Murata K, Kanemura N. Effect of repeated sciatic nerve crush on the conditioning lesion response: Generating an experimental animal model to prolong the denervation period while maintaining peripheral nerve continuity. Neurosci Lett 2024; 836:137879. [PMID: 38880353 DOI: 10.1016/j.neulet.2024.137879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 06/18/2024]
Abstract
Peripheral nerves exhibit long-term residual motor dysfunction following injury. The length of the denervation period before nerve and muscle reconnection is an important factor in motor function recovery. We aimed to investigate whether repeated nerve crush injuries to the same site every 7 days would preserve the conditioning lesion (CL) response and to determine the number of nerve crush injuries required to create an experimental animal model that would prolong the denervation period while maintaining peripheral nerve continuity. Rats were grouped according to the number of sciatic nerve crushes. A significant decrease in the soleus muscle fiber cross-sectional area was observed with increased crushes. After a single crush, macrophage accumulation and macrophage chemotaxis factor CCL2 expression in dorsal root ganglia were markedly increased, which aligned with the gene expression of Ccl2 and its receptor Ccr2. Macrophage numbers, histological CCL2 expression, and Ccl2 and Ccr2 gene expression levels decreased, depending on the number of repeated crushes. Histological analysis and gene expression analysis in the group with four repeated crushes did not differ significantly when compared with uninjured animals. Our findings indicated that repeated nerve crushes at the same site every 7 days sustained innervation loss and caused a loss of the CL response. The experimental model did not require nerve stump suturing and is useful for exploring factors causing prolonged denervation-induced motor dysfunction. SIGNIFICANCE STATEMENT: This study elucidates the effects of repeated nerve crush injury to the same site on innervation and conditioning lesion responses and demonstrates the utility of an experimental animal model that recapitulates the persistent residual motor deficits owing to prolonged denervation without requiring nerve transection and transection suturing.
Collapse
Affiliation(s)
- Yuki Minegishi
- Physical Therapy Course, Department of Rehabilitation, Faculty of Health Sciences, Nihon Institute of Medical Science, Irumagun 350-0435, Japan; Graduate Course of Health and Social Services, Graduate School of Saitama Prefectural University, Koshigaya 343-8540, Japan
| | - Kaichi Ozone
- Graduate Course of Health and Social Services, Graduate School of Saitama Prefectural University, Koshigaya 343-8540, Japan; Department of Rehabilitation, University of Tsukuba Hospital, Tsukuba 305-8576, Japan
| | - Yuichiro Oka
- Department of Rehabilitation Science, Faculty of Health Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Takuma Kano
- Graduate Course of Health and Social Services, Graduate School of Saitama Prefectural University, Koshigaya 343-8540, Japan; Soka Orthopedic Internal Medicine, Soka 340-0016, Japan
| | - Kenji Murata
- Department of Physical Therapy, Faculty of Health and Social Services, Saitama Prefectural University, Koshigaya 343-8540, Japan
| | - Naohiko Kanemura
- Department of Physical Therapy, Faculty of Health and Social Services, Saitama Prefectural University, Koshigaya 343-8540, Japan.
| |
Collapse
|
4
|
Kim Y, Oh Y, Kim YS, Shin JH, Lee YS, Kim Y. β‑carotene attenuates muscle wasting in cancer cachexia by regulating myogenesis and muscle atrophy. Oncol Rep 2024; 51:9. [PMID: 37975253 PMCID: PMC10696564 DOI: 10.3892/or.2023.8668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 08/31/2023] [Indexed: 11/19/2023] Open
Abstract
Cancer cachexia is a metabolic disease involving multiple organs, which is accompanied by the depletion of muscle tissue and is associated with ~20% of cancer‑related deaths. Muscle wasting is a critical factor in cancer cachexia. β‑carotene (BC) has been shown to increase muscle mass and hypertrophy in healthy mice. However, its effects on muscle tissue dysregulation in cancer cachexia have yet to be studied. In the present study, 5‑week‑old male C57BL/6J mice were injected with 1x106 Lewis lung carcinoma (LLC) cells to induce cancer cachexia; then the mice were administered BC (4 or 8 mg/kg) for 22 days to assess its effects on muscle atrophy in the gastrocnemius muscles. The effects of BC on inflammatory cytokines, myogenesis and muscle atrophy were evaluated using C2C12 myotubes treated with LLC‑conditioned media. BC supplementation significantly suppressed tumor growth, inflammatory cytokines, and hepatic gluconeogenesis in the LLC‑induced cancer cachexia mouse model, while also improving muscle weight and grip strength. These effects are considered to be mediated by the PI3K/Akt pathway and through regulation of muscle atrophy. Moreover, BC treatment was associated with the recovery of LLC‑conditioned media‑induced muscle differentiation deficits and muscle atrophy in C2C12 myotubes. These findings indicate BC as a potential novel therapeutic agent for cancer cachexia.
