1
|
Tseng YC, Liu PF, Chen YR, Yang WH, Chang CC, Chang HW, Lee CH, Goan YG, Shu CW. Elevated neuregulin‑1 expression modulates tumor malignancy and autophagy in esophageal squamous cell carcinoma. Int J Mol Med 2025; 55:62. [PMID: 39950316 PMCID: PMC11878479 DOI: 10.3892/ijmm.2025.5503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 01/24/2025] [Indexed: 03/06/2025] Open
Abstract
The 5‑year survival rate of patients with esophageal squamous cell carcinoma (ESCC) is <20%, highlighting the need for the development of novel therapeutic targets. Neuregulin‑1 (NRG1), a transmembrane protein involved in cell proliferation and survival signaling, has unclear biological functions and clinical value in ESCC. The present study investigated the association between NRG1 expression and ESCC by analyzing data from both patients with ESCC and The Cancer Genome Atlas database. Reverse transcription‑quantitative PCR and immunohistochemistry staining were used to determine the levels of gene and protein in the tissue. The findings revealed that NRG1 gene and protein levels were significantly higher in tumor tissues compared with the normal tissues. Elevated expression of NRG1 was associated with poor outcomes, particularly in patients with advanced ESCC. Silencing NRG1 decreased both its mRNA and protein levels, disrupting key signaling pathways, such as phosphorylated (p‑)AKT and cellular rapidly accelerated fibrosarcoma (p‑cRAF), which led to decreased cancer cell proliferation, migration and tumor sphere formation, along with increased cell death. High expression levels of NRG1 and cRAF were significantly associated with poor prognosis. Additionally, silencing NRG1 promoted autophagosome and autolysosome formation, decreasing LC3B levels. The use of the autophagy inhibitor chloroquine significantly enhanced cell death induced by NRG1 silencing, suggesting that autophagy functions as a survival mechanism in ESCC cells in which NRG1 is silenced. Furthermore, high co‑expression of NRG1 and LC3B was associated with a worse prognosis. On the whole, the present study demonstrated that targeting NRG1 with autophagy inhibitors may serve as a potential therapeutic strategy for ESCC.
Collapse
Affiliation(s)
- Yen-Chiang Tseng
- Division of Thoracic Surgery, Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung 81341, Taiwan, R.O.C
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 300025, Taiwan, R.O.C
- Department of Pharmacy and Master Program, Tajen University, Pingtung 907391, Taiwan, R.O.C
| | - Pei-Feng Liu
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 80756, Taiwan, R.O.C
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan, R.O.C
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80756, Taiwan, R.O.C
| | - Yu-Ru Chen
- Institute of BioPharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan, R.O.C
| | - Wen-Hsin Yang
- Institute of BioPharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan, R.O.C
| | - Chia-Che Chang
- Department of Oncology, Zuoying Armed Forces General Hospital, Kaohsiung 81320, Taiwan, R.O.C
| | - Hsueh-Wei Chang
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 80756, Taiwan, R.O.C
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80756, Taiwan, R.O.C
| | - Cheng-Hsin Lee
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 80756, Taiwan, R.O.C
| | - Yih-Gang Goan
- Division of Thoracic Surgery, Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung 81341, Taiwan, R.O.C
- Division of Thoracic Surgery, Department of Surgery, Pingtung Veterans General Hospital, Pingtung 91245, Taiwan, R.O.C
| | - Chih-Wen Shu
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 80756, Taiwan, R.O.C
- Institute of BioPharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan, R.O.C
- Innovation Center for Drug Development and Optimization, National Sun Yat-sen University, Kaohsiung 80424, Taiwan, R.O.C
| |
Collapse
|
2
|
Wang Z, Li R, Yang G, Wang Y. Cancer stem cell biomarkers and related signalling pathways. J Drug Target 2024; 32:33-44. [PMID: 38095181 DOI: 10.1080/1061186x.2023.2295222] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/10/2023] [Indexed: 12/20/2023]
Abstract
Cancer stem cells (CSCs) represent a distinct subset of neoplastic cells characterised by their heightened capacity for tumorigenesis. These cells are implicated in the facilitation of cancer metastasis, recurrence, and resistance to conventional therapeutic interventions. Extensive scientific research has been devoted to the identification of biomarkers and the elucidation of molecular mechanisms in order to improve targeted therapeutic approaches. Accurate identification of cancer stem cells based on biomarkers can provide a theoretical basis for drug combinations of malignant tumours. Targeted biomarker-based therapies also offer a silver lining for patients with advanced malignancies. This review aims comprehensively to consolidate the latest findings on CSCs biomarkers, targeted agents as well as biomarkers associated signalling pathways in well-established cancer types, thereby contributing to improved prognostic outcomes.
Collapse
Affiliation(s)
- Zhe Wang
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
- Department of Infectious Disease, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Rui Li
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Guilin Yang
- Department of Infectious Disease, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Yijin Wang
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
3
|
Ali LS, Attia YAM, Mourad S, Halawa EM, Abd Elghaffar NH, Shokry S, Attia OM, Makram M, Wadan AHS, Negm WA, Elekhnawy E. The missing link between cancer stem cells and immunotherapy. Curr Med Res Opin 2024; 40:1963-1984. [PMID: 39316769 DOI: 10.1080/03007995.2024.2407963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 09/26/2024]
Abstract
Cancer stem cells (CSCs) are cancer cells that can self-renew and give rise to tumors. The multipotency of CSCs enables the generation of diverse cancer cell types and their potential for differentiation and resilience against chemotherapy and radiation. Additionally, specific biomarkers have been identified for them, such as CD24, CD34, CD44, CD47, CD90, and CD133. The CSC model suggests that a subset of CSCs within tumors is responsible for tumor growth. The tumor microenvironment (TME), including fibroblasts, immune cells, adipocytes, endothelial cells, neuroendocrine (NE) cells, extracellular matrix (ECM), and extracellular vesicles, has a part in shielding CSCs from the host immune response as well as protecting them against anticancer drugs. The regulation of cancer stem cell plasticity by cancer-associated fibroblasts (CAFs) occurs through specific signaling pathways that differ among various types of cancer, utilizing the IGF-II/IGF1R, FAK, and c-Met/FRA1/HEY1 signaling pathways. Due to the intricate dynamics of CSC proliferation, controlling their growth necessitates innovative approaches and much more research. Our current review speculates an outline of how the TME safeguards stem cells, their interaction with CSCs, and the involvement of the immune and inflammatory systems in CSC differentiation and maintenance. Several technologies have the ability to identify CSCs; however, each approach has limitations. We discuss how these methods can aid in recognizing CSCs in several cancer types, comprising brain, breast, liver, stomach, and colon cancer. Furthermore, we explore different immunotherapeutic strategies targeting CSCs, including stimulating cancer-specific T cells, modifying immunosuppressive TMEs, and antibody-mediated therapy targeting CSC markers.
Collapse
Affiliation(s)
- Lobna Safwat Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Fayoum University, Fayoum, Egypt
| | | | - Sohaila Mourad
- Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Esraa M Halawa
- Botany and Microbiology Department, Faculty of Science, Cairo University, Giza, Egypt
| | | | - Seham Shokry
- Faculty of Science, Tanta University, Tanta, Egypt
| | - Omar M Attia
- Faculty of Medicine, Cairo University, Giza, Egypt
| | - Maha Makram
- Faculty of Science, Zagazig University, Zagazig, Egypt
| | | | - Walaa A Negm
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Engy Elekhnawy
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| |
Collapse
|
4
|
Sarabia-Sánchez MA, Tinajero-Rodríguez JM, Ortiz-Sánchez E, Alvarado-Ortiz E. Cancer Stem Cell markers: Symphonic masters of chemoresistance and immune evasion. Life Sci 2024; 355:123015. [PMID: 39182567 DOI: 10.1016/j.lfs.2024.123015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
Cancer Stem Cells (CSCs) are highly tumorigenic, chemoresistant, and immune evasive. They emerge as a central driver that gives rise to the bulk of tumoral mass, modifies the tumor microenvironment (TME), and exploits it, leading to poor clinical outcomes for patients with cancer. The existence of CSCs thus accounts for the failure of conventional therapies and immune surveillance. Identifying CSCs in solid tumors remains a significant challenge in modern oncology, with the use of cell surface markers being the primary strategy for studying, isolating, and enriching these cells. In this review, we explore CSC markers, focusing on the underlying signaling pathways that drive CSC self-renewal, which simultaneously makes them intrinsically chemoresistant and immune system evaders. We comprehensively discuss the autonomous and non-autonomous functions of CSCs, with particular emphasis on their interactions with the tumor microenvironment, especially immune cells. This reciprocal network enhances CSCs malignancy while compromising the surrounding niche, ultimately defining therapeutic vulnerabilities associated with each CSC marker. The most common CSCs surface markers addressed in this review-CD44, CD133, ICAM1/CD54, and LGR5-provide insights into the interplay between chemoresistance and immune evasion, two critically important phenomena in disease eradication. This new perspective on the state-of-the-art of CSCs will undoubtedly open new avenues for therapy.
Collapse
Affiliation(s)
- Miguel Angel Sarabia-Sánchez
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Secretaría de Salud, Ciudad de México, México; Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, México
| | - José Manuel Tinajero-Rodríguez
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Secretaría de Salud, Ciudad de México, México; Tecnológico Nacional de México, Tecnológico de Estudios Superiores de Huixquilucan, México
| | - Elizabeth Ortiz-Sánchez
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Secretaría de Salud, Ciudad de México, México
| | - Eduardo Alvarado-Ortiz
- Programa de Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, México; Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, México.
| |
Collapse
|
5
|
Tinajero-Rodríguez JM, Ramírez-Vidal L, Becerril-Rico J, Alvarado-Ortiz E, Romero-Rodríguez DP, López-Casillas F, Hernández-Sotelo D, Fernández-Ramírez F, Contreras-Paredes A, Ortiz-Sánchez E. ICAM1 (CD54) Contributes to the Metastatic Capacity of Gastric Cancer Stem Cells. Int J Mol Sci 2024; 25:8865. [PMID: 39201551 PMCID: PMC11354656 DOI: 10.3390/ijms25168865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/08/2024] [Accepted: 08/13/2024] [Indexed: 09/02/2024] Open
Abstract
Gastric cancer is the fourth leading cause of cancer deaths worldwide. The presence of chemoresistant cells has been used to explain this high mortality rate. These higher tumorigenic and chemoresistant cells involve cancer stem cells (CSCs), which have the potential for self-renewal, a cell differentiation capacity, and a greater tumorigenic capacity. Our research group identified gastric cancer stem cells (GCSCs) with the CD24+CD44+CD326+ICAM1+ immunophenotype isolated from gastric cancer patients. Interestingly, this GCSC immunophenotype was absent in cells isolated from healthy people, who presented a cell population with a CD24+CD44+CD326+ immunophenotype, lacking ICAM1. We aimed to explore the role of ICAM1 in these GCSCs; for this purpose, we isolated GCSCs from the AGS cell line and generated a GCSC line knockout for ICAM1 using CRISPR/iCas9, which we named GCSC-ICAM1KO. To assess the role of ICAM1 in the GCSCs, we analyzed the migration, invasion, and chemoresistance capabilities of the GCSCs using in vitro assays and evaluated the migratory, invasive, and tumorigenic properties in a zebrafish model. The in vitro analysis showed that ICAM1 regulated STAT3 activation (pSTAT3-ser727) in the GCSCs, which could contribute to the ability of GCSCs to migrate, invade, and metastasize. Interestingly, we demonstrated that the GCSC-ICAM1KO cells lost their capacity to migrate, invade, and metastasize, but they exhibited an increased resistance to a cisplatin treatment compared to their parental GCSCs; the GCSC-ICAM1KO cells also exhibited an increased tumorigenic capability in vivo.
Collapse
Affiliation(s)
- José Manuel Tinajero-Rodríguez
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Av. San Fernando 22, Colonia Sección XVI, Mexico City 14080, Mexico; (J.M.T.-R.); (A.C.-P.)
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39090, Mexico;
| | - Lizbeth Ramírez-Vidal
- Posgrado de Ciencias Biomédicas, Facultad de Medicina, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Mexico City 04510, Mexico;
| | - Jared Becerril-Rico
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (J.B.-R.); (E.A.-O.)
| | - Eduardo Alvarado-Ortiz
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (J.B.-R.); (E.A.-O.)
| | - Dámaris P. Romero-Rodríguez
- Laboratorio Nacional Conahcyt de Investigación y Diagnóstico por Inmunocitofluorometría (LANCIDI), INER, Mexico City 14080, Mexico;
| | - Fernando López-Casillas
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Mexico City 04510, Mexico;
| | - Daniel Hernández-Sotelo
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39090, Mexico;
| | | | - Adriana Contreras-Paredes
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Av. San Fernando 22, Colonia Sección XVI, Mexico City 14080, Mexico; (J.M.T.-R.); (A.C.-P.)
| | - Elizabeth Ortiz-Sánchez
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Av. San Fernando 22, Colonia Sección XVI, Mexico City 14080, Mexico; (J.M.T.-R.); (A.C.-P.)
| |
Collapse
|
6
|
Becerril-Rico J, Grandvallet-Contreras J, Ruíz-León MP, Dorantes-Cano S, Ramírez-Vidal L, Tinajero-Rodríguez JM, Ortiz-Sánchez E. Circulating Gastric Cancer Stem Cells as Blood Screening and Prognosis Factor in Gastric Cancer. Stem Cells Int 2024; 2024:9999155. [PMID: 39148939 PMCID: PMC11326876 DOI: 10.1155/2024/9999155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 06/10/2024] [Accepted: 07/11/2024] [Indexed: 08/17/2024] Open
Abstract
Gastric cancer (GC) is the fourth leading cause of cancer-related death, associated with late diagnosis and treatment resistance. Currently, screening tests for GC are not cost-effective or have low accuracy. Previously, we described an extended phenotype of gastric cancer stem cells (GCSCs; CD24+CD44+CD54+EpCAM+) that is associated with metastasis and tumor stage in GC patients. The goal of the current research is to evaluate the presence of these GCSCs in the peripheral blood of GC patients and healthy volunteers. A total of 73 blood samples were collected from 32 GC patients and 41 healthy volunteers. After peripheral blood mononuclear cell (PBMC) extraction, multiparametric flow cytometry was performed looking for GCSCs. Using clustering data through artificial intelligence (AI), we defined high/low levels of circulating GCSCs (cGCSCs) and proceeded to evaluate its association with clinical and prognostic variables. Finally, a diagnostic test analysis was performed evaluating patients and healthy volunteers. We found that cGCSCs are present in most GC patients with a mean concentration of 0.48%. The AI clustering showed two groups with different cGCSC levels and clinical characteristics. Through statistical analysis, we confirmed the association between cGCSC levels and lymph node metastasis, distant metastasis, and overall survival. The diagnostic test analysis showed sensibility, specificity, and area under the curve (AUC) of 83%, 95%, and 0.911, respectively. Our results suggest that the assessment of cGCSCs CD24+CD44+CD54+EpCAM+ could be a potential noninvasive test, with prognostic value, as well as highly sensitive and specific for screening or diagnosis of GC; however, a larger scale study will be necessary to confirm this.