Collapse
Affiliation(s)
- Yerin Kim
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Yeonsoo Oh
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Republic of Korea
- Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Yoo Sun Kim
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jae-Ho Shin
- Department of Biomedical Laboratory Science, Eulji University, Gyeonggi-do 13135, Republic of Korea
| | - Yeon Su Lee
- Department of Biomedical Laboratory Science, Eulji University, Gyeonggi-do 13135, Republic of Korea
| | - Yuri Kim
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Republic of Korea
- Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
5
|
GrönholdtKlein M, Gorzi A, Wang L, Edström E, Rullman E, Altun M, Ulfhake B. Emergence and Progression of Behavioral Motor Deficits and Skeletal Muscle Atrophy across the Adult Lifespan of the Rat. BIOLOGY 2023; 12:1177. [PMID: 37759577 PMCID: PMC10526071 DOI: 10.3390/biology12091177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/14/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023]
Abstract
The facultative loss of muscle mass and function during aging (sarcopenia) poses a serious threat to our independence and health. When activities of daily living are impaired (clinical phase), it appears that the processes leading to sarcopenia have been ongoing in humans for decades (preclinical phase). Here, we examined the natural history of sarcopenia in male outbred rats to compare the occurrence of motor behavioral deficits with the degree of muscle wasting and to explore the muscle-associated processes of the preclinical and clinical phases, respectively. Selected metrics were validated in female rats. We used the soleus muscle because of its long duty cycles and its importance in postural control. Results show that gait and coordination remain intact through middle age (40-60% of median lifespan) when muscle mass is largely preserved relative to body weight. However, the muscle shows numerous signs of remodeling with a shift in myofiber-type composition toward type I. As fiber-type prevalence shifted, fiber-type clustering also increased. The number of hybrid fibers, myofibers with central nuclei, and fibers expressing embryonic myosin increased from being barely detectable to a significant number (5-10%) at late middle age. In parallel, TGFβ1, Smad3, FBXO32, and MuRF1 mRNAs increased. In early (25-month-old) and advanced (30-month-old) aging, gait and coordination deteriorate with the progressive loss of muscle mass. In late middle age and early aging due to type II atrophy (>50%) followed by type I atrophy (>50%), the number of myofibers did not correlate with this process. In advanced age, atrophy is accompanied by a decrease in SCs and βCatenin mRNA, whereas several previously upregulated transcripts were downregulated. The re-expression of embryonic myosin in myofibers and the upregulation of mRNAs encoding the γ-subunit of the nicotinic acetylcholine receptor, the neuronal cell adhesion molecule, and myogenin that begins in late middle age suggest that one mechanism driving sarcopenia is the disruption of neuromuscular connectivity. We conclude that sarcopenia in rats, as in humans, has a long preclinical phase in which muscle undergoes extensive remodeling to maintain muscle mass and function. At later time points, these adaptive mechanisms fail, and sarcopenia becomes clinically manifest.
Collapse
Affiliation(s)
- Max GrönholdtKlein
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden;
| | - Ali Gorzi
- Department of Sport Sciences, University of Zanjan, Zanjan 45371-38791, Iran;
| | - Lingzhan Wang
- Department of Human Anatomy, Histology and Embryology, Inner Mongolia Minzu University, Tongliao 028000, China;
| | - Erik Edström
- Department of Clinical Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden;
| | - Eric Rullman
- Department of Laboratory Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden; (E.R.); (M.A.)
| | - Mikael Altun
- Department of Laboratory Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden; (E.R.); (M.A.)
| | - Brun Ulfhake
- Department of Laboratory Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden; (E.R.); (M.A.)
| |
Collapse
|
6
|
Lee J, Jang SH, Lee O. Three-dimensional analysis of injury conditions of single muscle fibers in small animals using phase-contrast X-ray imaging. Microsc Res Tech 2020; 84:38-41. [PMID: 32790099 DOI: 10.1002/jemt.23561] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/02/2020] [Accepted: 07/03/2020] [Indexed: 12/18/2022]
Abstract
Muscle damage can reduces the biological functions and lead to ultimately a disease state. For the reason, it is important to accurately check the state of an injury such as atrophy, and it is required to identify the state of fibers constituting the muscle. This study describes a novel method of analyzing single muscle fibers with injury conditions in three-dimensions. The muscle fibers of the mice were visualized using phase-contrast X-ray projection the microstructure. In additions, it was possible to confirm the status by quantitatively analyzing the injury severity of muscle fibers. Significantly, the muscle conditions of multiple individuals were individually determined. This study could contributes to areas where it is very important to identify microdetailed and quantitative changes of state, such as new drug development.
Collapse
Affiliation(s)
- Jiwon Lee
- Department of Computer & Science Engineering, Graduate School, Soonchunhyang University, Asan, Chungnam, 31538, Republic of Korea
| | - Sang-Hun Jang
- Department of Physical Therapy, College of Health and Life Science, Korea National University of Transportation, Jeungpyeong-gun, Chungbuk, 27909, Republic of Korea
| | - Onseok Lee
- Department of Medical IT Engineering, College of Medical Sciences, Soonchunhyang University, Asan, Chungnam, 31538, Republic of Korea
| |
Collapse
|
7
|
Sun X, Wang W, Dong Y, Wang Y, Zhang M, Wang Z, Yu X, Huang J, Cai H. Relationship between calcium circulation-related factors and muscle strength in rat sciatic nerve injury model. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2020; 23:654-662. [PMID: 32742604 PMCID: PMC7375001 DOI: 10.22038/ijbms.2020.40915.9695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVES The purpose of this study is to investigate the indication function of the calcium circulation-related factors on the damage to muscle strength and contraction function after nerve injury. The target factors include ryanodine receptor (RyR), inositol-1,4,5-triphosphate receptor (IP3R), phospholamban (PLN), cryptocalcitonin (CASQ), ATPase and troponin C (TNNC). MATERIALS AND METHODS Sprague-Dawley (SD) rats were randomly divided into sham-operated group (SO), sciatic nerve injury group (SNI) and sciatic nerve disconnection group (SNT). Sciatic nerve function index and stretching test were used to examine the changes to muscle strength; bilateral gastrocnemius muscles were extracted after execution for gastrocnemius wet weight ratio test. HE staining slides and average cross-sectional area of muscle fibers were acquired to analyze the muscle atrophy. The transcription level of the factors was also measured. RESULTS Sciatic nerve damage in SNI group was significantly higher than that in SO group in the 6 weeks, but there was no significant difference between SNT and SO groups fallowing sciatic nerve damage. Sciatic nerve function in SNT group was worse than that in SNI group. The average cross-sectional area of gastrocnemius muscle fibers in SNI and SNT groups was significantly reduced compared to that in SO group. The transcriptional levels of RyR, PLN, CASQ, ATPase and TNNC in SNI and SNT groups were significantly different from those in SO group. CONCLUSION Calcium circulation-related factors could be used as potential indicators for assessment of damages to muscle strength.
Collapse
Affiliation(s)
- Xiaoming Sun
- Department of Forensic Medicine, Xuzhou Medical University, Xuzhou, Jiangsu, P. R. China
| | - Wei Wang
- Department of Forensic Medicine, Xuzhou Medical University, Xuzhou, Jiangsu, P. R. China
| | - Yangyi Dong
- Department of Forensic Medicine, Xuzhou Medical University, Xuzhou, Jiangsu, P. R. China
| | - Yue Wang
- Department of Forensic Medicine, Xuzhou Medical University, Xuzhou, Jiangsu, P. R. China
| | - Meixiang Zhang
- Department of Forensic Medicine, Xuzhou Medical University, Xuzhou, Jiangsu, P. R. China
| | - Zhao Wang
- Department of Forensic Medicine, Xuzhou Medical University, Xuzhou, Jiangsu, P. R. China
| | - Xiaowei Yu
- Department of Forensic Medicine, Xuzhou Medical University, Xuzhou, Jiangsu, P. R. China
| | - Jiao Huang
- Department of Forensic Medicine, Xuzhou Medical University, Xuzhou, Jiangsu, P. R. China
| | - Hongxing Cai
- Department of Forensic Medicine, Xuzhou Medical University, Xuzhou, Jiangsu, P. R. China,Corresponding author: Hongxing Cai. Department of Forensic Medicine, Xuzhou Medical University, Xuzhou, Jiangsu, P. R. China. Tel: 0516-85748442
| |
Collapse
|
8
|
Synchrotron radiation imaging analysis of neural damage in mouse soleus muscle. Sci Rep 2020; 10:4555. [PMID: 32165699 PMCID: PMC7067770 DOI: 10.1038/s41598-020-61599-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 02/27/2020] [Indexed: 11/17/2022] Open
Abstract
Damage to lower limb muscles requires accurate analysis of the muscular condition via objective microscopic diagnosis. However, microscopic tissue analysis may cause deformation of the tissue structure due to injury induced by external factors during tissue sectioning. To substantiate these muscle injuries, we used synchrotron X-ray imaging technology to project extremely small objects, provide three-dimensional microstructural analysis as extracted samples. In this study, we used mice as experimental animals to create soleus muscle models with various nerve injuries. We morphologically analyzed and quantified the damaged Section and Crush muscles, respectively, via three-dimensional visualization using synchrotron radiation X-ray imaging to diagnose muscle injury. Results of this study can also be used as basic data in the medical imaging field.
Collapse
|
9
|
Gurjar AA, Kushwaha S, Chattopadhyay S, Das N, Pal S, China SP, Kumar H, Trivedi AK, Guha R, Chattopadhyay N, Sanyal S. Long acting GLP-1 analog liraglutide ameliorates skeletal muscle atrophy in rodents. Metabolism 2020; 103:154044. [PMID: 31812628 DOI: 10.1016/j.metabol.2019.154044] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/28/2019] [Accepted: 12/02/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Skeletal muscle atrophy is characterized by muscle wasting with partial or complete functional loss. Skeletal muscle atrophy severely affects the quality of life and currently, there is no available therapy except for spinal muscular atrophy. OBJECTIVE Drug repositioning is a promising strategy that reduces cost and time due to prior availability of safety and toxicity details. Here we investigated myogenic and anti-atrophy effects of glucagon-like peptide-1 (GLP-1) analog liraglutide. METHODS We used several in vitro atrophy models in C2C12 cells and in vivo models in Sprague Dawley rats to study Liraglutide's efficacy. Western blotting was used to assess cAMP-dependent signaling pathways specifically activated by liraglutide. Therapeutic efficacy of liraglutide was investigated by histological analysis of transverse muscle sections followed by morphometry. Myogenic capacity was investigated by immunoblotting for myogenic factors. RESULTS Liraglutide induced myogenesis in C2C12 myoblasts through GLP-1 receptor via a cAMP-dependent complex network of signaling events involving protein kinase A, phosphoinositide 3-kinase/protein kinase B, p38 mitogen-activated protein kinase and extracellular signal-regulated kinase. Liraglutide imparted protection against freeze injury, denervation, and dexamethasone -induced skeletal muscle atrophy and improved muscular function in all these models. In a therapeutic model, liraglutide restored myofibrillar architecture in ovariectomy-induced atrophy. Anti-atrophy actions of liraglutide involved suppression of atrogene expression and enhancement in expression of myogenic factors. CONCLUSION Liraglutide imparted protection and restored myofibrillar architecture in diverse models of muscle atrophy. Given its potent anti-atrophy, and recently reported osteoanabolic effects, we propose liraglutide's clinical evaluation in skeletal muscle atrophy and musculoskeletal disorders associated with diverse pathologies.