Collapse
Affiliation(s)
- Jared Becerril-Rico
- Subdirección de Investigación BásicaInstituto Nacional de Cancerología, Secretaría de Salud, Mexico City, Mexico
- Posgrado en Ciencias BiológicasUniversidad Nacional Autónoma de México, Mexico City, Mexico
| | - Julian Grandvallet-Contreras
- Subdirección de Investigación BásicaInstituto Nacional de Cancerología, Secretaría de Salud, Mexico City, Mexico
| | - M. Patricia Ruíz-León
- Subdirección de Investigación BásicaInstituto Nacional de Cancerología, Secretaría de Salud, Mexico City, Mexico
| | - Sebastián Dorantes-Cano
- Subdirección de Investigación BásicaInstituto Nacional de Cancerología, Secretaría de Salud, Mexico City, Mexico
| | - Lizbeth Ramírez-Vidal
- Posgrado en Ciencias BiomédicasUniversidad Nacional Autónoma de MéxicoCircuito Exterior s/n Ciudad Universitaria, Coyoacán, Mexico City 04510, Mexico
| | - José M. Tinajero-Rodríguez
- Subdirección de Investigación BásicaInstituto Nacional de Cancerología, Secretaría de Salud, Mexico City, Mexico
- Doctorado en Ciencias BiomédicasFacultad de Ciencias Químico BiológicasUniversidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Ciudad Universitaria, Chilpancingo 39090, Guerrero, Mexico
| | - Elizabeth Ortiz-Sánchez
- Subdirección de Investigación BásicaInstituto Nacional de Cancerología, Secretaría de Salud, Mexico City, Mexico
| |
Collapse
|
7
|
Yang C, Ni B, Shen L, Li Z, Zhou L, Wu H, Zhang Y, Liu L, Liu J, Tian L, Yan L, Jin X. Systematic pan-cancer analysis insights into ICAM1 as an immunological and prognostic biomarker. FASEB J 2024; 38:e23802. [PMID: 38979944 DOI: 10.1096/fj.202302176r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 06/02/2024] [Accepted: 06/25/2024] [Indexed: 07/10/2024]
Abstract
Intercellular adhesion molecule 1 (ICAM1) is a cell surface adhesion glycoprotein in the immunoglobulin supergene family. It is associated with several epithelial tumorigenesis processes, as well as with inflammation. However, the function of ICAM1 in the prognosis of tumor immunity is still unclear. This study aimed to examine the immune function of ICAM1 in 33 tumor types and to investigate the prognostic value of tumors. Using datasets from the Cancer Genome Atlas (TCGA), Genotype Tissue Expression (GTEx), Cancer Cell Lines Encyclopedia (CCLE), Human Protein Atlas (HPA), and cBioPortal, we investigated the role of ICAM1 in tumors. We explored the potential correlation between ICAM1 expression and tumor prognosis, gene mutations, microsatellite instability, and tumor immune cell levels in various cancers. We observed that ICAM1 is highly expressed in multiple malignant tumors. Furthermore, ICAM1 is negatively or positively associated with different malignant tumor prognoses. The expression levels of ICAM1 were correlated with the tumor mutation burden (TMB) in 11 tumors and with MSI in eight tumors. ICAM1 is a gene associated with immune infiltrating cells, such as M1 macrophages and CD8+ T cells in gastric and colon cancer. Meanwhile, the expression of ICAM1 is associated with several immune-related functions and immune-regulation-related signaling pathways, such as the chemokine signaling pathway. Our study shows that ICAM1 can be used as a prognostic biomarker in many cancer types because of its function in tumorigenesis and malignant tumor immunity.
Collapse
Affiliation(s)
- Chunjiao Yang
- Department of Oncology, The Fifth Affiliated Hospital of Guangxi Medical University & The First People's Hospital of Nanning, Nanning, China
| | - Bingqiang Ni
- Department of Oncology, The Fifth Affiliated Hospital of Guangxi Medical University & The First People's Hospital of Nanning, Nanning, China
| | - Ling Shen
- Department of Oncology, The Fifth Affiliated Hospital of Guangxi Medical University & The First People's Hospital of Nanning, Nanning, China
| | - Zhenlong Li
- Department of Oncology, The Fifth Affiliated Hospital of Guangxi Medical University & The First People's Hospital of Nanning, Nanning, China
| | - Lu Zhou
- Department of Oncology, The Fifth Affiliated Hospital of Guangxi Medical University & The First People's Hospital of Nanning, Nanning, China
| | - Huayun Wu
- Department of Oncology, The Fifth Affiliated Hospital of Guangxi Medical University & The First People's Hospital of Nanning, Nanning, China
| | - Yuzhe Zhang
- The First Laboratory of Cancer Institute, The First Hospital of China Medical University, Shenyang, China
| | - Ling Liu
- Benxi Central Hospital, Benxi, China
| | - Jiao Liu
- Shenzhen Longhua Maternity and Child Healthcare Hospital, Shenzhen, China
| | | | - Lirong Yan
- The First Laboratory of Cancer Institute, The First Hospital of China Medical University, Shenyang, China
| | - Xin Jin
- Department of Respiratory Medicine, The Fifth Affiliated Hospital of Guangxi Medical University & The First People's Hospital of Nanning, Nanning, China
| |
Collapse
|
8
|
Raju B, Narendra G, Verma H, Silakari O. Identification of chemoresistance associated key genes-miRNAs-TFs in docetaxel resistant breast cancer by bioinformatics analysis. 3 Biotech 2024; 14:128. [PMID: 38590544 PMCID: PMC10998825 DOI: 10.1007/s13205-024-03971-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 03/01/2024] [Indexed: 04/10/2024] Open
Abstract
The present study aimed to identify the differentially expressed genes (DEGs) and enriched pathways in docetaxel (DTX) resistant breast cancer cell lines by bioinformatics analysis. The microarray dataset GSE28784 was obtained from gene expression omnibus (GEO) database. The differentially expressed genes (DEGs), gene ontology (GO), and Kyoto Encyclopedia of gene and genome (KEGG) pathway analyses were performed with the help of GEO2R and DAVID tools. Furthermore, the protein-protein interaction (PPI) and hub-gene network of DEGs were constructed using STRING and Cytohubba tools. The prognostic values of hub genes were calculated with the help of the Kaplan-Meier plotter database. From the GEO2R analysis, 222 DEGs were identified of which 120 are upregulated and 102 are downregulated genes. In the PPIs network, five up-regulated genes including CCL2, SPARC, CYR61, F3, and MFGE8 were identified as hub genes. It was observed that low expression of six hub genes CXCL8, CYR61, F3, ICAM1, PLAT, and THBD were significantly correlated with poor overall survival of BC patients in survival analysis. miRNA analysis identified that hsa-mir-16-5p, hsa-mir-335-5p, hsa-mir-124-3p, hsa-mir-20a-5p, and hsa-mir-155-5p are the top 5 interactive miRNAs that are commonly interacting with more hub genes with degree score of greater than five. Additionally, drug-gene interaction analysis was performed to identify drugs which are could potentially elevate/lower the expression levels of hub genes. In summary, the gene-miRNAs-TFs network and subsequent correlation of candidate drugs with hub genes may improve individualized diagnosis and help select appropriate combination therapy for DTX-resistant BC in the future. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-03971-2.
Collapse
Affiliation(s)
- Baddipadige Raju
- Molecular Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab 147002 India
| | - Gera Narendra
- Molecular Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab 147002 India
| | - Himanshu Verma
- Molecular Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab 147002 India
| | - Om Silakari
- Molecular Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab 147002 India
| |
Collapse
|
9
|
Zarzycka M, Kotula-Balak M, Gil D. The mechanism of the contribution of ICAM-1 to epithelial-mesenchymal transition (EMT) in bladder cancer. Hum Cell 2024; 37:801-816. [PMID: 38519725 DOI: 10.1007/s13577-024-01053-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/24/2024] [Indexed: 03/25/2024]
Abstract
Bladder cancer is one of the most prevalent cancers worldwide. Moreover, if not optimally treated, bladder cancer is a significant burden on healthcare systems due to multiple recurrences which often require more aggressive therapies. Therefore, targeted anti-cancer therapies, developed based on an in-depth understanding of specific proteins and molecular mechanisms, are promising in cancer treatment. Here, for the first time, we presented the new approaches indicating that intracellular adhesion molecule-1 (ICAM-1) may play a potential role in enhancing therapeutic effectiveness for bladder cancer. In the present study, we presented that ICAM-1 expression as well as its regulation in bladder cancer is strongly correlated with the high expression of N-cadherin. Importantly, the presence of N-cadherin and its regulator-TWIST-1 was abolished when ICAM-1 was silenced. We identified also that ICAM-1 is capable of regulating cellular migration, proliferation, and EMT progression in bladder cancer cells via the N-cadherin/SRC/AKT/GSK-3β/β-catenin signaling axis. Therefore, we propose ICAM-1 as a novel metastatic marker for EMT progression, which may also be used as a therapeutic target in bladder cancer.
Collapse
Affiliation(s)
- Marta Zarzycka
- Chair of Medical Biochemistry, Jagiellonian University Medical College, Kopernika 7, 31-034, Kraków, Poland.
| | - Małgorzata Kotula-Balak
- Department of Animal Anatomy and Preclinical Sciences, University Centre of Veterinary Medicine JU-UA, University of Agriculture in Kraków, Mickiewicza 24/28, 30-059, Kraków, Poland
| | - Dorota Gil
- Chair of Medical Biochemistry, Jagiellonian University Medical College, Kopernika 7, 31-034, Kraków, Poland
| |
Collapse
|
10
|
Wang WD, Guo YY, Yang ZL, Su GL, Sun ZJ. Sniping Cancer Stem Cells with Nanomaterials. ACS NANO 2023; 17:23262-23298. [PMID: 38010076 DOI: 10.1021/acsnano.3c07828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Cancer stem cells (CSCs) drive tumor initiation, progression, and therapeutic resistance due to their self-renewal and differentiation capabilities. Despite encouraging progress in cancer treatment, conventional approaches often fail to eliminate CSCs, necessitating the development of precise targeted strategies. Recent advances in materials science and nanotechnology have enabled promising CSC-targeted approaches, harnessing the power of tailoring nanomaterials in diverse therapeutic applications. This review provides an update on the current landscape of nanobased precision targeting approaches against CSCs. We elucidate the nuanced application of organic, inorganic, and bioinspired nanomaterials across a spectrum of therapeutic paradigms, encompassing targeted therapy, immunotherapy, and multimodal synergistic therapies. By examining the accomplishments and challenges in this potential field, we aim to inform future efforts to advance nanomaterial-based therapies toward more effective "sniping" of CSCs and tumor clearance.
Collapse
Affiliation(s)
- Wen-Da Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430079, China
| | - Yan-Yu Guo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430079, China
| | - Zhong-Lu Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430079, China
| | - Guang-Liang Su
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430079, China
| | - Zhi-Jun Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430079, China
- Department of Oral Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| |
Collapse
|
11
|
Zhou Q, Xu J, Xu Y, Sun S, Chen J. Role of ICAM1 in tumor immunity and prognosis of triple-negative breast cancer. Front Immunol 2023; 14:1176647. [PMID: 37671167 PMCID: PMC10475526 DOI: 10.3389/fimmu.2023.1176647] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 07/24/2023] [Indexed: 09/07/2023] Open
Abstract
Background Treating triple-negative breast cancer (TNBC) is a difficult landscape owing to its short survival times and high risk of metastasis and recurrence among patients. Although involved in tumor invasion and metastasis, the mechanism of action of intercellular adhesion molecule 1 (ICAM1), a trans-membrane glycoprotein, in TNBC is ambiguous. Methods We examined ICAM1's role in TNBC, focusing on its expression, cell survival, mutation, and tumor immunity. Then, a risk score model was created utilizing co-expressed genes associated with ICAM1. According to their respective risk scores, we divided patients into high- and low-risk groups. Immune function, drug susceptibility differences, and somatic variants were analyzed in the high-and low-risk groups. And we used the CMap database to predict potential medications. Then, TNBC cells with low expression of ICAM-1 were co-cultured with PMA-treated THP-1 cells and CD8 T cells. In addition, We detected the expression of PD-1 and CTLA4 of low ICAM-1 expressing TNBC cells when they were cocultured with CD8 T cells. Results ICAM1 was found to be involved in leukocyte cell adhesion, motility, and immune activation. Patients with low-ICAM1 group had shorter disease-free survival (DFS) than those with high-ICAM1 group. The group with elevated levels of ICAM1 exhibited significantly increased levels of T-cell regulation, quiescence in natural killer (NK) cells, and M1 macrophage. ICAM1 expression was correlated with immune checkpoint drugs. The prognostic ability of the risk score model was found to be superior to that of individual genes. Patients categorized as high-risk exhibited elevated clinical stages, showed higher M1 macrophage numbers, and were able to benefit better from immunotherapy. Individuals belonging to the high-risk group exhibit significantly elevated mutation rates in TP53, TTN, and SYNE1 genes, along with increased TMB and PD-L1 levels and decreased TIDE scores. These findings suggest that immunotherapy may be advantageous for the high-risk group. Furthermore, low expression of ICAM1 was found to promote polarization to M2 macrophages along with T-cell exhaustion. Conclusion In conclusion, Low ICAM1 expression may be related to immune escape, leading to poor treatment response and a worse prognosis.