Collapse
Affiliation(s)
- Anagha Ashok Gurjar
- Division of Biochemistry, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Sapana Kushwaha
- Division of Biochemistry, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Sourav Chattopadhyay
- Division of Biochemistry, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Nabanita Das
- Division of Biochemistry, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Subhashis Pal
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Shyamsundar Pal China
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Harish Kumar
- Division of Biochemistry, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Arun Kumar Trivedi
- Division of Biochemistry, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Rajdeep Guha
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India; Laboratory Animals Facility CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Naibedya Chattopadhyay
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Sabyasachi Sanyal
- Division of Biochemistry, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India.
| |
Collapse
|
10
|
Grönholdt‐Klein M, Altun M, Becklén M, Dickman Kahm E, Fahlström A, Rullman E, Ulfhake B. Muscle atrophy and regeneration associated with behavioural loss and recovery of function after sciatic nerve crush. Acta Physiol (Oxf) 2019; 227:e13335. [PMID: 31199566 DOI: 10.1111/apha.13335] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 05/31/2019] [Accepted: 06/11/2019] [Indexed: 12/22/2022]
Abstract
AIM To resolve timing and coordination of denervation atrophy and the re-innervation recovery process to discern correlations indicative of common programs governing these processes. METHODS Female Sprague-Dawley (SD) rats had a unilateral sciatic nerve crush. Based on longitudinal behavioural observations, the triceps surae muscle was analysed at different time points post-lesion. RESULTS Crush results in a loss of muscle function and mass (-30%) followed by a recovery to almost pre-lesion status at 30 days post-crush (dpc). There was no loss of fibres nor any significant change in the number of nuclei per fibre but a shift in fibres expressing myosins I and II that reverted back to control levels at 30 dpc. A residual was the persistence of hybrid fibres. Early on a CHNR -ε to -γ switch and a re-expression of embryonic MyHC showed as signs of denervation. Foxo1, Smad3, Fbxo32 and Trim63 transcripts were upregulated but not Myostatin, InhibinA and ActivinR2B. Combined this suggests that the mechanism instigating atrophy provides a selectivity of pathway(s) activated. The myogenic differentiation factors (MDFs: Myog, Myod1 and Myf6) were upregulated early on suggesting a role also in the initial atrophy. The regulation of these transcripts returned towards baseline at 30 dpc. The examined genes showed a strong baseline covariance in transcript levels which dissolved in the response to crush driven mainly by the MDFs. At 30 dpc the naïve expression pattern was re-established. CONCLUSION Peripheral nerve crush offers an excellent model to assess and interfere with muscle adaptions to denervation and re-innervation.
Collapse
Affiliation(s)
| | - Mikael Altun
- Department of Laboratory Medicine Karolinska Institutet Huddinge Sweden
| | - Meneca Becklén
- Department of Neuroscience Karolinska Institutet Stockholm Sweden
| | | | - Andreas Fahlström
- Department of Neuroscience Karolinska Institutet Stockholm Sweden
- Department of Neuroscience, Neurosurgery Uppsala University Uppsala Sweden
| | - Eric Rullman
- Department of Laboratory Medicine Karolinska Institutet Huddinge Sweden
| | - Brun Ulfhake
- Department of Neuroscience Karolinska Institutet Stockholm Sweden
| |
Collapse
|
11
|
Leite APS, Pinto CG, Tibúrcio FC, Sartori AA, de Castro Rodrigues A, Barraviera B, Ferreira RS, Filadelpho AL, Matheus SMM. Heterologous fibrin sealant potentiates axonal regeneration after peripheral nerve injury with reduction in the number of suture points. Injury 2019; 50:834-847. [PMID: 30922661 DOI: 10.1016/j.injury.2019.03.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 01/10/2019] [Accepted: 03/16/2019] [Indexed: 02/02/2023]
Abstract
The use of suture associated with heterologous fibrin sealant has been highlighted for reconstruction after peripheral nerve injury, having the advantage of being safe for clinical use. In this study we compared the use of this sealant associated with reduced number of stitches with conventional suture after ischiatic nerve injury. 36 Wistar rats were divided into 4 groups: Control (C), Denervated (D), ischiatic nerve neurotmesis (6 mm gap); Suture (S), epineural anastomosis after 7 days from neurotmesis, Suture + Fibrin Sealant (SFS), anastomosis with only one suture point associated with Fibrin Sealant. Catwalk, electromyography, ischiatic and tibial nerve, soleus muscle morphological and morphometric analyses were performed. The amplitude and latency values of the Suture and Suture + Fibrin Sealant groups were similar and indicative of nerve regeneration.The ischiatic nerve morphometric analysis in the Suture + Fibrin Sealant showed superior values related to axons and nerve fibers area and diameter when compared to Suture group. In the Suture and Suture + Fibrin Sealant groups, there was an increase in muscle weight and in fast fibers frequency, it was a decrease in the percentage of collagen compared to group Denervated and in the neuromuscular junctions, the synaptic boutons were reestablished.The results suggest a protective effect at the lesion site caused by the fibrin sealant use. The stitches reduction minimizes the trauma caused by the needle and it accelerates the surgical practice. So the heterologous fibrin sealant use in nerve reconstruction should be considered.
Collapse
Affiliation(s)
- Ana Paula Silveira Leite
- Graduate Program on the General Bases of Surgery, Botucatu Medical School, Department of Anatomy, Universidade Estadual Paulista "Júlio de Mesquita Filho", São Paulo State University (Unesp), Institute of Biosciences, Travessa da Rua Prof. Dr. Gilberti Moreno São Paulo, 18618-689, Botucatu, Brazil; Department of Anatomy, Universidade Estadual Paulista "Júlio de Mesquita Filho", São Paulo State University (Unesp), Institute of Biosciences, Travessa da Rua Prof. Dr. Gilberti Moreno São Paulo, 18618-689, Botucatu, Brazil.
| | - Carina Guidi Pinto
- Graduate Program on the General Bases of Surgery, Botucatu Medical School, Department of Anatomy, Universidade Estadual Paulista "Júlio de Mesquita Filho", São Paulo State University (Unesp), Institute of Biosciences, Travessa da Rua Prof. Dr. Gilberti Moreno São Paulo, 18618-689, Botucatu, Brazil; Department of Anatomy, Universidade Estadual Paulista "Júlio de Mesquita Filho", São Paulo State University (Unesp), Institute of Biosciences, Travessa da Rua Prof. Dr. Gilberti Moreno São Paulo, 18618-689, Botucatu, Brazil
| | - Felipe Cantore Tibúrcio
- Department of Anatomy, Universidade Estadual Paulista "Júlio de Mesquita Filho", São Paulo State University (Unesp), Institute of Biosciences, Travessa da Rua Prof. Dr. Gilberti Moreno São Paulo, 18618-689, Botucatu, Brazil
| | - Arthur Alves Sartori
- Department of Anatomy, Universidade Estadual Paulista "Júlio de Mesquita Filho", São Paulo State University (Unesp), Institute of Biosciences, Travessa da Rua Prof. Dr. Gilberti Moreno São Paulo, 18618-689, Botucatu, Brazil
| | | | - Benedito Barraviera
- The Center for the Study of Venoms and Venomous Animals, UNESP, Botucatu, SP, Brazil
| | - Rui Seabra Ferreira
- The Center for the Study of Venoms and Venomous Animals, UNESP, Botucatu, SP, Brazil
| | - André Luis Filadelpho
- Department of Anatomy, Universidade Estadual Paulista "Júlio de Mesquita Filho", São Paulo State University (Unesp), Institute of Biosciences, Travessa da Rua Prof. Dr. Gilberti Moreno São Paulo, 18618-689, Botucatu, Brazil
| | - Selma Maria Michelin Matheus
- Department of Anatomy, Universidade Estadual Paulista "Júlio de Mesquita Filho", São Paulo State University (Unesp), Institute of Biosciences, Travessa da Rua Prof. Dr. Gilberti Moreno São Paulo, 18618-689, Botucatu, Brazil
| |
Collapse
|
12
|
Rodrigues ACZ, Messi ML, Wang ZM, Abba MC, Pereyra A, Birbrair A, Zhang T, O’Meara M, Kwan P, Lopez EIS, Willis MS, Mintz A, Files DC, Furdui C, Oppenheim RW, Delbono O. The sympathetic nervous system regulates skeletal muscle motor innervation and acetylcholine receptor stability. Acta Physiol (Oxf) 2019; 225:e13195. [PMID: 30269419 PMCID: PMC7224611 DOI: 10.1111/apha.13195] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 09/23/2018] [Accepted: 09/26/2018] [Indexed: 12/19/2022]
Abstract
AIM Symptoms of autonomic failure are frequently the presentation of advanced age and neurodegenerative diseases that impair adaptation to common physiologic stressors. The aim of this work was to examine the interaction between the sympathetic and motor nervous system, the involvement of the sympathetic nervous system (SNS) in neuromuscular junction (NMJ) presynaptic motor function, the stability of postsynaptic molecular organization, and the skeletal muscle composition and function. METHODS Since muscle weakness is a symptom of diseases characterized by autonomic dysfunction, we studied the impact of regional sympathetic ablation on muscle motor innervation by using transcriptome analysis, retrograde tracing of the sympathetic outflow to the skeletal muscle, confocal and electron microscopy, NMJ transmission by electrophysiological methods, protein analysis, and state of the art microsurgical techniques, in C57BL6, MuRF1KO and Thy-1 mice. RESULTS We found that the SNS regulates motor nerve synaptic vesicle release, skeletal muscle transcriptome, muscle force generated by motor nerve activity, axonal neurofilament phosphorylation, myelin thickness, and myofibre subtype composition and CSA. The SNS also modulates the levels of postsynaptic membrane acetylcholine receptor by regulating the Gαi2 -Hdac4-Myogenin-MuRF1pathway, which is prevented by the overexpression of the guanine nucleotide-binding protein Gαi2 (Q205L), a constitutively active mutant G protein subunit. CONCLUSION The SNS regulates NMJ transmission, maintains optimal Gαi2 expression, and prevents any increase in Hdac4, myogenin, MuRF1, and miR-206. SNS ablation leads to upregulation of MuRF1, muscle atrophy, and downregulation of postsynaptic AChR. Our findings are relevant to clinical conditions characterized by progressive decline of sympathetic innervation, such as neurodegenerative diseases and aging.
Collapse
Affiliation(s)
- Anna C. Z. Rodrigues
- Department of Internal Medicine, Gerontology, Wake Forest School of Medicine, Winston-Salem, North Carolina
- Neuroscience Program, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Maria L. Messi
- Department of Internal Medicine, Gerontology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Zhong-Min Wang
- Department of Internal Medicine, Gerontology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Martin C. Abba
- Basic and Applied Immunological Research Center (CINIBA), School of Medicine, National University of La Plata, Buenos Aires, Argentina
| | - Andrea Pereyra
- Department of Internal Medicine, Gerontology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Alexander Birbrair
- Department of Internal Medicine, Gerontology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Tan Zhang
- Department of Internal Medicine, Gerontology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Meaghan O’Meara
- Department of Internal Medicine, Gerontology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Ping Kwan
- Department of Internal Medicine, Gerontology, Wake Forest School of Medicine, Winston-Salem, North Carolina
- Neuroscience Program, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Elsa I. S. Lopez
- Department of Internal Medicine, Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Monte S. Willis
- Department of Pathology, McAllister Heart Institute, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina
| | - Akiva Mintz
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - D. Clark Files
- Department of Internal Medicine, Gerontology, Wake Forest School of Medicine, Winston-Salem, North Carolina
- Department of Internal Medicine, Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
- Department of Internal Medicine, Pulmonary, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Cristina Furdui
- Department of Internal Medicine, Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Ronald W. Oppenheim
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Osvaldo Delbono
- Department of Internal Medicine, Gerontology, Wake Forest School of Medicine, Winston-Salem, North Carolina
- Neuroscience Program, Wake Forest School of Medicine, Winston-Salem, North Carolina
| |
Collapse
|
13
|
Aoyama S, Kojima S, Sasaki K, Ishikawa R, Tanaka M, Shimoda T, Hattori Y, Aoki N, Takahashi K, Hirooka R, Takizawa M, Haraguchi A, Shibata S. Day-Night Oscillation of Atrogin1 and Timing-Dependent Preventive Effect of Weight-Bearing on Muscle Atrophy. EBioMedicine 2018; 37:499-508. [PMID: 30391495 PMCID: PMC6286653 DOI: 10.1016/j.ebiom.2018.10.057] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 10/09/2018] [Accepted: 10/24/2018] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Atrogin1, which is one of the key genes for the promotion of muscle atrophy, exhibits day-night variation. However, its mechanism and the role of its day-night variation are largely unknown in a muscle atrophic context. METHODS The mice were induced a muscle atrophy by hindlimb-unloading (HU). To examine a role of circadian clock, Wild-type (WT) and Clock mutant mice were used. To test the effects of a neuronal effects, an unilateral ablation of sciatic nerve was performed in HU mice. To test a timing-dependent effects of weight-bearing, mice were released from HU for 4 h in a day at early or late active phase (W-EAP and W-LAP groups, respectively). FINDINGS We found that the day-night oscillation of Atrogin1 expression was not observed in Clock mutant mice or in the sciatic denervated muscle. In addition, the therapeutic effects of weight-bearing were dependent on its timing with a better effect in the early active phase. INTERPRETATION These findings suggest that the circadian clock controls the day-night oscillation of Atrogin1 expression and the therapeutic effects of weight-bearing are dependent on its timing. FUND: Council for Science, Technology, and Innovation, SIP, "Technologies for creating next-generation agriculture, forestry, and fisheries".