Collapse
Affiliation(s)
- Qin Zhou
- Suzhou Medical College of Soochow University, Suzhou, China
- Department of Breast surgery, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Jiawei Xu
- Department of Breast surgery, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Yan Xu
- Department of Breast surgery, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Shaokun Sun
- Department of Breast surgery, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Jian Chen
- Suzhou Medical College of Soochow University, Suzhou, China
- Department of Breast surgery, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| |
Collapse
|
12
|
Haydinger CD, Ashander LM, Tan ACR, Smith JR. Intercellular Adhesion Molecule 1: More than a Leukocyte Adhesion Molecule. BIOLOGY 2023; 12:biology12050743. [PMID: 37237555 DOI: 10.3390/biology12050743] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023]
Abstract
Intercellular adhesion molecule 1 (ICAM-1) is a transmembrane protein in the immunoglobulin superfamily expressed on the surface of multiple cell populations and upregulated by inflammatory stimuli. It mediates cellular adhesive interactions by binding to the β2 integrins macrophage antigen 1 and leukocyte function-associated antigen 1, as well as other ligands. It has important roles in the immune system, including in leukocyte adhesion to the endothelium and transendothelial migration, and at the immunological synapse formed between lymphocytes and antigen-presenting cells. ICAM-1 has also been implicated in the pathophysiology of diverse diseases from cardiovascular diseases to autoimmune disorders, certain infections, and cancer. In this review, we summarize the current understanding of the structure and regulation of the ICAM1 gene and the ICAM-1 protein. We discuss the roles of ICAM-1 in the normal immune system and a selection of diseases to highlight the breadth and often double-edged nature of its functions. Finally, we discuss current therapeutics and opportunities for advancements.
Collapse
Affiliation(s)
- Cameron D Haydinger
- College of Medicine and Public Health, Flinders University, Adelaide, SA 5042, Australia
| | - Liam M Ashander
- College of Medicine and Public Health, Flinders University, Adelaide, SA 5042, Australia
| | - Alwin Chun Rong Tan
- College of Medicine and Public Health, Flinders University, Adelaide, SA 5042, Australia
| | - Justine R Smith
- College of Medicine and Public Health, Flinders University, Adelaide, SA 5042, Australia
| |
Collapse
|
13
|
Marcu LG, Moghaddasi L, Bezak E. Cannot Target What Cannot Be Seen: Molecular Imaging of Cancer Stem Cells. Int J Mol Sci 2023; 24:ijms24021524. [PMID: 36675033 PMCID: PMC9864237 DOI: 10.3390/ijms24021524] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/29/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Cancer stem cells are known to play a key role in tumour development, proliferation, and metastases. Their unique properties confer resistance to therapy, often leading to treatment failure. It is believed that research into the identification, targeting, and eradication of these cells can revolutionise oncological treatment. Based on the principle that what cannot be seen, cannot be targeted, a primary step in cancer management is the identification of these cells. The current review aims to encompass the state-of-the-art functional imaging techniques that enable the identification of cancer stem cells via various pathways and mechanisms. The paper presents in vivo molecular techniques that are currently available or await clinical implementation. Challenges and future prospects are highlighted to open new research avenues in cancer stem cell imaging.
Collapse
Affiliation(s)
- Loredana G. Marcu
- Faculty of Informatics and Science, University of Oradea, 1 Universitatii Str., 410087 Oradea, Romania
- Cancer Research Institute, University of South Australia, Adelaide, SA 5001, Australia
- Correspondence:
| | - Leyla Moghaddasi
- Northern Sydney Cancer Centre, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
- School of Physical Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Eva Bezak
- Cancer Research Institute, University of South Australia, Adelaide, SA 5001, Australia
- School of Physical Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
14
|
Hsieh CY, Lin CC, Huang YW, Chen JH, Tsou YA, Chang LC, Fan CC, Lin CY, Chang WC. Macrophage secretory IL-1β promotes docetaxel resistance in head and neck squamous carcinoma via SOD2/CAT-ICAM1 signaling. JCI Insight 2022; 7:157285. [PMID: 36264639 PMCID: PMC9746909 DOI: 10.1172/jci.insight.157285] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 10/18/2022] [Indexed: 01/12/2023] Open
Abstract
Docetaxel (DTX) combined with cisplatin and 5-fluorouracil has been used as induction chemotherapy for head and neck squamous cell carcinoma (HNSCC). However, the development of acquired resistance remains a major obstacle to treatment response. Tumor-associated macrophages are associated with chemotherapeutic resistance. In the present study, increased infiltration of macrophages into the tumor microenvironment (TME) was significantly associated with shorter overall survival and increased resistance to chemotherapeutic drugs, particularly DTX, in patients with HNSCC. Macrophage coculture induced expression of intercellular adhesion molecule 1 (ICAM1), which promotes stemness and the formation of polyploid giant cancer cells, thereby reducing the efficacy of DTX. Both genetic silencing and pharmacological inhibition of ICAM1 sensitized HNSCC to DTX. Macrophage secretion of IL-1β was found to induce tumor expression of ICAM1. IL-1β neutralization and IL-1 receptor blockade reversed DTX resistance induced by macrophage coculture. IL-1β activated superoxide dismutase 2 and inhibited catalase, thereby modulating intracellular levels of ROS and inducing ICAM1 expression. Arsenic trioxide (ATO) reduced macrophage infiltration into the TME and impaired IL-1β secretion by macrophages. The combinatorial use of ATO enhanced the in vivo efficacy of DTX in a mouse model, which may provide a revolutionary approach to overcoming acquired therapeutic resistance in HNSCC.
Collapse
Affiliation(s)
- Ching-Yun Hsieh
- Division of Hematology and Oncology, Department of Internal Medicine, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Ching-Chan Lin
- Division of Hematology and Oncology, Department of Internal Medicine, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Yu-Wen Huang
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | - Jong-Hang Chen
- Division of Hematology and Oncology, Department of Internal Medicine, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Yung-An Tsou
- Department of Otolaryngology-Head and Neck Surgery and
| | - Ling-Chu Chang
- Center for Molecular Medicine, China Medical University Hospital, China Medical University, Taichung, Taiwan.,Chinese Medicinal Research and Development Center, China Medical University Hospital, and,Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Chi-Chen Fan
- Department of Research and Development, Marker Exploration Corporation, Taipei, Taiwan.,Department of Medical Laboratory Science and Biotechnology, Yuanpei University of Medical Technology, Hsinchu, Taiwan
| | - Chen-Yuan Lin
- Division of Hematology and Oncology, Department of Internal Medicine, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Wei-Chao Chang
- Center for Molecular Medicine, China Medical University Hospital, China Medical University, Taichung, Taiwan
| |
Collapse
|
15
|
Yang M, Zhan Y, Hou Z, Wang C, Fan W, Guo T, Li Z, Fang L, Lv S, Li S, Gu C, Ye M, Qin H, Liu Q, Cui X. VLDLR disturbs quiescence of breast cancer stem cells in a ligand-independent function. Front Oncol 2022; 12:887035. [PMID: 36568166 PMCID: PMC9767959 DOI: 10.3389/fonc.2022.887035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 11/11/2022] [Indexed: 12/12/2022] Open
Abstract
Breast cancer stem cells are responsible for cancer initiation, progression, and drug resistance. However, effective targeting strategies against the cell subpopulation are still limited. Here, we unveil two splice variants of very-low-density lipoprotein receptor, VLDLR-I and -II, which are highly expressed in breast cancer stem cells. In breast cancer cells, VLDLR silencing suppresses sphere formation abilities in vitro and tumor growth in vivo. We find that VLDLR knockdown induces transition from self-renewal to quiescence. Surprisingly, ligand-binding activity is not involved in the cancer-promoting functions of VLDLR-I and -II. Proteomic analysis reveals that citrate cycle and ribosome biogenesis-related proteins are upregulated in VLDLR-I and -II overexpressed cells, suggesting that VLDLR dysregulation is associated with metabolic and anabolic regulation. Moreover, high expression of VLDLR in breast cancer tissues correlates with poor prognosis of patients. Collectively, these findings indicate that VLDLR may be an important therapeutic target for breast cancer treatment.
Collapse
Affiliation(s)
- Mengying Yang
- The First Affiliated Hospital, Dalian Medical University, Dalian, China,Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China,State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou, China
| | - Yajing Zhan
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Zhijie Hou
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Chunli Wang
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Wenjun Fan
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Tao Guo
- The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Zhuoshi Li
- The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Lei Fang
- The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Shasha Lv
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Sisi Li
- Department of Pathology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Chundong Gu
- The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Mingliang Ye
- Chinese Academy of Sciences (CAS) Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, China
| | - Hongqiang Qin
- Chinese Academy of Sciences (CAS) Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, China,*Correspondence: Xiaonan Cui, ; Quentin Liu, ; Hongqiang Qin,
| | - Quentin Liu
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China,State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou, China,*Correspondence: Xiaonan Cui, ; Quentin Liu, ; Hongqiang Qin,
| | - Xiaonan Cui
- The First Affiliated Hospital, Dalian Medical University, Dalian, China,*Correspondence: Xiaonan Cui, ; Quentin Liu, ; Hongqiang Qin,
| |
Collapse
|
16
|
Sun G, Yang Y, Liu J, Gao Z, Xu T, Chai J, Xu J, Fan Z, Xiao T, Jia Q, Li M. Cancer stem cells in esophageal squamous cell carcinoma. Pathol Res Pract 2022; 237:154043. [DOI: 10.1016/j.prp.2022.154043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/21/2022] [Accepted: 07/26/2022] [Indexed: 02/07/2023]
|
17
|
The Anti-Proliferative and Apoptotic Effects of Rutaecarpine on Human Esophageal Squamous Cell Carcinoma Cell Line CE81T/VGH In Vitro and In Vivo. Int J Mol Sci 2022; 23:ijms23052843. [PMID: 35269987 PMCID: PMC8911365 DOI: 10.3390/ijms23052843] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 02/08/2023] Open
Abstract
The overall five-year survival rate for patients with esophageal cancer is low (15 to 25%) because of the poor prognosis at earlier stages. Rutaecarpine (RTP) is a bioalkaloid found in the traditional Chinese herb Evodia rutaecarpa and has been shown to exhibit anti-proliferative effect on tumor cells. However, the mechanisms by which RTP confer these effects and its importance in esophageal squamous cell carcinoma treatment remain unclear. Thus, in the present study, we first incubated human esophageal squamous cell carcinoma cell line, CE81T/VGH, with RTP to evaluate RTP’s effects on tumor cell growth and apoptosis. We also performed a xenograft study to confirm the in vitro findings. Furthermore, we determined the expression of p53, Bax, bcl-2, caspase-3, caspase-9, and PCNA in CE81T/VGH cells or the tumor tissues to investigate the possible mechanisms. All the effects of TRP were compared with that of cisplatin. The results showed that RTP significantly inhibits CE81T/VGH cell growth, promotes arrest of cells in the G2/M phase, and induces apoptosis. Consistently, the in vivo study showed that tumor size, tumor weight, and proliferating cell nuclear antigen protein expression in tumor tissue are significantly reduced in the high-dose RTP treatment group. Furthermore, the in vitro and in vivo studies showed that RTP increases the expression of p53 and Bax proteins, while inhibiting the expression of Bcl-2 in cancer cells. In addition, RTP significantly increases the expression of cleaved caspase-9 and cleaved caspase-3 proteins in tumor tissues in mice. These results suggest that RTP may trigger the apoptosis and inhibit growth in CE81T/VGH cells by the mechanisms associated with the regulation of the expression of p53, Bax, Bcl-2, as well as caspase-9 and caspase-3.
Collapse
|
18
|
Key genes affecting the progression of nasopharyngeal carcinoma identified by RNA-sequencing and bioinformatic analysis. Aging (Albany NY) 2021; 13:22176-22187. [PMID: 34544905 PMCID: PMC8507278 DOI: 10.18632/aging.203521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 08/02/2021] [Indexed: 12/11/2022]
Abstract
Background: The present work was conducted to screen the potential biomarkers affecting nasopharyngeal carcinoma (NPC) progression through RNA-sequencing (RNA-seq), bioinformatic analysis and functional experiments. Materials and Methods: Six normal samples and five NPC clinical samples were collected for RNA-seq analysis. The expression levels in both groups were determined through student’s t-test. We identified genes of P < 0.01 as the differentially expressed genes (DEGs). In addition, gene set enrichment analysis (GSEA) was conducted. Afterwards, STRING V10 database was employed to extract protein interactions among the DEGs. Later, we established a protein-protein interaction (PPI) network, and used the Cytoscape software for network visualization. qRT-PCR was conducted to verify hub genes from clinical samples. Then, the function of CXCL10 in cell proliferation, apoptosis, invasion and migration was evaluated. Results: A total of 2024 DEGs were identified, among which, 1449 were down-regulated and 575 were up-regulated. The PPI was constructed, and the hub genes including Insulin Like Growth Factor 1 (IGF1), C-X-C Motif Chemokine Ligand 10 (CXCL10), Interleukin 13 (IL13), Intercellular Adhesion Molecule 1 (ICAM1), G Protein Subunit Gamma Transducin 1 (GNGT1), Matrix Metallopeptidase 1 (MMP1), Neurexin 1 (NRXN1) and Matrix Metallopeptidase 3 (MMP3) were obtained. The expression levels of CXCL10, IGF1, MMP3, MMP1, ICAM1, and IL-13 were significantly up-regulated in tumor tissues. High expression levels of CXCL10, MMP3 and ICAM1 predicted poor prognosis of NPC patients. CXCL10 silencing suppressed NPC cell proliferation and migration. Conclusions: CXCL10 may serve as a potential key gene affecting NPC genesis and progression.
Collapse
|
19
|
Zhang DY, Monteiro MJ, Liu JP, Gu WY. Mechanisms of cancer stem cell senescence: Current understanding and future perspectives. Clin Exp Pharmacol Physiol 2021; 48:1185-1202. [PMID: 34046925 DOI: 10.1111/1440-1681.13528] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 05/24/2021] [Indexed: 12/13/2022]
Abstract
Cancer stem cells (CSCs) are a small population of heterogeneous tumor cells with the capacity of self-renewal and aberrant differentiation for immortality and divergent lineages of cancer cells. In contrast to bulky tumor cells, CSCs remain less differentiated and resistant to therapy even when targeted with tissue-specific antigenic markers. This makes CSCs responsible for not only tumor initiation, development, but also tumor recurrence. Emerging evidence suggests that CSCs can undergo cell senescence, a non-proliferative state of cells in response to stress. While cell senescence attenuates tumor cell proliferation, it is commonly regarded as a tumor suppressive mechanism. However, mounting research indicates that CSC senescence also provides these cells with the capacity to evade cytotoxic effects from cancer therapy, exacerbating cancer relapse and metastasis. Recent studies demonstrate that senescence drives reprogramming of cancer cell toward stemness and promotes CSC generation. In this review, we highlight the origin, heterogeneity and senescence regulatory mechanisms of CSCs, the complex relationship between CSC senescence and tumor therapy, and the recent beneficial effects of senotherapy on eliminating senescent tumor cells.