Collapse
Affiliation(s)
- Shinya Aoyama
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan,; Organization for University Research Initiatives, Waseda University, Tokyo, Japan
| | - Shuichi Kojima
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Keisuke Sasaki
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Ryosuke Ishikawa
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Mizuho Tanaka
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Takeru Shimoda
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Yuta Hattori
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Natsumi Aoki
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan,; Organization for University Research Initiatives, Waseda University, Tokyo, Japan
| | - Kengo Takahashi
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Rina Hirooka
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Miku Takizawa
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Atsushi Haraguchi
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Shigenobu Shibata
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan,.
| |
Collapse
|
14
|
Zhang J, Liu Y, Lu L. Emerging role of MicroRNAs in peripheral nerve system. Life Sci 2018; 207:227-233. [PMID: 29894714 DOI: 10.1016/j.lfs.2018.06.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 05/21/2018] [Accepted: 06/08/2018] [Indexed: 01/17/2023]
Abstract
Peripheral nerve injury is one of the most common clinical diseases. Although the regeneration of the peripheral nerve is better than that of the nerves of the central nervous system, because of its growth rate restrictions after damage. Hence, the outcome of repair after injury is not favorable. Small RNA, a type of non-coding RNA, has recently been gaining attention in neural injury. It is widely distributed in the nervous system in vivo and a significant change in the expression of small RNAs has been observed in a neural injury model. This suggests that MicroRNAs (miRNAs) may serve as a potential target for resolving the challenges of peripheral nerve repair. This review summarizes the current challenges in peripheral nerve injury repair, systematically expounds the mechanism of miRNAs in the process of nerve injury and repair and attempts to determine the possible treatment of peripheral nerve injury.
Collapse
Affiliation(s)
- Jiayi Zhang
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Yang Liu
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Laijin Lu
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, China.
| |
Collapse
|
15
|
Pegoraro V, Merico A, Angelini C. Micro-RNAs in ALS muscle: Differences in gender, age at onset and disease duration. J Neurol Sci 2017; 380:58-63. [PMID: 28870590 PMCID: PMC5598142 DOI: 10.1016/j.jns.2017.07.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 07/04/2017] [Accepted: 07/05/2017] [Indexed: 11/25/2022]
Abstract
Few studies have explored the role of microRNAs (or miRNAs) in Amyotrophic Lateral Sclerosis (ALS) muscle, possibly because of the difficulty in obtaining samples and because this is a rare disease. We measured the expression levels of muscle-specific miRNAs (miRNA-1, miRNA-206, miRNA-133a, miRNA-133b, miRNA-27a) and inflammatory/angiogenic miRNAs (miRNA-155, miRNA-146a, miRNA-221, miRNA-149*) in the muscles of 13 ALS patients and controls. To highlight differences, patients were subdivided according to their gender, age at onset of symptoms, and disease duration. A significant over-expression of all miRNAs was observed in ALS patients versus controls, in male patients versus females, in patients with early onset versus patients with late onset, and in patients with long disease duration versus patients with short duration. A differential expression of miRNAs according to gender could be explained by the hormonal regulation which determines the body muscle mass. The course of the disease might reflect differential degree of muscle atrophy and signaling at miRNA levels. An evident role is also played by inflammatory/angiogenetic factors as shown by the observed miRNA changes. MyomiRNAs (especially miRNA-206) are up-regulated in ALS muscle than in controls. Inflammatory miRNA-(especially miRNA-221) is up-regulated in ALS than in controls. There is gender difference in expression of myo-miRNAs and inflammatory miRNAs. MiRNAs levels differ according to age at onset and disease duration.
Collapse
Affiliation(s)
| | - Antonio Merico
- Fondazione San Camillo Hospital IRCCS, Lido Venice, Italy
| | | |
Collapse
|
16
|
miR-29b contributes to multiple types of muscle atrophy. Nat Commun 2017; 8:15201. [PMID: 28541289 PMCID: PMC5458521 DOI: 10.1038/ncomms15201] [Citation(s) in RCA: 163] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 03/09/2017] [Indexed: 12/16/2022] Open
Abstract
A number of microRNAs (miRNAs, miRs) have been shown to play a role in skeletal muscle atrophy, but their role is not completely understood. Here we show that miR-29b promotes skeletal muscle atrophy in response to different atrophic stimuli in cells and in mouse models. miR-29b promotes atrophy of myotubes differentiated from C2C12 or primary myoblasts, and conversely, its inhibition attenuates atrophy induced by dexamethasone (Dex), TNF-α and H2O2 treatment. Targeting of IGF-1 and PI3K(p85α) by miR-29b is required for induction of muscle atrophy. In vivo, miR-29b overexpression is sufficient to promote muscle atrophy while inhibition of miR-29b attenuates atrophy induced by denervation and immobilization. These data suggest that miR-29b contributes to multiple types of muscle atrophy via targeting of IGF-1 and PI3K(p85α), and that suppression of miR-29b may represent a therapeutic approach for muscle atrophy induced by different stimuli.