Collapse
Affiliation(s)
- Da-Yong Zhang
- Department of Clinical Medicine, Zhejiang University City College, Hangzhou, China
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, QLD, Australia
| | - Michael J Monteiro
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, QLD, Australia
| | - Jun-Ping Liu
- Institute of Ageing Research, Hangzhou Normal University, Hangzhou, China
- Department of Immunology, Monash University Faculty of Medicine, Prahran, Vic, Australia
- Hudson Institute of Medical Research, and Department of Molecular and Translational Science, Monash University Faculty of Medicine, Clayton, Vic, Australia
| | - Wen-Yi Gu
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
20
|
Taftaf R, Liu X, Singh S, Jia Y, Dashzeveg NK, Hoffmann AD, El-Shennawy L, Ramos EK, Adorno-Cruz V, Schuster EJ, Scholten D, Patel D, Zhang Y, Davis AA, Reduzzi C, Cao Y, D'Amico P, Shen Y, Cristofanilli M, Muller WA, Varadan V, Liu H. ICAM1 initiates CTC cluster formation and trans-endothelial migration in lung metastasis of breast cancer. Nat Commun 2021; 12:4867. [PMID: 34381029 PMCID: PMC8358026 DOI: 10.1038/s41467-021-25189-z] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 07/14/2021] [Indexed: 02/07/2023] Open
Abstract
Circulating tumor cell (CTC) clusters mediate metastasis at a higher efficiency and are associated with lower overall survival in breast cancer compared to single cells. Combining single-cell RNA sequencing and protein analyses, here we report the profiles of primary tumor cells and lung metastases of triple-negative breast cancer (TNBC). ICAM1 expression increases by 200-fold in the lung metastases of three TNBC patient-derived xenografts (PDXs). Depletion of ICAM1 abrogates lung colonization of TNBC cells by inhibiting homotypic tumor cell-tumor cell cluster formation. Machine learning-based algorithms and mutagenesis analyses identify ICAM1 regions responsible for homophilic ICAM1-ICAM1 interactions, thereby directing homotypic tumor cell clustering, as well as heterotypic tumor-endothelial adhesion for trans-endothelial migration. Moreover, ICAM1 promotes metastasis by activating cellular pathways related to cell cycle and stemness. Finally, blocking ICAM1 interactions significantly inhibits CTC cluster formation, tumor cell transendothelial migration, and lung metastasis. Therefore, ICAM1 can serve as a novel therapeutic target for metastasis initiation of TNBC. Circulating tumor cell (CTC) clusters are more efficient at mediating metastasis as compared to single cells and are associated with poor prognosis in breast cancer. Here, the authors show that ICAM1 is enriched in CTC clusters and its loss suppresses cell-cell interaction and CTC cluster formation, and propose ICAM1 as a therapeutic target for treating breast cancer metastasis.
Collapse
Affiliation(s)
- Rokana Taftaf
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Driskill Graduate Program in Life Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Xia Liu
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, USA
| | - Salendra Singh
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Yuzhi Jia
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Nurmaa K Dashzeveg
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Andrew D Hoffmann
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Lamiaa El-Shennawy
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Erika K Ramos
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Driskill Graduate Program in Life Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Valery Adorno-Cruz
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Emma J Schuster
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Driskill Graduate Program in Life Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - David Scholten
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Driskill Graduate Program in Life Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Dhwani Patel
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Youbin Zhang
- Division of Hematology and Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Andrew A Davis
- Division of Hematology and Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Division of Oncology, Department of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Carolina Reduzzi
- Division of Hematology and Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Yue Cao
- Department of Electrical and Computer Engineering, TEES-AgriLife Center for Bioinformatics and Genomic Systems Engineering, Texas A&M University, College Station, TX, USA
| | - Paolo D'Amico
- Division of Hematology and Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Yang Shen
- Department of Electrical and Computer Engineering, TEES-AgriLife Center for Bioinformatics and Genomic Systems Engineering, Texas A&M University, College Station, TX, USA
| | - Massimo Cristofanilli
- Division of Hematology and Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - William A Muller
- Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Vinay Varadan
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Huiping Liu
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA. .,Division of Hematology and Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA. .,Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
21
|
Yang C, Li F, Zhou W, Huang J. Knockdown of long non-coding RNA CCAT2 suppresses growth and metastasis of esophageal squamous cell carcinoma by inhibiting the β-catenin/WISP1 signaling pathway. J Int Med Res 2021; 49:3000605211019938. [PMID: 34057837 PMCID: PMC8753796 DOI: 10.1177/03000605211019938] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Objective Long non-coding RNA (lncRNA) colon cancer-associated transcript 2 (CCAT2) plays oncogenic roles in several cancers, including esophageal squamous cell carcinoma (ESCC). However, the specific mechanism of how CCAT2 influences ESCC tumorigenesis is still unknown. Methods Using RT-qPCR, the mRNA expression levels of CCAT2 in 33 paired ESCC and adjacent non-cancer tissues and cell lines were measured. Lentiviral vector sh-CCAT2 was designed and transfected into TE10 cells. CCK-8 and transwell assays were employed to detect the effects of CCAT2 knockdown on cell proliferation and invasion, respectively. RT-qPCR and western blots were used to detect the effects of CCAT2 knockdown. Results CCAT2 was overexpressed in ESCC tissues compared with corresponding adjacent tissues. CCAT2 knockdown could suppress cell proliferation and invasion in vitro. Furthermore, knockdown of CCAT2 could suppress the mRNA and protein levels of β-catenin and Wnt-induced-secreted-protein-1 (WISP1), as well as the mRNA levels of their downstream targets VEGF-A, MMP2, and ICAM-1. High expression of CCAT2 and WISP1 were associated with poor prognosis of ESCC patients. Conclusions In conclusion, a novel CCAT2/β-catenin/WISP1 axis was revealed in ESCC progression and may provide a promising therapeutic target against ESCC. CCAT2 and WISP1 are potential molecular biomarkers for predicting prognosis of ESCC.
Collapse
Affiliation(s)
- Canlin Yang
- Department of Oncology, Taizhou People's Hospital, Affiliated with Nanjing University of Chinese Medicine, Taizhou, Jiangsu, P.R. China
| | - Fei Li
- Department of Oncology, Taizhou People's Hospital, Affiliated with Nanjing University of Chinese Medicine, Taizhou, Jiangsu, P.R. China
| | - Wenbiao Zhou
- Department of Oncology, Taizhou People's Hospital, Affiliated with Nanjing University of Chinese Medicine, Taizhou, Jiangsu, P.R. China
| | - Junxing Huang
- Department of Oncology, Taizhou People's Hospital, Affiliated with Nanjing University of Chinese Medicine, Taizhou, Jiangsu, P.R. China
| |
Collapse
|
22
|
Wang J, Yu P, Luo J, Sun Z, Yu J, Wang J. Transcriptomic and microRNA Expression Profiles Identify Biomarkers for Predicting Neo-Chemoradiotherapy Response in Esophageal Squamous Cell Carcinomas (ESCC). Front Pharmacol 2021; 12:626972. [PMID: 33935718 PMCID: PMC8082678 DOI: 10.3389/fphar.2021.626972] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 02/10/2021] [Indexed: 01/01/2023] Open
Abstract
Neo-chemoradiotherapy (nCRT) before surgery is a standard treatment for locally advanced esophageal cancers. However, the treatment outcome of nCRT varied with different patients. This study aimed to identify potential biomarkers for prediction of nCRT-response in patients with esophageal squamous cell carcinoma (ESCC). Microarray datasets of nCRT responder and non-responder samples (access number GSE45670 and GSE59974) of patients with ESCC were downloaded from Gene Expression Omnibus (GEO) database. The mRNA expression profiles of cancer biopsies from four ESCC patients were analyzed before and after nCRT. Differentially expressed genes (DEGs) and miRNAs were screened between nCRT responder and non-responder ESCC samples. Functional enrichment analysis was conducted for these DEGs followed by construction of protein-protein interaction (PPI) network and miRNA-mRNA regulatory network. Finally, univariate survival analysis was performed to identify candidate biomarkers with prognostic values in ESCC. We identified numerous DEGs and differentially expressed miRNAs from nCRT responder group. GO and KEGG analysis showed that the dysregulated genes were mainly involved in biological processes and pathways, including "response to stimulus", "cellular response to organic substance", "regulation of signal transduction", "AGE-RAGE signaling pathway in diabetic complications", and "steroid hormone biosynthesis". After integration of PPI network and miRNA-mRNA network analysis, we found eight genes, TNF, AKR1C1, AKR1C2, ICAM1, GPR68, GNB4, SERPINE1 and MMP12, could be candidate genes associated with disease progression. Univariate cox regression analysis showed that there was no significant correlation between dysregulated miRNAs (such as hsa-miR-34b-3p, hsa-miR-127-5p, hsa-miR-144-3p, and hsa-miR-486-5p, et al.) and overall survival of ESCC patients. Moreover, abnormal expression of MMP12 was significantly correlated with pathological degree, TNM stage, lymph nodes metastasis, and overall survival of ESCC patients (p < 0.05). Taken together, our study identified that MMP12 might be a useful tumor biomarker and therapeutic target for ESCC.
Collapse
Affiliation(s)
- Jian Wang
- Department of Radiotherapy, Jiangyin People's Hospital, Jiangyin, China
| | - Pengyi Yu
- Department of Cardiothoracic Surgery, The Third Affiliated Hospital of Soochow University, Jiangsu, China
| | - Judong Luo
- Department of Radiotherapy, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Jiangsu, China
| | - Zhiqiang Sun
- Department of Radiotherapy, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Jiangsu, China
| | - Jingping Yu
- Department of Radiotherapy, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Jiangsu, China
| | - Jianlin Wang
- Department of Radiotherapy, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Jiangsu, China
| |
Collapse
|
23
|
Dagamajalu S, Vijayakumar M, Shetty R, Rex DAB, Narayana Kotimoole C, Prasad TSK. Proteogenomic examination of esophageal squamous cell carcinoma (ESCC): new lines of inquiry. Expert Rev Proteomics 2020; 17:649-662. [PMID: 33151123 DOI: 10.1080/14789450.2020.1845146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Introduction: Esophageal squamous cell carcinoma (ESCC), a histopathologic subtype of esophageal cancer is a major cause of cancer-related morbidity and mortality worldwide. This is primarily because patients are diagnosed at an advanced stage by the time symptoms appear. The genomics and mass spectrometry-based proteomics continue to provide important leads toward biomarker discovery for ESCC. However, such leads are yet to be translated into clinical utilities. Areas covered: We gathered information pertaining to proteomics and proteogenomics efforts in ESCC from the literature search until 2020. An overview of omics approaches to discover the candidate biomarkers for ESCC were highlighted. We present a summary of recent investigations of alterations in the level of gene and protein expression observed in biological samples including body fluids, tissue/biopsy and in vitro-based models. Expert opinion: A large number of protein-based biomarkers and therapeutic targets are being used in cancer therapy. Several candidates are being developed as diagnostics and prognostics for the management of cancers. High-resolution proteomic and proteogenomic approaches offer an efficient way to identify additional candidate biomarkers for diagnosis, monitoring of disease progression, prediction of response to chemo and radiotherapy. Some of these biomarkers can also be developed as therapeutic targets.
Collapse
Affiliation(s)
- Shobha Dagamajalu
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to Be University) , Mangalore, India
| | - Manavalan Vijayakumar
- Department of Surgical Oncology, Yenepoya Medical College, Yenepoya (Deemed to Be University) , Mangalore, India
| | - Rohan Shetty
- Department of Surgical Oncology, Yenepoya Medical College, Yenepoya (Deemed to Be University) , Mangalore, India
| | - D A B Rex
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to Be University) , Mangalore, India
| | - Chinmaya Narayana Kotimoole
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to Be University) , Mangalore, India
| | - T S Keshava Prasad
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to Be University) , Mangalore, India
| |
Collapse
|
24
|
Uddin MN, Wang X. The landscape of long non-coding RNAs in tumor stroma. Life Sci 2020; 264:118725. [PMID: 33166593 DOI: 10.1016/j.lfs.2020.118725] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 10/26/2020] [Accepted: 11/03/2020] [Indexed: 02/06/2023]
Abstract
AIMS Long non-coding RNAs (lncRNAs) are associated with cancer development, while their relationship with the cancer-associated stromal components remains poorly understood. In this review, we performed a broad description of the functional landscape of stroma-associated lncRNAs in various cancers and their roles in regulating the tumor-stroma crosstalk. MATERIALS AND METHODS We carried out a systematic literature review of PubMed, Scopus, Medline, Bentham, and EMBASE (Elsevier) databases by using the keywords "LncRNAs in cancer," "LncRNAs in tumor stroma," "stroma," "cancer-associated stroma," "stroma in the tumor microenvironment," "tumor-stroma crosstalk," "drug resistance of stroma," and "stroma in immunosuppression" till July 2020. We collected the latest articles addressing the biological functions of stroma-associated lncRNAs in cancer. KEY FINDINGS These articles reported that dysregulated stroma-associated lncRNAs play significant roles in modulating the tumor microenvironment (TME) by the regulation of tumor-stroma crosstalk, epithelial to mesenchymal transition (EMT), endothelial to mesenchymal transition (EndMT), extracellular matrix (ECM) turnover, and tumor immunity. SIGNIFICANCE The tumor stroma is a substantial portion of the TME, and the dysregulation of tumor stroma-associated lncRNAs significantly contributes to cancer initiation, progression, angiogenesis, immune evasion, metastasis, and drug resistance. Thus, stroma-associated lncRNAs could be potentially useful targets for cancer therapy.
Collapse
Affiliation(s)
- Md Nazim Uddin
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; Cancer Genomics Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; Big Data Research Institute, China Pharmaceutical University, Nanjing 211198, China; Institute of Food Science and Technology, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka 1205, Bangladesh
| | - Xiaosheng Wang
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; Cancer Genomics Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; Big Data Research Institute, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
25
|
Sathe G, George IA, Deb B, Jain AP, Patel K, Nayak B, Karmakar S, Seth A, Pandey A, Kumar P. Urinary glycoproteomic profiling of non-muscle invasive and muscle invasive bladder carcinoma patients reveals distinct N-glycosylation pattern of CD44, MGAM, and GINM1. Oncotarget 2020; 11:3244-3255. [PMID: 32922663 PMCID: PMC7456616 DOI: 10.18632/oncotarget.27696] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/14/2020] [Indexed: 12/19/2022] Open
Abstract
Clinical management of bladder carcinomas (BC) remains a major challenge and demands comprehensive multi-omics analysis for better stratification of the disease. Identification of patients on risk requires identification of signatures predicting prognosis risk of the patients. Understanding the molecular alterations associated with the disease onset and progression could improve the routinely used diagnostic and therapy procedures. In this study, we investigated the aberrant changes in N-glycosylation pattern of proteins associated with tumorigenesis as well as disease progression in bladder cancer. We integrated and compared global N-glycoproteomic and proteomic profile of urine samples from bladder cancer patients at different clinicopathological stages (non-muscle invasive and muscle-invasive patients [n = 5 and 4 in each cohort]) with healthy subjects (n = 5) using SPEG method. We identified 635 N-glycopeptides corresponding to 381 proteins and 543 N-glycopeptides corresponding to 326 proteins in NMIBC and MIBC patients respectively. Moreover, we identified altered glycosylation in 41 NMIBC and 21 MIBC proteins without any significant change in protein abundance levels. In concordance with the previously published bladder cancer cell line N-glycoproteomic data, we also observed dysregulated glycosylation in ECM related proteins. Further, we identified distinct N-glycosylation pattern of CD44, MGAM, and GINM1 between NMIBC and MIBC patients, which may be associated with disease progression in bladder cancer. These aberrant protein glycosylation events would provide a novel approach for bladder carcinoma diagnosis and further define novel mechanisms of tumor initiation and progression.
Collapse
Affiliation(s)
- Gajanan Sathe
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India.,Manipal Academy of Higher Education (MAHE), Manipal 576104, India.,Center for Molecular Medicine, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore 560029, India.,These authors contributed equally to this work and share the first authorship
| | - Irene A George
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India.,Manipal Academy of Higher Education (MAHE), Manipal 576104, India.,These authors contributed equally to this work and share the first authorship
| | - Barnali Deb
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India.,Manipal Academy of Higher Education (MAHE), Manipal 576104, India.,These authors contributed equally to this work and share the second authorship
| | - Ankit P Jain
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India.,These authors contributed equally to this work and share the second authorship
| | - Krishna Patel
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India.,School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 690525, India
| | - Brusabhanu Nayak
- Department of Urology, All India Institute of Medical Sciences, New Delhi 110070, India
| | - Subhradip Karmakar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi 110070, India
| | - Amlesh Seth
- Department of Urology, All India Institute of Medical Sciences, New Delhi 110070, India
| | - Akhilesh Pandey
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India.,Manipal Academy of Higher Education (MAHE), Manipal 576104, India.,Center for Molecular Medicine, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore 560029, India.,Department of Laboratory Medicine and Pathology, Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Prashant Kumar
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India.,Manipal Academy of Higher Education (MAHE), Manipal 576104, India
| |
Collapse
|
26
|
Zhou C, Fan N, Liu F, Fang N, Plum PS, Thieme R, Gockel I, Gromnitza S, Hillmer AM, Chon SH, Schlösser HA, Bruns CJ, Zhao Y. Linking Cancer Stem Cell Plasticity to Therapeutic Resistance-Mechanism and Novel Therapeutic Strategies in Esophageal Cancer. Cells 2020; 9:1481. [PMID: 32560537 PMCID: PMC7349233 DOI: 10.3390/cells9061481] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/07/2020] [Accepted: 06/10/2020] [Indexed: 12/24/2022] Open
Abstract
Esophageal cancer (EC) is an aggressive form of cancer, including squamous cell carcinoma (ESCC) and adenocarcinoma (EAC) as two predominant histological subtypes. Accumulating evidence supports the existence of cancer stem cells (CSCs) able to initiate and maintain EAC or ESCC. In this review, we aim to collect the current evidence on CSCs in esophageal cancer, including the biomarkers/characterization strategies of CSCs, heterogeneity of CSCs, and the key signaling pathways (Wnt/β-catenin, Notch, Hedgehog, YAP, JAK/STAT3) in modulating CSCs during esophageal cancer progression. Exploring the molecular mechanisms of therapy resistance in EC highlights DNA damage response (DDR), metabolic reprogramming, epithelial mesenchymal transition (EMT), and the role of the crosstalk of CSCs and their niche in the tumor progression. According to these molecular findings, potential therapeutic implications of targeting esophageal CSCs may provide novel strategies for the clinical management of esophageal cancer.
Collapse
Affiliation(s)
- Chenghui Zhou
- Department of General, Visceral, Cancer and Transplantation Surgery, University Hospital Cologne, 50937 Cologne, Germany
| | - Ningbo Fan
- Department of General, Visceral, Cancer and Transplantation Surgery, University Hospital Cologne, 50937 Cologne, Germany
| | - Fanyu Liu
- Department of General, Visceral, Cancer and Transplantation Surgery, University Hospital Cologne, 50937 Cologne, Germany
- Interfaculty Institute for Cell Biology, University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | - Nan Fang
- Singleron Biotechnologies, Yaogu Avenue 11, Nanjing 210000, China
| | - Patrick S Plum
- Department of General, Visceral, Cancer and Transplantation Surgery, University Hospital Cologne, 50937 Cologne, Germany
- Institute of Pathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - René Thieme
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University Hospital of Leipzig, 4107 Leipzig, Germany
| | - Ines Gockel
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University Hospital of Leipzig, 4107 Leipzig, Germany
| | - Sascha Gromnitza
- Institute of Pathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Axel M Hillmer
- Institute of Pathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, 50937 Cologne, Germany
| | - Seung-Hun Chon
- Department of General, Visceral, Cancer and Transplantation Surgery, University Hospital Cologne, 50937 Cologne, Germany
| | - Hans A Schlösser
- Department of General, Visceral, Cancer and Transplantation Surgery, University Hospital Cologne, 50937 Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, 50937 Cologne, Germany
| | - Christiane J Bruns
- Department of General, Visceral, Cancer and Transplantation Surgery, University Hospital Cologne, 50937 Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, 50937 Cologne, Germany
| | - Yue Zhao
- Department of General, Visceral, Cancer and Transplantation Surgery, University Hospital Cologne, 50937 Cologne, Germany
| |
Collapse
|
27
|
Klausz K, Cieker M, Kellner C, Rösner T, Otte A, Krohn S, Lux A, Nimmerjahn F, Valerius T, Gramatzki M, Peipp M. Fc-engineering significantly improves the recruitment of immune effector cells by anti-ICAM-1 antibody MSH-TP15 for myeloma therapy. Haematologica 2020; 106:1857-1866. [PMID: 32499243 PMCID: PMC8252953 DOI: 10.3324/haematol.2020.251371] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Indexed: 12/30/2022] Open
Abstract
Despite several therapeutic advances, patients with multiple myeloma (MM) require additional treatment options since no curative therapy exists yet. In search of a novel therapeutic antibody, we previously applied phage display with myeloma cell screening and developed TP15, a scFv targeting intercellular adhesion molecule 1 (ICAM-1/CD54). To more precisely evaluate the antibody's modes of action, fully human IgG1 antibody variants were generated bearing wild-type (MSH-TP15) or mutated Fc to either enhance (MSH-TP15 Fc-eng.) or prevent (MSH-TP15 Fc k.o.) Fc gamma receptor binding. Especially MSH-TP15 Fc-eng. induced potent antibody-dependent cell-mediated cytotoxicity (ADCC) against malignant plasma cells by efficiently recruiting NK cells and engaged macrophages for antibody-dependent cellular phagocytosis (ADCP) of tumor cells. Binding studies with truncated ICAM-1 demonstrated MSH-TP15 binding to ICAM-1 domain 1-2. Importantly, MSH-TP15 and MSH-TP15 Fc-eng. both prevented myeloma cell engraftment and significantly prolonged survival of mice in an intraperitoneal xenograft model. In the subcutaneous model MSH-TP15 Fc-eng. was superior to MSH-TP15, whereas MSH-TP15 Fc k.o. was not effective in both models - reflecting the importance of Fc-dependent mechanisms of action also in vivo. The efficient recruitment of immune cells and the potent anti-tumor activity of the Fc-engineered MSH-TP15 antibody hold significant potential for myeloma immunotherapy.
Collapse
Affiliation(s)
- Katja Klausz
- Division of Stem Cell Transplantation and Immunotherapy, Department of Internal Medicine II, University Hospital Schleswig-Holstein and Christian-Albrechts-University, Kiel
| | - Michael Cieker
- Division of Stem Cell Transplantation and Immunotherapy, Department of Internal Medicine II, University Hospital Schleswig-Holstein and Christian-Albrechts-University, Kiel
| | - Christian Kellner
- Department of Transfusion Medicine, Cell Therapeutics and Hemostaseology, University Hospital, LMU Munich, Munich
| | - Thies Rösner
- Division of Stem Cell Transplantation and Immunotherapy, Department of Internal Medicine II, University Hospital Schleswig-Holstein and Christian-Albrechts-University, Kiel
| | - Anna Otte
- Division of Stem Cell Transplantation and Immunotherapy, Department of Internal Medicine II, University Hospital Schleswig-Holstein and Christian-Albrechts-University, Kiel
| | - Steffen Krohn
- Division of Stem Cell Transplantation and Immunotherapy, Department of Internal Medicine II, University Hospital Schleswig-Holstein and Christian-Albrechts-University, Kiel
| | - Anja Lux
- Institute of Genetics, Department of Biology, University of Erlangen-Nurnberg, Erlangen, Germany
| | - Falk Nimmerjahn
- Institute of Genetics, Department of Biology, University of Erlangen-Nurnberg, Erlangen, Germany
| | - Thomas Valerius
- Division of Stem Cell Transplantation and Immunotherapy, Department of Internal Medicine II, University Hospital Schleswig-Holstein and Christian-Albrechts-University, Kiel
| | - Martin Gramatzki
- Division of Stem Cell Transplantation and Immunotherapy, Department of Internal Medicine II, University Hospital Schleswig-Holstein and Christian-Albrechts-University, Kiel
| | - Matthias Peipp
- Division of Stem Cell Transplantation and Immunotherapy, Department of Internal Medicine II, University Hospital Schleswig-Holstein and Christian-Albrechts-University, Kiel,MATTHIAS PEIPP
| |
Collapse
|
28
|
Fan CC, Tsai ST, Lin CY, Chang LC, Yang JC, Chen GY, Sher YP, Wang SC, Hsiao M, Chang WC. EFHD2 contributes to non-small cell lung cancer cisplatin resistance by the activation of NOX4-ROS-ABCC1 axis. Redox Biol 2020; 34:101571. [PMID: 32446175 PMCID: PMC7243194 DOI: 10.1016/j.redox.2020.101571] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/30/2020] [Accepted: 05/08/2020] [Indexed: 12/20/2022] Open
Abstract
Recurrence and metastasis remain the major cause of cancer mortality. Even for early-stage lung cancer, adjuvant chemotherapy yields merely slight increase to patient survival. EF-hand domain-containing protein D2 (EFHD2) has recently been implicated in recurrence of patients with stage I lung adenocarcinoma. In this study, we investigated the correlation between EFHD2 and chemoresistance in non-small cell lung cancer (NSCLC). High expression of EFHD2 was significantly associated with poor overall survival of NSCLC patients with chemotherapy in in silica analysis. Ectopic EFHD2 overexpression increased cisplatin resistance, whereas EFHD2 knockdown improved chemoresponse. Mechanistically, EFHD2 induced the production of NADPH oxidase 4 (NOX4) and in turn the increase of intracellular reactive oxygen species (ROS), consequently activating membrane expression of the ATP-binding cassette subfamily C member 1 (ABCC1) for drug efflux. Non-steroidal anti-inflammatory drug (NSAID) ibuprofen suppressed EFHD2 expression by leading to the proteasomal and lysosomal degradation of EFHD2 through a cyclooxygenase (COX)-independent mechanism. Combining ibuprofen with cisplatin enhanced antitumor responsiveness in a murine xenograft model in comparison with the individual treatment. In conclusion, we demonstrate that EFHD2 promotes chemoresistance through the NOX4-ROS-ABCC1 axis and therefore developing EFHD2-targeting strategies may offer a new avenue to improve adjuvant chemotherapy of lung cancer. EFHD2 increases resistance of lung cancer to cisplatin. EFHD2 enhances the NOX4-ROS-ABCC1signalingfor cisplatin efflux. Ibuprofen suppresses EFHD2 through both proteasomal and lysosomal degradationmechanisms
Collapse
Affiliation(s)
- Chi-Chen Fan
- Department of Superintendent Office, Mackay Memorial Hospital, Taipei, Taiwan; Department of Medical Laboratory Science and Biotechnology, Yuanpei University, Hsinchu, Taiwan
| | - Sheng-Ta Tsai
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Chen-Yuan Lin
- Department of Hematology and Oncology, China Medical University Hospital, Taichung, Taiwan; School of Pharmacy, China Medical University, Taichung, Taiwan
| | - Ling-Chu Chang
- Center for Molecular Medicine, China Medical University Hospital, China Medical University, Taichung, Taiwan; Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Juan-Cheng Yang
- Department of Superintendent Office, Mackay Memorial Hospital, Taipei, Taiwan; Department of Medical Laboratory Science and Biotechnology, Yuanpei University, Hsinchu, Taiwan; Department of Post-Baccalaureate Chinese Medicine, China Medical University, Taichung, Taiwan; Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung, Taiwan
| | - Guan-Yu Chen
- Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung, Taiwan
| | - Yuh-Pyng Sher
- Center for Molecular Medicine, China Medical University Hospital, China Medical University, Taichung, Taiwan; Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan; Chinese Medicine Research Center, China Medical University, Taichung, Taiwan; Research Center for Chinese Herbal Medicine, China Medical University, Taichung, Taiwan
| | - Shao-Chun Wang
- Center for Molecular Medicine, China Medical University Hospital, China Medical University, Taichung, Taiwan; Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan; Department of Cancer Biology, University of Cincinnati, Cincinnati, OH, USA; Department of Biotechnology, Asia University, Taichung, Taiwan
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei, Taiwan; Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Wei-Chao Chang
- Center for Molecular Medicine, China Medical University Hospital, China Medical University, Taichung, Taiwan.
| |
Collapse
|
29
|
Lizárraga-Verdugo E, Avendaño-Félix M, Bermúdez M, Ramos-Payán R, Pérez-Plasencia C, Aguilar-Medina M. Cancer Stem Cells and Its Role in Angiogenesis and Vasculogenic Mimicry in Gastrointestinal Cancers. Front Oncol 2020; 10:413. [PMID: 32296643 PMCID: PMC7136521 DOI: 10.3389/fonc.2020.00413] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 03/10/2020] [Indexed: 12/13/2022] Open
Abstract
Cancer stem cells (CSCs) are able to promote initiation, survival and maintenance of tumor growth and have been involved in gastrointestinal cancers (GICs) such as esophageal, gastric and colorectal. It is well known that blood supply facilitates cancer progression, recurrence, and metastasis. In this regard, tumor-induced angiogenesis begins with expression of pro-angiogenic molecules such as vascular endothelial growth factor (VEGF), which in turn lead to neovascularization and thus to tumor growth. Another pattern of blood supply is called vasculogenic mimicry (VM). It is a reminiscent of the embryonic vascular network and is carried out by CSCs that have the capability of transdifferentiate and form vascular-tube structures in absence of endothelial cells. In this review, we discuss the role of CSCs in angiogenesis and VM, since these mechanisms represent a source of tumor nutrition, oxygenation, metabolic interchange and facilitate metastasis. Identification of CSCs mechanisms involved in angiogenesis and VM could help to address therapeutics for GICs.