Collapse
|
17
|
de Paula TG, Zanella BTT, Fantinatti BEDA, de Moraes LN, Duran BODS, de Oliveira CB, Salomão RAS, da Silva RN, Padovani CR, dos Santos VB, Mareco EA, Carvalho RF, Dal-Pai-Silva M. Food restriction increase the expression of mTORC1 complex genes in the skeletal muscle of juvenile pacu (Piaractus mesopotamicus). PLoS One 2017; 12:e0177679. [PMID: 28505179 PMCID: PMC5432107 DOI: 10.1371/journal.pone.0177679] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 05/01/2017] [Indexed: 11/19/2022] Open
Abstract
Skeletal muscle is capable of phenotypic adaptation to environmental factors, such as nutrient availability, by altering the balance between muscle catabolism and anabolism that in turn coordinates muscle growth. Small noncoding RNAs, known as microRNAs (miRNAs), repress the expression of target mRNAs, and many studies have demonstrated that miRNAs regulate the mRNAs of catabolic and anabolic genes. We evaluated muscle morphology, gene expression of components involved in catabolism, anabolism and energetic metabolism and miRNAs expression in both the fast and slow muscle of juvenile pacu (Piaractus mesopotamicus) during food restriction and refeeding. Our analysis revealed that short periods of food restriction followed by refeeding predominantly affected fast muscle, with changes in muscle fiber diameter and miRNAs expression. There was an increase in the mRNA levels of catabolic pathways components (FBXO25, ATG12, BCL2) and energetic metabolism-related genes (PGC1α and SDHA), together with a decrease in PPARβ/δ mRNA levels. Interestingly, an increase in mRNA levels of anabolic genes (PI3K and mTORC1 complex: mTOR, mLST8 and RAPTOR) was also observed during food restriction. After refeeding, muscle morphology showed similar patterns of the control group; the majority of genes were slightly up- or down-regulated in fast and slow muscle, respectively; the levels of all miRNAs increased in fast muscle and some of them decreased in slow muscle. Our findings demonstrated that a short period of food restriction in juvenile pacu had a considerable impact on fast muscle, increasing the expression of anabolic (PI3K and mTORC1 complex: mTOR, mLST8 and RAPTOR) and energetic metabolism genes. The miRNAs (miR-1, miR-206, miR-199 and miR-23a) were more expressed during refeeding and while their target genes (IGF-1, mTOR, PGC1α and MAFbx), presented a decreased expression. The alterations in mTORC1 complex observed during fasting may have influenced the rates of protein synthesis by using amino acids from protein degradation as an alternative mechanism to preserve muscle phenotype and metabolic demand maintenance.
Collapse
Affiliation(s)
- Tassiana Gutierrez de Paula
- Department of Morphology, Institute of Bioscience of Botucatu, São Paulo State University, Botucatu, São Paulo, Brazil
| | | | | | - Leonardo Nazário de Moraes
- Department of Morphology, Institute of Bioscience of Botucatu, São Paulo State University, Botucatu, São Paulo, Brazil
| | - Bruno Oliveira da Silva Duran
- Department of Morphology, Institute of Bioscience of Botucatu, São Paulo State University, Botucatu, São Paulo, Brazil
| | | | - Rondinelle Artur Simões Salomão
- Department of Morphology, Institute of Bioscience of Botucatu, São Paulo State University, Botucatu, São Paulo, Brazil
- Aquaculture Center, São Paulo State University, Jaboticabal, São Paulo, Brazil
| | - Rafaela Nunes da Silva
- Department of Morphology, Institute of Bioscience of Botucatu, São Paulo State University, Botucatu, São Paulo, Brazil
| | - Carlos Roberto Padovani
- Department of Biostatistics, Institute of Bioscience of Botucatu, São Paulo State University, Botucatu, São Paulo, Brazil
| | | | | | - Robson Francisco Carvalho
- Department of Morphology, Institute of Bioscience of Botucatu, São Paulo State University, Botucatu, São Paulo, Brazil
| | - Maeli Dal-Pai-Silva
- Department of Morphology, Institute of Bioscience of Botucatu, São Paulo State University, Botucatu, São Paulo, Brazil
- Aquaculture Center, São Paulo State University, Jaboticabal, São Paulo, Brazil
| |
Collapse
|
18
|
De Gasperi R, Graham ZA, Harlow LM, Bauman WA, Qin W, Cardozo CP. The Signature of MicroRNA Dysregulation in Muscle Paralyzed by Spinal Cord Injury Includes Downregulation of MicroRNAs that Target Myostatin Signaling. PLoS One 2016; 11:e0166189. [PMID: 27907012 PMCID: PMC5132212 DOI: 10.1371/journal.pone.0166189] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 10/24/2016] [Indexed: 12/25/2022] Open
Abstract
Spinal cord injury (SCI) results in muscle atrophy, reduced force generation and an oxidative-to-glycolytic fiber type shift. The mechanisms responsible for these alterations remain incompletely understood. To gain new insights regarding mechanisms involved in deterioration of muscle after SCI, global expression profiles of miRs in paralyzed gastrocnemius muscle were compared between sham-operated (Sham) and spinal cord-transected (SCI) rats. Ingenuity Pathways Analysis of the altered miRs identified signaling via insulin, IGF-1, integrins and TGF-β as being significantly enriched for target genes. By qPCR, miRs 23a, 23b, 27b, 145, and 206, were downregulated in skeletal muscle 56 days after SCI. Using FISH, miR-145, a miR not previously implicated in the function of skeletal muscle, was found to be localized to skeletal muscle fibers. One predicted target of miR-145 was Cited2, a transcriptional regulator that modulates signaling through NF-κB, Smad3 and other transcription factors. The 3’ UTR of Cited2 mRNA contained a highly conserved miR-145 seed sequence. Luciferase reporter assays confirmed that miR-145 interacts with this seed sequence. However, Cited2 protein levels were similar between Sham and SCI groups, indicating a biochemical interaction that was not involved in the context of adaptations after SCI. Taken together, the findings indicate dysregulation of several highly expressed miRs in skeletal muscle after SCI and suggest that reduced expression of miR-23a, 145 and 206 may have roles in alteration in skeletal muscle mass and insulin responsiveness in muscle paralyzed by upper motor neuron injuries.