Collapse
Affiliation(s)
- Erik Lizárraga-Verdugo
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacán, Mexico
| | - Melisa Avendaño-Félix
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacán, Mexico
| | - Mercedes Bermúdez
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacán, Mexico
| | - Rosalio Ramos-Payán
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacán, Mexico
| | | | - Maribel Aguilar-Medina
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacán, Mexico
| |
Collapse
|
30
|
Noori MS, Bodle SJ, Showalter CA, Streator ES, Drozek DS, Burdick MM, Goetz DJ. Sticking to the Problem: Engineering Adhesion in Molecular Endoscopic Imaging. Cell Mol Bioeng 2020; 13:113-124. [PMID: 32175025 DOI: 10.1007/s12195-020-00609-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 01/03/2020] [Indexed: 12/24/2022] Open
Abstract
Cancers of the digestive tract cause nearly one quarter of the cancer deaths worldwide, and nearly half of these are due to cancers of the esophagus and colon. Early detection of cancer significantly increases the rate of survival, and thus it is critical that cancer within these organs is detected early. In this regard, endoscopy is routinely used to screen for transforming/cancerous (i.e. dysplastic to fully cancerous) tissue. Numerous studies have revealed that the biochemistry of the luminal surface of such tissue within the colon and esophagus becomes altered throughout disease progression. Molecular endoscopic imaging (MEI), an emerging technology, seeks to exploit these changes for the early detection of cancer. The general approach for MEI is as follows: the luminal surface of an organ is exposed to molecular ligands, or particulate probes bearing a ligand, cognate to biochemistry unique to pre-cancerous/cancerous tissue. After a wash, the tissue is imaged to determine the presence of the probes. Detection of the probes post-washing suggests pathologic tissue. In the current review we provide a succinct, but extensive, review of ligands and target moieties that could be, or are currently being investigated, as possible cognate chemistries for MEI. This is followed by a review of the biophysics that determines, in large part, the success of a particular MEI design. The work draws an analogy between MEI and the well-advanced field of cell adhesion and provides a road map for engineering MEI to achieve assays that yield highly selective recognition of transforming/cancerous tissue in situ.
Collapse
Affiliation(s)
- Mahboubeh S Noori
- Department of Chemical and Biomolecular Engineering, Ohio University, Athens, OH 45701 USA
| | - Sarah J Bodle
- Department of Chemical and Biomolecular Engineering, Ohio University, Athens, OH 45701 USA.,Biomedical Engineering Program, Ohio University, Athens, OH 45701 USA
| | - Christian A Showalter
- Department of Biological Sciences, Ohio University, Athens, OH 45701 USA.,Molecular and Cellular Biology Program, Ohio University, Athens, OH 45701 USA
| | - Evan S Streator
- Department of Chemical and Biomolecular Engineering, Ohio University, Athens, OH 45701 USA
| | - David S Drozek
- Department of Specialty Medicine, Ohio University, Athens, OH 45701 USA
| | - Monica M Burdick
- Department of Chemical and Biomolecular Engineering, Ohio University, Athens, OH 45701 USA.,Biomedical Engineering Program, Ohio University, Athens, OH 45701 USA.,Molecular and Cellular Biology Program, Ohio University, Athens, OH 45701 USA.,Edison Biotechnology Institute, Ohio University, Athens, OH 45701 USA
| | - Douglas J Goetz
- Department of Chemical and Biomolecular Engineering, Ohio University, Athens, OH 45701 USA.,Biomedical Engineering Program, Ohio University, Athens, OH 45701 USA
| |
Collapse
|
31
|
Zhu W, Li LL, Songyang Y, Shi Z, Li D. Identification and validation of HELLS (Helicase, Lymphoid-Specific) and ICAM1 (Intercellular adhesion molecule 1) as potential diagnostic biomarkers of lung cancer. PeerJ 2020; 8:e8731. [PMID: 32195055 PMCID: PMC7067188 DOI: 10.7717/peerj.8731] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 02/11/2020] [Indexed: 12/25/2022] Open
Abstract
Although lung cancer is one of the greatest threats to human health, its signaling pathway and related genes are still unknown. This study integrates data from three groups of people to study potential key candidate genes and pathways related to lung cancer. Expression profiles (GSE18842, GSE19188 and GSE27262), including 162 tumor tissue and 135 adjacent normal lung tissue samples, were integrated and analyzed. Differentially expressed genes (DEGs) and candidate genes were identified, their expression pathways were analyzed, and the diethylene glycol-related protein–protein interaction (PPI) network was analyzed. We identified 232 shared DEGs (40 upregulated and 192 down-regulated) from the three GSE datasets. The DEGs were clustered according to function and signaling pathway for significant enrichment analysis. In total, 129 nodes/DEGs were identified from the DEG PPI network complex. An improved prognosis was associated with increased Helicase, Lymphoid-Specific (HELLS) and decreased Intercellular adhesion molecule 1 (ICAM1) mRNA expression in lung cancer patients. In conclusion, we used integrated bioinformatics analysis to identify candidate genes and pathways in lung cancer to show that HELLS and ICAM1 might be the key genes related to tumorigenesis or tumor progression in lung cancer. Additional studies are needed to further explore the involved functional mechanisms.
Collapse
Affiliation(s)
- Wei Zhu
- Department of Occupational and Environmental Health, Wuhan University, School of Health Science, Wuhan, Hubei, China
| | - Lin Lin Li
- Department of Occupational and Environmental Health, Wuhan University, School of Health Science, Wuhan, Hubei, China
| | - Yiyan Songyang
- Department of Occupational and Environmental Health, Wuhan University, School of Health Science, Wuhan, Hubei, China
| | - Zhan Shi
- Human Biology Program, University of Toronto, Toronto, ON, Canada
| | - Dejia Li
- Department of Occupational and Environmental Health, Wuhan University, School of Health Science, Wuhan, Hubei, China
| |
Collapse
|
32
|
Jayawardena N, Burga LN, Poirier JT, Bostina M. Virus-Receptor Interactions: Structural Insights For Oncolytic Virus Development. Oncolytic Virother 2019; 8:39-56. [PMID: 31754615 PMCID: PMC6825474 DOI: 10.2147/ov.s218494] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 10/02/2019] [Indexed: 12/11/2022] Open
Abstract
Recent advancements in oncolytic virotherapy commend a special attention to developing new strategies for targeting cancer cells with oncolytic viruses (OVs). Modifications of the viral envelope or coat proteins serve as a logical mean of repurposing viruses for cancer treatment. In this review, we discuss how detailed structural knowledge of the interactions between OVs and their natural receptors provide valuable insights into tumor specificity of some viruses and re-targeting of alternate receptors for broad tumor tropism or improved tumor selectivity.
Collapse
Affiliation(s)
- Nadishka Jayawardena
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Laura N Burga
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - John T Poirier
- Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Mihnea Bostina
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
- Otago Micro and Nano Imaging, University of Otago, Dunedin, New Zealand
| |
Collapse
|
33
|
Wu Q, Wu Z, Bao C, Li W, He H, Sun Y, Chen Z, Zhang H, Ning Z. Cancer stem cells in esophageal squamous cell cancer. Oncol Lett 2019; 18:5022-5032. [PMID: 31612013 PMCID: PMC6781610 DOI: 10.3892/ol.2019.10900] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 05/29/2019] [Indexed: 12/13/2022] Open
Abstract
Cancer stem cells (CSCs) are hypothesized to govern the origin, progression, drug resistance, recurrence and metastasis of human cancer. CSCs have been identified in nearly all types of human cancer, including esophageal squamous cell cancer (ESCC). Four major methods are typically used to isolate or enrich CSCs, including: i) fluorescence-activated cell sorting or magnetic-activated cell sorting using cell-specific surface markers; ii) stem cell markers, including aldehyde dehydrogenase 1 family member A1; iii) side population cell phenotype markers; and iv) microsphere culture methods. ESCC stem cells have been identified using a number of these methods. An increasing number of stem cell signatures and pathways have been identified, which have assisted in the clarification of molecular mechanisms that regulate the stemness of ESCC stem cells. Certain viruses, such as human papillomavirus and hepatitis B virus, are also considered to be important in the formation of CSCs, and there is a crosstalk between stemness and viruses-associated genes/pathways, which may suggest a potential therapeutic strategy for the eradication of CSCs. In the present review, findings are summarized along these lines of inquiry.
Collapse
Affiliation(s)
- Qian Wu
- Basic Medical School, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China.,Nurse School, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Zhe Wu
- Basic Medical School, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Cuiyu Bao
- Nurse School, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Wenjing Li
- Basic Medical School, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Hui He
- Basic Medical School, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Yanling Sun
- Basic Medical School, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Zimin Chen
- Basic Medical School, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Hao Zhang
- Basic Medical School, Ji'nan University Medical School, Guangzhou, Guangdong 510632, P.R. China
| | - Zhifeng Ning
- Basic Medical School, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| |
Collapse
|
34
|
Datta KK, Patil S, Patel K, Babu N, Raja R, Nanjappa V, Mangalaparthi KK, Dhaka B, Rajagopalan P, Deolankar SC, Kannan R, Kumar P, Prasad TSK, Mathur PP, Kumari A, Manoharan M, Coral K, Murugan S, Sidransky D, Gupta R, Gupta R, Khanna-Gupta A, Chatterjee A, Gowda H. Chronic Exposure to Chewing Tobacco Induces Metabolic Reprogramming and Cancer Stem Cell-Like Properties in Esophageal Epithelial Cells. Cells 2019; 8:cells8090949. [PMID: 31438645 PMCID: PMC6770059 DOI: 10.3390/cells8090949] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/10/2019] [Accepted: 08/17/2019] [Indexed: 12/14/2022] Open
Abstract
Tobacco in its smoke and smokeless form are major risk factors for esophageal squamous cell carcinoma (ESCC). However, molecular alterations associated with smokeless tobacco exposure are poorly understood. In the Indian subcontinent, tobacco is predominantly consumed in chewing form. An understanding of molecular alterations associated with chewing tobacco exposure is vital for identifying molecular markers and potential targets. We developed an in vitro cellular model by exposing non-transformed esophageal epithelial cells to chewing tobacco over an eight-month period. Chronic exposure to chewing tobacco led to increase in cell proliferation, invasive ability and anchorage independent growth, indicating cell transformation. Molecular alterations associated with chewing tobacco exposure were characterized by carrying out exome sequencing and quantitative proteomic profiling of parental cells and chewing tobacco exposed cells. Quantitative proteomic analysis revealed increased expression of cancer stem cell markers in tobacco treated cells. In addition, tobacco exposed cells showed the Oxidative Phosphorylation (OXPHOS) phenotype with decreased expression of enzymes associated with glycolytic pathway and increased expression of a large number of mitochondrial proteins involved in electron transport chain as well as enzymes of the tricarboxylic acid (TCA) cycle. Electron micrographs revealed increase in number and size of mitochondria. Based on these observations, we propose that chronic exposure of esophageal epithelial cells to tobacco leads to cancer stem cell-like phenotype. These cells show the characteristic OXPHOS phenotype, which can be potentially targeted as a therapeutic strategy.
Collapse
Affiliation(s)
- Keshava K Datta
- Institute of Bioinformatics, International Tech Park, Bangalore 560066, India
| | - Shankargouda Patil
- Department of Maxillofacial Surgery and Diagnostic Sciences, Division of Oral Pathology, College of Dentistry, Jazan University, Jazan 45142, Saudi Arabia
- Department of Medical Biotechnologies, School of Dental Medicine, University of Siena, 53100 Siena, Italy
| | - Krishna Patel
- Institute of Bioinformatics, International Tech Park, Bangalore 560066, India
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 690525, India
| | - Niraj Babu
- Institute of Bioinformatics, International Tech Park, Bangalore 560066, India
- Manipal Academy of Higher Education (MAHE), Madhav Nagar, Manipal 576104, India
| | - Remya Raja
- Institute of Bioinformatics, International Tech Park, Bangalore 560066, India
| | | | - Kiran Kumar Mangalaparthi
- Institute of Bioinformatics, International Tech Park, Bangalore 560066, India
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 690525, India
| | - Bharti Dhaka
- Institute of Bioinformatics, International Tech Park, Bangalore 560066, India
| | | | - Sayali Chandrashekhar Deolankar
- Center for Systems Biology and Molecular Medicine, Yenepoya (Deemed to be University), Mangalore 575018, India
- National Institute of Mental Health and Neuro Sciences (NIMHANS), Hosur Road, Bangalore 560029, India
| | - Ramakrishnan Kannan
- National Institute of Mental Health and Neuro Sciences (NIMHANS), Hosur Road, Bangalore 560029, India
| | - Prashant Kumar
- Institute of Bioinformatics, International Tech Park, Bangalore 560066, India
| | - T S Keshava Prasad
- Center for Systems Biology and Molecular Medicine, Yenepoya (Deemed to be University), Mangalore 575018, India
| | - Premendu P Mathur
- School of Biotechnology, KIIT (Deemed to be University), Bhubaneswar 751024, India
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Pondicherry 605014, India
| | | | | | | | | | - David Sidransky
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Ravi Gupta
- Medgenome Labs Pvt. Ltd., Bangalore 560099, India
| | - Rohit Gupta
- Medgenome Labs Pvt. Ltd., Bangalore 560099, India
| | | | - Aditi Chatterjee
- Institute of Bioinformatics, International Tech Park, Bangalore 560066, India.
- Manipal Academy of Higher Education (MAHE), Madhav Nagar, Manipal 576104, India.
| | - Harsha Gowda
- Institute of Bioinformatics, International Tech Park, Bangalore 560066, India.
- Manipal Academy of Higher Education (MAHE), Madhav Nagar, Manipal 576104, India.
| |
Collapse
|
35
|
Hyaluronan-CD44 axis orchestrates cancer stem cell functions. Cell Signal 2019; 63:109377. [PMID: 31362044 DOI: 10.1016/j.cellsig.2019.109377] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 07/26/2019] [Accepted: 07/26/2019] [Indexed: 02/06/2023]
Abstract
The prominent role of CD44 in tumor cell signaling together with its establishment as a cancer stem cell (CSC) marker for various tumor entities imply a key role for CD44 in CSC functional properties. Hyaluronan, the main ligand of CD44, is a major constituent of CSC niche and, therefore, the hyaluronan-CD44 signaling axis is of functional importance in this special microenvironment. This review aims to provide recent advances in the importance of hyaluronan-CD44 interactions in the acquisition and maintenance of a CSC phenotype. Hyaluronan-CD44 axis has a substantial impact on stemness properties of CSCs and drug resistance through induction of EMT program, oxidative stress resistance, secretion of extracellular vesicles/exosomes and epigenetic control. Potential therapeutic approaches targeting CSCs based on the hyaluronan-CD44 axis are also presented.
Collapse
|
36
|
Cancer Stem Cells in Head and Neck Carcinomas: Identification and Possible Therapeutic Implications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1083:89-102. [PMID: 29139089 DOI: 10.1007/5584_2017_116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The recurrence and/or lack of response of certain tumors to radio- and chemotherapy has been attributed to a small subpopulation of cells termed cancer stem cells (CSCs). CSCs have been identified in many tumors (including solid and hematological tumors). CSCs are characterized by their capacity for self-renewal, their ability to introduce heterogeneity within a tumor mass and its metastases, genomic instability, and their insensitivity to both radiation and chemotherapy. The latter highlights the clinical importance of studying this subpopulation since their resistance to traditional treatments may lead to metastatic disease and/or tumor relapse. Head and neck squamous cell carcinomas (HNSCCs) are the sixth most common malignancy worldwide with the highest incidence occurring in East Asia and eastern and southern Africa. Several cellular subpopulations believed to have CSC properties have been isolated from HNSCCs, but at present, identification and characterization of CSCs remains an experimental challenge with no established or standardized protocols in place to confirm their identity. In this review we discuss current approaches to the study of CSCs with a focus on HNSCCs, particularly in the context of what this might mean from a therapeutic perspective.
Collapse
|
37
|
Song M, Ping Y, Zhang K, Yang L, Li F, Zhang C, Cheng S, Yue D, Maimela NR, Qu J, Liu S, Sun T, Li Z, Xia J, Zhang B, Wang L, Zhang Y. Low-Dose IFNγ Induces Tumor Cell Stemness in Tumor Microenvironment of Non-Small Cell Lung Cancer. Cancer Res 2019; 79:3737-3748. [PMID: 31085700 DOI: 10.1158/0008-5472.can-19-0596] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/05/2019] [Accepted: 05/08/2019] [Indexed: 11/16/2022]
Abstract
IFNγ is conventionally recognized as an inflammatory cytokine that plays a central role in antitumor immunity. Although it has been used clinically to treat a variety of malignancies, low levels of IFNγ in the tumor microenvironment (TME) increase the risk of tumor metastasis during immunotherapy. Accumulating evidence suggests that IFNγ can induce cancer progression, yet the mechanisms underlying the controversial role of IFNγ in tumor development remain unclear. Here, we reveal a dose-dependent effect of IFNγ in inducing tumor stemness to accelerate cancer progression in patients with a variety of cancer types. Low levels of IFNγ endowed cancer stem-like properties via the intercellular adhesion molecule-1 (ICAM1)-PI3K-Akt-Notch1 axis, whereas high levels of IFNγ activated the JAK1-STAT1-caspase pathway to induce apoptosis in non-small cell lung cancer (NSCLC). Inhibition of ICAM1 abrogated the stem-like properties of NSCLC cells induced by the low dose of IFNγ both in vitro and in vivo. This study unveils the role of low levels of IFNγ in conferring tumor stemness and elucidates the distinct signaling pathways activated by IFNγ in a dose-dependent manner, thus providing new insights into cancer treatment, particularly for patients with low expression of IFNγ in the TME. SIGNIFICANCE: These findings reveal the dose-dependent effect of IFNγ in inducing tumor stemness and elucidate the distinct molecular mechanisms activated by IFNγ in a dose-dependent manner.
Collapse
Affiliation(s)
- Mengjia Song
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yu Ping
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kai Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Li Yang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Feng Li
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chaoqi Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Thoracic Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shaoyan Cheng
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dongli Yue
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Nomathamsanqa Resegofetse Maimela
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jiao Qu
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shasha Liu
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ting Sun
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zihai Li
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina
| | - Jianchuan Xia
- Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Bin Zhang
- Division of Hematology/Oncology, Department of Medicine, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Liping Wang
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Yi Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
38
|
Etiology, cancer stem cells and potential diagnostic biomarkers for esophageal cancer. Cancer Lett 2019; 458:21-28. [PMID: 31125642 DOI: 10.1016/j.canlet.2019.05.018] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/10/2019] [Accepted: 05/15/2019] [Indexed: 12/19/2022]
Abstract
Esophageal cancer (EC) has been a leading cause of cancer death worldwide in part due to late detection and lack of precision treatment. EC includes two major malignancies, esophageal squamous cell carcinoma (ESCC) and esophageal adenocarcinoma (EAC). Recent studies reveal that ESCC and EAC have distinct cell of origin and contain cancer stem cells (also known as tumor initiating cells) expressing different cell surface markers. These biomarkers have potentially important values for both early detection and finding effective therapy. In this review we summarize the updated findings for cell of origin and provide an overview of cancer cell biomarkers that have been tested for ESCC and EAC. In addition, we also discuss recent progress in the study of molecular mechanisms leading to these malignancies.
Collapse
|
39
|
Taniguchi H, Suzuki Y, Natori Y. The Evolving Landscape of Cancer Stem Cells and Ways to Overcome Cancer Heterogeneity. Cancers (Basel) 2019; 11:cancers11040532. [PMID: 31013960 PMCID: PMC6520864 DOI: 10.3390/cancers11040532] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 04/02/2019] [Accepted: 04/04/2019] [Indexed: 12/18/2022] Open
Abstract
Cancer stem cells (CSCs) with therapeutic resistance and plasticity can be found in various types of tumors and are recognized as attractive targets for treatments. As CSCs are derived from tissue stem or progenitor cells, and/or dedifferentiated mature cells, their signal transduction pathways are critical in the regulation of CSCs; chronic inflammation causes the accumulation of genetic mutations and aberrant epigenetic changes in these cells, potentially leading to the production of CSCs. However, the nature of CSCs appears to be stronger than the treatments of the past. To improve the treatments targeting CSCs, it is important to inhibit several molecules on the signaling cascades in CSCs simultaneously, and to overcome cancer heterogeneity caused by the plasticity. To select suitable target molecules for CSCs, we have to explore the landscape of CSCs from the perspective of cancer stemness and signaling systems, based on the curated databases of cancer-related genes. We have been studying the integration of a broad range of knowledge and experiences from cancer biology, and also from other interdisciplinary basic sciences. In this review, we have introduced the concept of developing novel strategies targeting CSCs.
Collapse
Affiliation(s)
- Hiroaki Taniguchi
- The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-0071, Japan.
- Clinical and Translational Research Center Keio University Hospital, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
| | - Yasunori Suzuki
- Clinical and Translational Research Center Keio University Hospital, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
| | - Yukikazu Natori
- BioThinkTank Co. Ltd. 4-10-1-E1706 Minatomirai, Nishi-ku Yokohama, Kanagawa 220-0012, Japan.
| |
Collapse
|
40
|
Characterisation of an Isogenic Model of Cisplatin Resistance in Oesophageal Adenocarcinoma Cells. Pharmaceuticals (Basel) 2019; 12:ph12010033. [PMID: 30791601 PMCID: PMC6469161 DOI: 10.3390/ph12010033] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/14/2019] [Accepted: 02/15/2019] [Indexed: 12/18/2022] Open
Abstract
Cisplatin (cis-diamminedichloroplatinum) is widely used for the treatment of solid malignancies; however, the development of chemoresistance hinders the success of this chemotherapeutic in the clinic. This study provides novel insights into the molecular and phenotypic changes in an isogenic oesophageal adenocarcinoma (OAC) model of acquired cisplatin resistance. Key differences that could be targeted to overcome cisplatin resistance are highlighted. We characterise the differences in treatment sensitivity, gene expression, inflammatory protein secretions, and metabolic rate in an isogenic cell culture model of acquired cisplatin resistance in OAC. Cisplatin-resistant cells (OE33 Cis R) were significantly more sensitive to other cytotoxic modalities, such as 2 Gy radiation (p = 0.0055) and 5-fluorouracil (5-FU) (p = 0.0032) treatment than parental cisplatin-sensitive cells (OE33 Cis P). Gene expression profiling identified differences at the gene level between cisplatin-sensitive and cisplatin-resistant cells, uncovering 692 genes that were significantly altered between OE33 Cis R cells and OE33 Cis P cells. OAC is an inflammatory-driven cancer, and inflammatory secretome profiling identified 18 proteins secreted at significantly altered levels in OE33 Cis R cells compared to OE33 Cis P cells. IL-7 was the only cytokine to be secreted at a significantly higher levels from OE33 Cis R cells compared to OE33 Cis P cells. Additionally, we profiled the metabolic phenotype of OE33 Cis P and OE33 Cis R cells under normoxic and hypoxic conditions. The oxygen consumption rate, as a measure of oxidative phosphorylation, is significantly higher in OE33 Cis R cells under normoxic conditions. In contrast, under hypoxic conditions of 0.5% O2, the oxygen consumption rate is significantly lower in OE33 Cis R cells than OE33 Cis P cells. This study provides novel insights into the molecular and phenotypic changes in an isogenic OAC model of acquired cisplatin resistance, and highlights therapeutic targets to overcome cisplatin resistance in OAC.
Collapse
|
41
|
Sökeland G, Schumacher U. The functional role of integrins during intra- and extravasation within the metastatic cascade. Mol Cancer 2019; 18:12. [PMID: 30657059 PMCID: PMC6337777 DOI: 10.1186/s12943-018-0937-3] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 12/27/2018] [Indexed: 02/07/2023] Open
Abstract
Formation of distant metastases is by far the most common cause of cancer-related deaths. The process of metastasis formation is complex, and within this complex process the formation of migratory cells, the so called epithelial mesenchymal transition (EMT), which enables cancer cells to break loose from the primary tumor mass and to enter the bloodstream, is of particular importance. To break loose from the primary cancer, cancer cells have to down-regulate the cell-to-cell adhesion molecuIes (CAMs) which keep them attached to neighboring cancer cells. In contrast to this downregulation of CAMS in the primary tumor, cancer cells up-regulate other types of CAMs, that enable them to attach to the endothelium in the organ of the future metastasis. During EMT, the expression of cell-to-cell and cell-to-matrix adhesion molecules and their down- and upregulation is therefore critical for metastasis formation. Tumor cells mimic leukocytes to enable transmigration of the endothelial barrier at the metastatic site. The attachment of leukocytes/cancer cells to the endothelium are mediated by several CAMs different from those at the site of the primary tumor. These CAMs and their ligands are organized in a sequential row, the leukocyte adhesion cascade. In this adhesion process, integrins and their ligands are centrally involved in the molecular interactions governing the transmigration. This review discusses the integrin expression patterns found on primary tumor cells and studies whether their expression correlates with tumor progression, metastatic capacity and prognosis. Simultaneously, further possible, but so far unclearly characterized, alternative adhesion molecules and/or ligands, will be considered and emerging therapeutic possibilities reviewed.
Collapse
Affiliation(s)
- Greta Sökeland
- Institute of Anatomy and Experimental Morphology, University Cancer Center, University Medical Center Hamburg Eppendorf, Martinistraße 52, 20246, Hamburg, Germany.
| | - Udo Schumacher
- Institute of Anatomy and Experimental Morphology, University Cancer Center, University Medical Center Hamburg Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| |
Collapse
|
42
|
Zamaratskaia G, Mhd Omar NA, Brunius C, Hallmans G, Johansson JE, Andersson SO, Larsson A, Åman P, Landberg R. Consumption of whole grain/bran rye instead of refined wheat decrease concentrations of TNF-R2, e-selectin, and endostatin in an exploratory study in men with prostate cancer. Clin Nutr 2019; 39:159-165. [PMID: 30685298 DOI: 10.1016/j.clnu.2019.01.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 01/07/2019] [Accepted: 01/09/2019] [Indexed: 01/26/2023]
Abstract
BACKGROUND & AIMS Rye consumption has shown beneficial effects on prostate cancer tumors, as indicated by slower initial tumor growth in animal models and lowering of prostate-specific antigen (PSA) in humans. This study evaluated the effects of whole grain/bran rye consumption on low-grade inflammation and endothelial function biomarkers in men with prostate cancer. METHODS Seventeen men with untreated, low-grade prostate cancer consumed 485 g rye whole grain and bran products (RP) per day or refined wheat products with added cellulose (WP) in a randomized crossover design. Fasting blood samples were taken before and after 2, 4, and 6 weeks of treatment. RESULTS Concentrations of tumor nuclear factor-receptor 2 (TNF-R2), e-selectin, and endostatin were significantly lower after consumption of the RP diet compared with WP (p < 0.05). Cathepsin S concentration was positively correlated to TNF-R2 and endostatin concentrations across all occasions. Strong correlations were consistently found between intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) and between interleukin-6 (IL-6) and interleukin-1 receptor antagonist (IL-1RA). No effect of intervention was found in 92 inflammation-related protein biomarkers measured in a proximity extension assay. CONCLUSIONS RP diet lowered TNF-R2, e-selectin, and endostatin, compared with WP in men with prostate cancer. These effects were accompanied by a reduction in PSA.