Collapse
Affiliation(s)
- Rita De Gasperi
- VA RR&D Service National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters Medical Center, Bronx, New York
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Zachary A. Graham
- VA RR&D Service National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters Medical Center, Bronx, New York
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Lauren M. Harlow
- VA RR&D Service National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters Medical Center, Bronx, New York
| | - William A. Bauman
- VA RR&D Service National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters Medical Center, Bronx, New York
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Rehabilitation Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Weiping Qin
- VA RR&D Service National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters Medical Center, Bronx, New York
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Christopher P. Cardozo
- VA RR&D Service National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters Medical Center, Bronx, New York
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Rehabilitation Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Pharmacologic Science Icahn School of Medicine at Mount Sinai, New York, New York
- * E-mail:
| |
Collapse
|
19
|
Sternopygus macrurus electric organ transcriptome and cell size exhibit insensitivity to short-term electrical inactivity. ACTA ACUST UNITED AC 2016; 110:233-244. [PMID: 27864094 DOI: 10.1016/j.jphysparis.2016.11.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 09/03/2016] [Accepted: 11/13/2016] [Indexed: 11/22/2022]
Abstract
Electrical activity is an important regulator of cellular function and gene expression in electrically excitable cell types. In the weakly electric teleost fish Sternopygus macrurus, electrocytes, i.e., the current-producing cells of the electric organ, derive from a striated muscle lineage. Mature electrocytes are larger than muscle fibers, do not contain sarcomeres, and are driven continuously at frequencies higher than those exerted on muscle cells. Previous work showed that the removal of electrical activity by spinal cord transection (ST) for two and five weeks led to an upregulation of some sarcomeric proteins and a decrease in electrocyte size. To test whether changes in gene transcription preceded these phenotypic changes, we determined the sensitivity of electrocyte gene expression to electrical inactivity periods of two and five days after ST. Whole tissue gene expression profiles using deep RNA sequencing showed minimal alterations in the levels of myogenic transcription factor and sarcomeric transcripts after either ST period. Moreover, while analysis of differentially expressed genes showed a transient upregulation of genes associated with proteolytic mechanisms at two days and an increase in mRNA levels of cytoskeletal genes at five days after electrical silencing, electrocyte size was not affected. Electrical inactivity also resulted in the downregulation of genes that were classified into enriched clusters associated with functions of axon migration and synapse structure. Overall, these data demonstrate that unlike tissues in the myogenic lineage in other vertebrate species, regulation of gene transcription and cell size in the muscle-like electrocytes of S. macrurus is highly insensitive to short-term electrical inactivity. Moreover, together with data obtained from control and long-term ST studies, the present data suggest that neural input might influence post-transcriptional processes to affect the mature electrocyte phenotype.
Collapse
|
20
|
Güth R, Chaidez A, Samanta MP, Unguez GA. Properties of skeletal muscle in the teleost Sternopygus macrurus are unaffected by short-term electrical inactivity. Physiol Genomics 2016; 48:699-710. [PMID: 27449658 DOI: 10.1152/physiolgenomics.00068.2016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 07/18/2016] [Indexed: 11/22/2022] Open
Abstract
Skeletal muscle is distinguished from other tissues on the basis of its shape, biochemistry, and physiological function. Based on mammalian studies, fiber size, fiber types, and gene expression profiles are regulated, in part, by the electrical activity exerted by the nervous system. To address whether similar adaptations to changes in electrical activity in skeletal muscle occur in teleosts, we studied these phenotypic properties of ventral muscle in the electric fish Sternopygus macrurus following 2 and 5 days of electrical inactivation by spinal transection. Our data show that morphological and biochemical properties of skeletal muscle remained largely unchanged after these treatments. Specifically, the distribution of type I and type II muscle fibers and the cross-sectional areas of these fiber types observed in control fish remained unaltered after each spinal transection survival period. This response to electrical inactivation was generally reflected at the transcript level in real-time PCR and RNA-seq data by showing little effect on the transcript levels of genes associated with muscle fiber type differentiation and plasticity, the sarcomere complex, and pathways implicated in the regulation of muscle fiber size. Data from this first study characterizing the acute influence of neural activity on muscle mass and sarcomere gene expression in a teleost are discussed in the context of comparative studies in mammalian model systems and vertebrate species from different lineages.
Collapse
Affiliation(s)
- Robert Güth
- Department of Biology, New Mexico State University, Las Cruces, New Mexico; and
| | - Alexander Chaidez
- Department of Biology, New Mexico State University, Las Cruces, New Mexico; and
| | | | - Graciela A Unguez
- Department of Biology, New Mexico State University, Las Cruces, New Mexico; and
| |
Collapse
|