Collapse
Affiliation(s)
- Galia Zamaratskaia
- Swedish University of Agricultural Sciences, Department of Molecular Sciences, Box, 7015, Uppsala, Sweden
| | - Nor Adila Mhd Omar
- Unit of Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden.
| | - Carl Brunius
- Swedish University of Agricultural Sciences, Department of Molecular Sciences, Box, 7015, Uppsala, Sweden; Department of Biology and Biological Engineering, Division of Food and Nutrition Science, Chalmers University of Technology, Gothenburg, Sweden
| | - Göran Hallmans
- Department of Public Health and Clinical Medicine, Nutritional Research, Umeå University, Umeå, Sweden
| | - Jan-Erik Johansson
- Department of Urology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Sven-Olof Andersson
- Department of Urology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | | | - Per Åman
- Swedish University of Agricultural Sciences, Department of Molecular Sciences, Box, 7015, Uppsala, Sweden
| | - Rikard Landberg
- Unit of Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden; Department of Public Health and Clinical Medicine, Nutritional Research, Umeå University, Umeå, Sweden; Department of Biology and Biological Engineering, Division of Food and Nutrition Science, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
43
|
Yao J, Shen X, Li H, Xu J, Shao S, Huang JX, Lin M. LncRNA-ECM is overexpressed in esophageal squamous cell carcinoma and promotes tumor metastasis. Oncol Lett 2018; 16:3935-3942. [PMID: 30128011 DOI: 10.3892/ol.2018.9130] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 06/13/2018] [Indexed: 12/12/2022] Open
Abstract
The aim of the present study was to investigate the expression of long non-coding(lnc) RNA-extracellular matrix (ECM) in esophageal squamous cell carcinoma (ESCC) and its effect on ESCC metastasis. Using reverse transcription-quantitative polymerase chain reaction (RT-qPCR), the expression of lncRNA-ECM in ESCC tissues was investigated and compared with that in corresponding adjacent tissues. In addition, the expression of lncRNA-ECM in the human ESCC cell lines TE-1, EC9706, KYSE150, Eca109 and KYSE30 was also detected and compared with that in the normal esophageal mucosal epithelial cell line HET-1A. The clinicopathological association between lncRNA-ECM and ESCC was assessed. Silencing and overexpression of lncRNA-ECM in ESCC TE-1 and Eca109 cells determined the correlation between lncRNA-ECM expression and ESCC invasion and metastasis. The possible target genes of lncRNA-ECM were predicted and verified by bioinformatics analysis and experimental results. The expression level of intercellular adhesion molecule 1 (ICAM1) was detected in ESCC tissues by RT-qPCR and the correlation between the expression of ICAM1 and lncRNA-ECM was analyzed. Changes in the expression of ICAM1 in ESCC TE-1 and Eca109 cell lines were evaluated after knocking down lncRNA-ECM and transfection of lncRNA-ECM overexpression plasmids. The expression level of lncRNA-ECM in the tissues of ESCC with lymph node metastasis were significantly increased compared with ESCC with no lymph metastasis (P<0.05). LncRNA-ECM silencing notably reduced the invasion and metastasis of TE-1 and Eca109 cells, while lncRNA-ECM overexpression promoted the invasion and metastasis of the two cell lines. The expression level of ICAMI was directly correlated with the expression of lncRNA-ECM, suggesting that ICAM1 may be the downstream target gene of lncRNA-ECM. LncRNA-ECM was revealed as being overexpressed in ESCC. LncRNA-ECM expression was positively correlated with metastasis and may affect the metastasis of ESCC through ICAMI regulation. These findings indicate that lncRNA-ECM may be promising as a novel biomarker for the diagnosis and prediction of prognosis for ESCC, and it may also serve as a novel therapeutic target for ESCC.
Collapse
Affiliation(s)
- Juan Yao
- Department of Oncology, Taizhou People's Hospital Affiliated to Nantong University, Taizhou, Jiangsu 225300, P.R. China
| | - Xiaozhou Shen
- Department of Oncology, Taizhou People's Hospital Affiliated to Nantong University, Taizhou, Jiangsu 225300, P.R. China
| | - Hongzhi Li
- Department of Oncology, Taizhou People's Hospital Affiliated to Nantong University, Taizhou, Jiangsu 225300, P.R. China
| | - Jie Xu
- Department of Oncology, Taizhou People's Hospital Affiliated to Nantong University, Taizhou, Jiangsu 225300, P.R. China
| | - Shanshan Shao
- Department of Oncology, Taizhou People's Hospital Affiliated to Nantong University, Taizhou, Jiangsu 225300, P.R. China
| | - Jun-Xing Huang
- Department of Oncology, Taizhou People's Hospital Affiliated to Nantong University, Taizhou, Jiangsu 225300, P.R. China
| | - Mei Lin
- Institute of Clinical Medicine, Taizhou People's Hospital Affiliated to Nantong University, Taizhou, Jiangsu 225300, P.R. China
| |
Collapse
|
44
|
ICAM3 mediates tumor metastasis via a LFA-1-ICAM3-ERM dependent manner. Biochim Biophys Acta Mol Basis Dis 2018; 1864:2566-2578. [PMID: 29729315 DOI: 10.1016/j.bbadis.2018.05.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 03/20/2018] [Accepted: 05/01/2018] [Indexed: 12/23/2022]
Abstract
ICAM3 was reported to promote metastasis in tumors. However, the underlying mechanism remains elusive. Here, we disclosed that the expression of ICAM3 was closely correlated with the TNM stage of human breast and lung cancer, as well as the dominant overexpression in high aggressive tumor cell lines (231 and A549 cells). Moreover, the knockdown of ICAM3 inhibited tumor metastasis whereas the ectopic expression of ICAM3 promoted tumor metastasis both in vitro and in vivo. In addition, exploration of the underlying mechanism demonstrated that ICAM3 not only binds to LFA-1 with its extracellular domain and structure protein ERM but also to lamellipodia with its intracellular domain which causes a tension that pulls cells apart (metastasis). Furthermore, ICAM3 extracellular or intracellular mutants alternatively abolished ICAM3 mediated tumor metastasis in vitro and in vivo. As a therapy strategy, LFA-1 antibody or Lifitegrast restrained tumor metastasis via targeting ICAM3-LFA-1 interaction. In summary, the aforementioned findings suggest a model of ICAM3 in mediating tumor metastasis. This may provide a promising target or strategy for the prevention of tumor metastasis.
Collapse
|
45
|
ICAM3 mediates inflammatory signaling to promote cancer cell stemness. Cancer Lett 2018; 422:29-43. [PMID: 29477378 DOI: 10.1016/j.canlet.2018.02.034] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 02/19/2018] [Accepted: 02/20/2018] [Indexed: 02/05/2023]
Abstract
In this study, we present a medium throughput siRNA screen platform to identify inflammation genes that regulate cancer cell stemness. We identified several novel candidates that decrease OCT4 expression and reduce the ALDH + subpopulation both of which are characteristic of stemness. Furthermore, one of the novel candidates ICAM3 up-regulates in the ALDH + subpopulation, the side population and the developed spheres. ICAM3 knockdown reduces the side population, sphere formation and chemo-resistance in MDA-MB-231 human breast cancer cells and A549 lung cancer cells. In addition, mice bearing MDA-MB-231-shICAM3 cells develop smaller tumors and fewer lung metastases versus control. Interestingly, ICAM3 recruits and binds to Src by the YLPL motif in its intracellular domain which further activates the PI3K-AKT phosphorylation cascades. The activated p-AKT enhances SOX2 and OCT4 activity and thereby maintains cancer cell stemness. Meanwhile, the p-AKT facilitated p50 nuclear translocation/activation enhances p50 feedback and thereby promotes ICAM3 expression by binding to the ICAM3 promoter region. On this basis, Src and PI3K inhibitors suppress ICAM3-mediated signaling pathways and reduce chemo-resistance which results in tumor growth suppression in vitro and in vivo. In summary, we identify a potential CSC regulator and suggest a novel mechanism by which ICAM3 governs cancer cell stemness and inflammation.
Collapse
|
46
|
Abstract
Resistance to chemotherapy and cancer relapse are major clinical challenges attributed to a sub population of cancer stem cells (CSCs). The concept of CSCs has been the subject of intense research by the oncology community since evidence for their existence was first published over twenty years ago. Emerging data indicates that they are also able to evade novel therapies such as targeted agents, immunotherapies and anti-angiogenics. The inability to appropriately identify and isolate CSCs is a major hindrance to the field and novel technologies are now being utilized. Agents that target CSC-associated cell surface receptors and signaling pathways have generated promising pre-clinical results and are now entering clinical trial. Here we discuss and evaluate current therapeutic strategies to target CSCs.
Collapse
Affiliation(s)
- Stephanie Annett
- Molecular and Cellular Therapeutics, Royal College of Surgeons Ireland, Ireland
| | - Tracy Robson
- Molecular and Cellular Therapeutics, Royal College of Surgeons Ireland, Ireland.
| |
Collapse
|
47
|
Whelan KA, Muir AB, Nakagawa H. Esophageal 3D Culture Systems as Modeling Tools in Esophageal Epithelial Pathobiology and Personalized Medicine. Cell Mol Gastroenterol Hepatol 2018; 5:461-478. [PMID: 29713660 PMCID: PMC5924738 DOI: 10.1016/j.jcmgh.2018.01.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 01/11/2018] [Indexed: 12/13/2022]
Abstract
The stratified squamous epithelium of the esophagus shows a proliferative basal layer of keratinocytes that undergo terminal differentiation in overlying suprabasal layers. Esophageal pathologies, including eosinophilic esophagitis, gastroesophageal reflux disease, Barrett's esophagus, squamous cell carcinoma, and adenocarcinoma, cause perturbations in the esophageal epithelial proliferation-differentiation gradient. Three-dimensional (3D) culture platforms mimicking in vivo esophageal epithelial tissue architecture ex vivo have emerged as powerful experimental tools for the investigation of esophageal biology in the context of homeostasis and pathology. Herein, we describe types of 3D culture that are used to model the esophagus, including organotypic, organoid, and spheroid culture systems. We discuss the development and optimization of various esophageal 3D culture models; highlight the applications, strengths, and limitations of each method; and summarize how these models have been used to evaluate the esophagus under homeostatic conditions as well as under the duress of inflammation and precancerous/cancerous conditions. Finally, we present future perspectives regarding the use of esophageal 3D models in basic science research as well as translational studies with the potential for personalized medicine.
Collapse
Key Words
- 3D, 3-dimensional
- BE, Barrett’s esophagus
- COX, cyclooxygenase
- CSC, cancer stem cell
- EADC, esophageal adenocarcinoma
- EGF, epidermal growth factor
- EGFR, epidermal growth factor receptor
- EMT, epithelial-mesenchymal transition
- ESCC, esophageal squamous cell carcinoma
- EoE, eosinophilic esophagitis
- Esophageal Disease
- FEF3, primary human fetal esophageal fibroblast
- GERD, gastroesophageal reflux disease
- OTC, organotypic 3-dimensional culture
- Organoid
- Organotypic Culture
- STAT3, signal transducer and activator of transcription-3
- Spheroid Culture
Collapse
Affiliation(s)
- Kelly A. Whelan
- Pathology and Laboratory Medicine, Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Amanda B. Muir
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Correspondence Address correspondence to: Amanda B. Muir, MD, Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Abramson Research Center 902E, Philadelphia, Pennsylvania 19103. fax: (267) 426–7814.
| | - Hiroshi Nakagawa
- Division of Gastroenterology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
48
|
Testa U, Castelli G, Pelosi E. Esophageal Cancer: Genomic and Molecular Characterization, Stem Cell Compartment and Clonal Evolution. MEDICINES (BASEL, SWITZERLAND) 2017; 4:E67. [PMID: 28930282 PMCID: PMC5622402 DOI: 10.3390/medicines4030067] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 09/05/2017] [Accepted: 09/07/2017] [Indexed: 12/20/2022]
Abstract
Esophageal cancer (EC) is the eighth most common cancer and is the sixth leading cause of death worldwide. The incidence of histologic subtypes of EC, esophageal adenocarcinoma (EAC) and esophageal squamous carcinoma (ESCC), display considerable geographic variation. EAC arises from metaplastic Barrett's esophagus (BE) in the context of chronic inflammation secondary to exposure to acid and bile. The main risk factors for developing ESCC are cigarette smoking and alcohol consumption. The main somatic genetic abnormalities showed a different genetic landscape in EAC compared to ESCC. EAC is a heterogeneous cancer dominated by copy number alterations, a high mutational burden, co-amplification of receptor tyrosine kinase, frequent TP53 mutations. The cellular origins of BE and EAC are still not understood: animal models supported a cellular origin either from stem cells located in the basal layer of esophageal epithelium or from progenitors present in the cardia region. Many studies support the existence of cancer stem cells (CSCs) able to initiate and maintain EAC or ESCC. The exact identification of these CSCs, as well as their role in the pathogenesis of EAC and ESCC remain still to be demonstrated. The reviewed studies suggest that current molecular and cellular characterization of EAC and ESCC should serve as background for development of new treatment strategies.
Collapse
Affiliation(s)
- Ugo Testa
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00141 Rome, Italy.
| | - Germana Castelli
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00141 Rome, Italy.
| | - Elvira Pelosi
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00141 Rome, Italy.
| |
Collapse
|
49
|
Cancer stem cells with increased metastatic potential as a therapeutic target for esophageal cancer. Semin Cancer Biol 2017; 44:60-66. [DOI: 10.1016/j.semcancer.2017.03.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 03/12/2017] [Accepted: 03/15/2017] [Indexed: 02/07/2023]
|
50
|
Li C, Liu S, Yan R, Han N, Wong KK, Li L. CD54-NOTCH1 axis controls tumor initiation and cancer stem cell functions in human prostate cancer. Theranostics 2017; 7:67-80. [PMID: 28042317 PMCID: PMC5196886 DOI: 10.7150/thno.16752] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 09/10/2016] [Indexed: 12/16/2022] Open
Abstract
Cancer stem cells (CSCs) are considered one of the key contributors to chemoresistance and tumor recurrence. Therefore, the precise identification of reliable CSC markers and clarification of the intracellular signaling involved in CSCs remains a great challenge in fields relating to cancer biology. Here, we implemented a novel chemoresistant prostate cancer patient-derived xenograft (PDX) model in NOD/SCID mice and identified CD54 as a candidate gene among the most highly enriched gene expression profiles in prostate tumors exposed to chronic cisplatin administration. Additional in vitro and in vivo assays showed that CD54 played a critical role in the self-renewal and tumorigenesis of prostate CSCs. Moreover, silencing CD54 greatly reduced the tumorigenesis of prostate cancers both in vitro and in vivo and significantly extended the survival time of tumor-bearing mice in a prostate cancer xenograft model. Dissection of the molecular mechanism revealed that the p38-Notch1 axis was the main downstream signaling pathway in CD54-mediated regulation of CSCs in prostate cancers. Together, these results established that CD54 could be a novel reliable prostate CSC marker and provided a new potential therapeutic target in prostate cancer via CD54-Notch1 signaling.
Collapse
|